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Abstract
In order to assess the effectiveness of matching approaches in observational studies,
investigators typically present summary statistics for each observed pre-intervention
covariate, with the objective of showing that matching reduces the difference in means
(or proportions) between groups to as close to zero as possible. In this paper, we introduce
a new approach to distinguish between study groups based on their distributions of the
covariates using a machine-learning algorithm called optimal discriminant analysis
(ODA). Assessing covariate balance using ODA as compared with the conventional
method has several key advantages: the ability to ascertain how individuals self-select
based on optimal (maximum-accuracy) cut-points on the covariates; the application to
any variable metric and number of groups; its insensitivity to skewed data or outliers;
and the use of accuracy measures that can be widely applied to all analyses. Moreover,
ODA accepts analytic weights, thereby extending the assessment of covariate balance to
any study design where weights are used for covariate adjustment. By comparing the
two approaches using empirical data, we are able to demonstrate that using measures of
classification accuracy as balance diagnostics produces highly consistent results to those
obtained via the conventional approach (in our matched-pairs example, ODA revealed a
weak statistically significant relationship not detected by the conventional approach). Thus,
investigators should consider ODA as a robust complement, or perhaps alternative, to the
conventional approach for assessing covariate balance in matching studies.

Introduction

Although the randomized controlled trial (RCT) is the gold standard
for evaluating health interventions, the extent of its use is limited
because of myriad practical, logistical and ethical reasons. Therefore,
in circumstances when the RCT is not feasible, investigators
typically choose from a wide variety of matching approaches in an
attempt to emulate the randomization process using observational
data [1]. The fundamental difference between the RCT andmatching
studies is that randomization is expected to produce study groups
that are balanced (comparable) on both observed and unobserved
pre-intervention characteristics, while matching studies can only
strive to create study groups that are balanced on observed pre-
intervention characteristics and must assume that any unmeasured
variables will not bias the results [2]. Consequently, demonstrating
how well the study arms balance on their pre-intervention
characteristics is an essential condition for making the case for the
validity of treatment effects in matching studies.
The conventional approach to show comparability between

study groups is to present a table of summary statistics for all
observed pre-intervention covariates – both before and after
matching [3]. The objective is to simply demonstrate that matching
reduces the difference in means (or proportions) between groups,

to as close to zero as possible. However, this approach is sensitive
to skewed data and outliers [4], limited to comparisons between
two groups (unless multiple pairwise comparisons are made) [5],
and perhaps most importantly, it does not identify a cut-point
along the distribution of the covariate that may clarify how
individuals self-select into one or the other study group.
In this paper, we describe a novel approach to assessing

comparability between study groups in matching studies that
overcomes the limitations of the difference-in-means diagnostic. This
approach involves a machine-learning algorithm called optimal
discriminant analysis (ODA) [6,7] that determines if (and to what
degree) study groups can be distinguished based on the distributions
of the covariates. The assumption is that individuals who elect to
participate in observational studies generally differ in their
characteristics from those who decline to participate, and the algorithm
should therefore be able to find characteristics that discriminate
between groups prior to matching [8,9]. If matching is successful,
reprocessing the algorithm on the matched groups should fail to
identify characteristics that discriminate between the groups. This
approach generates measures of classification accuracy (e.g.
sensitivity, specificity and effect strength for sensitivity) [9,10] as
balance diagnostics, thereby providing additional information as to
howwell matching improved the comparability between study groups.
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The specific advantages of ODA as compared with the conventional
approach in assessing covariate balance are the application to any
variable metric and number of groups, its insensitivity to skewed data
or outliers and the use of accuracymeasures that can be widely applied
to all analyses. ODA also has the distinct ability to ascertain how
individuals self-select based on optimal (maximum-accuracy) cut-
points on the covariates. Moreover, ODA accepts analytic weights,
thereby extending the assessment of covariate balance to any study
design where weights are used for covariate adjustment. Finally,
ODA has the capability to use cross-validation in assessing the
generalizability of the model or to identify solutions that cross-
generalize with maximum accuracy when applied across multiple
samples.
To illustrate the ODA approach and compare it to the conventional

method, the paper is organized as follows. In the Methods section, we
describe our methods including the data source, the matching
methodology employed, a brief introduction to ODA, how each
approach assesses covariate balance and how we compared the
conventional approach and the ODA approach for assessing covariate
balance. The Results section reports the results of each approach and
the comparison between them. The Discussion section discusses the
specific advantages of ODA in assessing covariate balance compared
with the conventional approach; explains how machine-learning
techniques like ODA might be incorporated into conventional
methods for assessing covariate balance, selection and recruitment;
and describes how machine-learning can be applied more broadly
within the causal inferential framework.

