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ABSTRACT 

Simulation models are widely used in risk analysis to study the effects of uncertainties on outcomes of 

interest in complex problems. Often, these models are computationally complex and time consuming 

to run. This latter point may be at odds with time-sensitive evaluations or may limit the number of 

parameters that are considered. In this article, we give an introductory tutorial focused on parallelizing 

simulation code to better leverage modern computing hardware, enabling risk analysts to better utilize 

simulation-based methods for quantifying uncertainty in practice. This article is aimed primarily at 

risk analysts who use simulation methods but do not yet utilize parallelization to decrease the 

computational burden of these models. The discussion is focused on conceptual aspects of 

embarrassingly parallel computer code and software considerations. Two complementary examples 

are shown using the languages MATLAB and R. A brief discussion of hardware considerations is 

located in the Appendix. 
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1.0 INTRODUCTION 

Risk analysts often rely on simulation models to estimate probabilities, consequences, or both for 

uncertain future situations.
(1–7)

 These are often computationally complex models for which the run 

time of the model can be a limiting factor in how accurately the quantities of interest can be estimated. 

This is particularly true for situations in which the probabilities of interest are very small, requiring a 

large number of iterations for accurate estimation, even with appropriate variance reduction 

techniques. For example, in Booker et al.,
(8) 

2 billion replications were used in a Monte Carlo 

simulation to accurately estimate the reliability of the European fiber optic communications backbone 

network. This required approximately 1 h of computer run time despite the use of a hash table, a 

specific type of data structure aimed at reducing run times, to reduce the computational burden. For 

some time-sensitive applications, such as an approaching hurricane, this run time for a hazard 

assessment would be prohibitive especially since the run time can grow exponentially with respect to 

the size of the network or region of interest. Reducing the computational burden of simulation models 

can be of significant benefit to risk analysts, both practitioners and academic researchers. 

 

There are two general approaches to reducing the computational run time of simulation models when 

starting from a basic Monte Carlo simulation that is run single-stream on a single CPU (Central 

Processing Unit): (1) change the simulation approach or (2) change the computational structure. In the 

first approach, methods such as variance reduction and importance sampling can be used to estimate 

the quantities of interest in a more computationally efficient manner (e.g., Law and Kelton
(9)

). The 

goal in this approach is to sample the underlying and generally unknown probability distribution in a 

way that estimates the quantities of interest accurately while requiring fewer samples. The approach 

generally requires changes in how the sampling is done. In some cases, these are simple changes, 

while in others they can be quite complex. The second approach changes the computational structure 

to parallelize the simulation process. In the simplest sense, this can involve running iterations of the 
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simulation simultaneously on different computational cores within the computer or within a cluster. 

This approach does not require changing the logic of the sampling process, unlike the first, but does 

require creating a parallel version of the code. There are advantages and disadvantages to both 

approaches—more intelligent sampling and parallelization—and in some cases they can be combined. 

Our goal in this article is to focus on the parallelization approach and provide a tutorial on how to 

easily parallelize existing simulation code for risk analysis studies. 

 

There are two main reasons why risk analysts who use simulation models should be interested in 

parallel computing. First, there have been substantial advances in computing hardware, with multi-

core processors now the norm and small clusters now within the financial and technical reach of 

practicing and academic risk analysts, even those without substantial training in parallel processing. 

Second, parallelizing simulation models can, in many cases, yield a substantial reduction in 

processing time without changing the underlying structure of an already developed simulation. Our 

goal in this article is to provide an overview of how a risk analyst can start parallelizing their 

simulation models. We assume only that the analyst has enough programing knowledge and skill to 

write a simulation model in a programming language, not that they have any particular knowledge of 

parallel processing. 

