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We are developing new computer vision techniques for characterization of breast masses on mam-
mograms. We had previously developed a characterization method based on texture features. The
goal of the present work was to improve our characterization method by making use of morpho-
logical features. Toward this goal, we have developed a fully automated, three-stage segmentation
method that includes clustering, active contour, and spiculation detection stages. After segmenta-
tion, morphological features describing the shape of the mass were extracted. Texture features were
also extracted from a band of pixels surrounding the mass. Stepwise feature selection and linear
discriminant analysis were employed in the morphological, texture, and combined feature spaces
for classifier design. The classification accuracy was evaluated using the areaAz under the receiver
operating characteristic curve. A data set containing 249 films from 102 patients was used. When
the leave-one-case-out method was applied to partition the data set into trainers and testers, the
average testAz for the task of classifying the mass on a single mammographic view was 0.8360.02,
0.8460.02, and 0.8760.02 in the morphological, texture, and combined feature spaces, respec-
tively. The improvement obtained by supplementing texture features with morphological features in
classification was statistically significant (p50.04). For classifying a mass as malignant or benign,
we combined the leave-one-case-out discriminant scores from different views of a mass to obtain a
summary score. In this task, the testAz value using the combined feature space was 0.9160.02. Our
results indicate that combining texture features with morphological features extracted from auto-
matically segmented mass boundaries will be an effective approach for computer-aided character-
ization of mammographic masses. ©2001 American Association of Physicists in Medicine.
@DOI: 10.1118/1.1381548#
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I. INTRODUCTION

Mammography is currently the only proven and co
effective method to detect early breast cancer. Masses
important indicators of malignancy on mammograms. Ho
ever, only a small percentage of masses found on mam
grams are malignant. Many benign conditions, such as c
and fibroadenomas are detected as breast masses. Som
nign masses may look suspicious enough for the radiolo
to recommend biopsy. In three studies, it was found that o
20%–30% of mammographically suspicious nonpalpa
breast masses that underwent biopsy were malignant.1–3 In
order to reduce costs and patient discomfort, it is import
to reduce the number of benign biopsies without missing
malignant masses. Computer-aided diagnosis has the p
tial to assist the radiologists in the characterization of ma
mographic masses.4

In recent years, many researchers have investigated
use of computer-extracted image features for classificatio
breast masses as malignant or benign. The features wer
tracted from the gray-level and morphological characteris
of the lesion. Kildayet al.5 extracted mass shapes using
teractive gray-level thresholding, and classified them i
cancer, cyst, and fibroadenoma categories using morpho
1455 Med. Phys. 28 „7…, July 2001 0094-2405Õ2001Õ28„7…
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cal features and patient age. Pohlmanet al.6 segmented
masses using an adaptive region growing algorithm, wh
parameters were interactively adjusted. After mass segm
tation, features related to tumor shape and boundary rou
ness were automatically extracted and used for the clas
cation of the lesions. They found that their tumor bounda
roughness feature provided slightly inferior classification
curacy compared to two experienced radiologists who s
cialized in mammography. Rangayyanet al.7 used a measure
of the diffusion of a mass into the surrounding mammogr
termed edge acutance, as well as a number of shape fac
including Fourier descriptors, moments, and compactnes
classify masses. They found the edge acutance measure
superior to the other features extracted from the mass sh
Using the acutance measure alone, they were able to
rectly classify 93% of masses in a database of 54 ca
Viton et al.8 characterized the degree of spiculation and
presence of fuzzy areas in the region surrounding a mas
means of polar and pseudopolar representations of this
gion. Huoet al.9 extracted features related to the margin a
the density of the masses for classification. They desig
and tested a two-stage hybrid classifier consisting of a r
based stage and an artificial neural network stage on a
1455Õ1455Õ11Õ$18.00 © 2001 Am. Assoc. Phys. Med.
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1456 Sahiner et al. : Improvement of mammographic mass characterization 1456
set of 95 mammograms. The hybrid classifier achieved
area under the receiver operating characteristic~ROC! curve
of 0.94 for their data set. Sahineret al. and Chanet al. used
texture features extracted from transformed images for c
acterization of breast masses,10 and investigated the effect o
their computer-aided diagnosis~CAD! method on radiolo-
gists’ rating of breast masses.4 They showed that their CAD
method could significantly improve radiologists’ accuracy
characterization of masses, and thereby might reduce un
essary biopsies.

A second class of techniques for computer aided cha
terization of breast lesions use the computer to comb
mammographic features extracted by a radiologist into a
lignancy rating. Gettyet al.designed a classifier based on
mammographic features extracted by radiologists,
showed that the classifier could substantially increase the
diologists’ diagnostic accuracy.11 Lo et al. and Bakeret al.
designed a neural network classifier based on BI-RADS
tures of the American College of Radiology, and the perso
and family history of the patient.12–14 The neural network
classifier had significantly higher specificity at high sensit
ity levels compared to radiologists.14

In the clinical evaluation of a mammographic mass,
shape and margin characteristics are very important.15 We
previously introduced a rubber-band straightening transfo
to analyze the margin characteristics of a mass.10 In the
present study, our aim is to include features related to
shape of the mass to improve the characterization accur
In order to obtain an accurate delineation of mass bou
aries, we have developed a fully automated three-stage
mentation method. The first stage of our segmenta
method is based on a clustering technique that we previo
investigated. Clustering is used to find the general outline
the mass shape. This general outline is refined using an
tive contour method in the second stage. In the third sta
spiculations are detected and segmented based on image
dient directions. After segmentation, morphological featu
are extracted from the mass shape, and are combined
the texture features that we have previously utilized for ch
acterization of breast masses.

II. METHODS

A. Data set

The mammograms used in this study were randomly
lected from the files of patients in the Radiology Departm
at the University of Michigan who had undergone biopsy. A
mammograms were acquired with dedicated mammogra
systems. The criteria for inclusion of a mammogram in
data set were that the mammogram contained a bio
proven mass, and that approximately equal numbers of
lignant and benign masses were present in the data set.

