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Purpose: To develop a novel algorithm that incorporates prior treatment knowledge into intensity
modulated radiation therapy optimization to facilitate automatic treatment planning and adaptive ra-
diotherapy (ART) replanning.
Methods: The algorithm automatically creates a treatment plan guided by the DVH curves of a refer-
ence plan that contains information on the clinician-approved dose-volume trade-offs among different
targets/organs and among different portions of a DVH curve for an organ. In ART, the reference plan
is the initial plan for the same patient, while for automatic treatment planning the reference plan
is selected from a library of clinically approved and delivered plans of previously treated patients
with similar medical conditions and geometry. The proposed algorithm employs a voxel-based opti-
mization model and navigates the large voxel-based Pareto surface. The voxel weights are iteratively
adjusted to approach a plan that is similar to the reference plan in terms of the DVHs. If the reference
plan is feasible but not Pareto optimal, the algorithm generates a Pareto optimal plan with the DVHs
better than the reference ones. If the reference plan is too restricting for the new geometry, the algo-
rithm generates a Pareto plan with DVHs close to the reference ones. In both cases, the new plans
have similar DVH trade-offs as the reference plans.
Results: The algorithm was tested using three patient cases and found to be able to automatically
adjust the voxel-weighting factors in order to generate a Pareto plan with similar DVH trade-offs as
the reference plan. The algorithm has also been implemented on a GPU for high efficiency.
Conclusions: A novel prior-knowledge-based optimization algorithm has been developed that auto-
matically adjust the voxel weights and generate a clinical optimal plan at high efficiency. It is found
that the new algorithm can significantly improve the plan quality and planning efficiency in ART re-
planning and automatic treatment planning. © 2014 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4875700]
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1. INTRODUCTION

Treatment planning is currently a patient specific, time-
consuming, and resource-demanding task in intensity mod-
ulated radiation therapy (IMRT). Plan quality is subjective

and highly dependent on the institution and the planners’
skills and experiences.1–3 Automatic treatment planning has
been introduced to facilitate this procedure. Two general tech-
niques have been followed in automatic treatment planning.
The first technique is to develop a systematic algorithm to
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automatically adjust the optimization model parameters for
the new patient to generate a satisfactory plan that meets some
predetermined clinical criteria.4–7 The second technique is to
employ a library of clinically approved and delivered plans
of previously treated patients with similar medical character-
istics in order to find a set of parameters for a new patient
that produce a clinically desirable plan.8–10 In this work, we
propose an algorithm to automatically adjust the optimization
model parameters to replicate a reference plan for a new pa-
tient’s geometry with the reference plan being selected on pa-
tient similarity from a library of preciously delivered plans.

In conventional radiation therapy, a clinically approved
plan is constructed based on the patient image data (plan-
ning CT) acquired at the beginning of the treatment process.
Then, this plan will be delivered to the patient throughout the
whole treatment course. The patient’s geometry changes dur-
ing the treatment course. This implies that the original plan
built based on the patient’s initial geometry is no longer an op-
timal plan for the patient’s new geometry. Adaptive radiother-
apy (ART) has been proposed to ease this issue by imaging the
patient’s changed geometry during the treatment course and
modifying the original, or reference, plan accordingly.11–20

The new plan in either automatic treatment planning or
ART replanning is supposed to inherit some clinically mean-
ingful characteristics from the reference one. In this paper, we
would like to consider dose-volume information in the form
of the DVH as the common characteristic between the new
and the reference plans. Therefore, we are trying to gener-
ate a new plan with the DVH similar to the reference ones.
The flexibility of the DVH to be used on different geometries
as well as its clinical relevance and importance inspired us to
employ that as the shared characteristic between the reference
and the new plan. In fact, as opposed to some evaluation crite-
ria such as dose distribution, a DVH is quite flexible and can
be simply applied to different geometries since it provides in-
formation about the amount of doses in different volumes of
each organ which is irrespective to the geometry and the shape
of the structures.

There are numerous research studies in the literature about
developing an optimization model capable of generating
a plan with the DVHs satisfying a set of partial DVH
constraints or with the DVHs close to the given ones.21–30

In this paper, we aim to develop an optimization model to
handle the entire DVH curves rather than a few points on
the curves. The goal is to minimize an appropriately defined
metric designed to represent the distance between a plan’s
DVHs and the reference DVHs. Since the proposed metric
is very complicated, nonconvex, and difficult to optimize,
we employ a surrogate convex function along with some
parameters in order to improve that metric by adjusting the
parameters. It is a common optimization approach when our
clinically relevant metric is very complicated.4, 31–37 In fact,
by varying the parameters we are navigating among the set of
plans known as Pareto-optimal plans (i.e., plans on the Pareto
surface) to optimize the given metric. The Pareto surface
includes a set of the plans which are Pareto optimal with
respect to the surrogate function. We define our surrogate
function based on the voxel-based optimization model that

has recently gotten a lot of attention in radiotherapy opti-
mization due to its promising results in clinical studies.4, 31–37

In this model, there is a weight associated to each voxel in
the objective function of the optimization model. We recently
did a mathematical study on the voxel-based model that
revealed the main advantages of this model.38 However, the
adjustment of a dramatically increased number of parameters
(voxel weights) in the voxel-based model remained to be
a big problem, which makes the trial-and-error approach
of parameter selection impossible to apply clinically. We
propose a systematic scheme to adjust the voxel weights
automatically in order to approach the reference DVHs.

