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ABSTRACT 
 15	
Purpose:  We are developing an automated method to identify the best-quality coronary arterial 

segment from multiple-phase coronary CT angiography (cCTA) acquisitions, which may be used by 

either interpreting physicians or computer-aided detection systems to optimally and efficiently utilize 

the diagnostic information available in multiple-phase cCTA for the detection of coronary artery 

disease.  20	

Methods:  After initialization with a manually identified seed point, each coronary artery tree is 

automatically extracted from multiple cCTA phases using our multi-scale coronary artery response 

enhancement and 3D rolling balloon region growing (MSCAR-RBG) vessel segmentation and 

tracking method. The coronary artery trees from multiple phases are then aligned by a global 

registration using an affine transformation with quadratic terms and nonlinear simplex optimization 25	

(AQSO), followed by a local registration using a cubic B-spline method with fast localized 

optimization (CBSO). The corresponding coronary arteries among the available phases are identified 

using a recursive coronary segment matching (RCSM) method.  Each of the identified vessel segments 

is transformed by the curved planar reformation (CPR) method. Four features are extracted from each 

corresponding segment as quality indicators in the original CT volume and the straightened CPR 30	

volume, and each quality indicator is used as a voting classifier for the arterial segment. A weighted 

voting ensemble (WVE) classifier is designed to combine the votes of the four voting classifiers for 

each corresponding segment. The segment with the highest WVE vote is then selected as the best-

quality segment. In this study, the training and test sets consisted of six and 20 cCTA cases, 

respectively, each with 6 phases, containing a total of 156 cCTA volumes and 312 coronary artery 35	

trees. An observer preference study was also conducted with 1 expert cardiothoracic radiologist and 4 

non-radiologist readers to visually rank vessel segment quality. The performance of our automated 



	

method was evaluated by comparing the best-quality (AI-BQ) segments identified by the computer to 

those selected by the observers.  

Results:  For the 20 test cases, 254 groups of corresponding vessel segments were identified after 40	

multiple phase registration and recursive matching.  The AI-BQ segments agreed with the radiologist’s 

top 2 ranked segments in 78.3% of the 254 groups (Cohen’s kappa 0.60), and with the four non-

radiologist observers in 76.8%, 84.3%, 83.9% and 85.8% of the 254 groups. In addition, 89.4% of the 

AI-BQ segments agreed with at least two observers’ top 2 rankings, and 96.5% agreed with at least 

one observer’s top 2 rankings.  In comparison, agreement between the four observers’ top ranked 45	

segment and the radiologist’s top 2 ranked segments were 79.9%, 80.7%. 82.3% and 76.8%, 

respectively, with kappa values ranging from 0.56 to 0.68.  

Conclusion:  The performance of our automated method for selecting the best-quality coronary 

segments from a multiple-phase cCTA acquisition was comparable to the selection made by human 

observers. This study demonstrates the potential usefulness of the automated method in clinical 50	

practice, enabling interpreting physicians to fully utilize the best available information in cCTA for 

diagnosis of coronary disease, without requiring manual search through the multiple phases and 

minimizing the variability in image phase selection for evaluation of coronary artery segments across 

the diversity of human readers with variations in expertise.  

 55	
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I. INTRODUCTION 
 60	

Coronary artery disease (CAD) is the most common type of heart disease and the leading cause 

of death worldwide1. Of the over 16 million Americans with CAD, 445,000 die of this annually, 

including 151,000 from acute myocardial infarction (MI)2. When the coronary arteries are narrowed 

or blocked by the accumulation of atherosclerotic plaque, the reduction of oxygen-rich blood flow to 

the heart muscle can cause angina or MI. Imaging CAD is a demanding task that requires both high 65	

spatial resolution due to the small size of the coronary arteries, and high temporal resolution to reduce 

motion artifacts from the beating heart. With the rapid advancement of computed tomography (CT) 

techniques, electrocardiographic (ECG)-gated coronary CT angiography (cCTA) with multi-detector 

rows is a promising modality for not only detecting CAD, but for quantifying and characterizing 

plaque3-7. With the cyclic and rhythmic motion of the heart, different parts of the heart and therefore 70	

different parts of the coronary arteries move at different phases in a cardiac cycle. For example, the 

right-sided coronary arteries are generally better seen at end-systole, while the left-sided coronary 

arteries are generally better seen at end-diastole 7. ECG-gating enables data acquisition at a specific 

phase or phases of the cardiac cycle over a series of cycles so that the cCTA examination with data 

reconstructed at multiple phases. This increases the probability that good quality images of the 75	

coronary arteries can be found on at least one of the phases.  