Methods

Data

Our empirical example uses data from a prior evaluation of a
primary care-based medical home pilot programme that invited
patients to enrol if they had a chronic illness or were predicted to
have high costs in the following year. The goal of the programme
was to lower health care costs for programme participants by
providing intensified primary care (see [11] for a more
comprehensive description). The retrospectively collected data
consist of observations for 374 programme participants and 1628
non-participants. Eleven pre-intervention characteristics were
available; these included demographic variables (age and gender),
health services utilization in year prior to enrollment (primary care
visits, other outpatient visits, laboratory tests, radiology tests,
prescriptions filled, hospitalizations, emergency department visits
and home-health visits) and total medical costs (the amount paid
for all those health services utilized in the prior year).

Propensity score matching

As described in Linden [11], a propensity score-based matching
approach was employed to make the groups similar on observed
baseline characteristics. The propensity score is defined as the
probability of assignment to the treatment group given the
observed characteristics [12], and we estimated the propensity
score using the conventional approach of logistic regression to
predict programme participation status using the eleven pre-
intervention covariates described earlier, all entered as main

effects. It has been demonstrated that in large samples, when
treatment and control groups have similar distributions of the
propensity score, they generally have similar distributions of the
underlying covariates used to create the propensity score. This
means that observed baseline covariates can be considered
independent of treatment assignment (as if they were randomized)
and therefore will not bias the treatment effects [12]. To achieve
this similar distribution of the propensity score in our study, an
optimal matching algorithm [13] was employed to match pairs
(one participant to one non-participating control) on the estimated
propensity score, resulting in 276 matched pairs [11].

A brief introduction to optimal discriminant analysis

Optimal discriminant analysis is a machine-learning algorithm that
was introduced over 25 years ago [14] as an alternative means of
analysing data commonly encountered in research, such as studies
with two or more study group levels and a variable of interest (e.g.
a pre-intervention characteristic or outcome variable) that is
measured on a continuous or interval-level scale, on an ordered scale
with relatively few levels or on a qualitative scale with two or more
categories [6,7,15]. In simple terms, ODA identifies the cutpoint (or
category subset) of the variable of interest that yields maximum
classification accuracy – that is, the assignment rule that most
accurately classifies observations into their actual study group.
Maximum classification accuracy may be either overall percent
accuracy in classification (PAC) or effect strength for sensitivity
(ESS) (described in the next section) depending on whether or not
the investigator chooses to weight the data by prior odds [6,7]. For
an ordered or continuous variable, the model has the form: if
score≤ (value) predict that the observation is from study group A;
otherwise predict that the observation is from study group B. For a
categorical variable, the model has the form: if score = (category list)
predict the observation is from treatment group A; otherwise predict
treatment group B. Statistical significance of the PAC and ESS
statistics is evaluated using a permutation probability (no
distributional assumptions are made) [7,9].

Conventional and optimal discriminant analysis approaches
to assessing covariate balance

After matching, the conventional approach to assessing whether
matching successfully created covariate balance is to compare
differences in means. The standardized difference [16] is perhaps
the most widely used measure of balance and is simple to compute
with data presented in a table of baseline characteristics:

SD ¼ XT � XC
�� ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
STð Þ2þ SCð Þ2

2

q (1)

where the numerator is the absolute difference in means between
the treatment and control groups (denoted as T and C,
respectively) and the denominator is a 50:50 pooled standard
deviation [3]. Dichotomous covariates can also be tested for
balance using this equation or using a formula specific to
proportions [17]. While there is currently no universally
recognized cutoff point as to what is considered the upper limit
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of balance, Normand et al. [18] suggest that a standardized
difference of less than 0.10 is indicative of good balance.
Assessing covariate balance using ODA involves three

measures of accuracy. Sensitivity (true positive rate) is the
proportion of actual participants that are correctly predicted by
the ODA model as being participants. Specificity (true negative
rate) is the proportion of actual non-participants that are correctly
predicted by the ODA model as being non-participants. Finally,
a measure of accuracy that combines these two metrics is the
ESS, introduced by Yarnold and Soltysik [6]. ESS is a chance-
corrected (0 = the level of accuracy expected by chance) and
maximum-corrected (100 = perfect prediction) index of predictive
accuracy. The formula for computing ESS for binary case
classification is

ESS ¼ mean percent accuracy in classification � 50ð Þ½ �= 50 x 100%

(2)

where

mean percent accuracy in classification
¼ sensitivity þ specificityð Þ=2 x 100 (3)

Yarnold and Soltysik [6] consider ESS values less than 25% to
indicate a relatively weak effect, 25% to 50% to indicate a
moderate effect, 50% to 75% to indicate a relatively strong effect
and 75% or greater to indicate a strong effect. Using ESS, an
investigator may directly compare the performance among the
various covariates – pre-matching and post-matching – regardless
of structural features of the analyses, such as sample size and the
measurement metric.