2. PARETO SURFACE NAVIGATION THROUGH
THE VOXEL-WEIGHT ADJUSTMENT

2.A. Voxel-based optimization model

In this section, we briefly introduce the voxel-based
model and compare it with the commonly used organ-based
model. For details readers are referred to Ref. 38. Problems
(1) and (2) illustrate the general form of the voxel-based and
the organ-based optimization models, respectively,

minx≥0

∑
σ∈S

∑
j∈vσ

wjFj (Djx), (1)

minx≥0

∑
σ∈S

wσGσ (Dσx), (2)

where S = T ∪ C is the set of structures with T being the tu-
mors and C critical organs and vσ denotes the set of voxels
that belong to the structure σ . wj and wσ are the weights cor-
responding to the voxel j and the organ σ . D denotes dose
deposition matrix and its entry Djk specifies the dose received
by the voxel j from a beamlet k at its unit intensity. Dj is the
jth row of the matrix D that corresponds to voxel j and Dσ is
the submatrix of D corresponding to organ σ . Fj is a voxel
penalty function and Gσ is an organ penalty function, and x is
the fluence map intensity.

From the mathematical modeling point of view, the main
difference between Problems (1) and (2) is that there is a
weight associated with each voxel in Eq. (1), while all the
voxels within each organ are weighted equally in Eq. (2).
Both problems include a set of functions of the dose distri-
bution along with their weighting factors. These functions are
our clinically relevant criteria if those criteria can be repre-
sented as the tractable functions. Otherwise, a set of surrogate
functions is employed and then the weights are adjusted to
improve the clinical criteria.

Any optimal solution of Problem (1) is a Pareto opti-
mal solution with respect to the given penalty function. It
means, different penalty function G usually results in differ-
ent Pareto surfaces in the organ-based model (some of them
correspond to the same Pareto surface39, 40). Clinical exper-
iments have also verified a great impact of using different
penalty functions in the organ-based model on the optimized
plan quality,41–43 and so far there is no general agreement on
the choice of the objective function. In contrast, an objective
function selection is no longer an issue in the voxel-based
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FIG. 1. Flowchart of the proposed algorithm.

model and a unique Pareto surface defined based on the dose
distribution concept (called dose distribution Pareto surface)
is generated by the voxel-based model as long as the penalty
function F satisfies some desirable properties. The dose dis-
tribution Pareto surface is much larger than the organ-based
Pareto surfaces, and in our previous work38 we proved that it
encompasses all the Pareto surfaces generated by the organ-
based model using different penalty functions. We also proved
that it includes all the plans which are Pareto optimal in terms
of the DVH concept. Therefore, the voxel-based model can be
employed as a surrogate optimization model especially when
our clinically relevant metric is defined based on the DVH.
In our previous work, it turns out that the following quadratic
voxel-based model is capable of generating almost the entire
dose distribution Pareto surface (the entire Pareto surface ex-
cluding the so-called nonproperly Pareto optimal points44).
So, we employ the following model in this work due to its
computational efficiency:

minx≥0

∑
σ∈S

∑
j∈vσ

wj (Djx − rσ )2, (3)

where rσ denotes the prescription dose for the structure σ .
Despite the benefits of the voxel-based model, it has a big
downside which is the huge number of the parameters. In this
paper, we aim to tackle this problem by developing an algo-
rithm which takes into account the prior DVH information. In
fact, we would like to generate the similar DVHs to the ref-
erence ones, which already contain physician approved trade-
off information by adjusting the voxel weights.

2.B. Algorithm

To facilitate reading, “the new patient” will refer to the pa-
tient for which we look for a plan to generate. That is, “the
new patient” can represent the patient in automatic treatment
planning or the existing patient with the new geometry in ART
replanning. Also, let us refer to the dose distribution Pareto
surface of the new patient simply as the “Pareto surface.” We
propose an algorithm which iteratively navigates the Pareto
surface and projects the plan corresponding to the reference
DVHs back on the Pareto surface.

Projecting a plan on the Pareto surface means finding the
closest plan on the Pareto surface to the reference plan. It im-
plies that, if the reference DVHs are feasible but not Pareto
optimal for the new patient, then the projected plan on the
Pareto surface would be even better than the reference one in
terms of the DVHs; and if the reference DVHs are outside the
feasible region of the new patient, meaning it is impossible to
generate that plan, then the projected plan on the Pareto sur-
face would be similar but not as good as the reference one. In
the latter case, the closer the reference plan is to the Pareto
surface, the more similar the projected plan would be to the
reference one.

