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Abstract: We study an admission control model in revenue management with nonstationary and correlated demands over a finite
discrete time horizon. The arrival probabilities are updated by current available information, that is, past customer arrivals and
some other exogenous information. We develop a regret-based framework, which measures the difference in revenue between a
clairvoyant optimal policy that has access to all realizations of randomness a priori and a given feasible policy which does not have
access to this future information. This regret minimization framework better spells out the trade-offs of each accept/reject decision.
We proceed using the lens of approximation algorithms to devise a conceptually simple regret-parity policy. We show the proposed
policy achieves 2-approximation of the optimal policy in terms of total regret for a two-class problem, and then extend our results
to a multiclass problem with a fairness constraint. Our goal in this article is to make progress toward understanding the marriage
between stochastic regret minimization and approximation algorithms in the realm of revenue management and dynamic resource
allocation. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 433–448, 2016
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1. INTRODUCTION

We propose and analyze a simple admission control policy
for a class of revenue management problems under non-
stationary customer arrivals. There is a given positive and
nonreplenishable inventory M of some product to be sold to
arriving customers of two different classes in a finite time
horizon T. Class-1 customers are willing to pay r1 per unit of
product which is more than what Class-2 customers are will-
ing to pay (i.e., r1 ≥ r2 ≥ 0). The demand for each class
is modeled as a nonhomogeneous Poisson process whose
(instantaneous) arrival rates are time-varying and correlated
and whose distributions can be updated by current available
information, that is, past customer arrivals and some other
exogenous information. This is the main new feature of this
paper, which captures realistic phenomena such as demand
seasonality and forecast updating mechanisms. Unsatisfied
demand units are lost with no penalty cost. The firm can
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decide whether to accept or reject an arriving customer, so as
to maximize the expected revenue over the planning horizon.

The model is motivated by a wide range of applications,
such as vacation timeshare management, online retailing, and
workforce management. For example, Hilton Grand Vaca-
tions Club offers timeshares at different prices and levels
of membership. A platinum customer will have a higher
priority than a nonplatinum (or regular) customer when it
comes to selecting a particular home resort (e.g., reserving
a room in Elara on the Las Vegas strip). The arrival process
of customers clearly depends on the tourism seasons (e.g.,
more platinum customers will select Elara Las Vegas dur-
ing the Christmas season) as well as the total number of
members of Hilton Grand Vacations Club. Another exam-
ple is in online retailing. Anthropologie clothing online offers
discount coupons to customers. The regular customers (with-
out coupons), who are willing to pay the tagged prices, are
always accepted. Conversely, the discounted customers (with
coupons) could be rejected since these coupon code offers are
subject to discretion and availability. The demand process is
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also non-stationary and evolving, according to the season and
the product’s popularity.

It is worthwhile noting that our model encompasses many
important non-stationary demand processes studied in the
literature, including Markov modulated demand processes
(described in Section 6), time series models [43], the martin-
gale model of forecast evolution [23, 28], and models with
advance demand information [18]. However, finding the opti-
mal admission control policies using brute-force dynamic
programming is computationally intractable, since the state
space of the corresponding dynamic programs is usually large
(which is extensively discussed in Section 2.1). Hence, our
main focus of this article is to prescribe an effective and
provably-good heuristic policy for this class of problems.

1.1. Main Results and Contributions

The main results and contributions of this paper are
summarized as follows.

First, we study the aforementioned class of admission
control-based revenue management problems using a regret
minimization framework. The regret of a feasible policy is
defined as the difference in revenue between a clairvoyant
optimal policy (that has access to all realizations of random-
ness a priori at the beginning of the time horizon) and the
feasible policy (which does not have access to this future
information). We propose a conceptually simple admission
control policy, called the regret-parity policy π̃ , that perfectly
balances the regret of an acceptance decision against that of a
rejection decision. We show that the regret ratio of π̃ (defined
as the ratio of the regret of π̃ to the regret of an optimal policy)
is always bounded above by 2 in a two-class setting (Theo-
rem 1). We then extend our model and results to a multiclass
setting under a fairness constraint (Theorem 2).

This regret-based performance measure is different
from the conventional revenue-based performance measure
(defined as the ratio of the revenue of a feasible policy to that
of an optimal policy). In many applications such as online
retailing with low price discrimination (e.g., Anthropolo-
gie clothing online), the after-tax profit margin is very thin
(around 5%) and even a small improvement is significant.
In such cases, the revenue difference between two feasible
policies would be small, and the regret ratio could arguably
better gauge the effectiveness of a given feasible policy by
quantifying its operational mistakes, thereby improving the
firm’s overall decision making and profitability. We discuss
their connections between these two performance measures
in Section 3.3.

Second, our numerical results demonstrate the efficacy
of the proposed regret-parity policy π̃ under a large set
of demand and parameter instances. The empirical perfor-
mance of π̃ is usually much better than 2. More specifically,
Tables 1–3 show that π̃ performs consistently well in term of
expected revenue and regret, compared to an optimal policy.

Compared to the robust benchmark algorithms proposed in
Ball and Queyranne [1], we gain around 16% more expected
revenue, which is quite significant. It is worth noting that
the proposed policy can be efficiently implemented in an
online manner, that is, the decision at any time is computed
based only on the current observed state of the system and
does not depend on future decisions. This is in contrast to
solving an optimal policy exactly using a brute-force dynamic
programming approach, which suffers from the curse of
dimensionality.

Finally, we note that the regret-parity policy belongs to
the family of cost-balancing policies that are predominantly
used in stochastic inventory control problems (cf., Levi et al.
[37, 39, 36]). The main idea underlying this approach is to
isolate and quantify the marginal impact of each operational
decision (from the moment it is made until the end of the
planning horizon). When we consider the problem of interest
from the view of revenue maximization, it is straightforward
to count the immediate revenue resulted from each accep-
tance/rejection decision, but it is difficult (or perhaps impos-
sible) to measure how each acceptance/rejection decision
impacts the overall (future) revenue. As a result, the conven-
tional methods developed in their papers cannot be directly
applied in the revenue management setting. In contrast, under
the regret minimization framework, we are able to readily
quantify the marginal impact of each acceptance/rejection
decision in terms of regret (relative to a full-information
benchmark). This enables us to design an efficient and effec-
tive cost-balancing algorithm, and compare the costs of two
different policies. Our worst-case analysis involves deal-
ing with this regret-based (mistake-based) objective as well
as a randomized decision rule, which advances the current
methodology in cost-balancing algorithms.

We believe that the ideas and techniques developed in this
article could be applied to other classes of revenue manage-
ment or resource allocation problems. The notion of approx-
imation ratios (or worst-case performance guarantees) has
also been gaining acceptance in the revenue management lit-
erature (see e.g., Chen and Farias [10], Dragos and Farias
[15], Chan and Farias [8]). For instance, Chen and Farias [10]
gives a class of re-optimized fixed price policies that yields
at least 0.342 of the optimal policy for a classical single-
product dynamic pricing problem but allowing the scale of
demand intensity to be modulated by an exogenous market
size stochastic process.

1.2. Relevant Literature

Our work is closely related to the following streams of
literature.

Revenue management

Most revenue management models assume that the demand
process is a time-homogeneous, mainly for its mathematical
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tractability (see e.g., [19, 27, 6, 54, 14, 5, 51]). Revenue man-
agement models with nonstationary demand environments
are much less common in the literature. Gallego and van
Ryzin [20] studied dynamic pricing problems in a chang-
ing demand environment where the temporal evolution of
the demand model is known. They established asymptotic
optimality for their policies by solving a deterministic coun-
terpart problem. Netessine [44] analyzed the pricing problem
with a limited number of price changes in a dynamic environ-
ment in which demand depends on the current price and time.
Zhao and Zheng [57] considered a continuous time dynamic
pricing problem with nonhomogeneous Poisson processes,
and showed that the optimal price decreases with inven-
tory. They also identified a sufficient condition under which
the optimal price decreases over time for a given inven-
tory level. Cao et al. [7] considered a similar problem with
nonhomogeneous Poisson customer arrival processes, and
obtained the structural properties of optimal policies by a
Hamilton-Jacobi-Bellman equation.

It shall be noted that our worst-case regret ratio has a sim-
ilar philosophical underpinning to the rapidly growing area
of robust optimization. Since the future demand information
is often uncertain and evolving, the firm only has limited
(present) information to make good decisions. Robust opti-
mization has been widely adopted under limited and sparse
information to protect the firm from the worst-case scenar-
ios (see e.g., Ben-Tal and Nemirovski [2] and Bertsimas
and Sim [3]). In the revenue management literature, Perakis
and Roels [46] developed robust formulations for capacity
allocation in network revenue management. Birbil et al. [4]
devised an efficient algorithm based on robust optimization to
compute the maximum booking limits in a single-leg airline
revenue management problem. Lan et al. [35] focused on
the relative regret in overbooking and fare-class allocation
for a multifare, single-resource problem in revenue manage-
ment. Rusmevichientong and Topaloglu [49] studied robust
formulations of assortment optimization problems under the
multinomial logit choice model. Geng et al. [21] studied a
two-customer sequential resource allocation problem with a
max-min fill-rate objective, and characterized the structure
of optimal solutions with a bounded discrete distribution.
Closer to our work, Ball and Queyranne [1] carried out a
thorough competitive analysis of nested booking limits in
an online adversarial setting. The main point of departure
from their work is that we consider a regret-based (mistake-
based) objective, and therefore the main results obtained are
incomparable.