Comparing conventional and optimal discriminant analysis
approaches to assessing covariate balance

Given that the two approaches rely on different estimators of
covariate balance, we compare them by observing whether they
agree that covariate balance has been achieved, and if not, whether
they identify the same covariate(s) as being imbalanced. In
determining whether there is agreement on whether balance has

been achieved, we compare P values for each of the individual
covariates that are produced by each of the approaches. In the
conventional approach, P values for continuous variables were
estimated using a two-tailed t-test for independent samples (t-tests
for matched samples were used in the matched-pairs analysis), and
the chi-squared test was used for dichotomous variables. In all
ODA models, P values were calculated using permutation tests,
which are estimates derived from 25 000 Monte Carlo simulations
[7,19]. To the extent that P values are of similar magnitude, they
suggest consistency between the two approaches. To the extent
that they are different, it may suggest that one approach is more
sensitive to detecting differences.

Results
Table 1 presents the observed pre-intervention characteristics of
the participants and non-participants [11]. Continuous variables
are summarized by the mean and standard deviation, and
categorical variables are presented as number and per cent. For
balance measures, we report the absolute standardized difference
– for which perfect balance is zero – and the conventional P value,
where variables with values ≤0.05 may be considered imbalanced.
It is clear that the participant group differed markedly from the
non-participant group on every covariate. On average, participants
were older, were less likely to be female and overall had higher
utilization and costs than non-participants. All standardized
differences were substantially greater than zero, and all P values
were ≤0.05.
Table 2 displays the baseline characteristics of the participants

and their propensity score matched controls as would be presented
in the conventional approach. It is evident from reviewing the
absolute standardized differences that the matching procedure
was successful in reducing imbalances of all observed baseline
covariates to under 0.10, and all P values were much greater
than>0.05. Thus, by the conventional method, the two groups
would be considered balanced on all observed pre-intervention
characteristics.
Table 3 presents the observed pre-intervention characteristics of

the participants and non-participants analysed using ODA.

Table 1 Baseline (12months) characteristics of program participants and non-participants (from Linden [11])

Participants (N= 374) Non-participants (N= 1628) Standardized difference P value

Demographic characteristics
Age 54.9 (6.71) 43.4 (11.99) 1.704 <0.001
Female 211 (56.4%) 807 (49.6%) 0.138 0.017

Utilization and cost
Primary care visits 11.3 (7.30) 4.6 (4.35) 0.914 <0.001
Other outpatient visits 18.0 (16.65) 7.2 (10.61) 0.647 <0.001
Laboratory tests 6.1 (5.27) 2.4 (3.31) 0.705 <0.001
Radiology tests 3.2 (4.46) 1.3 (2.48) 0.424 <0.001
Prescriptions filled 40.6 (29.96) 11.9 (17.14) 0.956 <0.001
Hospitalizations 0.2 (0.52) 0.1 (0.29) 0.326 <0.001
Emergency department visits 0.4 (1.03) 0.2 (0.50) 0.226 <0.001
Home-health visits 0.1 (0.88) 0.0 (0.38) 0.083 0.012
Total costs 8236 (9830) 3047 (5817) 0.528 <0.001

Continuous variables are reported as mean (standard deviation) and dichotomous variables are reported as N (percent).
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Summary values represent the cutoff point on the covariate,
sensitivity is presented for participants and specificity is presented
for non-participants. For balance measures, we report the ESS (for
which higher percentage values represent better classification
accuracy and ability to discriminate between groups) and the P
value derived using permutation tests, where variables with P
values≤0.05 may be considered imbalanced.
To help interpret the ODA results, we use the covariate age as an

