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A new image-registration technique that matches multiple structures on complementary imaging
data sets (e.g., CT and MRI) has been developed and tested with both phantom and patient data.
The algorithm assumes a rigid-body transformation and is suitable for correlating structures within
the cranium or at the skull base. The basic premise of the new technique is that an optimum
transformation is achieved when the relative volume lying outside of the intersection between a
structure and its transformed counterpart is a minimum. This relative volume is calculated numeri-
cally using a random sampling approach, and a binary searching algorithm was used to step through
the nine-dimensional parameter space consisting of three rotation angles, three scaling factors and
three components of a translation vector. For the nine tests using phantom data, the automated
structure-matching technique was able to predict the correct rotation angles to within +1°, The
expected clinical performance of the new technique was assessed by comparing results obtained
with the new method to those obtained using other techniques for 12 patients who were treated with
charged particles at Lawrence Berkeley Laboratory (LBL) and who had image-registration studies
performed as part of their treatment plan. For 9 of the 12 patients considered, the new structure-
matching technique produced a significantly better registration than the older methods, as measured
by the resultant average relative volume lying outside of the intersection between any structure and
its transformed counterpart. For the other three patients, results were not significantly different for
the new structure-matching method and the older techniques.

I. INTRODUCTION

Several image-registration techniques have been proposed
that allow volumes-of-interest to be transformed from one
imaging modality to another.~!° Registration between mag-
netic resonance imaging (MRI) and positron emission to-
mography (PET) provides a correlation between anatomy
and function. Registration between computed tomography
(CT) and MRI is a valuable tool in the implementation of
conformal radiotherapy and radiosurgery. For example, pre-
cise dose localization in charged-particle radiotherapy re-
quires both precise target definition, which may be achieved
using MRI, and accurate dose calculations and compensator
designs, which are derived from the tissue-density informa-
tion provided by CT.!!"1?

Most image-registration techniques rely on matching ana-
tomical structures or surfaces?™® or use externally placed
markers (points or lines)*>™ to determine the registration. Re-
cently, however, Woods et al.!® described a technique for
MRI-PET registration that correlates pixel intensities instead
of anatomical or fiducial landmarks. Although the images
must be edited to exclude nonbrain tissue prior to the regis-
tration, this technique is automated and accurate to within 2
to 3 mm. ‘

The point and line-matching methods require that external
markers be placed in predetermined locations on the patient
prior to both imaging studies. This is not always convenient
or even possible, especially when the imaging studies are
performed at different institutions. However, the advantage
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of these techniques is that they are potentially very accurate.
For example, Kessler et al. reported accuracies of between 1
and 2 mm using these methods.’

Structure-matching techniques fall into several categories.
One class of methods, described by Kessler et al. ,23 Pelizzari
et al.,’ and Chen et al.,” minimize the distance between cor-
responding points on the skull surface. These investigators
reported accuracies of between 1 and 2 mm for this tech-
nique. Recently, van Herk and Kooy® have proposed a new
structure-matching algorithm using chamfer matching that is
both accurate and fast. Another class of structure-matching
image-registration techniques relies on the geometric proper-
ties of solid objects,>®13 for example, the property that any
three-dimensional solid body has an inherent set of three
principal axes, to determine a linear transformation between
two imaging studies.

A final type of structure-matching techniques uses an in-
teractive approach whereby several structures are aligned
simultaneously.? The transformation parameters are adjusted
manually while viewing results on a graphics display device.
Although this technique relies to a large extent of the sub-
jective judgement of the user, it has been applied success-
fully in the clinic.? The use of several structures to perform
the registration may account for the success of this approach.
In this paper, we describe a new image-registration method
that was motivated, in part, by the success of the interactive
technique. Like the interactive method, the new method cor-
relates several structures simultaneously. However, the new
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Structure B

Structure A

Fic. 1. The XOR-structure matching algorithm minimizes the volume out-
side of the intersection between a structure and its transformed counterpart.

technique requires no user intervention once the structures
have been outlined on both image data sets. The new tech-
nique is evaluated with both phantom and patient studies.
The phantom studies provide an objective assessment of the
performance of the algorithm, whereas the patient studies
demonstrate the performance of the algorithm in realistic
clinical applications. For the patient studies, results obtained
using the new technique are compared to those which were
obtained as part of the treatment planning process using ei-
ther the point-matching or interactive image-registration
techniques.