Stochastic knapsack and dynamic resource allocation

Another relevant line of research to this work is the class
of dynamic and stochastic knapsack problems. Papastavrou

et al. [45] and Kleywegt and Papastavrou [32, 33] considered
variants of dynamic and stochastic knapsack problems where
items (with random size and rewards) arrive according to
a time-homogeneous Poisson process, and an accept/reject
decision needs to be made upon each item’s arrival so as to
maximize the expected profit (rewards minus costs) accumu-
lated. They showed that a threshold-type policy is optimal
and also derived a number of monotonicity and convexity
properties. Lueker [41] gave an O(log n)-competitive algo-
rithm for the 0/1 online knapsack problem, where n is the
number of arriving items. Dean et al. [13] also considered a
stochastic 0/1 knapsack problem with deterministic arrivals
and item values but random item sizes. They bounded its
adaptivity gap by developing a polynomial-time algorithm
that computes a nonadaptive policy whose expected value
approximates that of an optimal adaptive policy within a fac-
tor of 4. These models are very similar to ours; however,
our work considers a non-stationary, correlated and evolving
demand process, which requires new analytical methods to
be analyzed.

Our work is related to the domain of online reservation
or selection problems. Elmachtoub and Levi [16, 17] con-
sidered online versions of supply chain management and
logistics models where customers arrive sequentially, and
one has to decide whether to accept or reject the customer
on her arrival. They developed several algorithms with small
constant competitive ratios, that is, for any sequence of arriv-
ing customers, the cost incurred by the online algorithm is
within a fixed constant factor of the cost incurred by the
respective optimal solution that has full knowledge upfront
on the sequence of arriving customers. Van Hentenryck et al.
[53] proposed constant approximation algorithms for online
reservation or online multi-knapsack problems with or with-
out overbooking. We also refer interested readers to Coffman
et al. [12] for an excellent survey on online bin packing prob-
lems. Our regret-parity framework shares some similarities
with the competitive performance measures used there, in
that the common benchmark involves the full-information
(or offline) solution.

Another relevant domain is dynamic resource allocation
in controlled queueing and communication networks (see
Kelly [30] for an overview). Most papers on dynamic resource
allocation problems also assume time-homogeneous Poisson
arrival processes (see e.g., [31, 22, 29]). Closer to our work,
Levi and Radovanović [38] used a simple knapsack-type lin-
ear program (LP) to decide whether to accept or reject incom-
ing customer requests. They showed that their proposed
policy is guaranteed to achieve at least half of the optimal
long-run revenue. However, the counterpart models with non-
stationary arrivals are invariably much harder to study (e.g.,
[48] and [26]). Yoon and Lewis [55] proposed a pointwise sta-
tionary approximation to approximate the optimal policies in
a multiclass queueing system with nonhomogeneous Poisson
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arrival processes and periodically varying parameters. Green
and Kolesar [24] and Massey and Whitt [42] considered peak
hour congestion in a multiserver queuing system under non-
homogeneous Poisson arrival processes. Kumar et al. [34]
devised dynamic control policies for a single-server queue
with Markov modulated arrivals. A key difference between
this line of research and our work is that the resource units
in our model are non-reusable, that is, once sold, they cannot
be used to satisfy other customers.

Other related work

Our work is also closely related to the development of
approximation algorithms that admit constant worst-case per-
formance guarantees (see e.g., Levi et al. [37, 39, 36], Levi
and Shi [40], Shi et al. [50], Chao et al. [9]) predominantly in
various stochastic inventory control settings. As mentioned
earlier, the conventional techniques and methods developed
in their papers cannot be directly applied to the revenue
management setting; in order to establish a worst-case per-
formance guarantee of 2, one needs to combine them with
the regret minimization framework.

1.3. Organization

The rest of this article is organized as follows. In Section 2,
we first describe the discrete time model formulation for a
two-class revenue management problem under nonstationary
customer demands. We then present a dynamic programming
formulation in Section 2.1 and a stochastic regret minimiza-
tion formulation in Section 2.2. In Section 3, we propose a
different regret accounting scheme based on decisions. Then,
we devise and analyze the regret-parity policy in Section
4. We extend our model and results to the multiclass set-
ting under a fairness constraint in Section 5, and conduct
numerical experiments of our proposed policy in Section 6.
We then point out some plausible future research avenues in
Section 7.

2. TWO-CLASS PROBLEM FORMULATION

We present the mathematical model for a two-class prob-
lem under nonstationary and correlated customer demands.
As a general convention, we often distinguish between a ran-
dom variable and its realization using capital letters and lower
case letters, respectively.

Consider a firm selling a fixed number of M perishable
homogeneous items to two classes of customers, indexed by
i = 1, 2, over a finite planning horizon T periods numbered
t = 1, . . . , T . Inventory is not replenishable. Unsatisfied
demand is lost with no penalty cost, and any unsold items
at the end of period T have no residual value or disposal

penalty. Each class-i customer pays ri dollars (r1 ≥ r2 ≥ 0)
for a single item. Class-1 customers are always served when-
ever inventory units are available; however, the firm needs
to decide whether to accept or reject an arriving Class-2
customer, depending on information available, such as cur-
rent inventory level, the number of periods remaining, and
conditional future demand distributions. The objective is to
develop a provably good admission control policy (for accept-
ing Class-2 customers) that maximizes the expected total
revenue over the planning horizon.

We describe the demand process of our model. In each
time period t = 1, . . . , T , there is at most one arriving cus-
tomer who wishes to request a single item. The probabilities
of having no customer request, a Class-1 customer request,
and a Class-2 customer request are denoted by p0

t , p1
t , and

p2
t = 1 − p0

t − p1
t , respectively. As part of the model, we

assume that at the beginning of each period t = 1, . . . , T , the
firm is endowed with an observed information set f t , which
contains all the realized demand information that is available
at the beginning of time period t. More specifically, the infor-
mation set f t consists of the realized customer requests over
the set of periods [1, t], and possibly some external infor-
mation such as the state of the economy and the weather.
The information set f t is a specific realization from the set
of all possible realizations, denoted by F t . The future arrival
probabilities over the set of periods (t , T ] are updated by the
information set f t , that is, p0

s = p0
s (ft ), p1

s = p1
s (ft ) and

p2
s = p2

s (ft ) for all s ∈ (t , T ]. With these updated arrival
probabilities, the firm knows the conditional joint distribu-
tion of future customer requests, denoted by It = It (ft ). Our
model allows for nonstationarity and correlation among the
demands in different periods. We note again that by allowing
for correlation we let I t be dependent on the realization of the
customer requests over the set of periods [1, t] and possibly
on some external information, that is, I t is a function of f t .
However, the information set f t as well as the conditional
joint distribution I t are assumed to be independent of the
specific admission control policy being considered. In other
words, the admission control policy does not have any effect
on the evolution of the future demands.

Next, we describe the system dynamics. At the beginning
of each period t = 1, . . . , T , the firm observes the customer
request (if any) and its class, and then makes a decision
whether to accept or reject the incoming customer request. We
let αt ∈ {0, 1} be a binary decision variable, where 0 denotes
a rejection and 1 denotes an acceptance. We always accept
Class-1 customers (i.e., αt = 1) as long as the inventory is
nonempty, since r1 ≥ r2 ≥ 0. The firm needs to decide αt

whenever a Class-2 customer arrives in period t. Let X t and Y t

be the inventory levels in period t before and after a decision in
period t is made, respectively. We have that the initial inven-
tory X1 = M , and Xt+1 = Yt = Xt −αt for all t = 1, . . . , T .
We only restrict our attentions to state-dependent policies
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which are nonanticipatory, that is, in each period t, the infor-
mation that a feasible admission control policy π can use
consists of the information set f t , and past decisions and
inventory levels up to period t.

2.1. Dynamic Programming Formulation

Our two-class model can be formulated using dynamic
programming below. We denote Vt(xt , ft ) as the optimal
expected revenue over the set of periods [t , T ], with the
starting inventory level xt and the information set f t . Since
optimal policies will always accept Class-1 customers as long
as there is positive inventory, the Bellman’s equation is given
by

Vt(xt , ft )

= E[(p0
t · Vt+1(xt , Ft+1) + p1

t · (r1 + Vt+1(xt − 1, Ft+1))

+ p2
t · max {r2 + Vt+1(xt − 1, Ft+1), Vt+1(xt , Ft+1)}) | ft ],

(1)

with boundary conditions VT +1(·) = 0 and Vt(0, ft ) =
0, t = 1, . . . , T . It can be seen that the state space grows
exponentially fast when the arrival rates are correlated over
time. As a result, computing exact optimal policies using
dynamic programming is intractable, due to the well-known
curse of dimensionality [47]. This motivates us to devise
a conceptually simple and provably good approximation
algorithm to solve this class of problems.