 

Multiple-phase cCTA allows the interpreting physicians to search for the best-quality phase for 

each artery segment during interpretation to achieve optimal diagnostic accuracy. The search for the 

best-quality images for each individual artery segments is time consuming and may vary across 80	

readers of varying expertise and experience. In clinical practice, the radiologists may only use very 

few phases to interpret all coronary artery segments because of their workload. Some segments may 



	

therefore be interpreted in a suboptimal phase and the other available phases are under-utilized.  

Automatic selection of the best-quality segment among the corresponding segments in the multiple-

phase cCTA for each coronary artery should be useful as a pre-processing step for both the 85	

interpreting physician and also for a computer-aided detection system 8. 

Automated determination of a single “optimal” cardiac phase, or the phase of minimal cardiac 

motion, among the available multiple phases has been reported in a number of studies 9-14. According 

to the 17-segment model defined by American Heart Association (AHA), for each cCTA scan, 17 

major coronary arterial segments are considered clinically significant15. However, the selection of only 90	

one best phase cannot provide the optimal image quality for detection of atherosclerotic plaques in 

each individual coronary artery segment because it is unlikely that all coronary arteries have the best 

quality in the same phase. We are developing an automated selection method to select the best quality 

segment among all phases for each individual coronary artery segment. The resulting collection of 

artery segments may be considered a “virtual” composite coronary arterial tree, of which each 95	

individual segment may come from a different phase among the available multiple phase cCTA 

examination. The composite arterial tree can be prepared ahead of the interpreting physician’s use or 

as a pre-processing step in computer-aided analysis. Our previous pilot study16 demonstrated the 

feasibility of the automated selection method using a single feature and two cCTA cases. In the current 

study, we further improved the matching of corresponding segments from different phases, extracted 100	

new features from the straightened curved planar reformation (CPR) vessel volume and the original 

CT volume, and designed a weighted voting ensemble classifier for identification of the best-quality 

segments. The performance of our automated method for identification of the best-quality coronary 

segments was evaluated by comparison with manual selection in an observer preference study using a 

test set. 105	
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II.	 MATERIALS	AND	METHODS	
 

II. A Data Sets 
 110	

A data set containing 26 ECG-gated cCTA cases retrospectively collected from patient files at 

the University of Michigan Hospital with Institutional Review Boards (IRB) approval was used. The 

cCTA cases were acquired with GE multidetector CT scanners (GE Healthcare, Milwaukee, WI), 120-

140 kVp, 300-600 mAs, and reconstructed at 0.625 mm slice interval with 0.488 mm in-plane pixel 

size. Six reconstructed ECG-gated phases were available for all 26 cases, resulting in a total of 156 115	

cCTA volumes and a total of 312 left and right coronary artery trees combined.  The data set was 

randomly divided by case into training and test sets with 6 and 20 cases, respectively. 

  

 

Figure.1  Schematic diagram of our method for identification of the best-quality 
coronary artery segments from multiple-phase cCTA. MSCAR-RBG: multiscale 
coronary artery response enhancement and 3D rolling balloon region growing 
vessel segmentation and tracking method 17, 18.  

 

II.B. Methods 



	

Figure 1 shows the schematic diagram of our automated approach to the identification of best-120	

quality coronary artery segments from a multiple-phase cCTA examination. The processes on the left 

blocks were developed previously; the current study focused on the development of the methods on 

the right blocks. The coronary arteries are enhanced using our multiscale coronary artery response 

(MSCAR) method, and the left and right coronary artery trees are extracted from the volume of each 

cCTA phase using a 3D rolling balloon region growing (RBG) method17, 18. An automated registration 125	

method is then used to align the multiple-phase artery trees19. The corresponding coronary artery 

segments are identified among the registered arterial trees and each segment is straightened by the 

curved planar reformation (CPR) method 8, 20. Several features are extracted from each vessel segment 

as quality indicators in the original CT volume and the straightened CPR volume. A newly designed 

weighted voting ensemble (WVE) classifier is finally used to select the best-quality coronary segment 130	

among the corresponding segments. Because there is no gold standard to determine the best-quality 

vessels, we evaluated the performance of our automated method by comparing the best-quality 

coronary segments obtained by automated selection from multiple phases to those by manual selection 

in an observer preference study. The agreement between observers was also evaluated using Cohen’s 

kappa statistics (using R, a free software supported by the R foundation for statistical computing) as a 135	

reference for the variability of subjective selection.21 

 