Figure 1 demonstrates the flow of the algorithm. At first,
we find a particular dose distribution corresponding to the
reference DVHs (Sec. 2.C), referred to as the reference dose
distribution. Then, we solve the fluence map optimization
problem (3) with some initial weights to get a Pareto opti-
mal solution. This solution is evaluated by the metric defined
to quantify the difference between its DVHs and the refer-
ence DVHs (Sec. 2.F). If the termination criteria are not met,
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FIG. 2. Extracting the reference dose from the reference DVH for an organ with N voxels.

among all the permutations of the reference dose distribu-
tion that are corresponding to the reference DVHs, we target
the closest one to the Pareto solution generated by solving
Problem (3) (Sec. 2.D). We then project that reference dose
distribution back onto the Pareto surface by adjusting the
weighting factors (Sec. 2.E). We continue the algorithm by
solving the fluence map optimization problem with the up-
dated weighting factors. When the termination criteria are
met, we pick the best solution, in terms of the metric defined
to evaluate the DVHs (Sec. 2.F), among all the Pareto solu-
tions generated by the algorithm.

2.C. Extracting a reference dose distribution from
the reference DVHs

Given a set of reference DVHs, our algorithm needs to find
out its corresponding dose distribution with the same number
of the voxels for each structure as the new patient. A typi-
cal dose distribution can be reconstructed by discretizing the
volume axis of the DVH uniformly by the number of the vox-
els and finding the corresponding dose values. Figure 2 illus-
trates the process for an organ with N voxels. In this example,
we would have the similar DVH for the new patient’s organ,
by spreading the reference dose values d̄1, d̄2, . . . , d̄N among
the voxels of the new patient’s organ. It should be noted that
DVH is insensitive to the voxel’s spatial location meaning that
the reference dose values can be spread among the voxels in
any arbitrary way to generate the reference DVH. In another
words, if we index the voxels of the new patient’s organ, then
any permutation of d̄ can be assigned to the voxels to generate
the reference DVH.

2.D. Nonconvexity issue

After extracting the reference dose distribution from the
reference DVHs, we solve Problem (3) with arbitrary ini-

tial weighing factors to get the Pareto optimal solution d0

= Dx0. After obtaining a solution, the weights are updated to
guide the DVHs of the current solution toward the reference
DVHs. We do not have the DVH directly in our optimiza-
tion model, but we have the voxel dose values in Problem
(3). Therefore, we need to change the voxel dose values to
make their corresponding DVHs close to the reference ones
through updating the weights. The difficulty here is due to
the insensitivity of the DVH to the permutation of the dose
values in each organ that results in the existence of many
paths through which we can change the dose values to get
close to the reference DVHs. This problem is known as the
nonconvexity problem in radiotherapy optimization. In fact,
if π (.) : {1, . . . , vσ } → {1, . . . , vσ } denotes an arbitrary per-
mutation of the dose values of organ σ , then π (d̄σ ) would also
represent the same DVH and hence we can approach the ref-
erence DVH by driving dσ

0 toward π (d̄σ ). Now the question
that arises here is: “which permutation of the reference dose
should be targeted?” To answer this question, we need to con-
sider three following possible scenarios regarding the position
of the reference DVHs with respect to the feasible solution set
of the new patient (the set of all deliverable dose distributions
for the new patient).

(i) All permutations of the reference dose are inside the
feasible region.

(ii) All permutations of the reference dose are outside the
feasible region.

(iii) Some of the permutations of the reference dose are
inside the feasible region and the others are outside.

For (i), any permutation of the reference dose is possible
to be generated since they are all inside the feasible region.
They can be even improved by projecting them back onto the
Pareto surface. The best plan in this case corresponds to the
permutation whose projection provides the most improvement
in the reference plan. Figure 3 (left) clarifies this situation for
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FIG. 3. Projection of different permutations of dose values onto the Pareto surface. (Left: permutations are inside the feasible region): Projecting B results in
more improvement in the reference dose. (Right: permutations are outside the feasible region): Projecting D results in less deterioration in the reference dose.

an OAR with two voxels. Points A and B are two different
permutations of the reference dose and considered to be the
same in terms of the DVH, and A′ and B′ are their special
projections. It can be seen that B′ is better than A′ in terms of
the DVH which means the more improvement is achieved by
projecting B onto the Pareto surface. For the second scenario,
any permutation of the reference dose is impossible to be gen-
erated and they need to be projected back onto the Pareto
surface in order to find the feasible and similar plans to the
reference one. The projection in this case would deteriorate
the reference dose to make it feasible, and the best plan corre-
sponds to the permutation that provides the least deterioration.
Figure 3 (right) explains this scenario. Points C and D cor-
respond to different permutations of the reference dose, and
C′ and D′ are their special projections on the Pareto surface.
As can be seen, projecting D results in less deterioration and
hence the plan with better DVH. It is obvious that in the third
scenario the best plan is obtained by projecting the permuta-
tion of the reference dose that is inside the feasible region and
results in the most improvement.