2.2. Sample Path Regret and its Explicit Expression

We define the random variable W(π ; ft ) as the total rev-
enue of any feasible policy π given information set f t .
Then the full-information revenue W(π ; fT ) represents the
total revenue of π given a fully realized sample path f T ,
which is a deterministic value. To properly define our regret,
we carefully distinguish between two different notions of
optimality.

a. Let the clairvoyant optimal policy along a given
sample path f T be

π∗ = π∗(fT ) = argmax
π

W(π ; fT ).

Note that π∗ knows the full-information f T a priori
at the beginning of period 1. Given a specific real-
ization f T , one can write down π∗ instantly without
any optimization procedures.

b. Let the optimal policy for our original stochastic
control problem be

πo = argmax
π

E[W(π ; f1)],

where the expectation is taken over all possible real-
izations f T . Note that πo only knows f t at the begin-
ning of period t = 1, . . . , T , respectively, and πo is
in fact the optimal control of the dynamic program-
ming (1) that attains an expected optimal revenue
V1(x1, f1).

With the above notion, the sample path regret of a given
feasible policy π is defined as

R(π ; fT ) � W(π∗; fT ) − W(π ; fT ), (2)

which is the difference in revenue between the clairvoyant
optimal policy π∗ (which has access to the entire realization
f T a priori at the beginning of period 1) and the feasible pol-
icy π (which only knows f 1 at the beginning of period 1).
The expected regret via (2) is defined as

E[R(π)] = E[R(π ; FT )], (3)

where the expectation is taken over all possible realizations
fT ∈ FT .

Now we find a more explicit expression of the sample path
regret defined in (2). Given any feasible policy π and any
sample path f T , we let C1

π = C1
π (fT ) and C2

π = C2
π (fT ) be

the numbers of Class-1 and Class-2 customers accepted by
π , respectively.

PROPOSITION 1: The sample path regret R(π ; fT )

defined in (2) can be re-written as

R(π ; fT ) = (r1 − r2)(C
2
π − C2

π∗)
+ + r2(C

2
π∗ − C2

π )
+

. (4)

We relegate the detailed proof of Proposition 1 to the
Appendix. There is an intuitive explanation of (4). If the num-
ber of Class-2 customers accepted by π is greater than that
accepted by π∗ (i.e., C2

π ≥ C2
π∗ ), then π “wrongly” accepts

C2
π − C2

π∗ Class-2 customers rather than Class-1 customers,
and the regret is the cost difference r1 − r2 for each such
wrong admission. Conversely, if the number of Class-2 cus-
tomers accepted by π is less than that accepted by π∗ (i.e.,
C2

π∗ ≥ C2
π ), then π loses sales of C2

π∗ −C2
π Class-2 customers

and the regret is r2 for each such lost-sale.

3. REGRET-BASED REFORMULATION

There is a clear trade-off between accepting and rejecting
an arriving Class-2 customer. That is, if we accept the Class-
2 customer, we gain a revenue rate of r2; however, we may
potentially lose a sale of a Class-1 customer when the inven-
tory is used up. Conversely, if we reject the Class-2 customer,
we may eventually lose a sale of r2 if the inventory remains
positive at the end of the planning horizon. Each acceptance
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or rejection comes with a regret (loss). Our approach attempts
to exploit the trade-off of each decision. We introduce addi-
tional notation. Let the random variable Ai

(t ,T ] (i = 1, 2) denote
the number of class-i customers that will arrive over the set
of periods (t , T ]. Similarly, let A

1,2
(t ,T ] denote the total number

of customers that will arrive over the set of periods (t , T ].

3.1. Regret of Acceptance

Given any feasible policy π , let RAπ
t (απ

t ) be the regret of
acceptance decision απ

t made in period t under π when the
arriving customer in period t belongs to Class-2, which is
given by

RAπ
t (απ

t ) = RAt (α
π
t ; Xπ

t )

= (r1 − r2) · 1(A1
(t ,T ] ≥ Xπ

t > 0 and απ
t = 1)

= (r1 − r2)
[
(A1

(t ,T ] − Xπ
t + απ

t )
+ − (A1

[t ,T ] − Xπ
t )

+]
= (r1 − r2)

[
(A1

(t ,T ] − Yπ
t )

+ − (A1
[t ,T ] − Xπ

t )
+]

. (5)

This is because that if a Class-2 customer arrives in period t,
by accepting her, the firm incurs a regret of r1 − r2 only when

the event
{
A1

(t ,T ] ≥ Xπ
t > 0

}
occurs, since the firm could

have sold this item to a Class-1 customer. Note that the last
equality of (5) also remains valid for the other two cases.
If no customer arrives in period t, we incur zero regret. If a
Class-1 customer arrives in period t, by accepting her as long
as the inventory is positive, the firm incurs zero regret, that
is, RAπ

t (1) = 0 since A1
(t ,T ] + 1 = A1

[t ,T ] and Yπ
t + 1 = Xπ

t .

3.2. Regret of Rejection

Given any feasible policy π , let RRπ
t (απ

t ) be the regret of
rejection decision απ

t made in period t under π when the
arriving customer in period t belongs to Class-2, which is
given by

RRπ
t (απ

t ) = RRt (α
π
t ; Xπ

t )

= r2 · 1(A
1,2
(t ,T ] < Xπ

t and Xπ
t > 0 and απ

t = 0)

= r2

[
(Xπ

t − A
1,2
(t ,T ] − απ

t )
+ − (Xπ

t − A
1,2
[t ,T ])

+]
= r2

[
(Y π

t − A
1,2
(t ,T ])

+ − (Xπ
t − A

1,2
[t ,T ])

+]
. (6)

This is because that if a Class-2 customer arrives in period
t, by rejecting her, the firm incurs a regret of r2 only when

the event
{
A

1,2
(t ,T ] < Xπ

t and Xπ
t > 0

}
occurs, since the firm

has positive inventory at the end of period T and could have
gained r2 from this Class-2 customer. Note that the last equal-
ity of (6) also remains valid for the other two cases. If no
customer arrives in period t, we incur zero regret. If a Class-
1 customer arrives in period t, by rejecting her only when

the inventory is zero, the firm incurs zero regret, that is,
RRπ

t (0) = 0 since Yπ
t = Xπ

t = 0.

3.3. Regret-Based Performance Measure

The next result asserts that the regrets (associated with each
individual decision) defined in Sections 3.1–3.2 add up to the
total regret defined in Section 2.2. We delegate its proof to
the Appendix.

PROPOSITION 2: The total regret of decisions can be
re-written (along every sample path) as

R(π ; fT ) =
T∑

t=1

[
RAπ

t (απ
t ) + RRπ

t (απ
t )

] | fT .

Proposition 2 allows us to reformulate the dynamic pro-
gramming (1) from a viewpoint of regret minimization. The
original dynamic programming (1) views this revenue man-
agement problem as gradually gaining revenue from zero to
the final total revenue as time progresses. The regret mini-
mization problem takes a dual view of the original revenue
maximization problem. More specifically, we start with the
clairvoyant optimal revenue W(π∗; fT ) at the beginning, and
in each period we make an admission decision, incurring
either the regret of acceptance or the regret of rejection. After
each decision is made, the revenue is penalized by the com-
puted regret. From this dual view, we start with the highest
possible revenue and gradually decrease it as time progresses.

This regret minimization reformulation can also be cast
as a dynamic program. Denote Gt(xt , ft ) as the minimum
expected regret over the periods [t , T ], with the starting inven-
tory xt and the information set f t . To minimize the regret, the
Bellman’s equation is given by

Gt(xt , ft )

= E
[
p0

t · Gt+1(xt , Ft+1) + p1
t · Gt+1(xt − 1, Ft+1) | ft

]
+ p2

t · min
{
E

[
RAt (1; xt ) + Gt+1(xt − 1, Ft+1) | ft

]
,

×E
[
RRt (0; xt ) + Gt+1(xt , Ft+1) | ft

]}
, (7)

with boundary conditions GT +1(·) = 0 and Gt(0, ft ) =
0, t = 1, . . . , T . By Proposition 2 and (2), the optimal deci-
sions of (1) and (7) are identical. Moreover, the expected total
regret and the expected total revenue sum up to the expected
clairvoyant optimal revenue. It is important to note that the
regret minimization formulation gives the same optimal sto-
chastic control as the revenue maximization formulation.
However, the performance measure is different under this
regret-based reformulation. We define the regret ratio of π

to be

R(π) � E [R(π)]

E [R(πo)]
, (8)
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Figure 1. Regret-based reformulation and performance measure.

where the expected regret E [R(πo)] defined in (3) is in
fact the optimal expected regret G1(x1, f1) solved using
the dynamic program defined in (7). It is clear that 1 ≤
R(π) ≤ ∞.