II.B.1 Coronary arterial tree extraction  

We have previously developed an MSCAR-RBG method for extraction of coronary arterial trees 

17, 18. Briefly, the heart region is first extracted by an adaptive thresholding method based on 140	

expectation-maximization estimation and a morphological operation. The vascular structures within 

the heart region are enhanced based on the analysis of a multiscale coronary artery response function 
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specifically designed to extract information from the eigenvalues of Hessian matrices for enhancing 

coronary vascular structures22. The MSCAR-enhanced left and right coronary artery trees are then 

segmented and tracked by the RBG method. At present, the RBG method is initialized by two manually 145	

identified seed points located at the origins of the left and right coronary arteries for each phase.  

After initialization, all subsequent processes are automated.  In the RBG method, a rolling balloon 

adaptively adjusts its diameter according to the local vessel size and finds the branches and the next 

tracking point; region growing is then used to identify the connected voxels along the tracked vessel. 

The RBG method thus determines the centerlines, the branching points and the artery segments in each 150	

tracked coronary tree. 

 
Figure 2.  An example of the segmented left (blue) and right (yellow) coronary artery trees in 

cCTA scans acquired with ECG gating and reconstructed at 6 phases (80%, 75%, 70%, 
50%, 45%, 40%) using the multiscale enhancement and rolling balloon region growing 
(MSCAR-RBG) method. One group of the corresponding artery segments that were 
identified in the six phases for a tracked vessel are pointed out by white arrows. 

 
 

II.B.2 Identification of corresponding coronary segments in different phases 

We have previously designed an automated registration method to co-register the multiple-phase 

left or right coronary arterial trees extracted from the cCTA volumes 19. Briefly, the left and right 155	

coronary trees extracted from the adjacent phase pairs (e.g., phases of 70% and 75%, 75% and 80%), 



	

where the displacements of the arteries in the adjacent phases are relatively small, are first registered 

based on a cubic B-spline method with fast localized optimization (CBSO). The group of registered 

trees from the adjacent phases (e.g., 40%, 45%, 50%) is then further registered with that from the 

farther phases (e.g., 70%, 75%, 80%). For the latter registration of two groups that potentially has 160	

large displacements, a global registration based on an affine transformation with quadratic terms and 

nonlinear simplex optimization (AQSO) is employed first to reduce the displacements, followed by a 

local registration using CBSO to refine the AQSO registered volumes. The details of our registration 

method were described elsewhere 19.   

After the registration, for a segment ௜ܵ in phase i, to find its corresponding segment ௝ܵ in phase j, 165	

where j  i, the shortest distance of the t-th center point  ܥ௝
௧  on segment ௝ܵ  to the segment  ௜ܵ  is 

calculated by Euclidean distance d as: 

௝ܥ൫ܦ
௧, ௜ܵ 	൯ ൌ min	ሼ݀ሺܥ௝

௧, ௜ܥ
௨ሻ ∶ 	 ௜ܥ

௨ ∈      (1)		ሽࢉ

where ܥ௜
௨ is the u-th center point in the set of center points c along the segment ௜ܵ. The segment ௝ܵ in 

phase j is determined as a candidate of corresponding segments for  ௜ܵ by the criterion that greater than 170	

a threshold percentage P of its center points are within a distance of Dmax to the center points of the 

segment ௜ܵ . K (K  0) candidate segments for ௜ܵ  can be identified from each phase j. Among the 

candidate segments ௝ܵ
௞ (k=1,…K) from phase j, the corresponding segment ௝ܵ

ᇱ is then determined as 

the one that has the maximum number  of center points satisfying the above criterion: 

  ௝ܵ
ᇱ ൌ argmax௞ ܰሺ ௝ܵ

௞ሻ      (2) 175	

where, ܰሺ ௝ܵ
௞ሻ  is the number of center points along the k-th candidate ௝ܵ

௞  of the corresponding 

segments that satisfy the above criterion defined by P and Dmax. P and Dmax were experimentally 

determined to be 70% and 2 mm, respectively, using the training set. 

 



	

We designed a recursive coronary segment matching (RCSM) method to identify the 180	

corresponding segments in different cCTA phases as follows. The longest segment is first selected 

from all phases by counting the maximum number of center points along the branches from the seed 

point located at the origins of the left  or right coronary arteries to the end points of the artery trees. 