Our data set consisted of 249 mammograms from
patients. The mammograms contained a total of 122 ben
and 127 malignant masses. The true pathology of the ma
was determined by biopsy and histologic analysis. Six of
benign masses, and 63 of the malignant masses were ch
terized as spiculated by a radiologist experienced in mam
Medical Physics, Vol. 28, No. 7, July 2001
n

r-

ec-

c-
e

a-

d
a-

a-
al

-

s

m

e
cy.
d-
g-
n
ly
f
c-
e,
ra-

s
ith
r-

e-
t

l
ic

e
y-
a-

2
n
es
e
ac-
o-

graphic interpretation. Out of the 249 mammograms, 2
were acquired six months or less before biopsy, and 26 w
acquired more than six months before biopsy. The proba
ity of malignancy of the biopsied mass on each mammogr
was ranked by a Mammography Quality Standards A
~MQSA! approved radiologist on a scale of 1~most benign
mammographic appearance! to 10 ~most malignant mammo
graphic appearance!. The distribution of the malignan
ranking of the masses on each view is shown in Fig. 1. N
that the malignant and benign masses overlap over the e
range of suspicion for malignancy, indicating that the mal
nant or benign features of these masses could not be e
distinguished by radiologists. This is consistent with the f
that all these masses had undergone biopsy. The size o
masses in our data set ranged from 5 to 29 mm~mean size
512.5 mm!. The distribution of the size for malignant a
benign masses is shown in Fig. 2. It is observed that
distribution of the size for malignant masses is similar to t
for benign masses.

The mammograms were digitized with a LUMISYS DIS
1000 laser scanner at a pixel size of 100mm3100mm and

FIG. 1. The distribution of the malignancy rating of the masses in our d
set, by an experienced radiologist:~1! very likely benign,~10! very likely
malignant.

FIG. 2. The distribution of the mass size for the 249 masses in our data
Mass sizes were measured as the longest dimension of the mass
experienced radiologist.
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4096 gray levels. The digitizer was calibrated so that g
level values were linearly proportional to the optical dens
~OD! within the range of 0.1 to 2.8 OD units, with a slope
0.001 OD/pixel value. Outside this range, the slope of
calibration curve decreased gradually, with the OD range
tending to 3.5. The pixel values were linearly converted
fore they were stored on the computer so that a high p
value represented a low optical density.

The location of the biopsied mass was identified by
radiologist, and a region of interest~ROI! containing the
mass was extracted for computerized analysis. The siz
the ROI was chosen such that the radiologist-marked le
and a band of about 50-pixel-wide surrounding backgrou
were included in the ROI.

Before any processing, the ROIs were first processed w
a background correction algorithm. The goal of backgrou
correction is to reduce the nonuniform background caused
the overlapping breast structures and the location of the
sion on the mammogram. The nonuniform background is
related to mass malignancy, but may affect the segmenta
and feature extraction results used in our computeri
analysis. Details and examples of our background correc
technique can be found in the literature.16,17

B. Mass segmentation

We used a fully automated segmentation method to
tract the mass shape. The block diagram for our mass
mentation algorithm is shown in Fig. 3, and the individu
steps of the segmentation algorithm are explained in the
lowing.

1. Initial mass segmentation

The mass segmentation method employed in this st
started with the initial detection of a mass shape within
ROI using a pixel-by-pixelK-means clustering algorithm
which was discussed in detail in the literature.18,19 The pa-
rameters of the segmentation algorithm were chosen so
the segmented region was slightly smaller than the appa

FIG. 3. The block diagram for the mass segmentation algorithm. All ima
Zk , for kÞ3, are binary images, with a nonzero value indicating an ob
pixel.
Medical Physics, Vol. 28, No. 7, July 2001
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size of the mass. This choice prevented most of the ma
from merging into neighboring objects. After clustering, o
to several objects would be segmented in the ROI. If m
than one object was segmented, the largest connected o
was selected. The selected object was then filled, grown
local neighborhood, and eroded and dilated with morp
logical operators. In the resulting binary image, a nonz
value indicated an object pixel, and zero value indicate
background pixel. The implementation details of these st
have been described in the literature.10 Figures 4~a!–4~d!
show examples of a spiculated mass and a nonspicul
mass and the results of the first stage segmentation.

2. Active contour segmentation

Although initial mass segmentation resulted in reasona
mass shapes for most of the masses, further refinement
necessary before detection and segmentation of the spic
tions. We used an active contour model for mass shape
finement.

An active contour is a deformable continuous curv
whose shape is controlled by internal forces~the model, ora
priori knowledge about the object to be segmented! and ex-
ternal forces~the image!.20 The internal forces impose
smoothness constraint on the contour, and the external fo
push the contour toward salient image features, such
edges. To solve a segmentation problem, an initial bound
is iteratively deformed so that the energy due to internal a
external forces is minimized along the contour. The ene
terms used in our implementation are described in
literature.21 We used the shape segmented by our first st
segmentation method as the initial boundary. To minim
the contour energy, we used an iterative algorithm propo
by Williams and Shah.22 The details of our active contou
model have been described elsewhere.23 Figures 4~c!–4~f!
show the initial and final contours of the model for a spic
lated mass and a nonspiculated mass, respectively. A bi
image, denoted byZ2 in the schematic shown in Fig. 3, i

s
tFIG. 4. The mass ROI, the initial contour, and the final contour of the ac
contour model for a spiculated mass@~a!, ~c!, and~e!# and a nonspiculated
mass@~b!, ~d!, and~f!#.
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produced by filling the interior of the resulting contour, su
that any pixel within the object has a pixel value of 1, a
any background pixel has a pixel value of 0.

3. Segmentation of spiculations

Spiculations on mammograms appear as linear struct
with a positive image contrast, and they usually lie in a rad
direction to the mass. As a result of their linearity, the g
dient directions at image pixels on or close to the spiculat
are more or less in the same orientation relative to that of
spiculation. Karssemeijeret al. have used this property fo
detecting spiculated lesions on mammograms.24 In this study,
we developed a method for determining whether a pi
( i c , j c) on the mass contour lies on the path of a spiculati
and to segment the spiculation if it does.

For a pixel (i c , j c) on the mass boundary, a search reg
S( i c , j c) is defined as the set of all image pixels that~i! lie
outside the mass;~ii! have a positive contrast;~iii! are at a
distance less than 4 mm from (i c , j c); and ~iv! are within
6p/4 of the normal to the mass contour at (i c , j c) ~Fig. 5!.
At each image pixel (i , j ) in S( i c , j c), the obtuse angleu
between two lines is computed, where the first line is defin
by the gradient direction at (i , j ), and the second line join
the pixel (i , j ) to the mass boundary pixel (i c , j c) ~Fig. 6!.
We have used a method based on convolution with Gaus
derivatives25 for computing the gradients. The spiculatio
measurex( i c , j c) at a mass boundary pixel (i c , j c) is defined
as the average value ofu in the search regionS( i c , j c). If the
pixel (i c , j c) lies on the path of a spiculation, thenu will be
close top/2 whenever the image pixel (i , j ) is on the spicu-
lation, and hence the mean of the spiculation measure wi
high.