We shall draw the connection between the regret ratio
defined in (8) under this equivalent regret minimization refor-
mulation and the conventional revenue ratio defined by the
ratio of the total revenue of π to that of the optimal policy
πo under the original revenue maximization formulation. As
illustrated in Fig. 1, for each instance of the problem, a lower
regret ratio of π always leads to a higher revenue ratio of π ,
and vice versa. However, these two performance measures
are incomparable. In many retail industries with low price
discrimination, the regret ratio can better capture how good a
feasible policy π is (see Example 1 below). The regret ratio
“zooms in” on the operational mistakes that a firm makes,
thereby improving the (already thin) profit margin.

EXAMPLE 1: Let us consider a practical example in
which the price discrimination is rather low, that is, r1 and r2

are quite close, say r1 = 100 and r2 = 95. This example is
abundant in practical settings, for example, coupon discounts,
omnichannel retailing (in-store vs. online), and so on. Let us
consider a simple (and clearly suboptimal) feasible policy
that accepts all customers as long as the inventory does not
run out, which we call it “all-accept” policy. It is clear that
the revenue difference between an optimal policy and the all-
accept policy is always bounded by 5% (regardless of the
input stochastic processes), if the firm chooses to use the tra-
ditional revenue-based performance measure. However, this
all-accept policy is undoubtedly a very poor heuristic policy,
since it ignores all the inventory and demand information.

In contrast, in such cases, the regret ratios of suboptimal
policies similar to all-accept policies are usually very high,
which better captures the “real” performance of such poli-
cies. For instance, one can fix M = 3 and construct a sample
path with Class- 2, 2, 2, 1, 1, 1 arrival sequence, the all-accept
policy would accept 2, 2, 2 while the optimal policy would
accept 1, 1, 1. In this case, the revenue error is only 5% while
the regret error is infinity (since none of the decisions from
the all-accept policy are correct)!

The above example shows that the regret measure quanti-
fies the regret or the cost of a poor decision in a much lucid

way, which allows the firm to better trade-off between accep-
tance and rejection. We remark that this notion of regret ratio
defined in (8) has also been proposed and used in other fields
such as the theory of online and statistical learning (see e.g.,
Guha and Munagala [25] that gives a conceptually similar
regret ratio).

4. APPROXIMATION ALGORITHM:
REGRET-PARITY POLICY

In this section, we propose and analyze an efficient and
effective admission-control policy called the regret-parity
policy, denoted by π̃ , which aims to exactly balance between
the regret of acceptance and the regret of rejection. The
proposed policy π̃ is a randomized policy, which makes
a randomized admission decision in each period based on
computed probabilities.

4.1. Policy Description

To fully describe and analyze π̃ which involves random-
ized decision rules, we introduce the expanded information
set f +

t that not only includes the original information set f t

but also all the randomized decisions of π̃ up to period t −
1. Thus, given π̃ and f +

t , the inventory level xt at the begin-
ning of period t is known but the decision in period t remains
unknown. In addition, we define f ++

T as f +
T plus the decision

made in period T, which constitutes a full sample path.
Now we describe π̃ as follows. In each period t = 1, . . . , T ,

if a Class-1 customer arrives, we accept her as long as the
inventory xt > 0. Conversely, if a Class-2 customer arrives
and xt > 0, π̃ accepts her with probability θt and reject her
with probability 1 − θt . That is, we set

απ̃
t =

{
1, with probability θt ,

0, with probability 1 − θt ,

where probability θt is computed by solving

θt · E

[
RAπ̃

t (1)|f +
t

]
= (1 − θt ) · E

[
RRπ̃

t (0)|f +
t

]
, (9)

where RAπ̃
t (·) and RRπ̃

t (·) are defined in (5) and (6), respec-
tively. It is clear that the proposed regret-parity policy π̃

strikes an exact balance between the two types of regrets
via (9).

We also discuss here how to efficiently evaluate the expec-
tation E

[
RAπ̃

t (1)|f +
t

]
(and similarly E

[
RRπ̃

t (0)|f +
t

]
) in

practical implementations. First observe via (5) that because
A1

[t ,T ] takes integer values from 0 to T − t + 1, evaluat-

ing E
[
RAπ̃

t (1)|f +
t

]
has the same complexity of computing

P(A1
[t ,T ] = i) for i = 0, . . . , T − t +1. When the demands are
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i.i.d., the computation is easy since A1
[t ,T ] follows a binomial

distribution. When the demands are generally correlated, for
example, the Markov modulated demand processes tested in
Section 6.1, computing the exact values of P(A1

[t ,T ] = i) for
i = 0, . . . , T − t + 1 is not straightforward. For practical
purposes, we use Monte Carlo simulation method to obtain
a very close estimation. In our numerical experiments, the
coefficient of variation of using 5000 sample paths to esti-
mate the expectation is generally less than 1%. We note that
[36, 56] face the same computational challenges when eval-
uating similar expectations in other (inventory) settings. The
main computational advantage of π̃ lies in that π̃ can be effi-
ciently implemented in an online manner, that is, the decision
at any time is computed based only on the current observed
state of the system and does not depend on future decisions.
This is a desired property if one wishes to avoid the pro-
hibitive (recursive) computational burden of solving large
dynamic programs.

4.2. Performance Analysis

To establish a worst-case performance guarantee of 2, we
wish to show that, on expectation, the total regret of the
optimal policy πo “pays” for at least half of that of the regret-
parity policy π̃ . In the subsequent analysis, we use superscript
πo to refer to the optimal policy that solves the dynamic pro-
gramming (1), and superscript π̃ to refer to our regret-parity
policy.

We first define a stopping time τ which records the
first period time when the inventory of π̃ runs out. More
specifically, we define

τ = inf
{
t ∈ {1, . . . , T + 1} : Xπ̃

t = 0
}

. (10)

Note that τ is well-defined since it is measurable w.r.t. the
expanded information set f +

t .
We then partition the set of periods {1, . . . , T } into three

disjoint random subsets

Ta =
{
t ∈ {1, . . . , T } : t < τ and Yπo

t ≤ Xπ̃
t − 1

}
, (11)

Tb =
{
t ∈ {1, . . . , T } : t < τ and Yπo

t ≥ Xπ̃
t

}
, (12)

Tc = {t ∈ {1, . . . , T } : τ ≤ t ≤ T } . (13)

Note that the above subsets are disjoint and exhaustive, and
the indicators 1(t ∈ Ta), 1(t ∈ Tb) and 1(t ∈ Tc) become
known with the expanded information set f +

t .
Then, we prove two important lemmas below. We want

to show that the total regret of acceptance incurred by πo is
higher than that incurred by π̃ in the set Ta in Lemma 1, and
the total regret of rejection incurred by πo is higher than that
incurred by π̃ in the set Tb in Lemma 2.

LEMMA 1: The total regret of acceptance by πo is no
smaller than that by π̃ in the set Ta , that is, along every
sample path,

T∑
t=1

RAπo

t (απo

t ) ≥
∑
t∈Ta

RAπ̃
t (απ̃

t ).

PROOF: We fix an arbitrary sample path f ++
T . Suppose

there are l customer arrivals, and let 1 ≤ t1 ≤ · · · ≤ tl ≤ T

denote all these l customer arriving epochs. We then denote
ts to be the last customer arriving epoch that belongs to the
set Ta .

For each k = 1, . . . s −1, since there is no customer arrival
over (tk , tk+1), it is clear that a1

(tk ,T ] = a1
[tk+1,T ] and yπo

tk
= xπo

tk+1
.

This implies that

(a1
(tk ,T ] − yπo

tk
)
+ = (a1

[tk+1,T ] − xπo

tk+1
)
+

. (14)

Now using (5), we sum up the regret of acceptance over
these arriving epochs along f ++

T ,

s∑
k=1

RAπo

tk
(απo

tk
)

=
s∑

k=1

(r1 − r2)
[
(a1

(tk ,T ] − yπo

tk
)
+ − (a1

[tk ,T ] − xπo

tk
)
+]

= (r1 − r2)
[
(a1

(ts ,T ] − yπo

ts
)
+ − (a1

[t1,T ] − xπo

t1
)
+]

= (r1 − r2)
[
(a1

(ts ,T ] − yπo

ts
)
+ − (a1

[1,T ] − M)
+]

, (15)

where the second equality follows from expanding the tele-
scoping sum and (14); the third equality holds because there
is no customer arrival before t1, and thus a1

[t1,T ] = a1
[1,T ] and

xπo

t1
= M .