The corresponding segments in the other phases are then identified by Eq. (1) and Eq. (2). The above 

procedure is recursively repeated by selecting the longest segment from the remaining unmatched 185	

segments in the multiple-phase coronary trees, and finding its corresponding segments in the other 

phases, until no unmatched segments are left in all phases. Short segments (<20 mm) are discarded.  

The process is performed separately in the left and right coronary trees. For a cCTA exam with 6 

phases, each group of corresponding arteries could contain up to 6 segments, one from each phase.  

Some groups might have less than 6 segments if the vessels are blurred or poor quality and could not 190	

be tracked in one or more phases. Note that, in our method, an artery segment determined in the first 

iteration of RCSM starts from the seed point at the origin of one of the coronary trees to the farthest 

point that the MSCAR-RBG algorithm can track along the tree. The next longest artery segment will 

be searched from the remaining unmatched tree branches, excluding an entire vessel or the portions of 

a vessel already used in the previous matches. Therefore, the other artery segments in the subsequent 195	

iterations start from the bifurcations where the artery branches off from an already matched segment 

in the previous iterations. For simplicity, we use the term “artery segment” to denote the portions of 

the artery found and matched in each iteration but it can be different from those defined in the 17-

segment model of the AHA15.  

 200	

II.B.3 Determination of the best-quality segments 



	

The corresponding artery segments in the different phases are first straightened using a curved 

planar reformation (CPR) method 8, 20, 23. The CPR method resamples the cCTA volume in planar 

cross-sections perpendicular to the tracked centerline, and reformats the original curved vessel and its 

neighboring region into a straightened volume.  205	

In a straightened CPR volume for a vessel segment, the gray level of the cross section of the 

cylinder-like vessel volume is gradually decreasing from the vessel center to the vessel wall. For a 

good quality vessel with less artifacts caused by cardiac motion, contrast timing and CT reconstruction 

noises, etc., the contrast filling in the vessel lumen is relatively uniform so that the radial gradient 

vectors approximately point to the centerline with the maximum radial gradients occurring at the 210	

vessel wall, while the gradient vectors along the vessel approximately point parallel to the centerline. 

Based on the above assumptions, for each segment in each phase, we designed the following four 

features extracted from the original CT volume and the straightened CPR volume as quality indicators.  

(f1) Mean radial gradient of vessel wall (mRGV)  

A measure of vessel sharpness, referred to as mRGV, is defined as the mean radial gradients of 215	

voxels located at or adjacent to the vessel wall. On a vessel cross sectional plane perpendicular to the 

centerline and centered at a center point ܥ௧ (t = 1, …, Nc, where Nc is the number of center points in 

the vessel segment), the radial gradient ݃௠	at the m-th voxel along a radius from the vessel center to 

the vessel wall on the cross sectional plane is calculated as: 

݃௠ ൌ ଵ

ଷ
ሺ∑ ௠ି௜ܫ

ଷ
௜ୀଵ െ ∑ ௠ା௜ሻܫ

ଷ
௜ୀଵ      (3) 220	

where ܫ௠ି௜, and ܫ௠ା௜, are the CT values of the voxels before and after the m-th voxel along the radius, 

where m=4, 5, …Nr -3, and Nr is the number of voxels along the radius from the vessel center to the 

edge of the reformatted cross sectional plane in the CPR volume of the vessel. The radial gradient of 

the lumen at center point ܥ௧ is then calculated as the average of the maximum gradients along all radii: 



	

݃௧ ൌ
ଵ

ଷ଺଴
∑ max	ሺ݃௠ఏ ሻ
ଷ଺଴బ
ఏୀଵబ        (4) 225	

where ݃௠ఏ  is the gradient ݃௠	along the radius at angle ߠ (with respect to the horizontal direction x-axis 

in the CPR volume). Finally, mRGV is calculated as the mean of the ݃௧ over all center point ܥ௧ along 

the vessel segment: 

ܸܩܴ݉ ൌ	 ଵ
ே೎
∑ ݃௧
ே೎
௧ୀଵ       (5) 

(f2) Vessel smoothness measure (VSM)  230	

A vessel smoothness measure (VSM) is calculated as the mean of the gradients within the lumen 

in the direction parallel to the centerline where the gradients are calculated similar to Eq.(3) but with 

the gradient direction pointing parallel to the centerline:  

ܯܸܵ ൌ	 ଵ
ேೡ
∑ ݃௠
ேೡ
௠ୀଵ       (6) 

where Nv is the number of voxels of the extracted coronary segment in the CPR volume. 235	

(f3) Vessel blurriness measure (VBM).  