Il. METHODS
A. Structure-matching algorithm: Overview

The basic premise of the new structure-matching algo-
rithm is that an optimal transformation is achieved when the
volume lying outside of the intersection between a structure
and its transformed counterpart is a minimum. The volume
contained within the intersection between the two structures
is, thus, maximized, as illustrated in Fig. 1. Since the volume
lying outside of the intersection represents the volume in one
structure or the other, but not both, it is described as the
exclusive-OR (XOR) volume. R yqp is defined as the ratio of
the XOR volume to the volume of the structure in question.
After each transformation, the algorithm calculates the num-
ber of structures for which there is a significant improvement
(i.e., a reduction) in the XOR ratio, Rxor. The number of
structures for which there is a significant worsening (i.e., an
increase) in Rxqpg is also calculated. If the number of struc-
tures for which Ryor improves significantly exceeds the
number of structures for which Rygg is significantly wors-
ened, then the current set of parameter values defining the
transformation is deemed superior to the previous set.

The program is written in VAX-11 Fortran, and the inves-
tigations reported in this paper were executed on a Microvax
3500 workstation (Digital Equipment Corporation, Maynard,
MA). The code has also been implemented on a DEC 3000
AXP model 500/500s workstation (Digital Equipment Cor-
poration, Maynard, MA). The structure outlines are drawn
using the Lawrence Berkeley Laboratory (LBL) treatment-
planning system.'* Once the transformation is determined
with the new algorithm, structures are transformed and sliced
in planes defined by the slice indices of the second study
using2 zthe structure-mapping code described by Kessler
et al.”"
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B. XOR ratio calculation

Relevant structures are outlined on successive slices
through both sets of images either manually or using a
threshold-edge detection algorithm.'® Polygonally tiled sur-
faces are then created to represent these structures.'® For any
given structure and its transformed counterpart, Ryqg is de-
termined numerically by generating a sufficiently large num-
ber of random points lying within a bounding box containing
the two intersecting volumes. For each structure,

Rxor= Vxor/V~Nxor /N, (1)

where Vg is the XOR volume and V represents the struc-
ture volume. Nqr/N is the ratio of the number of random
points falling within the structure or its transformed counter-
part, but not both, to the number falling within the original
structure. To calculate this ratio, each transformed structure
is sliced at levels that correspond to the slice indices of the
second study. Random points are then distributed inside the
bounding box on each slice. Nxor equals the sum, over all
slices, of the points lying inside the XOR region. N is calcu-
lated similarly. The number of random points used per slice
per structure is defined by the user. The algorithm used to
determine whether a point is inside or outside a given struc-
ture outline counts the number of times a horizontal line
drawn through the point in question crosses the outline. If the
number of crossings is odd, the point is inside, if the number
is even, the point is outside. This standard technique works
for both concave and convex polygons.

There is an inherent uncertainty in these volume calcula-
tions due to the approximate nature of the random-point
method. The standard deviation in the XOR ratio defined by
Eq. (1) for a given structure is

1 1 2

TN 2)
NXOR N N()

TRyor~ RXOR
where N, represents the number of random points used in the
calculation for the structure in question, and all of the other
quantities are as defined for Eq. (1). A derivation of this
equation is given in the Appendix. The optimization proce-
dure takes this uncertainty into account as described in the
next section.

For both the phantom studies and the patient studies, 400
random points per structure outline were used on each CT
slice. The sensitivity of the resuits to the number of random
points used in these calculations is discussed in Sec. IV.

C. Optimization procedure

Nine parameters describe the linear transformation be-
tween the two imaging data sets: three rotation angles, three
scaling factors and three components of a translation vector.
The scale factors describe potential linear scale distortions in
the image data (particularly, in the MRI data), and are opti-
mized only if the user requests it. In principle, these scale
factors can be determined a priori by proper calibration of
the MRI unit, and the image data can be corrected before the
registration process. If the user requests no scale factor opti-
mization, the values of all three scaling parameters are fixed
at unity.
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The new structure-matching image-registration algorithm
uses a binary searching technique to step through the param-
eter space. The step size is initially set to a large value. For a
given parameter, p, the algorithm begins by calculating the
XOR ratios for p=p,, where p, is the initial guess for this
parameter, for p=p,+s and for p=p,—s, where s repre-
sents the initial step size. Of these three parameter values, the
one that maximizes (Simprove ™Sworse)> Where Siporove 18 the
number of structures for which the XOR ratio is significantly
reduced, and S, 18 the number of structures for which the
XOR ratio increases significantly, is then chosen as the new
optimal value for p. The step size, s, is then reduced by a
factor of 2, and the search proceeds until a user-defined num-
ber of binary steps, typically between three and five, have
been taken. The number of binary steps required to optimize
a given parameter is determined by the smallest practical
increment in that parameter. For example, variations in the
rotation angles of less than about 1° generally produce indis-
cernible changes in the transformed structures. Thus, if 1° is
the smallest angular increment of interest, and, for example,
the initial step size is set to 16°, five binary steps are required
in the minimization process.