Unfortunately, the above procedure is very computation-
ally expensive, if not prohibitive. We cope with this issue by
iteratively choosing some particular permutation of the refer-
ence dose and projecting them back onto the Pareto surface.
At each iteration of the algorithm, we target the permutation
of the reference dose corresponding to the closest dose dis-
tribution to the current Pareto solution. Then, we project the
targeted permutation of the reference dose on the Pareto sur-
face to get a new Pareto optimal plan. We continue this pro-
cess until either the maximum allowed number of iterations is
reached or there is not enough improvement in the plan gen-
eration. At the end, we pick up the best Pareto optimal plan
among all the projected plans on the Pareto surface generated
throughout this iteration process, as each iteration is not guar-
anteed to produce a better plan than the last. In the rest of
this section, we explain how we can find out the closest per-
mutation of the reference dose to the current Pareto solution,
and in Sec. 2.E we will elaborate on the projection of the tar-
geted plan back on the Pareto surface. Section 2.F introduces
a metric to pick up the best Pareto solution.

Let us consider the initial Pareto solution d0 as a cur-
rent solution. For structure σ ∈ S, if π̃ (.) denotes the per-
mutation that sorts the vector dσ

0 in an ascending order [i.e.,
π̃ (dσ

0 ) = sort(dσ
0 )], then according to the following theorem,

π̃−1(d̄σ ) is the closest permutation of the reference dose to the
current solution regardless which p-norm used to measure the
distance.

Theorem 1: For σ ∈ S, let � denote the set of all possible
permutations π (.): {1, . . . , vσ } → {1, . . . , vσ }. Then for every
p ∈ [1, ∞), we have∣∣∣∣dσ

0 − π̃−1(d̄σ )
∣∣∣∣

p
≤ ∣∣∣∣dσ

0 − π (d̄σ )
∣∣∣∣

p
∀π ∈ �. (4)

The proof of this theorem is given in Appendix A. Theorem 1
reveals that, for each structure σ ∈ S, among all the permu-
tations π (d̄σ ) of the reference dose that corresponds to the
same DVH, π̃ (dσ

0 ) yields the closest one to the current solu-
tion. Now, the dose distribution that we would like to target at
a certain iteration of the algorithm can be computed by per-
forming the above procedure for each structure. With a slight
abuse of notation, we denote the closest dose distribution for
all structure by π̃−1(d̄). It should be noted that different per-
mutations of the reference dose would be targeted at different
iterations of the algorithm due to the dependency of the π̃ (.)
on the current Pareto solution at each iteration.

2.E. Projection on the Pareto surface

The next step is to project the point π̃−1(d̄) back on the
Pareto surface of Problem (3). The Pareto surface, here is
denoted by F(z) = 0, is a part of the frontier of the set
Z = {z = (Dx − p)2|x ≥ 0}. The frontier of Z is piecewise
quadratic since it is a quadratic transformation of the frontier
of the transferred cone (Dx − p) which is piecewise linear.
The shape of the Pareto surface depends on the deposition
matrix D and the prescription vector p. There does not ex-
ist an efficient way to obtain the Pareto surface, making the
projection a challenging problem. We approach this issue by
using a quadratic approximation of the Pareto surface.

The projection idea is based on the fact that each point
on the Pareto surface corresponds to the set of weighting
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FIG. 4. Illustration of the projection method in a two-dimensional space.
The solid line is the Pareto surface, the dashed line is the quadratic surface
passing through the initial point and the reference point and its gradient at the
reference point would be used as the new weighting factors in the optimiza-
tion model.

factors that are the gradient of the Pareto surface (∇F(z)) at
that point. Specifically, if we use ∇F(z) as the weighting fac-
tors in Problem (3), the optimal solution would be z. Now,
we use the quadratic surface that passes through the current
Pareto solution (d0 at the first iteration) and π̃−1(d̄) as an ap-
proximation of the Pareto surface, and we set the weighting
factors of Problem (3) equal to the gradient of this approx-
imation of Pareto surface at π̃−1(d̄). Then, the optimal so-
lution is expected to be on the projection area of the point
π̃−1(d̄) on the Pareto surface. Figure 4 clarifies this process
in a two-dimensional space where the point π̃−1(d̄) is inside
the feasible region. The same behavior can be observed if the
point that we want to project is outside the feasible region.