The CT values accumulated along the direction parallel to the vessel centerline within the vessel 

lumen in the CPR volume are calculated as: 

,ݔሺܣ ሻݕ ൌ ଵ

ே೎
∑ ,ݔሺܫ ,ݕ ሻே೎ݖ
௭ୀଵ      (7) 

where x, y, z are the voxel coordinates of the CRP volume. (x, y) are the coordinates on the cross 240	

sectional plane and z is the direction parallel to the centerline.  ܣሺݔ,  is therefore a 2D distribution of	ሻݕ

the CT values averaged over all cross sectional planes of the vessel. A 2D Gaussian function is then 

fitted to ܣሺݔ,  ሻ. VBM is defined as the mean of the standard deviations x and y of the fitted 2Dݕ

Gaussian function.  

ܯܤܸ ൌ ଵ

ଶ
ሺߪ௫ ൅ 	௬ሻ     (8) 245ߪ



	

(f4) Ratio of mean CT value in the vessel central regions relative to that in the surrounding region 

within the lumen (mRCS).   

Within the vessel lumen in the original CT volume, the ratio of the mean CT value in a small 

cube to the mean CT value in a large cube enclosing but excluding the voxels of the small cube is 

defined as: 250	

௧ሻܥሺܵܥܴ ൌ ఓ಴
ఓೄ

      (9) 

where ߤ஼  is the mean CT value in a 3x3x3 cube, and ߤௌ  is the mean CT value in a 7x7x7 cube 

excluding the voxels in the central 3x3x3 cube; both cubes are centered at the center point ܥ௧. The 

mRCS is then calculated as the mean of the RCS values over all center points along the vessel 

segment: 255	

ܵܥܴ݉ ൌ 	 ଵ
ே೎
∑ ሺே೎ܵܥܴ
௧ୀଵ  ௧ሻ     (10)ܥ

 

For each corresponding vessel segment identified from the different phases by the RCSM 

method, the above four features are extracted as quality indicators. Each quality indicator is used as a 

voting classifier to cast vote for the corresponding vessel segment. The vote of the segment ௝ܵ in phase 260	

j by quality indicator ௜݂, (i=1,2,3,4), is defined as: 

൫ݒ ௜݂, ௝ܵ൯ ൌ 	 ቊ
ଵܸ ݂݅		 ௜݂൫ ௝ܵ൯ ൐ ሺߤ ௜݂ሻ

ଶܸ 																								݁ݏ݈݁
    (11) 

 

where ௜݂൫ ௝ܵ൯ is the quality indicator ௜݂  measured in the segment ௝ܵ ሺߤ , ௜݂ሻ	is	the	mean of ௜݂  over the 

corresponding segments identified by RCSM method (e.g., 6 segments from 6 phases) .  For the four 265	

features defined above, the larger the values of ଵ݂ and ସ݂, and the smaller the values of ଶ݂ and ଷ݂	, 



	

indicate better vessel quality. Therefore, ଵܸ=1 indicates better quality for ଵ݂  and ସ݂ , ଶܸ=1 indicate 

better quality for ଶ݂ and ଷ݂ , and Eq. (11) can be rewritten: 

൫ݒ    ௜݂, ௝ܵ൯ ൌ 	 ൜
1 ݂݅		 ௜݂൫ ௝ܵ൯ ൐ ሺߤ ௜݂ሻ
0 																								݁ݏ݈݁

			for	݅ ൌ 1, 4    (12) 

൫ݒ ௜݂, ௝ܵ൯ ൌ 	 ൜
1 ݂݅		 ௜݂൫ ௝ܵ൯ ൏ ሺߤ ௜݂ሻ
0 																								݁ݏ݈݁

			for	݅ ൌ 2, 3      (13) 270	

 

We designed a new weighted voting ensemble (WVE) classifier to combine the votes of the four 

voting classifiers for each corresponding segment ௝ܵ : 

ሺܧܸܹ ௝ܵሻ ൌ ݓଵݒ൫ ଵ݂, ௝ܵ൯ ൅ ൫ݒଶݓ ଶ݂, ௝ܵ൯ ൅ ൫ݒଷݓ ଷ݂, ௝ܵ൯ ൅ ൫ݒସݓ ସ݂, ௝ܵ൯   (14) 

where ݓଵ, ݓଶ, ݓଷand ݓସ are the ensemble weights of the four voting classifiers and are determined by 275	

a linear discriminant analysis using the training set. The segment with the highest WVE score is 

determined to be the best-quality coronary segment among the corresponding segments from the 

available phases.   