example of a continuous variable and the covariate female as an
example of a categorical variable. The ODA model predicted that
an individual was a participant in the study if their age was greater
than 49.5 and a non-participant if their age was less than or equal
to 49.5. The ODA model correctly classified 79.95% of participants
and 63.70% of non-participants according to their age (Table 3).
Classification performance was moderate (ESS=43.64%) and
statistically significant (permuted P <0.001). Thus, the results for
age using ODA are consistent with those using the conventional
approach (Table 1), that is, higher age is predictive of participation
in the pilot while lower age is predictive of non-participation. For
the covariate female, the ODA model predicted that an individual

was a participant in the study if they were a female and a non-
participant if they were a male. The ODA model was only able to
correctly classify 56.42% of participants and 50.43% of non-
participants based on their gender. The classification performance
was weak (ESS=6.85%) in practical terms, yet statistically
significant (permuted P <0.001). Thus, although a statistically
greater proportion of women versus men were in the treatment
group, the practical strength of this difference is only marginally
greater than chance. The results for all other covariates are
interpreted analogously.

Table 4 displays the baseline characteristics of the participants
and their propensity score-matched controls, analysed using
ODA. As in Table 3, summary values represent the cutoff point
on the covariate, sensitivity is presented for participants and
specificity is presented for matched controls. As a whole, ODA
had difficulty in accurately predicting treatment assignment in
both study groups for all of the covariates under study. In some
cases, the cutoff point leads to greater sensitivity at the expense
of lower specificity (e.g. primary care visits), while in other cases,
the cutoff point leads to greater specificity at the expense of lower

Table 2 Comparison of baseline characteristics of program participants and their 1:1 propensity score matched controls

Participants (N = 276) Matched controls (N = 276) Standardized difference P value

Demographic characteristics
Age 54.6 (6.5) 54.0 (6.9) 0.082 0.316
Female 152 (55.1%) 150 (54.3%) 0.015 0.864

Utilization and cost
Primary care visits 9.5 (6.5) 9.7 (6.2) 0.022 0.803
Other outpatient visits 15.2 (16.2) 15.6 (14.1) 0.029 0.751
Laboratory tests 4.8 (5.8) 5.2 (4.5) 0.086 0.380
Radiology tests 2.8 (4.4) 2.8 (4.1) 0.009 0.920
Prescriptions filled 32.6 (27.8) 34.1 (25.3) 0.058 0.516
Hospitalizations 0.2 (0.4) 0.2 (0.4) 0.026 0.768
Emergency department visits 0.3 (0.8) 0.3 (0.9) 0.027 0.729
Home-health visits 0.1 (0.9) 0.1 (1.0) 0.011 0.894
Total costs 6318 (7827) 6748 (7648) 0.056 0.513

Continuous variables are reported as mean (standard deviation) and dichotomous variables are reported as N (percent).

Table 3 Baseline (12months) characteristics of program participants and non-participants (from Linden [11])

Participants (N = 374) Non-participants (N = 1628) Effect strength sensitivity (%) P value

Demographic characteristics
Age >49.5 (79.95) <= 49.5 (63.70) 43.64 <0.001
Female =1 (56.42) =0 (50.43) 6.85 0.020

Utilization and cost
Primary care visits >7.5 (67.38) <= 7.5 (82.68) 50.06 <0.001
Other outpatient visits >6.5 (75.13) <= 6.5 (68.86) 43.99 <0.001
Laboratory tests >2.5 (78.07) <= 2.5 (67.38) 45.46 <0.001
Radiology tests >1.5 (64.44) <= 1.5 (69.96) 34.40 <0.001
Prescriptions filled >16.5 (80.75) <= 16.5 (77.09) 57.84 <0.001
Hospitalizations >0.5 (19.25) <= 0.5 (94.16) 13.42 <0.001
Emergency department visits >0.5 (22.99) <= 0.5 (88.45) 11.45 <0.001
Home-health visits >2.5 (1.60) <= 2.5 (99.82) 1.42 0.002
Total costs >2773 (85.03) <= 2773 (71.74) 56.77 <0.001

Values represent cut-points on the covariate, and values in parentheses represent sensitivity (for participants) and specificity (for non-participants).
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sensitivity (e.g. hospitalizations). As a consequence, the combined
classification performance (as measured via ESS) is consistently
weak across all covariates and is supported by non-statistically
significant P values>0.05.
In comparing the two approaches for the matched pairs, we see