The uncertainty in the volume calculation due to the ap-
proximate nature of the random point method is taken into
account by defining a significant improvement in the XOR
ratio for a given structure in terms of the following inequal-
ity:

new old » _old
Rxor<Rxor =[Ok, (3)

new

where Ryor and R‘X‘lgR represent values of the XOR ratio for

the new and old parameter sets, and o Z‘:OR is the standard

deviation in R{Ox [Eq. (2)]. The multiplicative factor f was

set to 1 when optimizing the rotation angles and to 2 when
adjusting the scaling parameters. These values for f were
determined empirically. A significant worsening in the XOR
ratio for a given structure is defined by a similar relation:

RXOR™Rortfoie .- (4)
The optimization procedure also taken into account the fact
that, due to the arbitrary choice of the center of rotation, the
rotation and scaling parameters are coupled with the transla-
tion parameters. The center of rotation is chosen to be the
center of the entire set of structures on the first study, and,
since this center is not, in general, equal to the true center of
rotation, each change in the rotation angles or scaling param-
eters during the minimization process must be accompanied
by an adjustment in the translation vector. This adjustment is
determined by aligning the centers of a user-defined ““align-
ment structure” after each rotation or scaling operation. To
accurately determine the center of the alignment structure,
this structure must be unambiguously identifiable on both
imaging studies and completely contained in both studies.
After optimizing the rotation angles and scaling factors, the
algorithm verifies the coordinates of the translation vector by
checking whether or not a small variation in these coordi-
nates further minimizes the XOR ratios for any of the struc-
tures.
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FiG. 2. The rotation phantom uscd for the phantom studies. (Reprinted from
M. L. Kessler, S. Pitluck, P. L. Petti, and J. R. Castro. “Integration of
Multimodality Imaging Data for Radiotherapy Treatment Planning.™ Int. J.
Radiat. Oncol. Biol. Phys. 21, 16531667 (1991), with kind pcrmission
from Pergamon, Headington Hill Hall, Oxford 0X3 0BW. UK.)

If the user requests it, the algorithm reoptimizes the rota-
tion angles and scaling factors a second or third time, using
the parameter values resulting from the previous optimiza-
tion as initial values. Making multiple passes through the
parameter space was found to improve the results in some
cases. At least two passes through the parameter space were
made for both the phantom and patient studies described
below.

D. Phantom studies

Data derived from the “‘rotation phantom™ (Fig. 2) devel-
oped by Kessler er al,>* and used in that investigation to
evaluate other image-registration techniques, were also used
as benchmark data in this investigation to test the XOR-
structure-matching algorithm. This phantom is constructed
from a human skull attached to a rotating Lucite base. CT
scans were taken with the phantom rotated about the X axis
(i.e., the axis orthogonal to the sagittal plane) by 5°, 10°, and
15°. The CT slice spacing was 0.3 cm, and the pixel size was
0.078 cm for each of these studies. The XOR-structure-
matching algorithm was used to determine the transforma-
tions between the phantom in its unrotated and rotated states.
To further test the algorithm, the structures defined on the
unrotated study were rotated, via software utility programs,
about the Y and Z axes (i.e., the axes orthogonal to the
coronal and axial planes) by 5°, 10°, and 15°, and the XOR-
structure-matching algorithm was also used to predict these
transformations.

For all of these calculations, the frontal sinus served as
the alignment structure, and the structures used to determine
the transformation included the inner skull, the right and left
maxillary sinuses and the frontal sinus. The left and right
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maxillary sinuses were considered as a single structure, so
that, in effect, three distinct structures were used to deter-
mine the transformation. The initial step size for the rotation
angles was 8° in all cases. Because all of these transforma-
tions were from CT to CT, the scale parameters were not
allowed to vary in these investigations, i.e., all scale factors
were set equal to 1.0.