Using the identical argument above, we also have the same
expression for π̃ ,

s∑
k=1

RAπ̃
tk
(απ̃

tk
)

= (r1 − r2)
[
(a1

(ts ,T ] − yπ̃
ts
)
+ − (a1

[1,T ] − M)
+]

. (16)

Because ts ∈ Ta implies that yπo

ts
≤ xπ̃

ts
− 1 ≤ yπ̃

ts
, then we

have

T∑
t=1

RAπo

t (απo

t ) ≥
s∑

k=1

RAπo

tk
(απo

tk
) ≥

s∑
k=1

RAπ̃
tk
(απ̃

tk
)

≥
∑
t∈Ta

RAπ̃
t (απ̃

t ),

where the second inequality follows from comparing (15)
and (16) with yπo

ts
≤ yπ̃

ts
. �
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LEMMA 2: The total regret of rejection by πo is no
smaller than that by π̃ in the set Tb, that is, along every
sample path,

T∑
t=1

RRπo

t (απo

t ) ≥
∑
t∈Tb

RRπ̃
t (απ̃

t ).

PROOF: We fix an arbitrary sample path f ++
T . Suppose

there are l customer arrivals, and let 1 ≤ t1 ≤ · · · ≤ tl ≤ T

denote all these l customer arriving epochs. We then denote
ts to be the last customer arriving epoch that belongs to the
set Tb.

For each k = 1, . . . s −1, since there is no customer arrival
over (tk , tk+1), it is clear that a1,2

(tk ,T ] = a
1,2
[tk+1,T ] and yπo

tk
= xπo

tk+1
.

This implies that

(yπo

tk
− a

1,2
(tk ,T ])

+ = (xπo

tk+1
− a

1,2
[tk+1,T ])

+
. (17)

Now using (6), we sum up the regret of rejection over these
arriving epochs along f ++

T ,

s∑
k=1

RRπo

tk
(απo

tk
)

=
s∑

k=1

r2

[
(yπo

tk
− a

1,2
(tk ,T ])

+ − (xπo

tk
− a

1,2
[tk ,T ])

+]

= r2

[
(yπo

ts
− a

1,2
(ts ,T ])

+ − (xπo

t1
− a

1,2
[t1,T ])

+]
= r2

[
(yπo

ts
− a

1,2
(ts ,T ])

+ − (M − a
1,2
[1,T ])

+]
, (18)

where the second equality follows from expanding the tele-
scoping sum and (17); the third equality holds because there
is no customer arrival before t1, and thus a

1,2
[t1,T ] = a

1,2
[1,T ], and

xπo

t1
= M .

Using the identical argument above, we also have the same
expression for π̃ ,

s∑
k=1

RRπ̃
tk
(απ̃

tk
) = r2

[
(yπ̃

ts
− a

1,2
(ts ,T ])

+ − (M − a
1,2
[1,T ])

+]
.

(19)

Because ts ∈ Tb implies that yπo

ts
≥ xπ̃

ts
≥ yπ̃

ts
, then we have

T∑
t=1

RRπo

t (απo

tk
) ≥

s∑
k=1

RRπo

tk
(απo

tk
) ≥

s∑
k=1

RRπ̃
tk
(απ̃

tk
)

≥
∑
t∈Tb

RRπ̃
t (απ̃

t ),

where the second inequality follows from comparing (18)
and (19) with yπo

ts
≥ yπ̃

ts
. �

Lemmas 1 and 2 establish a connection between πo and π̃ .
To complete the worst-case analysis, we need a new variable
Zπ̃

t defined as

Zπ̃
t � E

[
RAπ̃

t (απ̃
t )|F+

t

]
= E

[
RRπ̃

t (απ̃
t )|F+

t

]
. (20)

Note that Zπ̃
t is a random variable that is realized with the

information set f +
t at the beginning of period t. Observe

that by the construction of π̃ , the random variable Zπ̃
t is

well-defined since the expected regret of acceptance and the
expected regret of rejection are always balanced.

Lemma 3 below shows that the expected total regret of π̃

can be expressed using the Zπ̃
t variables defined in (20).

LEMMA 3: The expected total regret incurred by π̃ is

E
[
R(π̃)

] = 2 ·
T∑

t=1

E

[
Zπ̃

t

]
.

PROOF: By Proposition 2 and standard arguments of
conditional expectations, we have

E
[
R(π̃)

] = E

[
T∑

t=1

[
RAπ̃

t (απ̃
t ) + RRπ̃

t (απ̃
t )

]]

=
T∑

t=1

E

[
E

[
RAπ̃

t (απ̃
t ) + RRπ̃

t (απ̃
t )|F+

t

]]

=
T∑

t=1

E

[
E

[
RAπ̃

t (απ̃
t )|F+

t

]
+ E

[
RRπ̃

t (απ̃
t )|F+

t

]]

=
T∑

t=1

E

[
2Zπ̃

t

]
= 2 ·

T∑
t=1

E

[
Zπ̃

t

]
,

where the fourth equality follows directly from the definition
in (20). �

Lemma 4 below shows that the expected total regret of πo

can be upper bounded using the Zπ̃
t variables defined in (20).

LEMMA 4: The expected total regret incurred by πo is
lower bounded by

E
[
R(πo)

] ≥
T∑

t=1

E

[
Zπ̃

t

]
.

PROOF: Combining Lemmas 1 and 2 and the fact the
Zπ̃

t = 0 when t ∈ Tc, we have

E
[
R(πo)

] = E

[
T∑

t=1

[
RAπo

t (απo

t ) + RRπo

t (απo

t )
]]
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≥ E

⎡
⎣∑

t∈Ta

RAπ̃
t (απ̃

t ) +
∑
t∈Tb

RRπ̃
t (απ̃

t ) +
∑
t∈Tc

0

⎤
⎦

=
T∑

t=1

E

[
RAπ̃

t (απ̃
t ) · 1(t ∈ Ta)

+RRπ̃
t (απ̃

t ) · 1(t ∈ Tb) + 0 · 1(t ∈ Tc)
]

=
T∑

t=1

E

[
E

[
RAπ̃

t (απ̃
t ) · 1(t ∈ Ta) + RRπ̃

t (απ̃
t )

·1(t ∈ Tb) + 0 · 1(t ∈ Tc)
] |F+

t

]
=

T∑
t=1

E
[
(1(t ∈ Ta) + 1(t ∈ Tb)

+1(t ∈ Tc))Z
π̃
t

]
=

T∑
t=1

E

[
Zπ̃

t

]
,

where the fourth equality holds since 1(t ∈ Ta), 1(t ∈ Tb)

and1(t ∈ Tc) are measurable with the expanded information
set F+

t . �

Combining Lemmas 3 and 4, we have established that the
π̃ policy has a constant worst-case performance guarantee of
2, which is stated formally below.

THEOREM 1: For each instance of the two-class rev-
enue management problem under non-stationary customer
demands, the expected total regret incurred by the regret-
parity policy π̃ is at most two times the expected total regret
incurred by the optimal policy πo, that is,

E
[
R(π̃)

] ≤ 2 · E
[
R(πo)

]
.

Theorem 1 asserts that π̃ achieves a 2-approximation of the
optimal policy in terms of stochastic relative regret, which
establishes an interesting link between the relative regret
and approximation algorithms in the revenue management
setting.

5. MULTICLASS EXTENSION WITH FAIRNESS

We consider an extension of our model to the multiclass
setting which incorporates a fairness constraint. The model
is almost identical to that defined in Section 2 but with
I classes of customers. Without loss of generality, we let
r1 ≥ r2 ≥ · · · ≥ rI ≥ 0, and we say class-i has a higher
priority than class-j whenever i < j. Similar to the two-class
model, the total arrival rate and the probability of being class-i
customer are both evolving over time. In this model, Class-1
customers are always accepted if there are inventory units
available, but we need to make a decision whether to accept

a customer if she is not a Class-1 customer. We define our
notion of fairness.

DEFINITION 1: We say a feasible policy π is said to
be fair if the following condition holds. If for each period
t = 1, . . . , T with an arriving customer (of class 1 ≤ j ≤ T ),
then for all 1 ≤ i < j < k ≤ I , that is, class-i (class-k) has
a higher (lower) revenue or priority than class-j, the policy π

is allowed to accept this class-j customer in period t only if
when there is no class-i customer rejected by π before period
t, and π is allowed to reject this class-j customer in period
t only if when there is no class-k customer accepted by π

before period t.

This notion of fairness asserts that when π accepts a cus-
tomer, π needs to accept all the customers with higher pri-
orities; when π rejects a customer, π needs to reject all the
customers with lower priorities. In many practical settings,
not enforcing strict fairness may adversely affect customer
loyalty to the firm. In the example of vacation timeshare
management mentioned in Section 1, Hilton Grand Vaca-
tions Club offers timeshares at four different levels, namely,
platinum, gold, silver, bronze [11]. During a particular sell-
ing season, the management will not sell a home resort (e.g.,
a room in Elara on the Las Vegas strip) to a gold customer
if it has previously rejected a platinum customer. Likewise,
the management will not reject a gold customer if it has pre-
viously accepted a silver customer. The management has the
incentives to enforce such fairness, because of the extensive
interactions between timeshare users in online forums [52].