In Fig. 4, Z̄ = (z̄1, z̄2) represents the point that is supposed
to be projected on the Pareto surface. The Pareto surface,
which is a border of the feasible region and is depicted by
the solid line, is a piecewise quadratic surface and is denoted
here by F(Z) = 0. The dashed-dotted lines are the remaining
parts of the two quadratic surfaces that make the piecewise
quadratic Pareto surface. The dashed line, here is denoted by
F̃ (Z) = 0, represents the quadratic surface passing through

the initial point Z0 = (z0
1, z

0
2) and the reference point. The

gradient of F̃ (Z) at Z̄ is used as the weighting factors in Prob-
lem (3) to obtain the projection of Z̄ on the Pareto surface.
Since the weighting factors are corresponding to the gradient
of the Pareto surface at the optimal solution, the optimal solu-
tion would be Z1 where we have ∇F (Z1) = ∇F̃ (Z̄). As can
be observed in Fig. 4, Z1 is located on the projection area of
Z̄ on the Pareto surface. Theorem 2 shows that ∇F̃ (Z̄) can be
easily approximated from the existing information.

Theorem 2: The new weighting factors utilized to project
the closest permutation of the reference dose on the Pareto
surface can be approximated as

w1
j = ∇j F̃ (Z̄) ≈w0

j

|d0j − pj |∣∣π̃−1
j (d̄) − pj

∣∣ ∀σ ∈ S, j ∈ vσ .

The proof of this theorem is given in Appendix B. By
setting the weighting factors equal to w1 in Problem (3)
and solving it, we would get the new dose distribution d1.
Then, the above procedure is carried out on d1 as the current
solution.

2.F. Evaluation of the DVHs

At each iteration of the algorithm, the weighting factors are
updated to encourage the DVHs of the current solution (cur-
rent DVHs) to approach the reference DVHs. However, we do
not directly optimize the distance to the reference DVHs. We
need to define an appropriate metric to evaluate the solution
quality at each iteration and to pick the best solution among
the generated solutions when the algorithm terminates.

We define the metric based on two areas between the ob-
tained and the reference DVHs: the areas where the current
DVHs are better than the reference DVHs, and the areas
where the current DVHs are worse than the reference DVHs.
Figure 5 illustrates these two types of areas for an organ at
risk (left) and a PTV (right). The solid line represents the ref-
erence DVH and the dashed line represents the current DVH.
The prescription dose for the PTV is shown by a solid verti-
cal line in the right plot. For organ at risk, A depicts the area
where the reference DVH is better than the current one and
B depicts the area where the current DVH is better. Our first
priority is to make A as small as possible, and our second

FIG. 5. Comparing the current DVH and the reference DVH for an OAR (left), and a PTV (right). The solid line represents the reference DVH and the dashed
line represents the current DVH.
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priority is to make B as big as possible. Therefore, the follow-
ing metric is used to quantify the quality of the current DVH
with respect to the reference one for this organ:

m = mA − εmB,

where ε is a small number, and mA, mB are the metrics cor-
responding to the areas A and B. Using a small number to
reflect different levels of priorities among different objectives
is a common approach in optimization.45 For PTV, given that
the closer dose to the prescription value is preferred, C and E
represent the areas where the reference DVH is better, while
D and F represent the areas where the current DVH is better.
Therefore, we can define the metric for PTV as

mσ = (mC + mE) − ε(mD + mF ).

Now, we need to combine all organs’ metrics to come up
with a single metric to quantify the current DVHs. While there
are many ways to do that, we take the maximum value among
all the organs’ metrics

m = maxσ∈S mσ , (5)

where mσ is a metric corresponding to the structure σ . To
some extent, this metric would choose the plan for which the
deviation to the reference plan is uniformly distributed among
all the organs. To have a better convergence behavior for the
algorithm in terms of the above metric, it is better to reflect
the desire of distributing the deviation uniformly among the
organs in the algorithm. Toward this end, we penalize each
organ weights proportional to its deviation mσ to the refer-
ence DVH. It can be done through the following weight ad-
justment:

w1
j = w0

j

⎛
⎝1 + mσ

max
σ∈S

|mσ |

⎞
⎠ ∀j ∈ vσ , σ ∈ S.

3. EXPERIMENTS AND RESULTS

In this section, we provide three different case studies. All
of them are IMRT cases with seven equispaced beam angles.
The first case is designed to test the capability of the algo-
rithm to project a reference plan on the Pareto surface, and we
use Matlab as our computational framework for this case. The
second and the third case studies represent the applications
of the algorithm for adaptive radiotherapy replanning and au-
tomatic treatment planning. We use our inhouse GPU-based
research planning system (SCORE) to run the algorithm and
demonstrate the results for these two cases. We set beamlet
size and voxel size to 0.5 × 0.2 and 0.2 × 0.2 × 0.25 cm3,
respectively. We cannot afford solving the optimization prob-
lem including all the voxels and so we just pick out some of
them by downsampling process. However, to make the second
and the third case studies more realistic, the final dose calcu-
lation on all the voxels, including MLC transmission, will be
performed after optimization. Moreover, since we aim to eval-
uate the performance of the proposed optimization algorithm,
in the following we will just mention the number of the vox-
els used in optimization model and the time spent to solve the
optimization problem.