 

This article is structured as followed. In Section 2, we provide both a conceptual overview of parallel 

computing and different types of software approaches for code parallelization. We do not provide a 

comprehensive set of instructions for one particular language here. Rather, we provide an overview of 

several approaches together with more detailed examples in two particular languages. In Section 3, we 

provide two realistic case studies with code in MATLAB
(10)

 and R Core Team.
(11)

 We provide 

conclusions in Section 4. Appendix A contains definitions of words often used in association with 
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parallel computing. Appendix B provides an overview of hardware considerations for parallel 

computing and more specifically the hardware we employ. The information in this appendix could be 

tedious for the casual reader or for someone who does not want to build a multi-node cluster. Our 

hope is that this article will provide a starting point for risk analysts as they begin to further take 

advantage of modern computational capabilities to more efficiently estimate risk with simulation-

based models. 

 

2.0 SOFTWARE 

In this section, we discuss the vocabulary typically associated with parallel computing and a 

conceptual overview of what it means to parallelize code. Later in this section, we discuss more 

technical aspects of parallel computing including software requirements and the changes necessary to 

execute parallel code. The discussion in this section generally focuses on broader procedures and 

themes rather than on technical nuances of any particular language. Technical details can be found in 

users help manuals for the language of choice. However, we discuss a few commands in compiled 

languages—specifically MATLAB and R—to initiate the process for the reader. Section 3 contains 

two case studies, and technical details are included in each. 

 

We focus on embarrassingly parallel code in this article, as it is more common among risk analysts 

and simpler to develop and execute. Embarrassingly parallel code means that each logical processor 

(i.e., core or thread) is given a task and there exists no dependency among those tasks. This concept is 

illustrated in Figure 1. Imagine a for-loop where, in each loop, a function, called my_function, should 

be run. In a traditional for-loop with a single-core processor, loops are run sequentially. This is 

illustrated in Figure 1a. Conceptually, embarrassingly parallel code divides the iterations of a for-loop 

among the cores allotted. In Figure 1b, the code is divided among four cores, with one thread (i.e., 
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compute job) running on each. Neither the input nor the output of the second iteration in my_function 

depends on either input or the output of the first iteration, and so on.  

 

Embarrassingly parallel code is iteration independent; the current iteration is independent of the 

previous iterations. Similarly, future iterations don‘t depend on the results of the current iteration. For 

example, a parallel program analyzing 10,000 independent failure scenarios for an electrical-grid is 

embarrassingly parallel. A program that assesses the evolution of damage given a particular scenario 

is not because future time-steps rely on the results from previous time-steps. Typically, 

embarrassingly parallel code is viewed, either implicitly or explicitly, as an iteration-independent for-

loop.  

 

Before continuing, we provide definitional notes on parallel computing vocabulary, including cores, 

nodes, head nodes, processors, threads, and clusters. We provide a more complete list of common 

words with definitions in Appendix A. All underlined words are defined in this appendix. A node is 

simply a computer with some amount of RAM contained within it. A personal computing machine 

has one node and a unique network address. A cluster is often an assembly of nodes. One of these 

nodes is the head node and it is through this node that the other nodes communicate. Furthermore, a 

head node communicates with both the private network that forms the communication fabric for the 

cluster and the public network (e.g., the Internet). A processor is the workhorse of the machine or 

node. Some processors are internally divided to form more than one independent central processing 

units, or cores. Machines can have multiple nodes, each with multiple cores. Many modern multi-

processor nodes can run multiple threads – compute jobs – at the same time, a feature often termed 

hyperthreading. The total number of threads that a personal-computing machine or a cluster can run 

dictates the number of computations that may be performed simultaneously. For example, assuming 
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no software restrictions, two nodes with one core each allows for two parallel computations, and 

nearly halves your computing time. Each core is tasked with one thread. In contrast, a modern laptop 

with four cores each capable of two threads, allows for eight parallel computations. 

 

Assuming the entire program can be parallelized, the maximum theoretical speed-up is X, where X is 

the number of threads being used. This is called Amdahl‘s Law.
(12)

 Due to the fact that there is 

additional communication time for the head node to relay information to the worker nodes and then 

for the worker nodes to relay results back, the speed up in actuality will never reach X, but it can be 

close.  