5.1. Extended Definitions of Regret

We extend the definitions of RAP
t (αP

t ) and RRP
t (αP

t )

defined in Section 4. For any feasible policy π , there can
be two scenarios when a random customer arrives in period t.

a. Active decision making: π needs to decide whether
to accept or reject this customer;

b. Passive decision making: π does not need to make
an active decision, if this arriving customer is “auto-
matically” accepted or rejected due to either fairness
or stock-out.

In the former scenario (a), the active decision made by π

incurs a regret of acceptance or rejection, whereas in the lat-
ter scenario (b), there is no regret incurred in period t since
π does not make any decisions. For any feasible policy π , to
define our regrets RAπ

t (απ
t ) and RRπ

t (απ
t ), we use

W(π∗; fT , απ
0 , . . . , απ

t )

to denote the modified clairvoyant optimal revenue given a
fixed sample path f T and fixed decisions απ

0 , . . . , απ
t in the
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first t periods. Intuitively, the modified clairvoyant optimal
policy π∗ takes the first t-period (potentially suboptimal)
decisions as given, and generates the highest revenue over
the remaining periods [t , T ] along the sample path f T . With
this modified definition, we define the two regrets below. Fix
a sample path f T and examine any period t = 1, . . . , T .

a. If π accepts the incoming customer in period t, then
the regret of acceptance is defined by

RAπ
t (απ

t = 1)|fT = W(π∗; fT , απ
0 , . . . , απ

t−1)

− W(π∗; fT , απ
0 , . . . , απ

t−1, 1).
(21)

The underlying idea is simple. The regret of accep-
tance in period t is exactly the difference between
two revenues, one resulted from taking the “optimal”
actions in hindsight from period t onwards, and the
other one resulted from taking an acceptance deci-
sion in period t and then taking the “optimal” actions
in hindsight from period t + 1 onwards.

b. If π rejects the incoming customer in period t, then
the regret of acceptance is defined by

RRπ
t (απ

t = 0)|fT = W(π∗; fT , απ
0 , . . . , απ

t−1)

− W(π∗; fT , απ
0 , . . . , απ

t−1, 0).
(22)

The idea is similar by merely taking a dual view
of (a).

5.2. Extended Regret-Parity Policy

With these extended definitions (21–22), we re-define the
regret-parity policy π̃ below. Since π̃ is randomized, we
use the expanded information set f +

t that not only includes
the original information set f t but also all the randomized
decisions of π̃ up to period t − 1.

Suppose a customer arrives in period t and π̃ needs to make
an active decision. Then, π̃ will accept her with probability
θt and reject with probability 1 − θt , that is, απ̃

t = 1 with
probability θt and απ̃

t = 0 with probability 1 − θt , where θt

is computed by solving

θt · E[RAπ̃
t (1)|f +

t ] = (1 − θt ) · E[RRπ̃
t (0)|f +

t ].

5.3. Performance Analysis

At any customer arrival time t (post-decision), we keep
track of three critical numbers associated with any feasible
policy π , namely, γ π

t being the lowest revenue class that π

has accepted, βπ
t being the highest revenue class that π has

rejected (not due to stock-out), and the ending inventory level
Yπ

t . As a convention, we initialize γ π
0 = 0 and βπ

0 = I + 1.

LEMMA 5: At any customer arrival time t where Y π̃
t > 0,

we have

a. If Yπo

t < Y π̃
t , then γ π̃

t ≤ βπ̃
t ≤ γ πo

t ≤ βπo

t .
b. If Yπo

t > Y π̃
t , then γ πo

t ≤ βπo

t ≤ γ π̃
t ≤ βπ̃

t .
c. If Yπo

t = Y π̃
t , then γ π̃

t = γ πo

t ≤ βπ̃
t = βπo

t .

At a high-level, with the fairness constraint, we can clearly
keep track of the accept/reject status of each class of two dif-
ferent policies by merely comparing their aggregate ending
inventory levels. In the absence of fairness, these relation-
ships in Lemma 5 will not hold, thereby making the cost
comparison between two different policies very challenging.
With aid of Lemma 5, we can prove the following result,
similar to Lemmas 1 and 2 in the two-class case.

LEMMA 6: Along every sample path f ++
T , we have

T∑
t=1

RAπo

t (απo

t ) ≥
∑
t∈Ta

RAπ̃
t (απ̃

t ),

T∑
t=1

RRπo

t (απo

t ) ≥
∑
t∈Tb

RRπ̃
t (απ̃

t ).

With identical arguments, Lemmas 3 and 4 hold for the
multiclass setting with fairness as well. Combining these
results, we have the following theorem.

THEOREM 2: For each instance of the multiclass
admission-control policy-based revenue management prob-
lem under fairness, the expected total regret incurred by the
regret-parity policy π̃ is at most two times the expected total
regret incurred by the optimal policy πo, that is,

E
[
R(π̃)

] ≤ 2 · E
[
R(πo)

]
.

6. NUMERICAL EXPERIMENTS

To test the empirical performances of our proposed policy
π̃ , we conduct an extensive numerical study and report our
numerical results.

6.1. Design of Experiments

We set the discrete time horizon T = 50 periods. We nor-
malize the revenue rate of Class-1 customers r1 = 100
and vary the revenue rate of Class-2 customers r2 ∈
{20, 30, 40, . . . , 80}. We consider two types of demand
processes described as follows.

a. I.I.D. demands: In the i.i.d. demand setting, in each
period t = 1, . . . , T , we test a range of arrival proba-
bilities p1, p2 ∈ {0.2, 0.25, 0.3, 0.35, 0.4}. The prob-
ability of having no arrivals is then 1 − p1 − p2. In
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Table 1. Performance of π̃ under i.i.d. demands

κ −0.2 0 0.2

r2 min mean max min mean max min mean max

εregret 20 39.0% 42.2% 45.6% 31.8% 35.1% 40.2% 24.4% 28.8% 34.9%
εrevenue 0.03% 0.11% 0.26% 0.11% 0.25% 0.45% 0.17% 0.36% 0.62%
ηgain 17.5% 30.7% 54.5% 13.5% 22.0% 34.2% 8.5% 11.6% 14.1%
εregret 30 28.5% 34.9% 38.9% 23.8% 29.2% 34.3% 19.1% 24.2% 29.5%
εrevenue 0.03% 0.12% 0.29% 0.12% 0.27% 0.50% 0.18% 0.37% 0.66%
ηgain 17.4% 30.1% 48.4% 13.4% 21.9% 32.2% 8.6% 12.1% 14.6%
εregret 40 23.9% 30.5% 34.7% 20.0% 25.7% 30.4% 17.0% 21.5% 26.0%
εrevenue 0.04% 0.13% 0.30% 0.12% 0.28% 0.51% 0.18% 0.37% 0.66%
ηgain 15.7% 27.1% 44.1% 12.4% 20.4% 31.0% 8.0% 11.6% 14.4%
εregret 50 19.2% 27.4% 30.5% 16.2% 23.4% 26.5% 13.9% 19.9% 22.6%
εrevenue 0.03% 0.13% 0.31% 0.12% 0.27% 0.50% 0.18% 0.36% 0.63%
ηgain 13.5% 23.5% 38.7% 10.7% 17.9% 26.9% 7.0% 10.4% 13.1%
εregret 60 20.2% 25.9% 28.8% 18.0% 22.5% 25.3% 16.4% 19.7% 21.8%
εrevenue 0.03% 0.12% 0.29% 0.11% 0.26% 0.47% 0.16% 0.34% 0.58%
ηgain 11.0% 18.9% 28.6% 8.6% 14.4% 20.9% 5.6% 8.7% 11.3%
εregret 70 21.1% 25.5% 27.4% 19.3% 22.5% 23.9% 17.9% 20.4% 21.7%
εrevenue 0.03% 0.11% 0.27% 0.09% 0.24% 0.43% 0.14% 0.31% 0.53%
ηgain 8.3% 14.2% 21.5% 6.4% 11.0% 16.4% 4.1% 6.6% 8.6%
εregret 80 23.8% 25.6% 27.6% 21.7% 23.4% 25.0% 20.8% 22.0% 23.6%
εrevenue 0.03% 0.10% 0.23% 0.09% 0.21% 0.36% 0.14% 0.27% 0.45%
ηgain 5.4% 9.5% 14.9% 4.1% 7.2% 10.6% 2.5% 4.4% 6.0%

addition, we set the initial inventory M = T (p1 +
κ ·p2), where the initial inventory M is controlled by
κ ∈ {−0.2, 0, 0.2}.

b. Correlated demands: We also consider a corre-
lated demand setting where the instantaneous rates
are time-varying and correlated, which are modu-
lated by an exogenous Markov chain. In this Markov
modulated demand setting, we keep the choices of
parameters T, r1, r2, p1 p2, and M the same as in the
i.i.d. demand setting. In addition, we introduce three
states of economy, namely, good (denoted by state 1),
fair (denoted by state 2), poor (denoted by state 3),
and the arrival rate is affected by the state of economy.
We set the initial state to be state 2. The state tran-
sition is modulated by an exogenous Markov chain.
More specifically, the arrival probability depends on
p1, p2, and the state of economy. Let pi(j) denote
the arrival probability for class-i customer when the
state of economy is j, where i = 1, 2 and j = 1, 2, 3.
We set

p1(1) = 1.5p1, p2(1) = 0.5p2,

p1(2) = p1, p2(2) = p2,

p1(3) = 0.5p1, p2(3) = 1.5p2..