For the training set of 6 cCTA cases, our methods extracted, tracked and registered 324 

segments for the left and right coronary artery trees, which were then matched into 72 groups by 280	

RCSM. The best-quality coronary artery segments were visually identified by an experienced 

radiologist and used as reference standard for the training of the WVE classifier. 

 

II.B.4  Observer preference study 

Because there is no ground truth to measure which coronary segment has the best quality among 285	

the corresponding segments in different phases, we designed an observer preference study to evaluate 

whether the best quality of the coronary vessels selected by our automated method agreed with the 

selection by human observers.  We developed a computer graphical user interface (GUI) for the 



	

observer study. An example of a displayed vessel segment to the observer is shown in Fig. 3.  The 

CPR images of the corresponding coronary segments in 6 phases identified by our RCSM method 290	

were displayed side by side on a Siemens DSB 2003D, 3-mega-pixel (1536X2048) 20.8” gray scale 

LCD monitor. Note that the 6 phases of the corresponding vessel segments were displayed in a 

randomized order for each segment and each observer, rather than in consecutive phases (e.g., 40%, 

45%, 50%, 70%, 75%, 80%), to avoid bias in the observer’s selection because some cardiac phases are 

expected to have less motion artifacts clinically. Each observer was blinded to the quality indicators 295	

and visually ranked the quality of the vessel segments from 1 to 6 (1 is the best) by clicking the 

checkbox on the right side of each segment image. The GUI provided functions that allowed the 

observer to adjust the window settings and zoom to improve visualization as needed. 

 
II.B.5  Performance Evaluation 300	

 
One experienced cardiothoracic radiologist and 4 experienced medical imaging researchers 

participated in this study as observers. From the 20 test cCTA cases, 999 segments were extracted, 

tracked and registered for the left and right coronary artery trees. The RCSM method matched the 

corresponding vessel segments from the multiple phases into 254 groups, which were displayed and 305	

visually rated by each observer in the preference study. Some groups did not have corresponding 

segments from all 6 phases because vessel segmentation and tracking might fail in phases that had 

poor quality due to motion, poor contrast filling and/or noise. Fig. 4 shows an example that had only 5 

corresponding segments as determined by the RCSM method.  The performance of the automated 

identification of the best-quality artery segments was evaluated as the percentages of the 254 groups 310	

for which the automatically identified best-quality (AI-BQ) segments agreed with the observers’ top 

ranked segments, i.e., the observers’ preferred artery segments, among the available phases.  



	

 

 

 

                       S1                   S2                S3                 S4                 S5                  S6 
 

Figure 3. A screen shot of our in-house developed graphic user interface for the observer 
preference study. The CPR images of corresponding coronary segments in 6 phases 
determined by our RCSM method were displayed side by side in a randomized order for 
each segment and each observer.  The rankings of the vessel quality ranged from 1 to 6 
with 1 being the best.  The labels Sj (j=1,…,6) are added to indicate the order of the 
images in the figure to facilitate the discussion in Table 3; they were not displayed 
during the observer experiment.  

 315	



	

III. RESULTS	
 

Table 1 shows the agreement between the automated method and human observers in identifying 

the best-quality coronary artery segments from multiple-phase cCTA for the test set.  If the AI-BQ 

segment being within the observer’s top 2 rankings is considered to be in agreement, the agreement 320	

between AI-BQ and the radiologist is 78.3%, and between AI-BQ and the other four observers are 

76.8%, 84.3%, 83.9% and 85.8%, respectively.  If the AI-BQ segment being within the observer’s top 

3 rankings is considered to be in agreement, the results are 89.8%, 87.8%, 92.9%, 89.4%, and 94.5%, 

respectively. Among the five observers, 96.5% of the AI-BQ segments agree with at least one 

observer’s top 2 rankings, and 89.4% of AI-BQ segments agree with at least two observers’ top 2 325	

rankings. Table 2 shows the agreement between the radiologist and the other 4 observers.  The 

percentages of the 254 groups for which an observer’s top ranked segment agreed with the 

radiologist’s top 2 ranked segments ranged from 76.8% to 82.3% and the Cohen’s kappa statistics 

ranged from 0.56 to 0.68. Three of the four observers show substantial agreement with the radiologist 

and one has moderate agreement.  In comparison, the agreement between the AI-BQ segment and the 330	

radiologist’s top 2 rankings has a kappa value of 0.60±0.05, which is at the borderline between 

moderate and substantial agreement.		