 

2.1 Software requirements 

Most languages have available libraries, modules, code, or toolboxes that communicate with the 

hardware of the computer and administer the backend parallelization tasks, such as optimal cluster 

setup detection, and dynamic load balancing. These libraries, etc., must be downloaded prior to the 

code‘s execution and some language‘s libraries, etc., are freely available while others are not. Many 

languages have multiple options, each with their own benefits and offerings. Most are easily 

implemented.  

 

As an example, consider MATLAB and R, two run-time languages popular among risk analysts. 

MATLAB requires either the Parallel Computing Toolbox or the Distributed Computing Server 

Toolbox. The later is more expensive, but allows more cores to be used. Popular options for R include 

the ―parallel,‖ ―doSNOW,‖ and ―foreach‖ packages.
(11,13,14)

 R documentation best describes their 

functionality. For Python, C, and C variants, popular compiled languages, many options exist, 
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including Parallel Python (for Python) and OpenMP (for C). Some reduce the onus on the user but 

lack customization while others are reserved for the more experienced users and are more 

customizable.
(15)

 

 

2.2 Cluster Creation and Preparation 

Almost universally, the user is required to ―set up‖ a virtual cluster via code. This is distinct from 

physically building a cluster of nodes as described in Appendix B. In essence, the user tells the 

computer to prepare to run parallel code and which cores to use to build the cluster. Sometimes this 

means that licenses, libraries, files, and/or data are forwarded or ―pushed‖ to all nodes of the cluster. 

The complexity of this execution ranges dramatically; MATLAB, for example, simply requires one 

additional line of code while R requires more of the user when the code is not run locally (i.e., on a 

cluster rather than on a personal computer).  

 

The examples in Section 3 demonstrate cluster creations for both MATLAB and R. 

 

2.3 Code changes to support parallel code  

Few structural changes are necessary to parallelize code as long as it is of the embarrassingly parallel 

type. The main challenge is to decide which part of the code to parallelize. The examples that follow 

demonstrate these changes to the code.  

 

As we mentioned previously, we focus on for-loops and embarrassingly parallel code. If a for-loop is 

nested (i.e., a for-loop within a for-loop), the user must decide which loop to parallelize; a parallel-
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loop cannot lie within another parallel-loop in embarrassingly parallel code. Generally, the most 

external parallel loop is parallelized, but we encourage the reader to experiment.  

 

3.0 CASE STUDIES 

In this section, we provide two real risk-analysis examples from the work in our research group where 

parallelizing the code provides distinct advantages in terms of run time. Both examples— network 

reliability estimation and synthetic hurricane generation—are types of problems relevant to risk 

analysts. The first example demonstrates parallel computing in MATLAB while the second example 

demonstrates parallel computing in R. 

 

3.1 Example 1 – MATLAB example 

In the following example, we parallelize a Monte Carlo simulation in MATLAB. The code necessary 

for parallelization is stated while the remainder of the code is simplified to function names for the 

sake of brevity. 

 

3.1.1 Problem Definition 

In this example, we use the simple network connectivity problem discussed in Guikema and 

Gardoni.
(16)

 An urban network with 9 nodes, 16 links, and 19 embedded bridges experiences a 

magnitude 8 earthquake with a known epicenter as shown in Figure 2. A hospital is located at Node 1 

and the remaining nodes are neighborhoods within the urban area. The squares represent bridges and 

the numbers within the squares represent the type of bridge: (1) single-bent overpass and (2) double-

bent overpass. The earthquake may cause bridges to fail. We assume that bridge failures are 
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conditionally independent events given the occurrence of an earthquake and that travel through nodes 

and links other than bridges is unaffected by the earthquake. The goal of Guikema and Gardoni
(16)

 is 

to calculate the likelihood of network connectivity between each of the neighborhood nodes (Nodes 

2–9) and the hospital node (Node 1). Our goal here is to compare the runtimes of parallelized code 

with varying cores on performing the necessary computations. 