E. Patient studies

The XOR-structure-matching algorithm was also applied
to 12 representative patient cases. All of these patients were
treated at LBL, and image-registration techniques (either the
point-matching® or interactive-matching method,”) had been
used to help identify the tumor volume during the treatment-
planning process. In all cases, the transformation was from
MRI to CT. Visual examination of the image data for the
patients considered in this study indicated that, in most cases,
the rotations involved were more complex than for the phan-
tom studies. That is, two or more of the rotation angles were
nonzero. The slice separation for the MRI studies ranged
from 0.5 to 0.75 cm, while the slice separation for the CT
data was between 0.3 and 0.5 cm. Pixel sizes for the CT and
MRI data ranged from 0.078 to 0.1 cm. For all of these
patient studies, the vitreous body of the right eye served as
the alignment structure, and test structures used in the regis-
tration included some or all of the following structures de-
pending on which structures could be unambiguously identi-
fied in each case: the inner skull, the right and left eyes, the
right and left maxillary sinuses, the right and left remus of
mandible, and the frontal sinus. As with the phantom studies,
the initial step size for the rotation angles was 8°. The MRI
data for the patients used in this study came from several
different institutions, and it was unclear whether or not these
data had been corrected for possible linear scale distortions.
Thus the scale factors were optimized in these studies as well
as the rotation angles, and the initial step size for the scaling
parameters was 0.08.

lll. RESULTS
A. Phantom studies

Results of the phantom studies are summarized in Table L.
For these phantom studies, the XOR-structure-matching al-
gorithm was able to predict the correct rotation values to
within =1°. The root-mean-square {(rms) deviation between
the actual and predicted angles reported in Table I is 0.54°.
This level of accuracy is comparable to that reported by
Kessler et al.? for the image-registration techniques they
evaluate.

Figures 3(a) and 3(b) illustrate the results for the 10° ro-
tation about the X axis. Figure 3(a) shows the transformed
maxillary sinuses and inner skull on an inferior level in the
phantom, while Fig. 3(b) shows a more superior level con-
taining the transformed frontal sinus and inner skull. In Fig.
3(b) there is little noticeable difference between the trans-
formed structure outlines and the actual structures. Figure
3(a) shows a small discrepancy in the anterior edge of the
inner skull outline. This is likely to be a result of the approxi-
mate way in which the structures are represented, that is, as
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TaBLE I. Phantom study results. The rotation angles determined with the
XOR-structure-matching technique are compared to the actual rotation
angles (in degrees). These calculations utilized 400 random points per CT
slice per structure. The rms deviation between the actual and predicted
angles is also listed at the end of the table.

Actual Calculated
rotation rotation
O .6y .0, Oy .6y .0,
5,0,0 6,0,0
10,0,0 11,0,0
15,0,0 14,0,0
0,5,0 1,5,0
0,10,0 1,11,0
0,150 0,14,0
0,0,5 0,0,5
0,0,10 0,0,10
0,0,15 0,1,15

rms deviation: 0.54

polygonally tiled surfaces whose accuracy depends on both
the slice separation and the number of points used to define a
structure on each slice.

B. Patient studies

One cannot evaluate the patient studies in terms of the
transformation parameters predicted by the XOR-structure-
matching algorithm because, in contrast with the phantom
examples cited above, the true values for the transformation
parameters in the patient studies are unknown. Although in-
formative, visual examination of the transformed MRI struc-
tures superimposed on the CT anatomy does not, by itself,
constitute an adequate evaluation of the algorithm. To quan-
tify this visual assessment, XOR ratios for the transforma-
tions determined by the XOR-structure-matching algorithm
were compared with those determined by the image-
registration method used as part of the treatment-planning
process. For both the XOR-structure-matching algorithm and
the older image-registration methods, structures defined on
the patient’s MRI scan were mapped to the corresponding
CT study using the optimal transformation determined by
each technique. XOR volumes were then calculated for each
structure pair and for each mapping using the random point
method. Some of these resuits are shown in Table II for two
representative patients. Patient 1 was chosen to represent a
case where the XOR-structure-matching algorithm produced
results similar to the image-registration method used as part
of the treatment-planning process (in this case, the
interactive-matching method), while patient 5 represents a
case where the XOR-structure-matching algorithm produced
significantly better results. The standard deviation in the
XOR ratios is also listed in Table II. According to Eq. (2), the
standard deviation in Rxgp depends on the number of ran-
dom points used in the calculation. Using 400 random points
for each CT level within a structure, the standard deviation in
Rxor for the individual structures ranged from 2% to 8%.