For the segmentation task, we computedx( i c , j c) for a
sequence of 30 contours. The first contour in the sequen
that provided by the active contour model. The followin
contours in the sequence are obtained by expanding the
vious contour by one pixel at a time, so thatx is computed in
a 30-pixel-wide band around the mass. The resulting im
in the 30-pixel-wide band around is referred to as the sp

FIG. 5. The definition of the search region for a given border pixel.
Medical Physics, Vol. 28, No. 7, July 2001
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lation likelihood map, and is denoted byZ3 in Fig. 3. Figure
7 shows the spiculation likelihood map for the two mass
used in Fig. 4. The spiculation likelihood mapZ3 is used for
both detecting whether a mass is spiculated, and for s
menting the spiculations. To detect whether a mass is sp
lated, a binary imageZ4 is produced by thresholdingZ3 , at a
thresholdT. After initial experimentation, the value ofT was
chosen to be 0.85. This threshold was kept constant in
segmentation algorithm for all images used in the study.

After thresholding, all connected objects inZ4 are de-
tected. The number of the objects is used as an estima
the number of possible spiculations. The ratio of the to
area of the objects inZ4 to the mass area is used as
indication of the relative size of the spiculations. The prod
of the two features above~number of objects and the siz
ratio! is used as aspiculation detection variableto classify
the mass as spiculated or nonspiculated. The choice of
threshold for this classification is discussed in Sec. II D.
the mass is classified as spiculated, then the algorithm c
bines the binary image that represents the mass outline
tected by the active contour model (Z2) and the binary image

FIG. 6. The definition of the angular differenceu.

FIG. 7. The spiculation likelihood maps for the spiculated and the nonsp
lated masses shown in Fig. 4:~a! spiculated,~b! nonspiculated.
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that represents the result of thresholding (Z4) to segment the
spiculations~Fig. 3!. If the mass is classified as nonspic
lated, then the output of the segmentation isZ2 . Figure 8
shows the result of spiculation detection and segmenta
for the masses used in Figs. 4 and 7.

C. Feature extraction

1. Extraction of morphological features

Malignant masses tend to have more irregular conto
than benign masses. In addition, spiculation is a strong i
cation for malignancy. Therefore, features related to the s
mented mass shape are expected to yield useful informa
for characterization of breast masses. In this study, thirt
morphological features were extracted from the final m
outline. A list of these thirteen features, as well as their
curacy in classifying each mass in our data set as malig
or benign, are shown in Table I. In this section, we descr
these morphological features. The classification accurac
discussed in Sec. IV.

The first five morphological features listed in Table I a
based on the normalized radial length~NRL!, defined as the

FIG. 8. The result of the final segmentation for the spiculated and the n
spiculated masses shown in Figs. 4 and 7:~a! spiculated,~b! nonspiculated.

TABLE I. The list of the morphological features used in this study, and
areaAz under the ROC curve when each feature is used alone for clas
cation.

Morphological feature
name

Classification
accuracyAz

Fourier descriptor 0.82
Convexity 0.79
Rectangularity 0.75
Perimeter 0.75
NRL mean 0.72
Contrast 0.71
NRL entropy 0.69
Circularity 0.67
NRL area ratio 0.66
NRL standard deviation 0.65
NRL zero crossing count 0.64
Perimeter-to-area ratio 0.63
Area 0.60
Medical Physics, Vol. 28, No. 7, July 2001
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Euclidean distance from the object’s centroid to each of
edge pixels and normalized relative to the maximum rad
length for the object.5 In our previous studies, we found tha
NRL mean, standard deviation, entropy, area ratio, and z
crossing count were useful for discriminating between o
jects containing masses and normal tissue.26

The sixth feature, convexity, is defined as the ratio of
area of the segmented object to the area of the smallest
vex shape that contains the object. If the object is convex
is the case with many benign masses, then this feature
attain its maximum value of unity. If the object shape
highly nonconvex, as is the case with many spiculated
malignant masses, then the value of this feature will
small.

The seventh feature, Fourier descriptor~FD!, is based on
the Fourier transform of the object boundary sequence.
compute the Fourier transform of the object boundary
quence, thex and y coordinates of each border pixelm is
represented as a complex number,z(m)5x(m)1 jy(m),
where 0m,N, andz(m) is a periodic sequence with perio
N. Let c(k) denote the Fourier coefficients of the period
sequencez(m), and let d(k) be a periodic sequence wit
periodN, defined in the interval 0k,N as

d~k!5H 0 k50

uc~k!/c~1!u kÞ0.
~1!

It can be shown thatd(k) is independent of rotation
translation, and scaling of the object, and the choice of
initial point z(0) on the object contour sequence.27 Objects
with irregular contours have more high-frequency comp
nents than those with smooth contours. The following su
mary Fourier descriptor measure28 which emphasizes low-
frequency components ofd(k) is therefore useful in
discriminating between shapes with smooth and irregu
contours

FD5
(k52N/211,kÞ0

N/2 d~k!/uku
(k52N/211,kÞ0

N/2 d~k!
. ~2!

For computational efficiency, all contours were interp
lated to a large integral power of 2, (212) before the compu-
tation of the Fourier series.

The remaining six features were also shown to be us
in discriminating between objects containing masses
normal tissue.26 These features include the perimeter, ar
perimeter-to-area ratio, circularity, rectangularity, and co
trast of the object. The definition of these features can
found in the literature.26

2. Extraction of texture features

The texture of the region surrounding the mass can y
important features for its classification. Since possible spi
lations and the gradient of the opacity caused by the mass
approximately radially oriented, the texture of the region s
rounding a mass is expected to have a radial depende
However, most texture extraction methods are designed
texture orientations in a uniform direction~horizontal, verti-

n-

e
fi-
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Medical Physics, Vo
TABLE II. The list of the texture features used in this study, and the areaAz under the ROC curve when eac
feature is used alone for classification. For each measure, the range ofAz values for different pixel-pair
distances and directions is shown.