 

The bridges each have a known fragility curve that describes the conditional probability that it will 

perform at or above a specified level of performance for a given ground motion intensity. In other 

words, given the ground motion intensity at bridge type i, where i  = {1, 2}, the probability of failure 

can easily be estimated. We use a Monte Carlo simulation to determine the probability, with a 95% 

confidence interval, that all nodes in the network are connected after the earthquake.  

 

When the probability of a bridge failure is quite small (e.g., Pf = 10
-5

), a simulated failure is rarely 

expected (e.g., once every 100,000 simulations) for each bridge individually. With 19 bridges, the 

problem requires a large number of iterations to obtain appropriate convergence of the estimated 

probabilities. This class of problem is known to have a computational burden of size O(n
2
) meaning 

that the computational burden varies on the order of n
2
 where n is the number of replications. Hence, 

parallelization is desired here to reduce computation time. 

 

The goal in this article is to compare run times. To do so, we simulate random network states N times 

and repeat this simulation numTrials times in order to produce confidence intervals around the run 

times. We demonstrate the process using MATLAB 2013b on a MacBook Pro 2.9 GHz Processor 

with 4 cores and on a server using two 2.66 GHz Processors on up to 12 cores. We run the script on 
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one, two, and four cores both locally and on the server. Additionally, we run the script on 8 and 12 

cores exclusively on the server and ultimately compare all run times.  

 

3.1.2 Software requirements 

Our discussion assumes MATLAB versions 2007b
2
 and later. In addition to MATLAB software, the 

MATLAB Parallel Computing Toolbox license is necessary for parallelization on 12 or fewer cores, 

termed workers in MATLAB, and the MATLAB Distributed Computing Server Toolbox is required 

for more than 12 cores. Only one license is necessary and the head node pushes the license 

information as necessary. The Distributed Computing Server package is compatible with many 

schedulers.
3
  

 

3.1.3 Cluster creation and preparation 

Creating a cluster within MATLAB requires only one additional line of code prior to the portion of 

the code that is parallelized. This step opens a parallel session for 30 minutes or the length of time it 

takes the code to be executed and initiates communication among the desired number of cores. The 

user chooses how many cores to include in the cluster, up to the maximum number allowed by the 

MATLAB license and the computing resources available. Neglecting to create a cluster does not 

prevent parallel code from being executed, but it is less efficient computationally and a default 

number of cores are used.  

                                                             

2
 Use versions Matlab2013b or later to avoid java compatibility issues with the Parallel Computing Toolbox. 

Using an earlier version? Download a recent MATLAB patch. 

 

3
 A scheduler manages and monitors resources across a server. Scheduling software is not required but is helpful 

when the server is in high demand. 
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(Line 1) >> parpool(‘local’,2)  %creates a cluster consisting of 

cores on a local machine  

 

3.1.4 Code changes to support parallel code  

MATLB requires few structural changes to support parallelization. However, the user must have only 

one parallel loop. To change a for-loop to a parallelized for-loop, ―parfor‖ is used instead of ―for.‖ 

The pseudocode for this problem is shown below. It assumes that the external for-loop is parallelized. 

 

(Line 2) >>   calc_Bridge_Prob_of_Failure; %calculate the 

probability  of failure for each bridge 

(Line 3) >>   calc_Link_Prob_of_Failure; %calculate the 

probability of failure for each link  

(Line 4) >>   parfor i = 1:N     %for N realizations 

(Line 5) >>      generate_Link_States(i);    %which links are  

connected in realization i? 

(Line 6) >>      determine_Network_Connectivity(i);  %is the network 

connected in realization i? 

(Line 7) >>   end 

(Line 8) >>   assess_Network_Connectivity_stats;     %calculate 

statistics  

 

The loops are divided among the number of cores specified in ―parpool.‖ We baseline all runs by 

running the program without parallelization both locally and on the server. See Table I for total 

runtime comparisons. 