3.A. A prostate case to test the algorithm

This is a small prostate case with 50 221 voxels and 943
beamlets. We implemented the algorithm in Matlab, and ran
the code on a PC with Intel Core i7 3.40 GHz CPU and 12 GB
RAM. Two distinct scenarios are investigated for this case:
(1) the reference DVHs are inside the feasible region (feasi-
ble DVHs), (2) the reference DVHs are outside the feasible
region (infeasible DVHs). We will show that the algorithm
generates a plan with DVHs better than the reference ones for
the first scenario, while it finds a plan with DVHs worse than,
but similar to, the reference ones for the second scenario.

In order to get the feasible and infeasible sets of the DVHs,
we first generated a plan by solving Problem (3) with a set of
the weighting factors, which yields a plan that is Pareto opti-
mal in terms of the DVHs,38 and then we manipulated them.
An infeasible plan can be obtained by improving the DVH
curves of the Pareto optimal plan (shifting the OAR DVHs
toward left and PTV DVH toward prescription dose), and a
feasible plan can be generated by worsening the DVHs of the
Pareto optimal plan.

Figures 6 and 7 are regarding the feasible reference DVHs
shown by the solid lines. The dotted lines in Fig. 6 depict
the result of the algorithm. As can be seen, the DVHs gener-
ated by the algorithm are better than the reference ones due
to the feasibility of the reference DVHs. In fact, the algorithm
projects the feasible reference plan on the Pareto surface re-
sulting in a better plan. It took us 10.6 s to get this plan.
Figure 7 investigates the nonconvexity issue that may lead
to local optimality. For this purpose, we ran the algorithm
100 times with randomly generated initial weighting factors,
and then we picked the best (dotted lines) and the worst
(dashed lines) solutions with respect to our metric introduced
in Eq. (5). It seems that the local optimality is not a big is-
sue for this case, especially since both plans are better than
the reference one. In fact, the algorithm projects the refer-
ence plan on the Pareto surface regardless the initial solution
which implies that all 100 plans are Pareto optimal and on the
projection area of the reference plan. However, given that the
algorithm started from different points on the Pareto surface,
it ends up in different parts of the projection area.

Figures 8 and 9 deal with the infeasible reference DVHs.
Figure 8 shows that the algorithm is able to generate a plan
that, although worse than the reference plan, is close to it.
The computation time is 7.4 s in this case. Figure 9 exam-
ines the local optimality issue by running the algorithm for
100 times with randomly generated initial weights and illus-
trates the best and the worst plans. Again, the local optimality
does not seem to be a big problem.

3.B. Adaptive radiotherapy replanning for a head
and neck case

The application of the proposed algorithm in adaptive ra-
diotherapy replanning is illustrated in this section with a head
and neck case that has been treated previously at UCSD
Moores Cancer Center. The number of the voxels and beam-
lets for this patient are 20 758 and 13 934, respectively. The
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FIG. 6. Dotted line: The result of the algorithm. Solid line: The feasible reference DVHs.

FIG. 7. Investigating the local optimality issue: The algorithm has been run 100 times with randomly generated starting points, and the dotted and the dashed
lines represent the best and the worst solutions, respectively. Solid lines are the feasible reference DVHs.

FIG. 8. Dotted line: The result of the algorithm. Solid line: The infeasible reference DVHs.
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FIG. 9. Investigating the local optimality issue: The algorithm has been run 100 times with randomly generated starting points, and the dotted and the dashed
lines represent the best and the worst solutions, respectively. Solid lines are the infeasible reference DVHs.

optimization algorithm took 11.6 s to run on our inhouse
GPU-based research planning system (SCORE).

The solid line in Fig. 10 depicts the original clinical plan
developed on the patient’s original geometry. The dotted line
demonstrates the result of our algorithm, after final dose cal-
culation, when we used the original plan as a reference on
the patient’s new geometry. As can be seen, the optimal plan
for the patient’s new geometry is better than the original plan
almost everywhere. We looked at the result of the algorithm
right after the optimization, before final dose calculation, and
we found out the result is even better. It means that the origi-
nal plan is inside the feasible region corresponding to the pa-
tient’s new geometry and so the algorithm is able to generate a
better plan by projecting the original plan back on the Pareto
surface. The significant improvement in plan quality in this
figure can be explained with two main possible reasons: (1)
the patient’s geometry has been changed in a way that made

the original plan located far inside the feasible region of the
new geometry leading to the substantial improvement by pro-
jecting that plan on the Pareto surface, (2) the proposed al-
gorithm explores a much larger voxel-based Pareto surface of
the new geometry that can help to find out a plan with bet-
ter trade-offs. Another theoretically possible reason (proba-
bly unlikely) is that the original plan generated by the com-
mercial software is not a Pareto optimal plan for the original
geometry.