that both produced consistent results concerning the weak
differences between groups: neither approach identified any
covariates that were strongly imbalanced. However, when
comparing the results by reviewing P values, we see that for
prescriptions filled, the conventional approach estimated a P value
of 0.516,versus 0.027 by ODA. This reflects the fact that in the
conventional approach involving the comparison of means, the
validity of the P values depends on the underlying distributional
assumptions being met. For the ODA approach involving
maximizing predictive accuracy, exact P values do not require
any distributional assumptions. Thus, an advantage of ODA is that
the validity of the P values is guaranteed and does not need to be
evaluated. Furthermore, the ESS and corresponding P value for
ODA is invariant over any monotonic transformation of the
variable [7,20]. Generalizing this situation, it suggests that ODA
will generally do a better job of detecting differences for covariates
that do not well adhere to their underlying distributional
assumptions. Of note, the ESS for each covariate in Tables 3 and
4 appears to agree reasonably well with the corresponding SD
values in Tables 1 and 2. For example the highest SD values are
for age, primary care visits and prescriptions filled (Table 1).
The ESS values for these covariates (Table 3) are similarly high.
Likewise, home-health visits have both a low SD and a low ESS
(indicating good covariate balance in the conventional method
and analogously, poor discriminatory ability using ODA).
To summarize, we see that in this example, the determination of

covariate balance from ODA is consistent with findings from the
conventional approach. When participants are compared with
non-participants, both methods are able to distinguish between
study groups – an expected finding, given that individuals self-
select into observational studies and are likely to have different
characteristics than those who elect not to participate. Similarly,
when the intervention group is compared with the matched control
group, neither method is able to distinguish between study groups
on their pre-intervention characteristics (if the study corrects for

multiple comparisons, then the results of the statistical significance
findings of both methods are isomorphic [7]). This result indicates
that matching generated comparable study groups based on the
observed pre-intervention characteristics.

Discussion
Given that ODA provided similar results to those using the
conventional comparison of means approach in our example, one
may question the need for an additional method for assessing
covariate balance in observational studies. Of course, this is not
always the case – conventional and ODA analyses have obtained
strongly divergent findings in a wide variety of real-world data
[6,7]. Nevertheless, even in applications for which conceptually
parallel conclusions regarding strength and statistical reliability
are obtained, ODA offers key advantages specifically for assessing
covariate balance that cannot be realized using the conventional
approach alone. For example, the ODA algorithm, with its
associated measure of classification performance (ESS) and non-
parametric permutation tests, can be universally applied to any
variable type and number of study groups and is not affected by
skewed data or outliers – a concern that may arise in the context
of meeting assumptions underlying the validity of the estimated
P value using the conventional approach alone (for example, as
is evident in the current data by the large standard deviations for
most covariates in Table 1).
Beyond those advantages, ODA can also help explain how

individuals self-select in observational studies by identifying
group membership based on the cut-point on the covariate (i.e.
category subset). So, for example, while we can only say that on
average, participants spent $5189 more on health care than non-
participants in the year prior to the study (Table 1), ODA provides
more specific information – that is, individuals with medical
costs>$2773 were much more likely (with a relatively strong
effect strength) to participate in the study than individuals with
costs ≤$2773 (Table 3). This level of precision (cut-point) and
classification detail (model sensitivity and specificity) provides
health researchers with a better understanding of the selection
process in observational studies than is possible by a simple

Table 4 Comparison of baseline characteristics of program participants and their 1:1 propensity score matched controls

Participants (N = 276) Matched controls (N = 276) Effect strength sensitivity (%) P value

Demographic characteristics
Age <= 52.5 (37.68) >52.5 (70.29) 7.97 0.215
Female =0 (45.65) =1 (55.07) 0.72 0.932

Utilization and cost
Primary care visits >2.5 (96.38) <= 2.5 (9.06) 5.43 0.590
Other outpatient visits >5.5 (74.64) <= 5.5 (35.51) 10.14 0.072
Laboratory tests >3.5 (59.06) <= 3.5 (49.64) 8.70 0.115
Radiology tests >0.5 (80.80) <= 0.5 (24.28) 5.07 0.519
Prescriptions filled >16.5 (76.09) <= 16.5 (35.87) 11.96 0.027
Hospitalizations >0.5 (14.86) <= 0.5 (87.32) 2.17 0.546
Emergency department visits >0.5 (21.38) <= 0.5 (84.06) 5.43 0.123
Home-health visits >2.5 (1.45) <= 2.5 (98.91) 0.36 0.847
Total costs >4629 (49.64) <= 4629 (61.23) 10.87 0.079