 

3.1.5 Closing out a parallel session 
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One command is required to close a parallel-session in MATLAB. Hereafter, communication among 

cores ceases for this MATLAB instance.  

 

(Line 9) >>  delete(gcp(‘nocreate’)); 

 

3.1.6 Results and Discussion 

We run the model for 1,000,000 simulated network states. Only the external loop is parallelized. The 

results are faster on the server relative to the personal computer simply due to a faster processor and 

memory. We can see in Figure 3 and Table I that the speed-up roughly follows Amdahl‘s Law. We 

also see that there is a substantial speed-up due to parallelization on the server with 12 cores. The run 

time drops from about 1 hour to less than 10 minutes. This is a substantial practical benefit for risk 

analysts. 

 

3.2 Example 2 – R example 

In the following example, we demonstrate parallel computing in R. The code necessary for 

parallelization is stated while the remainder of the code is simplified to function names for the sake of 

brevity. 

 

3.2.1 Problem Definition 

We demonstrate the capabilities of parallel computing within R by generating a large number of 

virtual hurricanes. Generated hurricanes allow a risk analyst to study a variety of storm characteristics 

and their impacts, from power system disruptions to evacuations, without needing to first experience a 
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storm in reality. Generating each storm requires sampling from historical distributions, applying track 

models to prescribe the storm movement, and modeling the storm decay until it weakens substantially. 

An example can be found in Staid et al.
(7)

 These tasks are computationally intensive, especially when 

a large number of storms are needed to achieve convergence in the results. These characteristics make 

this problem an ideal candidate for parallel computing. Each storm is generated independently, so 

there is no dependence on previous iterations.  

 

Below we focus on the changes to the code that are necessary to create a cluster and to run parallel 

code using R. It is simplest if the code that is to be parallelized is structured as a standalone function. 

This makes every iteration explicitly parallel. In this example, the function ―hurr_simulation‖ is called 

10,000 times and contains the code that creates a storm by sampling from historical hurricane 

distributions, identifies the storm path and movement, and then estimates the decay of the storm‘s 

strength as it moves over land. The function ―hurr_simulation‖ requires the data file of historical 

storms, ―hurricane_data,‖ as well as the R statistical library called ―randomForest.‖ A random forest is 

an ensemble learning method for regression. Details can be found in Staid et al.
(7)

 

 

4.2.2 Software requirements 

We assume the latest version of R is being used (e.g., version 3.1.2 at the time of press).  Three 

additional libraries (packages) are needed to parallelize the code in this case study – parallel, 

doSNOW, and foreach. They are freely available. 

 

4.2.3 Cluster creation and preparation 
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Like all R code, libraries and data are loaded first. The libraries listed below are in addition to the 

libraries needed in the function ―simulation.‖ 

 

(Line 1) library(parallel); library(foreach); library(doSNOW)

 #load libraries to support parallel computing (R Core 

Team 2014, Revolution Analytics 2012a, Revolution 

Analytics 2012b) 

(Line 2) load(‘hurricane_data.RData’)  #load input data of historical 

hurricanes 

 

After the libraries are loaded, we create and register a cluster named ―cl.‖ The cluster is first built 

using 2 nodes. These nodes each have 8 cores. This size cluster is reflected in the code. Later we 

perturb the size of the cluster to compare run times. We then export the data files and libraries 

associated with ‗hurr_simulations‘ to each node of the cluster, cl. 

 

(Line 3)  cl <- makeCluster(c(rep(‘node1@node1’,8), 

rep(‘node2@node2’, 8)) type=‘SOCK’)  # Make 

cluster on nodes 1 and 2, each with 8 cores 

(Line 4)  registerDoSNOW(cl) # Register cluster 

(Line 5)  clusterExport(cl, hurricane_data)  # Export required data 

files to cluster nodes, cl 

(Line 6)  clusterEvalQ(cl, library(randomForest))  # Push required 

library to each cluster node 

 

3.2.4 Code changes to support parallel code  

Like MATLAB, R requires few structural changes to support parallelization. We recommend 

structuring the code so that each iteration calls a function. This way, complex computations are 

separated from the parallel for-loop and the code is cleaner. The function can contain any number of 
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steps, processes, and sub-functions. After each iteration, only the function‘s final output is stored, 

allowing for easier data management.  