Figure 11 compares the original plan delivered on the pa-
tient’s new geometry (solid line) with the new plan generated
by the algorithm (dotted line). This figure verifies the bene-
fit of using the proposed algorithm instead of delivering the
original plan on the new geometry. If we do not consider the
possible adverse effect of the final dose calculation and MLC
transmission, since the original plan delivered on the new ge-
ometry is a feasible plan and always inside the feasible region,

FIG. 10. Solid line: The original plan delivered on the patient’s original geometry. Dotted line: The result of the algorithm.
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FIG. 11. Solid line: The original plan delivered on the patient’s new geometry. Dotted line: The result of the algorithm.

the plan generated by the algorithm would be always better
than this plan.

Figure 12 compares the dose distribution of the original
plan delivered on the patient’s new geometry (a) and (c) with
the new plan generated by the algorithm (b) and (d). The
dose distribution also verifies the improvement in plan qual-
ity in terms of both tumor coverage and healthy tissue sparing.
However, since the dose distribution was not part of the op-
timization process, we cannot draw a solid conclusion about
the quality of the dose distribution at this moment. This tech-
nique’s effects on the dose distribution need either more ex-

perimental study or a change to explicitly consider dose dis-
tribution quality as part of the optimization model.

3.C. Automatic treatment planning for a prostate case

With this example we demonstrate how the proposed al-
gorithm can be used for automatic treatment planning. We
assume that there is a new patient that we want to treat by
using a library of plans of already treated patients with sim-
ilar medical conditions. We use a prostate case that has been
treated previously at UCSD Moores Cancer Center as a new

FIG. 12. (a) and (c) The original plan delivered on the patient’s new geometry. (b) and (d) The result of the algorithm.
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FIG. 13. Solid line: The DVHs of the most similar patient as the reference DVHs. Dotted line: The result of the algorithm by using the solid line as reference.

patient. The number of the voxels and beamlets for this case
are 22 229 and 3412, respectively. First, we went through the
library of 99 treated prostate cases and found the most similar
one to the new patient in terms of organs geometry.46 This step
is accomplished by employing some machine learning tech-
niques to find out a similarity function that uses some geo-
metric features as inputs (e.g., organ/PTV volume, organ/PTV
overlapping volume, Dice index, and mutual information be-
tween a pair of two organs/PTVs/intersections) and DVH sim-
ilarity as an output. Then, we used the DVHs of the most sim-
ilar patient as the reference DVHs in the algorithm to generate
a plan for the new patient.

The solid line in Fig. 13 illustrates the reference DVHs
and the dotted line represents the result of the algorithm for
the new patient. It can be seen that the result is better that the
reference DVHs everywhere except for rectum which is due
to the final dose calculation and MLC transmission. It means
that the reference DVHs is inside the feasible region of the
new patient. It took us 7.2 s to solve the optimization problem

and find the plan for the new patient in our inhouse planning
system.

Figure 14 compares the clinical plan that has been deliv-
ered for patient treatment (solid line) to the result of the au-
tomatic treatment planning (dotted line). These two plans are
not exactly the same, but they both provide clinically accept-
able trade-offs between different organs.

4. DISCUSSION AND CONCLUSION

The benefits of using the voxel-based model have been dis-
cussed before by many authors, however, determining the nu-
merous parameters in the model continues to be a challenge
in practice. In this paper, we studied how the prior DVH infor-
mation that exists in automatic treatment planning and ART
replanning can be employed as guidance to tune treatment
plan optimization parameters.

We proposed an algorithm that is capable of adjust-
ing voxel weights automatically and navigating the dose

FIG. 14. Solid line: The original clinical plan delivered for patient treatment. Dotted line: The result of the algorithm by using the automatic treatment planning
technique.
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distribution Pareto surface to approach a plan with DVHs
similar to the given DVHs. The proposed algorithm itera-
tively approximates the piecewise quadratic Pareto surface
with a quadratic one to project the given DVHs back on
the Pareto surface. The nonconvexity issue that comes from
the insensitivity of the DVH to the spatial properties of the
voxels has been handled by iteratively picking some partic-
ular permutations of the dose values resulting in the same
DVH. The local optimality turned out to be not a big prob-
lem based on our limited experience; however, more experi-
mental study needs to be done in this direction to draw a solid
conclusion.

We discussed the potential applications of the proposed al-
gorithm in automatic treatment planning and ART replanning.
However, the natural question that arises here is “what if the
plan generated by the algorithm for automatic treatment plan-
ning or ART replanning does not satisfy some of the clini-
cian’s criteria in terms of the DVH or dose distribution?” In
our next work, we will show how the clinician can interac-
tively tune the DVH curves and dose distribution of the gen-
erated plan to make the plan satisfactory.