Spatial gray-level dependence
~SGLD! feature measure

Classification
accuracyAz

Run-length statistics
~RLS! feature measure

Classification
accuracyAz

Difference average 0.52–0.66 Long runs emphasis 0.63–0.66
Difference entropy 0.53–0.66 Run percentage 0.59–0.65
Inverse difference moment 0.50–0.66 Gray level nonuniformity 0.59–0.62
Difference variance 0.52–0.65 Run length nonuniformity 0.55–0.57
Inertia 0.53–0.65 Short runs emphasis 0.50–0.56
Correlation 0.50–0.61
Inf. measure of correlation 1 0.50–0.61
Inf. measure of correlation 2 0.50–0.59
Energy 0.54–0.59
Entropy 0.54–0.58
Sum variance 0.52–0.58
Sum entropy 0.51–0.57
Sum average 0.55–0.56
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cal, or at a certain angle between these two directions!. To be
able to extract meaningful texture features from the reg
surrounding a mass, we have designed a rubber b
straightening transform~RBST! that maps a band of pixel
surrounding the mass onto the Cartesian plane~a rectangular
region!.10,29,30 In the transformed image, the border of th
mass is expected to appear approximately as a horizo
edge, and spiculations are expected to appear approxim
as vertical lines.

The mass outline produced by the first stage segmenta
discussed previously is used for defining the RBST ima
The mass object produced by this stage is usually slig
smaller than what can be visually discerned on the mam
gram. Thus, a thin border region along the mass margi
included in the RBST image. Important texture and gradi
information at the mass margin is therefore included in
analysis of the region surrounding the mass. A 40-pixel-w
region, corresponding to a 4 mm band is used to determ
the RBST image.

The texture features extracted from the RBST images
clude 13 texture measures, each calculated at 4 direct
and 10 distances, from the spatial gray-level depende
~SGLD! matrices, and 5 run-length statistics~RLS! mea-
sures, each calculated at four directions, as described in
previous work.10 A list of the SGLD and RLS texture mea
sures is shown in Table II. Also shown in Table II are t
classification accuracies when each measure is used alo
distinguish between malignant and benign ROIs. For c
ciseness, the range of classification accuracy~over four di-
rections and ten distances for SGLD measures, and over
directions for RLS measures!of each texture measure
shown. The definition of these features31,32 and the param-
eters used in this study can be found in the literature.10

D. Classification

The classifier in this study was designed to classify
masses on each available view. The same mass image
the CC and MLO views, and any additional views receiv
different classification scores for each view. To assess
l. 28, No. 7, July 2001
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classifier accuracy, we considered both film-based and c
based methods. In the film-based method, the purpose w
classify the mass on each view as malignant or benign. In
case-based method, the purpose was to classify each ma
malignant or benign, using the information from all availab
views. To merge the information from different views of
lesion, we considered two methods. In the first method,
scores from different views were averaged. In the sec
method, the maximum malignancy score among all vie
was used as the score of the mass. The second method
responds to calling a mass malignant if it appears to be
lignant on any view, whereas the first method gives eq
weight to each view to predict malignancy.

Stepwise feature selection and linear discriminant anal
were used for classifier design, and anN-fold cross-
validation resampling scheme was used for partitioning
data into design and test sets. In a first set of experiments
used tenfold cross validation. The data set was partitio
into ten random partitions such that all mammograms fr
one patient were grouped into the same partition. Nine of
partitions were used for feature selection and classifier tr
ing, and the remaining partition was used for testing. T
purpose of grouping all mammograms of one patient into
same partition was to ensure that the test data were inde
dent from training. Without this type of partitioning, on
mammogram from a patient may be used for training a c
sifier that will be tested on another mammogram of the sa
patient, which may bias the test results because the trai
and test sets may not be completely independent. The
partition was rotated in a round-robin manner so that
partitions served as a test partition once and only once.
discriminant scores were analyzed using ROC methodolo
using theLABROC program of Metzet al.33 For each test
partition, the classification accuracy was evaluated as
areaAz under the ROC curve. A meanAz value for the data
set was obtained by averaging these tenAz values. In a sec-
ond set of experiments, we used a leave-one-case-out me
for data partitioning. This method is similar to ten-fold cro
validation discussed previously, with the differences that



d
o
e
a
e

ur

a
ge
d
ic
u

on
e
io
s w
a
e

s
o

ou
-

ou
n.
th

m
lle
e
th
o

de
o

ie

ble
o

th

an
u

a
n

m

s
c

og
d

and
re

s
he
las-

he
fea-

d 10
ces.
d

ea-
tion
ssi-

is
ed
film

u-

nt
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the leave-one-case-out method, each partition consiste
films from one and only one patient, and that the scores fr
all ROIs were accumulated for the ROC analysis. Since th
were 102 patients, this corresponded to 102-fold cross v
dation. The statistical significance of the difference betwe
ROC curves obtained with classifiers using different feat
spaces~texture, morphological, or combined! was tested us-
ing theCLABROC program of Metzet al.34

Classifier training consisted of three stages, and w
based on the training set alone for all of these three sta
The first stage was related to mass segmentation. As
cussed in Sec. II B, the decision to classify a mass as sp
lated or nonspiculated was based on thresholding a spic
tion detection variable obtained from the spiculati
likelihood map. The value of this threshold was determin
from the training set such that the sum of correct decis
percentages for the spiculated and nonspiculated masse
maximized for the training set. Classification of a mass
spiculated or nonspiculated determined if the spiculation s
mentation step would be applied to the mass~see Fig. 3!.
This affected the morphological features extracted and
lected in the second stage of classifier training. The sec
stage of the training involved stepwise feature selection,35,36

which has been used for classifier design in many of
CAD applications.10,17,37,38Stepwise feature selection itera
tively enters features into or removes features from the gr
of selected features based on a feature selection criterio
this study, the feature selection criterion was based on
Wilks’ lambda,39 obtained using the trainers alone. The nu
ber of features in stepwise feature selection was contro
by the F-to-enter andF-to-remove thresholds, which wer
evaluated over a range from 5.0 to 2.0. In the third stage,
coefficients of the linear classifier were determined based
the training set. By making these three decisions indepen
of the test set, we aimed at improving the generalizability
our classification results to unknown cases in the pat
population.

III. RESULTS

Figure 9 shows the distribution of the detection varia
used for the classification of a mass as spiculated or n
spiculated. It is observed that by properly choosing
threshold, more than 30%~60/180! of the nonspiculated
masses can be correctly identified without misclassifying
spiculated masses. At the selected threshold for the spic
tion detection variable~see the earlier paragraph!77% ~53/
69! of the spiculated masses and 78%~140/180!of the non-
spiculated masses were correctly identified. Since there
six spiculated but benign masses in our data set, we did
use this variable for the classification of the masses as
lignant or benign.