 

(Line 7)  parallel_output_file <- foreach(y = 1:10000, .combine = 

‘rbind’, .packages = ‘randomForest’) %dopar% 

{hurr_simulation(hurricane_data)}  # This command 

executes a parallel for-loop via ‘dopar.’ The user can 

specify the means for combining the output of each 

iteration, here, output is appended in rows using 

‘rbind.’ The user also specifies packages, here 

‘randomForest,' that the tasks need. The ‘.packages’ 

command loads the package on each worker. 

 

This simulation was tested on the research group‘s server, which is a physical cluster of 10 nodes with 

8 cores each, for a total of 80 cores. The code was tested in series (i.e., on one core) and on increasing 

cluster sizes up to the maximum available number of cores (80).  

 

4.2.5 Closing out a parallel session 

The user must close the cluster session to cease communication among the nodes and to free-up 

computer resources. This requires one line of code. 

 

(Line 8)  stopCluster(cl) 

 

4.2.6 Results and Discussion 
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We iterate over 10,000 simulated hurricane tracts and present the results below. As expected, the run 

time is nearly cut in half when the number of cores is doubled. The reduction in run time can be 

considerable for large simulations. In this example, the run-time reduction, from nearly 2 hours to less 

than 3 minutes, is practically meaningful for risk analysts. It means that in advance of an approaching 

hurricane, risk analysts can perform numerous scenario analyses to aid emergency managers in 

responding more appropriately.  

 

Interestingly, the marginal improvement is fairly small after 16 cores. For example, when 64 cores are 

added to a machine that already has 16 cores to get 80 cores, the reduction in run time is only 6 

minutes. This reinforces the idea that large clusters are not always necessary.  

 

Figure 4 and Table II show the actual and theoretical run time, in seconds, as a function of the number 

of cores. The theoretical run time is lower than the actual run time due to the overhead 

communication.  

 

4.0 CONCLUSION 

By parallelizing computer code, risk analysts are able to reduce the computational time, in some cases 

dramatically, required to perform simulations. This allows for faster computational convergence and 

knowledge of the system‘s risk and performance sooner—a benefit to both risk analysts and decision 

makers, especially during time-sensitive events like natural disasters.  
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The primary drawback of parallelizing code, in our opinion, is the time required to parallelize code for 

the first time. For novices who seek to run a program with few iterations or with many simple 

iterations, the time required to parallelize the code may not be worth the computational-time savings. 

However, there are many instances where the ramp up time to parallelize code initially will be 

appreciably less than the extra time it would have taken the program to run sequentially (i.e., without 

parallelization). This is especially true in domains such as real-time control systems, data assimilation, 

and network optimization. We encourage the reader to time one iteration of the run, and to calculate 

the potential timesaving that parallelized-code will offer.  

 

In this article, we demonstrate how computer code is changed conceptually to accommodate 

parallelized code. Appendix B addresses the hardware necessary to support parallelized code, and 

some emerging trends in parallelization hardware (e.g., GPUs and MICs and cloud services). Through 

two examples, we provide the changes necessary to MATLAB and R code to support parallelization. 

We acknowledge that what we provide here is not an exhaustive list of options for these languages, 

and that MATLAB and R are only two of the many languages that support parallelized code. 

However, these changes and general procedures are representative of the changes necessary to 

parallelize code. Once a conceptual understanding is achieved, the many resources targeted at 

parallelization in specific languages become comprehendible and we encourage the user to explore 

these resources. 
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Appendix A: GLOSSARY 

Cluster – assembly of machines or nodes 

Core – an independent processing unit within a CPU. One or more cores form a processor. 

CPU – the chip in a computer that preforms calculations. It includes the cores and the supporting 

communication pathways. 