The above construction captures the fact that customers
will buy higher-class (lower-class) products with a higher
probability when the state of economy is better (poorer). We

consider two transition probability matrices for the exoge-
nous Markov chain whose states are the three states of
economy:

P1 =
⎡
⎣0.6 0.3 0.1

0.3 0.4 0.3
0.1 0.3 0.6

⎤
⎦ , P2 =

⎡
⎣0.1 0.3 0.6

0.4 0.2 0.4
0.6 0.3 0.1

⎤
⎦ .

The above two transition probability matrices P1 and P2

represent positively correlated and negatively correlated
demands, respectively.

6.2. Performance Measure and Benchmark Policies

The two standard performance measures, the regret and
revenue errors of π̃ , are defined by

εregret =
[

E
[
R(π̃)

]
E [R(πo)]

− 1

]
× 100%, (23)

εrevenue =
[

1 − E
[
W(π̃)

]
E [W(πo)]

]
× 100%. (24)

Besides the above standard performance measures, we
also compare our policy with the policies proposed in Ball
and Queyranne [1]. In their paper, the authors presented two
robust optimization algorithms that can be applied in our set-
ting. Both policies having the form of setting a threshold level
for the maximum amount of Class-2 customer to be admitted.
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Table 2. Performance of π̃ under (positively correlated) Markov modulated demands

κ −0.2 0 0.2

r2 min mean max min mean max min mean max

εregret 20 24.3% 49.2% 83.4% 24.7% 36.3% 83.2% 23.5% 31.5% 46.5%
εrevenue 0.04% 0.13% 0.27% 0.12% 0.27% 0.46% 0.19% 0.38% 0.63%
ηgain 17.0% 30.3% 53.8% 13.0% 21.6% 33.6% 8.4% 11.6% 14.2%
εregret 30 20.6% 36.9% 69.7% 20.1% 30.4% 50.4% 18.4% 24.8% 33.5%
εrevenue 0.04% 0.14% 0.31% 0.13% 0.28% 0.50% 0.20% 0.38% 0.67%
ηgain 16.8% 29.7% 48.1% 12.9% 21.5% 31.8% 8.4% 12.0% 14.6%
εregret 40 23.4% 30.0% 38.9% 19.2% 25.2% 33.5% 16.0% 20.7% 24.9%
εrevenue 0.05% 0.14% 0.31% 0.13% 0.28% 0.51% 0.19% 0.37% 0.65%
ηgain 15.2% 26.8% 43.8% 11.9% 20.0% 30.6% 7.8% 11.5% 14.4%
εregret 50 17.3% 26.3% 34.8% 17.4% 23.0% 27.3% 13.5% 19.5% 22.4%
εrevenue 0.04% 0.14% 0.31% 0.10% 0.25% 0.46% 0.18% 0.35% 0.62%
ηgain 13.1% 23.2% 38.3% 10.3% 17.5% 26.5% 6.8% 10.3% 13.1%
εregret 60 20.3% 24.3% 28.2% 17.2% 21.3% 25.4% 16.5% 19.2% 21.5%
εrevenue 0.03% 0.13% 0.30% 0.10% 0.25% 0.46% 0.15% 0.33% 0.56%
ηgain 10.6% 18.7% 28.4% 8.3% 14.1% 20.6% 5.4% 8.6% 11.2%
εregret 70 20.6% 24.1% 27.6% 19.5% 21.3% 22.9% 16.8% 19.3% 21.2%
εrevenue 0.03% 0.12% 0.26% 0.09% 0.23% 0.41% 0.13% 0.30% 0.51%
ηgain 8.0% 14.0% 21.4% 6.2% 10.8% 16.2% 3.9% 6.6% 8.5%
εregret 80 21.9% 24.1% 29.4% 19.7% 22.0% 24.9% 19.0% 20.9% 22.3%
εrevenue 0.03% 0.10% 0.23% 0.09% 0.20% 0.35% 0.13% 0.26% 0.44%
ηgain 5.2% 9.4% 14.8% 3.9% 7.1% 10.5% 2.4% 4.3% 5.9%

Table 3. Performance of π̃ under (negatively correlated) Markov modulated demands

κ −0.2 0 0.2

r2 min mean max min mean max min mean max

εregret 20 28.5% 46.3% 71.0% 24.3% 39.1% 54.0% 25.2% 31.5% 39.6%
εrevenue 0.03% 0.12% 0.27% 0.13% 0.27% 0.47% 0.20% 0.39% 0.64%
ηgain 17.7% 30.9% 54.7% 13.7% 22.1% 34.4% 8.5% 11.6% 14.1%
εregret 30 27.1% 42.8% 66.8% 21.9% 32.9% 42.6% 17.9% 27.7% 34.7%
εrevenue 0.04% 0.13% 0.30% 0.14% 0.29% 0.49% 0.21% 0.40% 0.65%
ηgain 17.5% 30.2% 48.6% 13.5% 22.1% 32.4% 8.6% 12.1% 14.6%
εregret 40 23.3% 34.8% 61.4% 16.7% 27.6% 38.8% 16.7% 22.8% 28.5%
εrevenue 0.04% 0.13% 0.31% 0.14% 0.29% 0.52% 0.20% 0.38% 0.65%
ηgain 15.9% 27.2% 44.1% 12.6% 20.5% 31.1% 8.1% 11.6% 14.4%
εregret 50 19.1% 28.9% 34.2% 16.9% 24.8% 30.4% 15.8% 20.7% 27.6%
εrevenue 0.03% 0.13% 0.30% 0.13% 0.27% 0.48% 0.20% 0.36% 0.62%
ηgain 13.6% 23.6% 38.8% 10.8% 18.0% 27.1% 7.1% 10.4% 13.2%
εregret 60 19.7% 26.3% 32.3% 20.1% 23.5% 27.7% 16.9% 20.0% 22.1%
εrevenue 0.03% 0.12% 0.29% 0.12% 0.26% 0.47% 0.17% 0.33% 0.58%
ηgain 11.1% 19.0% 28.7% 8.8% 14.5% 21.0% 5.7% 8.7% 11.3%
εregret 70 22.3% 26.2% 29.5% 17.4% 22.1% 24.5% 18.6% 20.4% 22.6%
εrevenue 0.03% 0.11% 0.26% 0.09% 0.23% 0.42% 0.14% 0.30% 0.52%
ηgain 8.4% 14.3% 21.5% 6.5% 11.1% 16.5% 4.2% 6.7% 8.6%
εregret 80 23.4% 25.3% 32.8% 21.7% 23.0% 25.0% 20.1% 21.5% 25.3%
εrevenue 0.02% 0.09% 0.21% 0.09% 0.20% 0.36% 0.13% 0.26% 0.44%
ηgain 5.5% 9.6% 15.0% 4.2% 7.3% 10.7% 2.6% 4.4% 6.0%

Benchmark Algorithm 1: The first algorithm is a
static policy that have a fixed threshold level as in
their Eq. [4]. The threshold θ is set as either M −⌊

M

2− r2
r1

⌋
or M −

⌈
M

2− r2
r1

⌉
depending on which number

gives the best competitive ratio in their robust optimization
problem.

Benchmark Algorithm 2: The second algorithm is a
dynamic policy that keeps updating the threshold level
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throughout the planning horizon. In each period t, let h′
denote the total number of Class-1 customers accepted.
Denote γ = h′

M
and α = γ r1+(1−γ r2)

r2
. Then, the threshold

level in each period t is defined as θt = 1− γ r1
αr2

1+ 1
α
− r2

r1

.

For every instance of the problem, we denote the better
expected revenue of the two robust benchmark algorithms
by W(π robust). Then the relative gain in expected revenue by
using our policy π̃ is defined as

ηgain =
[

E
[
W(π̃)

]
E

[
W(π robust)

] − 1

]
× 100%. (25)

We note that their robust algorithms are established in the
online adversarial setting (that does not require any future
demand information as an input). Our algorithm, conversely,
does require evolving conditional future demand information,
as time progresses. Hence the numerical comparison between
our policy and theirs is not entirely fair. Nevertheless, in the
absence of better alternatives, we adapt their algorithms to
our setting and compare the numerical performances.