For both the tenfold cross validation and leave-one-ca
out data partitioning methods, we investigated the classifi
tion of the masses as malignant or benign in the morphol
cal feature space alone, texture feature space alone, an
combined morphological and texture feature space.
Medical Physics, Vol. 28, No. 7, July 2001
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A. Tenfold cross validation

The average number of selected features was 2, 10,
14 in the morphological, texture, and combined featu
spaces. The resultingAz values for each of the ten partition
are shown in Table III. It is observed that combining t
morphological and texture feature spaces improves the c
sification accuracy. The averageAz value for the ten parti-
tions in this study was 0.85 for either the texture or t
morphological features used alone. Using the combined
ture space, the average testAz value for the ten partitions
reached 0.89.

B. Leave-one-case-out

The average number of selected features was 4, 8, an
in the morphological, texture, and combined feature spa
The resultingAz values were 0.8460.02, 0.8360.02, an
0.8760.02 in the morphological, texture, and combined f
ture spaces, respectively. The ROC curves for classifica
in these three feature spaces is shown in Fig. 10. For cla
fication in the combined feature space (Az50.8760.02), the
distribution of the classifier scores for the 249 masses
shown in Fig. 11. This distribution represents film-bas
classification results, in the sense that the mass on each

FIG. 9. The distribution of the spiculation detection variable for the spic
lated and the nonspiculated masses.

TABLE III. The test Az values for each partition using linear discrimina
analysis with morphological, texture, and combined feature spaces.

Partition
number

Morphological
feature space

Texture
feature space

Combined
feature space

1 0.9060.06 0.9260.06 0.9260.07
2 0.9260.06 0.9860.03 1.000 000
3 0.8360.10 0.9360.06 0.9460.05
4 0.8060.08 0.8360.08 0.8660.08
5 0.9460.05 0.8060.16 0.9260.07
6 0.8260.08 0.6660.12 0.8560.08
7 1.000 000 1.000 000 0.9660.04
8 0.7760.10 0.7160.10 0.7160.11
9 0.6460.11 0.7360.10 0.7460.10

10 0.9360.05 0.9160.06 0.9860.03
Average 0.85 0.85 0.89



ra
en
is

om
ea
1

nn
re
.
x

e
d
-
. 1

am
c

be-
rti-
gi-
res

m-
es
the
ely.
ach
for

s of
the
re-
the
nifi-
he
ere
sly.
re
las-
ntly

ca

ve
co
in

ve-
com-
r have

alig-

1462 Sahiner et al. : Improvement of mammographic mass characterization 1462
is given a separate score, as discussed in Sec. II D. In p
tice, radiologists read different views of the same pati
together. To simulate this condition, we combined the d
criminant scores of different views of the same mass fr
the same year to obtain a single case-based score for
mass. This analysis resulted in 127 average scores for
patients, because some patients had mammograms spa
multiple years or from both breasts, and masses in diffe
breasts or from different years were averaged separately
described in Sec. II D, we compared using either the ma
mum malignancy score or the average malignancy scor
the combination method. These two methods both resulte
ROC curves withAz50.91. The distribution of the case
based scores using the averaging method is shown in Fig
The ROC curves for film-based classification (Az50.87
60.02) and case-based classification (Az50.9160.02) are
shown in Fig. 13.

IV. DISCUSSION

Our results indicate that accurate segmentation of m
mographic masses and the use of morphological features

FIG. 10. ROC curves for classification of masses in the morphologi
texture, and combined feature spaces.

FIG. 11. The distribution of the film-based discriminant scores for lea
one-case-out classification of malignant and benign masses, using the
bined feature space. The score of a mass on each film is considered
pendently.
Medical Physics, Vol. 28, No. 7, July 2001
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be effective in classifying breast masses as malignant or
nign. When tenfold cross validation was used for data pa
tioning, the average classification accuracy with morpholo
cal features alone was equal to that with texture featu
alone (Az50.85). The average classification accuracy i
proved toAz50.89 when texture and morphological featur
were combined. In the tenfold cross-validation method,
test Az values for each partition were computed separat
This meant that there were, on average, 24.9 films in e
test partitioning. Due to the small number of cases used
computing the test ROC curves, the standard deviation
theAz values were large, relative to those obtained using
leave-one-out method, as observed from Table III. As a
sult, the difference between the classifiers trained with
three different feature spaces did not reach statistical sig
cance for any of the ten partitions shown in Table III. For t
leave-one-case-out method, the scores from all ROIs w
accumulated for the ROC analysis, as explained previou
This meant that the classification scores for all films we
analyzed to obtain the test ROC curve. In this case, the c
sifier based on the combined feature space was significa

l,

-
m-

de-

FIG. 12. The distribution of the case-based discriminant scores for lea
one-case-out classification of malignant and benign masses, using the
bined feature space. The scores from the same mass of the same yea
been averaged into a single score for the mass.

FIG. 13. Case-based and film-based ROC curves for classification of m
nant and benign masses.
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more accurate than that based on the texture feature s
alone (p50.04). The difference between the classifie
based on the combined and morphological feature space
not reach statistical significance.

We previously introduced a rubber-band straighten
transform to analyze the margin characteristics of a mass
texture feature space.10 In this work, we developed a new
three-stage segmentation method that consists of cluste
active contours, and spiculation detection; and evaluated
effectiveness of combining the morphological features
tracted from the segmented mass and texture features
improving computerized breast mass classification. The m
phological features used in this study were not novel;5,26,28

and we had previously attempted to combine these feat
with texture features. However, with our previous mass s
mentation method, we were unable to improve our textu
based classification results by including morphological f
tures. This is a strong indication that the quality
segmentation is very important for morphological feature
traction.

The three-stage segmentation method used in this s
adds two new stages to our previous segmentation meth10

Previously, the clustering method was successful in segm
ing the main portion of the mass from the background. Ho
ever, one major limitation of clustering-based segmenta
is that, even for well-circumscribed masses, the segme
shape contains many irregularities due to structured or
dom noises@see Fig. 4~d!#. Another limitation is that, to pre
vent merging with neighboring structures, the clustering
rameters have to be chosen so that the segmented obje
slightly smaller than the object that would visually be det
mined for a majority of the masses. Morphological featu
extracted from such a segmented mass may not adequ
characterize the true morphology of the mass. The first n
segmentation component of this study is the use of an ac
contour model for refining the clustering-based segmenta
results. The second new component is the use of image
dient directions for detecting and segmenting spiculatio
As shown in Fig. 9, the spiculation detection variable d
signed in this study was able to provide some separa
between the spiculated and the nonspiculated masses. W
the spiculation detection variable was used as the deci
variable to classify the masses as spiculated or nonsp
lated, the areaAz under the ROC curve was 0.85. Howeve
this variable could not be directly used for the classificat
of the masses as malignant or benign, because almost
~64/127!of the malignant masses were visually characteri
as nonspiculated by a radiologist experienced in mam
graphic interpretation.