Dynamic load balancing – an optimal balancing of jobs across a machine for maximal efficiency 

Embarrassingly parallel – parallelized code that consists of only independent loops 

Head node – the node through which other nodes communicate in a cluster. The head node also 

communicates with the external network (e.g. the Internet) 

Node – a machine (computer) with some amount of RAM contained within. It may be comprised of 

many cores and can be connected with other nodes to make a larger machine. A personal 

computing machine has one node and a unique network address. 

Processor – the workhorse of a computing machine that executes out a computational task  

Scheduler – software that schedules, prioritizes, and manages a workload across a cluster or other 

computing system 

Thread – a task that is being executed (http://en.wikipedia.org/wiki/Task_parallelism) 

 

Appendix B: HARDWARE 

This section focuses on the hardware necessary to run parallelized code. The hardware options range 

from personal computing machines to clusters to pay-per-use cloud services, and each option comes 

with considerable advantages and disadvantages. 
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Table BI contains a summary of topics discussed in this section. Column 1 lists the computing 

methods discussed in this section: single- and multicore personal-computing machines, multicore 

clusters, coprocessing cards such as GPUs (graphical processing units) and MICs (many integrated 

core), and cloud services. Column 2 gives a qualitative assessment of the additional coding burden to 

parallelize the code in order for it to be compatible with the associated computing method. Column 3 

displays qualitatively the cost relative to a personal computer and Column 4 gives a qualitative 

assessment of the potential speed up relative to non-parallelized code. Column 5 displays, again 

qualitatively, how complex it is to physically set up the computing machine relative to a personal 

computer. 

 

B.1 Personal-computing machine 

We begin the discussion with a local, personal-computing machine (e.g., a desktop, a laptop, a tablet). 

Most personal-computing machines sold today have multiple cores, which allows for parallel 

computing. A machine with one core is not compatible with parallel computing. 

 

As we show in Table BI, personal computers are relatively inexpensive relative to other hardware one 

may consider for parallel computing. However, as the number of cores increases, so does the price, 

when controlling for add-ons like graphics cards. At the time of press, the current upper limit of 

number of cores on personal computing machines is approximately 40 for high-end workstations as of 

early 2015, though laptops and many desktops generally have no more than 8 cores. Personal 

computing machines are very simple to physically setup. 
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B.2 Multinode Cluster Computing 

As mentioned previously, a cluster is a larger computing machine with multiple nodes, each typically 

with multiple cores. Components, including hard drives, cables and routers, are often purchased 

separately and then assembled by the user or an integrated cluster provider. As such, the complexity 

of setting up a cluster is greater than that of other computing methods. Typically, the upper limit on 

the number of cores allowed in a cluster is dictated by resource constraints (i.e., budget, cooling 

capacity, and available power) and not technical constraints. As such the cost of a cluster varies 

widely. However, clusters with modest capacity appropriate for many risk analysis simulation 

problems can be assembled at a reasonable cost.  

 

B.2.1 Multicore Cluster Hardware Configuration  

We discuss hardware configuration through the example of the cluster in the authors‘ research group. 

The server is a multi-node cluster that is modestly-sized, consisting of ten Apple Xserve rack unit 

computers, each with two quad-core Xeon processors for 80 physical cores. It runs on the Mac OS X 

Server software and the process to set it up is fairly representative of modest-sized clusters. Table BII 

provides a breakdown of the cluster‘s components and their respective cost. Total equipment cost was 

approximately $7,000. Some of the equipment was purchased used through a popular on-line auction 

site.  

 

There are operational and storage considerations which are important to consider for clusters and 

which are often overlooked for personal computers. These considerations include power, ventilation, 

cooling, and rack support. For example, our server generates enough heat to require placement in a 



 

 

 

This article is protected by copyright. All rights reserved. 

25 

room climate-controlled from cluster use. Additionally, a standard room circuit proved insufficient in 

terms of power.  