Values represent cut-points on the covariate, and values in parentheses represent sensitivity (for participants) and specificity (for non-participants).
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comparison of means. This may be useful, for example, if
investigators would like to create a tailored recruitment plan
targeting individuals who are most likely to benefit from the
intervention [7,9].
Moreover, because ODA allows the use of analytic weights, the

algorithm can be extended to the assessment of covariate balance
for any study design where weights are used for covariate
adjustment (for example [5–7,21–25]).
Finally, ODA can be implemented using cross-validation to

assess the generalizability of the model, such as k-fold cross-
validation, bootstrapping and leave-one-out jackknife cross-
validation [6,7,26,27]. This typically entails first estimating a
model using the entire sample (training set) and calculating the
accuracy measures, followed by the same model being tested on
one or more hold-out (test) samples and then recalculating the
accuracy measures. If the accuracy measures remain consistent
with those of the original model using the entire sample, then the
model is considered generalizable. This may be important, for
example, if the goal of the analysis is to assist health researchers
identify new candidates for participation in an ongoing
intervention or initiate the intervention in other settings [9,28].
Cross-validation is less important if the goal is only to estimate
treatment effects of the intervention.
In applications involving two or more independent samples, ODA

may also be used to identify a model that explicitly maximizes
classification accuracy across the multiple samples using the ‘Gen’
(for generalizability) algorithm [6,7,29]. Using this methodology,
ODA identifies that model which, when simultaneously and
independently applied to each of the samples, maximizes the
minimum ESS achieved across the samples. If the resulting level
of classification performance meets or exceeds the researcher’s a
priori specification for acceptable performance, then the single
model may be used to classify observations in all of the samples. If
one or more samples yield findings that fail to meet the a priori
specification, then it is concluded that onemodel cannot be usedwith
every sample. Samples for which inadequate performance was
obtained can be eliminated, and the analysis reprocessed. In this
manner, the multiple samples can be separated using a minimum
subset of models that achieve satisfactory performance in the context
of the hypothesis being tested.
A major limitation of the conventional and ODA approaches is

that covariate balance is assessed in only a single dimension,
possibly leaving imbalances at other points in the distribution
[4]. In the conventional approach, this may be addressed (to some
degree) by assessing balance at other moments in the distribution
and interactions. In the maximum-accuracy statistical paradigm,
this can be remedied by using optimal classification tree analysis
(CTA) – that involves recursive partitioning using chained ODA
analyses – to identify a nonlinear model for discriminating the
groups on the basis of the covariates [7,9,30–32]. Applying this
methodology presently was unproductive because no additional
classification accuracy was possible beyond the variable identified
using ODA (number of prescriptions). This approach demonstrates
that there are no additional subsets of observations on which
additional covariates differ. However, if CTA identified
differences on two or more covariates, then the resulting sample
strata (groups) that differed with respect to specific combinations
of covariates would be specifically identified vis-à-vis cut-points
(or category lists) and information regarding the strength (ESS),

reliability (P value) and cross-generalizability (validity analysis)
of the differences would be reported.

While this paper has focused solely on using machine-learning
algorithms to assess covariate balance, more broadly, there are
several additional aspects in the evaluation of observational studies
where machine-learning techniques can be applied. For example,
Linden and Yarnold [9] use CTA to characterize the nature of
individuals who choose to participate in observational studies, while
Athey and Imbens [33] modify the conventional classification and
regression trees approach to estimate heterogeneous causal effects
in such studies. One can also envision the use of such classification
algorithms to identify potential instrumental variables that may
provide an unbiased estimate of the causal effect of intervention on
the outcome (IV). An IV is a variable (Z) that is correlated with the
intervention (X) but not associated with unobserved confounders of
the outcome (Y) [34]. Potential IVs may be identified by first
generating a CTA model predicting participation (as in [9]) and then
generating a second model predicting the outcome – allowing the
same set of covariates in both models. Covariates that appear in the
first (selection) model, but not in the second (outcome) model, may
be suggestive of potential IVs, which can then be used within the
IV framework. In general, the application of machine-learning
techniques to improve causal inference in observational studies is
open tomuch further exploration. And in particular, emphasis should
be placed on determining the most appropriate algorithm for a given
problem – or a generalization to all algorithms, extension to
outcomes with censored data [35] and the development of specific
sensitivity analyses for these applications [36].

In summary, ODA can serve as a complement, or as an
alternative, to the conventional approach for testing covariate
balance, providing additional dimensions and robustness to the
analysis that may help with issues related to selection and
recruitment. More broadly, health researchers should consider
the use of machine-learning algorithms to improve causal
inference in observational studies by identifying patterns in the
data that distinguish study participants from non-participants and
controlling for potentially complex relationships among individual
characteristics that may bias the outcome analysis.
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