The ability of each morphological feature to discrimina
between the ROIs containing malignant and benign mass
shown in Table I in terms of the areaAz under the ROC
curve. TheAz values indicate the accuracy of classifying t
individual 249 ROIs as malignant or benign. The featu
with the highest classification accuracy was the Fourier
scriptor~FD!. The stepwise method selected FD for all of t
ten partitions shown in both the first and the last columns
Table III. When feature selection was performed using
Medical Physics, Vol. 28, No. 7, July 2001
ce

did

g
a

g,
he
-
for
r-

es
-
-
-

-

dy
.

nt-
-
n
ed
n-

-
t is
-
s
ely
w
ve
n

ra-
s.
-
n
en

on
u-
,
n
alf
d
o-

is

e
-

f
e

morphological features alone, the contrast feature was
lected, in addition to FD, for all of the ten partitions show
in the first column of Table III. The classification accuracy
the contrast feature is lower than those of several other
tures in Table I. However, contrast is the only feature
Table I that makes use of the gray scale information in
image. Therefore, compared to other morphological featu
it seems to be able to introduce more complem
tary, and useful, information into the classifier when co
bined with FD.

The ability of each texture measure to discriminate b
tween malignant and benign masses is shown in Table II.
observed that when used alone, the texture features are
effective than morphological features in classifying t
masses in our data set. However, when texture features
combined using a linear classifier, the classification accur
is comparable to classification using a linear classifier w
morphological features alone. This may be an indication t
the linear classifier is not as effective for combining the
morphological features as for combining the texture featu
We believe that a major reason for this is the distributions
the morphological features. It is known that the linear cla
sifier is optimal for features with multivariate Gaussian cla
distributions with equal covariance matrices.40 Due to the
thresholding operation in segmentation~see the last para
graph of Sec. II B, and Fig. 3!, the distributions of the mo
phological features in this study are very different from b
ing Gaussian. As an example, the distribution of the Fou
descriptor feature is shown in Fig. 14. It can be observed
the distributions of both the benign and the malignant mas
follow a bimodal distribution, very likely with the smalle
peak corresponding to masses classified as spiculated,
the larger peak corresponding to those classified as nonsp
lated. It is known that other types of classifiers, such as a
ficial neural networks or hybrid classifiers, perform bet
with non-Gaussian distributions. We will investigate the p
formance of other types of classifiers in these feature spa
in the future.

In a previous study, we had used the same texture feat
as those in this study, and had obtained an ROC area of

FIG. 14. The distribution of the Fourier descriptor feature for malignant a
benign masses.



th
tw

u
es
et
o
th
e
re
le
te
e
r

ra
o
gn
s
le

rfo
ne
m
t

ct
p
tt
lab
th
e
t
In
fie
or
y
le

r
e
ea
an
b

a
,

il-
o

io
rio
ar
o
A
e

as
th
m
th
ge

ng
ifier

in

en-
tec-
a-

tures
ex-
sur-

t was
ne-
ith
nt
sifi-

pec-
av-

year.
tion
o-
ted

im-
of

rd

ion
es-
ial
pa-
he

ing

G.
m-

l-
on of

ysis

E.
pal,
ses

e-
ing

S.
in

im,
g a

1464 Sahiner et al. : Improvement of mammographic mass characterization 1464
on a data set containing 238 masses.4 The main reason for
the lower accuracy with texture features in this study is
difference of the feature selection methods used in the
studies. In our previous study, the features were selected
ing the entire data set, as have been done in most studi
the CAD literature.41–46After feature selection, the data s
was partitioned into training and test sets for formulation
the linear discriminant function. In the current study, bo
feature selection and classifier coefficient determination w
performed on the training set. We have recently compa
the effect of these two different approaches to feature se
tion on classifier performance prediction using a Mon
Carlo simulation study.39 We have found that, when featur
selection is performed using the training set alone, the p
dicted test performance of the classifier is lower, in gene
than that of a classifier trained with an infinite number
samples, as can be expected when a classifier is desi
with a finite design sample set. However, when feature
lection is performed using the entire set of available samp
~training and test sets together!, the predicted test pe
mance can be higher or lower than that of a classifier trai
with an infinite number of samples, depending on the nu
ber of available samples, the number of features, and
correlation between the features. The fact that the predi
performance of the classifier designed with a finite sam
set can exceed that with an infinite sample set in the la
case indicates that feature selection using the entire avai
sample set can result in an overly optimistic prediction of
classifier performance. In studies with a clinical data s
there is no knowledge of the true class distributions, so i
difficult to predict which approach will be less biased.
order to provide a conservative prediction of the classi
performance for the general population, we chose to perf
the feature selection on trainers alone in our current stud

Our data set contained 223 mammograms obtained
than six months before biopsy~preoperative mammograms!
and 26 mammograms obtained more than six months prio
biopsy ~prior mammograms!. In order to obtain case-bas
average scores, we combined the scores from different y
separately. Since the characteristics of the mass may ch
with time, combining scores across multiple years will not
reasonable. Similar to radiologists’ interpretation,4 case-
based classification accuracy was higher than film-based
curacy, with Az50.91 andAz50.87 for the two methods
respectively.

An important feature of a CAD lesion classifier is its ab
ity to alert radiologists to a suspicious lesion on a mamm
gram obtained at a time when the radiologist’s suspic
level is not high enough to recommend biopsy. These p
mammograms, which are by definition more difficult to ch
acterize, were included in our database because one w
encounter such cases in clinical use or evaluation of a C
system. If these 26 prior mammograms in our data set w
excluded from the analysis, then case-based and film-b
Az values would be 0.94 and 0.88, respectively. Since
number of prior mammograms was small, we did not co
pare the classification accuracy of prior mammograms to
of preoperative mammograms in this study. When a lar
Medical Physics, Vol. 28, No. 7, July 2001
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set of prior mammograms is collected, it will be interesti
and important to evaluate whether the computer class
can predict the malignancy of the ‘‘unsuspected’’ masses
earlier years.