As a convenient means of summarizing the data for each
of the 12 patients considered in this study, the XOR ratio was
averaged over all of the structures used to determine the
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(b)

F1G. 3. Phantom study results: Transformed structures are supcrimposed on
the CT scan of the unrotated phantom for the 10° rotation about the X axis:
(a) an inferior cut showing the inner skull and maxillary sinus outlines; and
(b) a more superior cut illustrating the inner skull outline as well as the
frontal sinus.

transformation. These average values are listed in column 3
of Table Il for the image-registration method used during
the treatment-planning process and in column 4 of the same
table for the XOR-structure-matching algorithm. The uncer-
tainty in each of the values in column 4 was estimated by
averaging U?"xo;{ over all of the structures used to determine

the transformation. That is,

[ = 0',2?
. XOR
§= N s (5)

s
where N represents the number of structures used to deter-
mine the transformation. For 9 of the 12 patients considered
in this study, the average XOR-ratio obtained for the XOR-
structure-matching technique was less than that obtained us-
ing the older image-registration techniques by more than two
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TaLe II. Comparison of the XOR-structure-matching algorithm and the
interactive-matching image-registration technique described by Kessler
et al.? for two representative patients. The structures are coded as follows:
ISK denotes the inner skull; LRM and RRM denote the left and right remus
of mandible; LMS and RMS denote the left and right maxillary sinuscs: and
LEY and REY denote the left and right eyes.

RyorEo RyorEt o
XORT TR (p XOR= TRy

algorithm XOR-

used during structure-

Patient treatment matching

number Structure planning algorithm
1 ISK 0.133x0.005 0.131=0.005

LRM 0.58=0.03 0.59x0.03

RRM 0.68x0.03 0.59=0.03

RMS 0.70£0.03 0.63=0.03

REY 0.28%+0.01 0.3120.01

LEY 0.41+0.02 0.38+0.02
5 ISK 0.270=0.006 0.30320.007

LRM 0.92x0.05 0.85+0.03

RRM 0.97x0.05 0.73x0.04

RMS 0.560.02 0.24>0.01

REY 0.68+0.02 0.26=0.01

LEY 0.38£0.05 0.27=0.01

standard deviations. For the other three patients, namely pa-
tients 1, 7, and 9, the average value of Ryyg obtained with
the new method was within two standard deviations of that
obtained with either the point-matching or interactive-
matching techniques.

The Ryor values listed in Tables II and III are signifi-
cantly greater than zero because, for all of the 12 patients
considered in this investigation, some of the structures were

TABLE III. Summary of patient study results. The second column indicates
whether the treatment-planning image registration was performed with the
interactive structure-matching technique (designated by “I") or the point-
matching technique (designated by “P”). The fourth column lists the aver-
age value of the XOR ratio for all of the structures used to determine the
transformation with the XOR-structure-matching algorithm along with the
estimated standard dcviation in this value, and the third column gives this
average ratio for the trcatment-planning image registration. The standard
deviation, s, is defined in the text.

Rxor=s
Ryxor*®s XOR-

algorithm algorithm structure-

Patient used during used during matching
number TMT planning planning algorithm
1 I 0.46+0.02 0.44+0.02

2 I (.53=0.04 0.40=0.03

3 I 0.56£0.04 0.47+0.03

4 1 0.54+0.04 0.44+0.03

5 I 0.63£0.03 0.45+0.03

6 P 0.58*0.04 0.32x0.02

7 P 0.44x0.03 0.44+0.03

8 1 0.46+0.03 0.38+0.03

9 P 0.39+0.02 0.36+0.03

10 I 0.71£0.04 0.52+0.03
11 P 0.58+0.03 (0.30+0.02
12 I 0.50x0.02 0.43£0.02
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(@

(b)8

F1G. 4. Patient study results: Transformed MRI structures are superimposed
on the CT scan for patient 1: (a) an inferior cut showing the inner skull
outline, the right maxillary sinus and the right and left remus of mandible;
(b) a more supcrior cut illustrating the transformed eyes, the right optic
nerve, and the inner skull.

only partially imaged on either MRI or CT or both. For ex-
ample, for patients 1, 2, 7, 9, 10, 11, and 12, the inner skull
was fully imaged on the CT scan, whereas, the superior por-
tion of the skull was not imaged on MRI. If only partial
volumes are imaged, the algorithm operates only on the por-
tion of the volume that is defined. In these cases, the XOR
ratio does not approach zero, but rather a value reflecting the
relative amounts of the structure imaged in each study.
Aligning the centers of the alignment structure (the only
structure that must be fully contained on both imaging stud-
ies) serves to place the other structures in approximately the
correct position.