The capability of the algorithm to project a feasible and
infeasible reference plan to the Pareto surface may beg the
question of “what if we put an ideal DVH (zero dose in normal
tissues and prescribed dose in tumor) or a very lousy DVH as
a reference?” The answer to this question lies in the fact that,
while the algorithm tries to project a reference plan on the
projection area, it cannot guide the reference plan toward a
particular part of the projection area. In other words, when the
reference needs to be improved (feasible reference) or com-
promised (infeasible reference) to make the projection, we do
not have too much control on the way that improvement or
compromise is done. This is not going to be a problem if the
reference plan is close to the Pareto surface since the projec-
tion area would be relatively small. However, if the reference
plan is far from the Pareto surface, like the ideal or very lousy
reference, then the projection area would be quite big and the
result of the algorithm could be unpredictable. This is actu-
ally the main reason that for ART and automatic treatment
planning we pick some reference plans that are expected to
be close to the Pareto surface.

Finally, we would like to mention that we picked the DVH
to guide the optimization process due to its flexibility and in-
dependence to the geometry of the patient; however, there are
other clinically relevant indices that physicians care about and
need to be taken into account in optimization process in order
to produce a fully satisfactory plan. We believe that this will
be a good direction for our future work.

APPENDIX A: PROOF OF THEOREM 1

First, we prove the following inequality:

||sort(a) − sort(b)||p ≤ ||a − b||p, (A1)

where a, b ∈ Rn. The proof is by induction on n. For n = 2,
the proof is intuitive and we just need to investigate different
relative positions of a and b. Assume that the inequality holds
for n = k where k ≥ 2. For n = k + 1, let us denote sort(a)

by c = (c1, . . . , ck+1) and sort(b) by d = (d1, . . . , dk+1). Since
(k + 1) ≥ 3, it can be readily shown that there exist i ∈ {1,
. . . , k + 1} such that ai > c1 and bi > d1. In fact, ai and bi

are considered not to be the smallest components of a and b.
Now, we have

||a−b||pp = ||(a1, . . . , ai−1, ai+1, . . . , ak+1)

− (b1, . . . , bi−1, bi+1, . . . , bk)||pp+|ai − bi |p,

(A2)

≥ ||sort(a1, . . . , ai−1, ai+1, . . . , ak+1)

−sort(b1, . . . , bi−1, bi+1, . . . , bk)||pp + |ai − bi |p (A3)

= |c1 − d1|p + ||w − v||pp. (A4)

Inequality (A3) is obtained from Eq. (A2) by applying the
induction assumption. To get Eq. (A4) from Eq. (A3), we just
need to consider that c1 and d1 are the smallest components
of a and b, and they are not equal to ai and bi. w and v are the
names for the remaining elements. Now, since w and v have
k components, we can employ the induction assumption for
||w − v||pp and have

|c1 − d1|p + ||w − v||pp ≥ |c1 − d1|p + ||sort(w)

−sort(v)||pp = ||sort(a) − sort(b)||pp. (A5)

Inequality (A1) can be obtained from Eqs. (A2) to (A5) and

by applying the function f (x) = x
1
p to the both sides of the

inequality.
Now, the original inequality (4) can be proved by using

inequality (A1). For an arbitrary π ∈ �, we set a = dσ
0 and

b = π (d̄σ ). Applying Eq. (A1) and considering that d̄σ is a
sorted vector and π̃ (d̄σ

0 ) = sort(d̄σ
0 ), we have∣∣∣∣π̃(

dσ
0

) − d̄σ
∣∣∣∣

p
≤ ||d̄0 − π (d̄σ )||p.

Given that the norm is not sensitive to the permutation, we
have∣∣∣∣dσ

0 − π̃−1(d̄σ )
∣∣∣∣

p
= ∣∣∣∣π̃(

dσ
0

) − d̄σ
∣∣∣∣

p

which completes the proof.

APPENDIX B: PROOF OF THEOREM 2

Since the quadratic function is an increasing function, the
Pareto surface of Problem (3) is exactly the quadratic trans-
formation of the Pareto surface of the following problem:

minx≥0 w.|Dx − r|. (B1)

It means, z belongs to the Pareto surface of Problem (3) if and
only if

√
z belongs to the Pareto surface of Problem (B1).

On the other hand, the Pareto surface of Problem (B1) is
piecewise linear. Therefore, if F(z) = 0 denotes the Pareto
surface of Problem (3), then there exists a set of vectors
{αi}ni=1 for which we have F (z) = α.

√
z − 1 for α ∈ {αi}ni=1.

Now, we approximate F(z) with F̃ (z) = α̃.
√

z − 1 where
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F̃ (z) passes through the points z0 and z̄. By using the ap-
propriately defined vector multiplication and vector division,
we have

∇F̃ (z̄) = ∇F̃ (z0).

√
z0

z̄
.

Using the approximation ∇F̃ (z0) ≈∇F (z0) = w0 and tak-
ing into account that z0 = (d0 − p)2 and z̄ = (π̃−1(d̄) − p)2

would complete the proof.
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