As seen from Tables 1–3, our proposed regret-parity pol-
icy π̃ performs consistently well in term of expected rev-
enue and regret, compared to the optimal policy. Compared
to the robust benchmark algorithms proposed in Ball and
Queyranne [1], we gain around 16% more expected revenue,
which is quite significant. Also, it is interesting to observe that
this ratio ηgain is higher when the starting inventory is smaller
(i.e., κ is smaller), and when r2 is smaller. This is because
when there is less starting inventory, the optimal policy shall
reject almost all the Class-2 customers, but the robust bench-
mark algorithm always accepts some Class-2 customer as
long as the threshold level has not been reached. And when
r2 is small, this loss becomes more significant.

7. CONCLUSION

In this article, we have studied a class of revenue man-
agement problems with nonhomogeneous Poisson customer
arrival processes. We have proposed a new regret minimiza-
tion framework and proceeded using the lens of approxima-
tion algorithms to devise a conceptually simple and prov-
ably good regret-parity policy. We have made some impor-
tant progress toward better understanding the intricate link
between stochastic regret minimization and approximation
algorithms in the realm of revenue management and dynamic
resource allocation. We believe combining the ideas from
approximation algorithms with this new regret minimization
framework can yield many fruitful results and discussions in
many other core resource allocation or revenue management
problems.

To close this article, we would like to point out two imme-
diate and plausible future research directions as follows. (a)

One may wish to waive the fairness requirement in the mul-
ticlass setting. (b) One can also consider a pricing version
of the same problem, in which the firm can dynamically
update their prices. However, developing worst-case perfor-
mance guarantees for the aforementioned directions remains
challenging and would require new ideas and methods to be
developed.

APPENDIX: OMITTED TECHNICAL PROOFS

PROOF OF PROPOSITION 1: We can write

W(π∗; fT ) = r1C
1
π∗ + r2C

2
π∗ , W(π ; fT ) = r1C

1
π + r2C

2
π .

Since the firm accepts Class-1 customers as long as the inventory is pos-
itive, we have C1

π∗ = min(A1[1,T ], M). Moreover, if the number of Class-2
customers accepted by π is greater than that accepted by π∗, then the number
of Class-1 customers accepted by π will decrease by (C2

π − C2
π∗ ). Other-

wise, C1
π will be equal to C1

π∗ . Thus, combining the two cases above, we
have C1

π = min
{
C1

π∗ , C1
π∗ − (C2

π − C2
π∗ )

}
. Hence, by (2) and some simple

algebra, we have

R(π ; fT ) = W(π∗; fT ) − W(π ; fT )

= r1C
1
π∗ + r2C

2
π∗ − r1C

1
π − r2C

2
π

= r1(C
1
π∗ − C1

π ) + r2(C
2
π∗ − C2

π )

= r1(C
1
π∗ − min

{
C1

π∗ , C1
π∗ − (C2

π − C2
π∗ )

}
) + r2(C

2
π∗ − C2

π )

= r1(C
1
π∗ + max

{
−C1

π∗ , −C1
π∗ + (C2

π − C2
π∗ )

}
)

+ r2(C
2
π∗ − C2

π )

= r1(C
2
π − C2

π∗ )
+ + r2(C

2
π∗ − C2

π ).

This completes the proof. �

PROOF OF PROPOSITION 2: We fix an arbitrary sample path f T . Sup-
pose there are l customers arrived at the system, and let 1 ≤ t1 ≤ · · · ≤ tl ≤
T denote all these l customer arriving epochs. We then denote ts to be the
last customer arriving epoch in which the firm is not out of stock. Using (5)
and (6), we sum up the two regrets (by decisions) along the sample path f T ,
and obtain

T∑
t=1

[
RAπ

t (απ
t ) + RRπ

t (απ
t )

] | fT

=
s∑

k=1

(r1 − r2)
[
(a1

(tk ,T ] − yπ
tk
)
+ − (a1[tk ,T ] − xπ

tk
)
+]

+
s∑

k=1

r2

[
(yπ

tk
− a

1,2
(tk ,T ])

+ − (xπ
tk

− a
1,2
[tk ,T ])

+]

= (r1 − r2)
[
(a1

(ts ,T ] − yπ
ts
)
+ − (a1[t1,T ] − xπ

t1
)
+]

+ r2

[
(yπ

ts
− a

1,2
(ts ,T ])

+ − (xπ
t1

− a
1,2
[t1,T ])

+]
= (r1 − r2)

[
(a1

(ts ,T ] − yπ
ts
)
+ − (a1[1,T ] − M)

+]
+ r2

[
(yπ

ts
− a

1,2
(ts ,T ])

+ − (M − l)+
]

, (26)

Naval Research Logistics DOI 10.1002/nav



Zhang et al.: Regret Minimization for Revenue Management 447

where the first equality holds because when the inventory runs out, that is,
k > s, both regrets RAπ

tk
(απ

tk
= 0) = RRπ

tk
(απ

tk
= 0) = 0, and the second

equality holds since for each k = 1, . . . , s − 1,

xπ
tk+1

= yπ
tk

, a1[tk+1,T ] = a1
(tk ,T ], and a

1,2
[tk+1,T ] = a

1,2
(tk ,T ].

There are two cases as follows.

CASE 1: There is some inventory left in the end of the horizon, that is,
yπ

T > 0. This implies that ts = tl and yπ
ts

= yπ
T > 0. Moreover, the total num-

ber of Class-1 customers is less than the initial inventory, that is, a1[1,T ] < M .
Hence, (26) becomes

T∑
t=1

[
RAπ

t (απ
t ) + RRπ

t (απ
t )

] | fT = r2(y
π
T − (M − l)+).

Moreover, because C2
π ≤ C2

π∗ , (4) becomes R(π) = r2(C
2
π∗ − C2

π ).
Therefore, it suffices to show that

yπ
T − (M − l)+ = C2

π∗ − C2
π . (27)

We know that C1
π = C1

π∗ = A1[1,T ] in this case, and hence yπ
T = M − C1

π −
C2

π = M − C1
π∗ − C2

π . Then (27) becomes M − (M − l)+ = C1
π∗ + C2

π∗ ,
which is valid since C1

π∗ + C2
π∗ = min(M , l).

CASE 2: All the inventory units are used up at the end of the horizon.
This implies that yπ

ts
= 0, and M ≤ l. Hence, (26) becomes

T∑
t=1

[
RAπ

t (απ
t ) + RRπ

t (απ
t )

] | fT = (r1 − r2)(a
1
(ts ,T ] − (a1[1,T ] − M)

+
).

Moreover, because C2
π ≥ C2

π∗ , (4) becomes R(π) = (r1 − r2)(C
2
π − C2

π∗ ).
Therefore, it suffices to argue

a1
(ts ,T ] − (a1[1,T ] − M)

+ = C2
π − C2

π∗ . (28)

We know that a1[1,ts ] + C2
π = C1

π + C2
π = M in this case, and hence C2

π =
M −a1[1,ts ]. Then (28) becomes a1

(ts ,T ] − (a1[1,T ] − M)
+ = M −a1[1,ts ] −C2

π∗ ,

which is valid due to the fact that if a1[1,T ] ≥ M , then C2
π∗ = 0, and otherwise,

C2
π∗ = M − a1[1,T ].
Combining the above cases, the two regret accounting schemes are indeed

equivalent.
�

PROOF OF LEMMA 5: We fix a sample path f ++
T . It is clear that

γ π̃
t ≤ βπ̃

t and γ πo

t ≤ βπo

t by Definition 1 of our fairness constraint. In
Case (a), we can always find a customer accepted by πo but rejected by
π̃ . Denote the class of this particular customer by κ and we can see that
γ π̃

t ≤ βπ̃
t ≤ κ ≤ γ πo

t ≤ βπo

t . Similarly we can prove Case (b). In Case (c)
where Yπo

t = Y π̃
t , if all the decisions for two policies are the same, the claim

holds trivially. Otherwise the only possible case under the fairness constraint
is that both policies accept and reject the same class customer in a different
order, which implies that γ π̃

t = γ πo

t = βπ̃
t = βπo

t . �

PROOF OF LEMMA 6: Identical to (11–13) in the two-class case, we
partition the set of periods {1, . . . , T } into three disjoint subsets Ta , Tb and
Tc . Since π̃ generates no regret in Tc , we focus on Ta and Tb only. Now
we fix a sample path f ++

T , and examine any period t = 1, . . . , T . If t ∈ Ta ,
as long as πo holds positive inventory, by Lemma 5, πo must accept all the
customers that are accepted by π̃ . Hence, by the same argument in Lemma
1, the cumulative regret of acceptance incurred by πo must be higher than or
equal to π̃ . Similarly, if t ∈ Tb , we can see by Lemma 5 that πo must reject
all the customers that are rejected by π̃ . Hence, by the same argument in
Lemma 2, the cumulative regret of rejection incurred by πo must be higher
than or equal to π̃ . �
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