Figures 4 and 5 show XOR-structure-matching results for
patients 1 and 5 (the same patients referred to in Table II). In
Fig. 4(a) (patient 1), transformed MRI structures are super-
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(b)

FiG. 5. Patient study results: Transformed MRI structures are superimposed
on the CT scan for patient 5: (a) an inferior cut showing the inner skull
(brain stem), the right maxillary sinus and the right and left remus of man-
dible; (b) a more superior level showing the cyes, inner skull and tumor
volume (nasopharyngeal carcinoma).

imposed on an inferior cut through the CT data. These struc-
tures include the right maxillary sinus, the inner skull and the
left and right remus of mandible. Figure 4(b) is a cut through
a more superior level that includes sections of the trans-
formed eyes, the right optic nerve as well as the inner skull.
In general, the transformed MRI structures correspond well
with the CT anatomy. There is some discrepancy in the pos-
terior border of the inner skull and with the anterior edge of
the maxillary sinus. This may be due, in part, to uncertainty
in identifying bony anatomy on MRIL

Figures 5(a) and 5(b) show similar results for patient 5.
The transformed tumor volume is also shown since the ulti-
mate goal of image registration was, in this case, to trans-
form the tumor (a nasopharyngeal carcinoma) and critical
structure volumes from MRI to CT. The transformed tumor
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volume agrees well with the abnormal region on CT. The
inner skull, right maxillary sinus, and right and left eyes
were used to calculate the transformation, and sections of
these transformed structures are shown superimposed on the
CT anatomy. There is some discrepancy with the lateral skull
outlines at the superior level, but overall, the agreement be-
tween the transformed MRI structures and the CT anatomy is
good.

IV. DISCUSSION
A. Choosing a function or quantity to optimize

The outcome of any optimization problem depends criti-
cally on the choice of a function or quantity to optimize. In
this study, the registration between two image data sets was
optimized . by maximizing Sinprove ™ Sworse> Where Simorove
represents the number of structures for which the XOR ratio
is significantly reduced, and S, represents the number of
structures for which the XOR ratio increases significantly.
Other possibilities for optimizing the overlap between corre-
sponding sets of structures include:

(1) maximizing S;mprove alone;

2 maximizing S improve—Sworse_Sunchanged where
S unchanged T€PTEsents the number of structures for which the
XOR ratio does not change significantly;

(3) maximizing Simprove —Sworse Without taking into ac-
count the uncertainty in Ryqg, i.c., with f=0 in Eqgs. (3) and
4);

(4) minimizing the average XOR ratio taken over all

structures, i.e., minimizing (1/N S)E?;SIRXOR, where Ny is
the number of structures used to do the registration.
The tests using phantom data described in Secs. Il D and
I A were repeated with each of these alternative optimiza-
tion strategies. In each of these tests, the initial conditions
were exactly the same as for the calculations described in
Sec. II D. In particular, the same structures were used to
perform the registration, and 400 random points per CT slice
per structure were employed. None of the alternative strate-
gies performed as well as maximizing Smprove ~Sworse - The
rms deviation between the actual and predicted angles was
1.39° for test 1, 1.40° for test 2, 1.00° for test 3, and 1.07°
for test 4. This compares to a value of 0.54° obtained by
Maximizing Simprove ~Sworse - The results of the first two tests
suggest that some level of penalty is required for choosing an
incorrect parameter value, and that subtracting S, is an
adequate penalty. The results of the third and fourth tests
suggest that it is important to take the uncertainty in Ryog
into account in the optimization procedure, and that using
Rxor values for the individual structures is a better strategy
than averaging Ryog over all structures.

B. Calculation time

It is advantageous to use as few random points as possible
when calculating Rxog to reduce the calculation time re-
quired for the optimization. To assess the implications of
using fewer random points in the optimization, the phantom
studies were repeated using 200 random points per CT sec-
tion through each structure. In nearly all of the phantom
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studies, using 200 as opposed to 400 random points led to
less accurate results. In most cases, the predicted angles were
within *+2° of the actual angles, as compared to within =1°
when 400 points were used. The rms deviation between the
actual and predicted angles was 1.22° using 200 random
points.