V. CONCLUSION

We have developed a fully automated three-stage segm
tation method for delineation of mass boundary and de
tion and segmentation of spiculations. Morphological fe
tures describing the shape of the mass and texture fea
describing the margin characteristics of the mass were
tracted from the segmented mass and a band of pixels
rounding the segmented mass, respectively. The data se
partitioned using a tenfold cross validation and a leave-o
case-out method for training and testing a classifier w
stepwise feature selection followed by linear discrimina
analysis. Using the combined feature space, the test clas
cation accuracy wasAz50.89 andAz50.87 for the tenfold
cross validation and the leave-one-case-out methods, res
tively. Case-based classification scores were obtained by
eraging the test scores of the same mass from the same
The area under the ROC curve for case-based classifica
was Az50.91. Our results indicate that combining morph
logical features extracted from the automatically segmen
mass boundary with texture features can significantly
prove the accuracy for computer-aided characterization
mammographic masses.

ACKNOWLEDGMENTS

This work is supported by a Career Development Awa
~B.S.! from the USAMRMC No. ~DAMD 17-96-1-6012!,
USPHS Grant No. CA 48129, and a Whitaker Foundat
Grant~N.P.!. The content of this publication does not nec
sarily reflect the position of the government and no offic
endorsement of any equipment and product of any com
nies mentioned in the publication should be inferred. T
authors are grateful to Charles E. Metz, Ph.D., for provid
the LABROC program.

a!Electronic mail: berki@umich.edu
1G. Hermann, C. Janus, I. S. Schwartz, B. Krivisky, S. Bier, and J.
Rabinowitz, ‘‘Nonpalpable breast lesions: Accuracy of prebiopsy ma
mographic diagnosis,’’ Radiology165, 323–326~1987!.

2F. M. Hall, J. M. Storella, D. Z. Silverstond, and G. Wyshak, ‘‘Nonpa
pable breast lesions: Recommendations for biopsy based on suspici
carcinoma at mammography,’’ Radiology167, 353~1988!.

3H. G. Jacobson and J. Edeiken, ‘‘Biopsy of occult breast lesions: Anal
of 1261 abnormalities,’’ J. Am. Math. Assoc.263, 2341–2343~1990!.

4H.-P. Chan, B. Sahiner, M. A. Helvie, N. Petrick, M. A. Roubidoux, T.
Wilson, D. D. Adler, C. Paramagul, J. S. Newman, and S. S. Go
‘‘Improvement of radiologists’ characterization of mammographic mas
by computer-aided diagnosis: An ROC study,’’ Radiology212, 817–827
~1999!.

5J. Kilday, F. Palmieri, and M. D. Fox, ‘‘Classifying mammographic l
sions using computer-aided image analysis,’’ IEEE Trans. Med. Imag
12, 664–669~1993!.

6S. Pohlman, K. A. Powell, N. A. Obuchowshi, W. A. Chilote, and
Grundfest-Broniatowski, ‘‘Quantitative classification of breast tumors
digitized mammograms,’’ Med. Phys.23, 1337–1345~1996!.

7R. M. Rangayyan, N. El-Faramawy, J. E. L. Desautels, and O. A. Al
‘‘Discrimination between benign and malignant breast tumors usin



.

r

t,
nd

itt,
bb

ed

ed
pt

al
a

d,
BI-

,’’

nd
: A
ur

.
o

xtu

nd
An
ld

nd
li-
m

d-

to

nd

nc
g-
in

in

rs

p
es

ape
ing

.
and

r-
f the

for

,’’

ti-

ng
cor-

.
hic
ed.

r,
ptive

a-
osis:

.
i-

st
ing,’’

K.
ast
ing

in
nta-

af,
st

d
risk

1465 Sahiner et al. : Improvement of mammographic mass characterization 1465
region-based measure of edge profile acutance,’’ inDigital Mammogra-
phy ’96, edited by K. Doi, M. L. Giger, R. M. Nishikawa, and R. A
Schmidt~Elsevier, Amsterdam, 1996!.

8J. L. Viton, M. Rasigni, G. Rasigni, and A. L. Llebaria, ‘‘Method fo
characterizing masses in digital mammograms,’’ Opt. Eng.~Bellingham!
35, 3453–3459~1996!.

9Z. M. Huo, M. L. Giger, C. J. Vyborny, D. E. Wolverton, R. A. Schmid
and K. Doi, ‘‘Automated computerized classification of malignant a
benign masses on digitized mammograms,’’ Acad. Radiol.5, 155–168
~1998!.

10B. Sahiner, H. P. Chan, N. Petrick, M. A. Helvie, and M. M. Goods
‘‘Computerized characterization of masses on mammograms: The ru
band straightening transform and texture analysis,’’ Med. Phys.25, 516–
526 ~1998!.

11D. J. Getty, R. M. Pickett, C. J. D’Orsi, and J. A. Swets, ‘‘Enhanc
interpretation of diagnostic images,’’ Invest. Radiol.23, 240–252~1988!.

12J. Y. Lo, J. A. Baker, P. J. Kornguth, and C. E. Floyd, ‘‘Computer-aid
diagnosis of breast cancer: Artificial neural network approach for o
mized merging of mammographic features,’’ Acad. Radiol.2, 841–850
~1995!.

13J. A. Baker, P. J. Kornguth, J. Y. Lo, and C. E. Floyd, ‘‘Artificial neur
network: Improving the quality of breast biopsy recommendations,’’ R
diology 198, 131–135~1996!.

14J. A. Baker, P. J. Kornguth, J. Y. Lo, M. E. Williford, and C. E. Floy
‘‘Breast cancer: Prediction with artificial neural network based on
RADS standardized lexicon,’’ Radiology196, 817–822~1995!.

15C. J. D’Orsi and D. B. Kopans, ‘‘Mammographic feature analysis
Semin. Roentgenol.28, 204–230~1993!.

16B. Sahiner, H. P. Chan, N. Petrick, D. Wei, M. A. Helvie, D. D. Adler, a
M. M. Goodsitt, ‘‘Classification of mass and normal breast tissue
convolution neural network classifier with spatial domain and text
images,’’ IEEE Trans. Med. Imaging15, 598–610~1996!.

17H. P. Chan, D. Wei, M. A. Helvie, B. Sahiner, D. D. Adler, M. M
Goodsitt, and N. Petrick, ‘‘Computer-aided classification of mamm
graphic masses and normal tissue: Linear discriminant analysis in te
feature space,’’ Phys. Med. Biol.40, 857–876~1995!.

18B. Sahiner, H. P. Chan, N. Petrick, D. Wei, M. A. Helvie, D. D. Adler, a
M. M. Goodsitt, ‘‘Classification of mass and normal breast tissue:
artificial neural network with morphological features,’’ Proc. Wor
Cong. Neural Net.II, 876–879 ~1995!.