 

B.3 Modern Cluster Computing Without a Cluster 

There are a number of options available for parallel simulation modeling other than owning and 

operating a cluster. These include cloud-based cluster services, GPUs, and MICs. A cloud-based 

cluster is a cluster, typically very large, owned and operated by an independent company that provides 

cluster services for hire. Payment is typically made per processor-hour of cluster usage. Costs vary 

widely as do the capabilities and flexibility of the cloud-based clusters. This can be a highly attractive 

option for those not wanting to own, maintain, and operate their own cluster. 

 

Another alternative is card-based cluster computing. There are two main options here, both relatively 

recent. One approach that has received considerable attention is the use of GPUs— graphical 

processing units—for computing. The latest (early 2015) GPUs have nearly 5000 processing cores 

and 24GB of RAM per card. These compute cards mount in a PCI slot offering dense computing 

capabilities. The downside is that they require custom coding in computer languages not in 

widespread general use. A different card-based parallel processing option is a MIC (multiple 

integrated cores) coprocessor. A MIC uses standard Intel Xeon cores, which gives the advantage of 

programming directly in widely used languages. At present (again, early 2015) MICs can run 

approximately 250 threads per card. 
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Figure 1. A demonstration of embarrassingly parallel code to highlight the difference between serial 

and parallel computing. This is shown using a for-loop and four iterations of a function called 

my_function. my_function(i) does not depend on my_function(j) when i is not j. Figure 1a 

demonstrates serial computing; all iterations are performed sequentially on the same core. Figure 1b 

demonstrates parallel computing of four threads on four cores; all iterations are performed 

simultaneously. 

 

my_function(1) 

my_function(2) 

my_function(3) 

my_function(4) 

for i = 1:4 

my_function(1) my_function(2) my_function(3) my_function(4) 

for i = 1:4 
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Figure 2. Test network for bridge network reliability estimation problem. (image source: Guikema 

and Gardoni 2009. Used with permission from ASCE.) 
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Figure 3. The runtime as a function of the number of cores. 
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Figure 4: Run-time comparison for the hurricane example in R. The speed-up is small beyond 16 

cores in this example. 
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Table I. A comparison of runtimes for a variety of cores. 

 1 Core 2 Cores 4 Cores 8 Cores 12 Cores 

Local Run time (sec) 6,959 4,587 2,668 N/A N/A 

Server Run time (sec) 6,235 2,942 1,513 800 547 
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Table II: Run-time comparison for the hurricane example in R 

 1 Core 2 

Cores 

4 

Cores 

8 

Cores 

16 

Cores 

32 

Cores 

64 

Cores 

80 

Cores 

Run Time (sec) 6,924 3,680 1,945 1,117 549 310 197 178 

Run Time (min) 115 61 32 19 9 5 3 3 
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Table BI: Comparison of Parallel Computing Machine Options 

Computing Method 

Coding 

Learning 

Curve 

Cost 
Potential 

Speed-up 

Setup 

Complexity 

Single-core personal-computing 

machine 
none $ - easy 

Multinode personal-computing 

machine 
low $ + easy 

Multicore Cluster high $$ to $$$ +++ difficult 

GPU very high $$ ++ medium 

MIC high $$ ++ medium 

Cloud Services high 
Problem-

dependent 
++++ difficult 
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Table BII. Components of the authors‘ cluster 

 
Item 

# of 

units 

Approximate 

Cost per unit 

Condition 

Purchased 

1 
Apple Xserve with OS X Server 10.6, 

Hitachi Hard Drives,
4
 and Power Cables  

10 $650 Used 

2 

Ethernet Cables 

Category 5/6 
10 $3 New 

3 Ethernet Switch & Router 1 $80 New 

4 300W Surge Protected Power Strip 2 $100 New 

5 Rack for housing 1 $200 New 

 

                                                             

4
 Apple has discontinued the Xserve server since the early 2012. While the Apple Xserve is discontinued, units 

can be bought pre-owned online. Mac Pro Server is offered in its place. 