Another consideration in improving the speed of the cal-
culation while maintaining a sufficiently high level of accu-
racy is the manner in which points are sampled. Random
sampling techniques have been compared to sampling points
on a regular Cartesian grid in two recent publications' '8 for
problems related to treatment-plan evaluation. In particular,
Lu and Chin'® assert that to calculate dose-volume histo-
grams, using a regular Cartesian grid is significantly more
efficient than using randomly selected points. Whether or not
this is true for XOR-structure-matching image-registration
technique will be the subject of future investigations.

The simplest way to reduce the calculation time for an
optimization procedure such as the one described in this pa-
per is to use a faster computer. The average CPU time re-
quired for each of the phantom studies reported in Table I
using a Microvax 3500 workstation was 3.3 h. However,
using a DEC 3000 AXP model 500/500s workstation, these
calculations took only between 6 and 7 min.

C. Structure definition

As with any structure-oriented image-registration method,
some Jevel of uncertainty is introduced by the manner in
which structures are represented and by the ability of the user
to identify structures unambiguously. In LBL’s treatment-
planning system, which was used in this investigation to de-
fine the structures, contours are represented as sets of con-
tiguous points. The software fits a third-order polynomial
between points entered by the user (or between points de-
rived by slicing transformed structures) to obtain a set of
contiguous points. This provides a reasonably accurate de-
scription of each structure outline, but has the disadvantage
of increasing the calculation time required to determine
whether a point is inside or outside a given contour. For large
regularly-shaped structures, such as the inner skull, it is not
necessary to use the large number of points supplied by the
LBL software to represent the contour. These contours were,
thus, thinned before performing the inside—outside tests.
Contours for smaller more irregularly-shaped structures,
such as the frontal sinus, were not thinned. Whether or not
all structure contours can be thinned safely without loss of
accuracy will be studied further in the future.

Regardless of how they are represented, some structures
are inherently difficult to identify on MRI. In particular, it is
often difficult to define bony structures, especially when they
are adjacent to air cavities. This uncertainty may lead to
errors in the registration. No systematic investigation has
been undertaken to attempt to quantify these errors. Overall,
the results presented in the previous section suggest that the
new algorithm performs satisfactorily, despite uncertainties
in identifying bony structures on MRI. Using several struc-
tures to perform the registration may mitigate the effects of
small errors in contour definition for some of the structures.
Furthermore, using a well-defined spherical object (e.g., the
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globe of the eye) as the alignment structure allows the algo-
rithm to predict the translation between the two studies rea-
sonably accurately, possibly reducing the error introduced by
any ambiguity in defining the other structures.

V. CONCLUSIONS

A new automated image-registration technique based on
multiple structure matching has been proposed and evaluated
using both phantom and patient data. In a collective sense,
the algorithm minimizes the relative volume lying outside of
each structure and its transformed counterpart, and uses a
random sampling approach to calculate this relative volume.
Due to the approximate nature of the random sampling
method, there is an inherent uncertainty associated with the
relative volume calculation, and phantom studies suggest
that it is important to incorporate this uncertainty into the
optimization procedure. Phantom studies further demonstrate
that an accuracy of £1° can be achieved with this method.
The algorithm also performed well when realistic patient
MRI and CT data were employed. Registrations obtained
with the new technique were either significantly better than
or as good as those obtained using two older techniques that
have demonstrated success in the clinic.
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APPENDIX: DERIVATION OF EQ. (2)
For any structure, the XOR ratio is given by Eq. (1), i.e.,

Rxor~Nxor/N,

where Nyor is the number of random points falling within
the XOR volume, and N represents the number of points
falling within the structure itself. The variance in Rxgg di-
vided by R%og is

2

,

OR o 2
Rxor " Nxor , ON
2 - 2 2

Rxor  Nxor N

(A1)

N and N xog may be described by binomial distributions, and
the variance in these quantities may be estimated as
o2=N(1-N/Ny) (A2)

and

Nxor )’ (A3)
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ONxor NXOR( 1 No
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where N, represents the number of random points used to
determine the volume ratios. Substituting Egs. (A2) and (A3)
into Eq. (Al) gives Eq. (2), i.e.,

1 1 2

+ 2
Nxor N Ny

0' =
Ryor— Kxor
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