19B. Sahiner, H. P. Chan, N. Petrick, D. Wei, M. A. Helvie, D. D. Adler, a
M. M. Goodsitt, ‘‘Image feature selection by a genetic algorithm: App
cation to classification of mass and normal breast tissue on mam
grams,’’ Med. Phys.23, 1671–1684~1996!.

20M. Kass, A. Witkin, and D. Terzopoulos, ‘‘Snakes: Active contour mo
els,’’ Int. J. Comput. Vis.1, 321–331~1987!.

21C. S. Poon and M. Braun, ‘‘Image segmentation by a deformable con
model incorporating region analysis,’’ Phys. Med. Biol.42, 1833–1841
~1997!.

22D. J. Williams and M. Shah, ‘‘A fast algorithm for active contours a
curvature estimation,’’ CVGIP: Image Understand.55, 14–26 ~1992!.

23H.-P. Chan, N. Petrick, and B. Sahiner, ‘‘Computer-aided breast ca
diagnosis’’ in Artificial Intelligence Techniques in Breast Cancer Dia
nosis and Prognosis, edited by A. Jain, A. Jain, S. Jain, and L. Ja
~World Scientific, River Edge, 2000!, Chap. 6.

24N. Karssemeijer and G. te Brake, ‘‘Detection of stellate distortions
mammograms,’’ IEEE Trans. Med. Imaging15, 611–619 ~1996!.

25J. J. Koenderink and A. J. van Doorn, ‘‘Generic neighborhood operato
IEEE Trans. Pattern Anal. Mach. Intell.14, 597–605~1992!.

26N. Petrick, H. P. Chan, B. Sahiner, and M. A. Helvie, ‘‘Combined ada
tive enhancement and region-growing segmentation of breast mass
digitized mammograms,’’ Med. Phys.26, 1642–1654~1999!.
Medical Physics, Vol. 28, No. 7, July 2001
er

i-

-

e

-
re

o-

ur

er

,’’

-
on

27S. Mori, H. Nishida, and H. Yamada,Optical Character Recognition
~Wiley, New York, 1999!.

28L. Shen, R. M. Rangayyan, and J. E. L. Desautels, ‘‘Application of sh
analysis to mammographic calcifications,’’ IEEE Trans. Med. Imag
13, 263–274~1994!.

29B. Sahiner, H. P. Chan, N. Petrick, M. A. Helvie, G. M. M. , and D. D
Adler, ‘‘Classification of masses on mammograms using a rubber-b
straightening transform and feature analysis,’’ Proc. SPIE2710, 44–50
~1996!.

30B. Sahiner, H. P. Chan, N. Petrick, G. M. M., and M. A. Helvie, ‘‘Cha
acterization of masses on mammograms: Significance of the use o
rubber-band straightening transform,’’ Proc. SPIE3034, 491–500~1997!.

31R. M. Haralick, K. Shanmugam, and I. Dinstein, ‘‘Texture features
image classification,’’ IEEE Trans. Syst. Man Cybern.SMC-3, 610–621
~1973!.

32M. M. Galloway, ‘‘Texture classification using gray level run lengths
Comput. Graphics4, 172–179~1975!.

33C. E. Metz, B. A. Herman, and J. H. Shen, ‘‘Maximum-likelihood es
mation of receiver operating characteristic~ROC! curves from
continuously-distributed data,’’ Stat. Med.17, 1033–1053~1998!.

34C. E. Metz, P. L. Wang, and H. B. Kronman, ‘‘A new approach for testi
the significance for differences between ROC curves measured from
related data,’’ inInformation Processing in Medical Imaging, edited by F.
Deconinck~Martinus Nijhoff, the Hague, 1984!.

35N. R. Draper,Applied Regression Analysis~Wiley, New York, 1998!.
36M. J. Norusis,SPSS for Windows Release 6 Professional Statistics~SPSS,

Chicago, IL, 1993!.
37H. P. Chan, B. Sahiner, K. L. Lam, N. Petrick, M. A. Helvie, M. M

Goodsitt, and D. D. Adler, ‘‘Computerized analysis of mammograp
microcalcifications in morphological and texture feature space,’’ M
Phys.25, 2007–2019~1998!.

38N. Petrick, H. P. Chan, D. Wei, B. Sahiner, M. A. Helvie, and D. D. Adle
‘‘Automated detection of breast masses on mammograms using ada
contrast enhancement and texture classification,’’ Med. Phys.23, 1685–
1696 ~1996!.

39B. Sahiner, H. P. Chan, N. Petrick, R. F. Wagner, and L. Hadjiiski, ‘‘Fe
ture selection and classifier performance in computer-aided diagn
The effect of finite sample size,’’ Med. Phys.27, 1509–1522~2000!.

40K. Fukunaga,Introduction to Statistical Pattern Recognition, 2nd ed.
~Academic, New York, 1990!.

41Y. Wu, M. L. Giger, K. Doi, C. J. Vyborny, R. A. Schmidt, and C. E
Metz, ‘‘Artificial neural networks in mammography: Application to dec
sion making in the diagnosis of breast cancer,’’ Radiology187, 81–87
~1993!.

42K. G. A. Gilhuijs and M. L. Giger, ‘‘Computerized analysis of brea
lesions in three dimensions using dynamic magnetic-resonance imag
Med. Phys.25, 1647–1654~1998!.

43B. S. Garra, B. H. Krasner, S. C. Horri, S. Ascher, S. K. Mun, and R.
Zeman, ‘‘Improving the distinction between benign and malignant bre
lesions: The value of sonographic texture analysis,’’ Ultrason. Imag
15, 267–285~1993!.

44M. F. McNitt-Gray, H. K. Huang, and J. W. Sayre, ‘‘Feature selection
the pattern classification problem of digital chest radiograph segme
tion,’’ IEEE Trans. Med. Imaging14, 537–547~1995!.

45V. Goldberg, A. Manduca, D. L. Evert, J. J. Gisvold, and J. F. Greenle
‘‘Improvement in specificity of ultrasonography for diagnosis of brea
tumors by means of artificial intelligence,’’ Med. Phys.19, 1475–1481
~1992!.

46Z. Huo, M. L. Giger, D. E. Wolverton, and W. Zhong, ‘‘Computerize
analysis of mammographic parenchymal patterns for breast cancer
assessment: Feature selection,’’ Med. Phys.27, 4–12 ~2000!.