Fig. 5 shows the distributions of the percentages of AI-BQ segments and the segments within the 

five observers’ top 2 rankings in the 6 cCTA phases for the left and right coronary trees.  The 

percentages for the AI-BQ segments in the left and right coronary trees were calculated relative to the 335	

total number of vessel segment groups in each tree, 147 and 107, respectively, while the percentages 

for the observers’ top 2 selections were calculated relative to two times the total number of vessel 

segment groups in each tree because 2 vessels with rankings of 1 and 2 were counted for each group. 

 



	

 340	
Table 1. Agreement between the automated method and human observers in identifying 

the best-quality coronary artery segments from multiple-phase cCTA. 
 

Automated 
method Radiologist Observer 1 Observer 2 Observer 3 Observer 4 

Agreement 
within top 1 

rankings 
61.4% 54.7% 61.4% 70.5% 61.0% 

Agreement 
within top 2 

rankings 
78.3% 76.8% 84.3% 83.9% 85.8% 

Agreement 
within top 3 

rankings 
89.8% 87.8% 92.9% 89.4% 94.5% 
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Table 2. The agreement between the radiologist and the other 4 observers  evaluated by the 

percentages of the 254 groups for which an observer’s top ranked segment agreed with the 
radiologist’s top 2 ranked segments, and the Cohen’s kappa values and confidence intervals. 350	
The agreement between the AI-BQ segment and the radiologist’s top 2 ranked segments is also 
shown for comparison. 

 

 Observer 1 Observer 2 Observer 3 Observer 4 AI-BQ 

Percentage 
Agreement 

79.9% 80.7% 82.3% 76.8% 78.3% 

kappa 0.64±0.05 0.65±0.05 0.68±0.05 0.56±0.05 0.60±0.05 

95% confidence 
intervals of kappa 

[0.54, 0.73] [0.56, 0.74] [0.59, 0.77] [0.47, 0.67] [0.50, 0.70]

* The following kappa values have been suggested to define interobserver agreement: poor 
(0), slight (0–0.20), fair (0.21–0.40), moderate (0.41–0.60), substantial (0.61–0.80), and 355	
excellent (0.81–0.99)21 
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Figure  4.  An example for which only 5 corresponding segments were found in the 6 

phases by the RCSM method because the corresponding vessel segment could not 
be extracted and tracked in one of the phases. The rankings of the vessel quality 
ranged from 1 to 6 with 1 being the best. The labels Sj (j=1,…,6) are added to 
indicate the order of the images in the figure to facilitate the discussion in Table 3; 
they were not displayed during the observer experiment. 
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Figure 5. The distributions of the percentages of the segments that were selected from the 
available phases and ranked as the top 2 by five observers in the six cCTA phases. 
The percentages of the automatically identified best-quality (AI-BQ) segments were 
also plotted for comparison. (top) Left coronary artery tree, (bottom) Right coronary 
artery tree. The percentages were calculated relative to the respective tree.  
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IV. DISCUSSION	
 365	

Automated segmentation and tracking the coronary arteries is a fundamental step to select the 

best-quality coronary arterial segment from different cCTA phases. Many factors, such as irregular 

heartbeats, incorrect contrast timing, narrowing and blockages caused by coronary plaques, and other 

noise artifacts can cause poor quality of a vessel and the failure of automated vessel segmentation and 

tracking. Both missing branches and false positives, such as coronary veins, in the tracked coronary 370	

arterial trees from different phases make it more challenging for automated registration of coronary 

trees in multiple phases. In addition, the average displacements of the left and right coronary trees in 

adjacent phases are different due to the physiological fact that the right coronary tree in general has 

greater motion than the left coronary tree. The performances of our methods for segmentation and 

tracking of the coronary arteries and for the registration of the left and right coronary trees in multiple 375	

phases have been described in detail previously 17-19.   

To identify the corresponding coronary segments, our RCSM method starts with the longest 

coronary branch among all branches in the available phases. The longest branch that is identified from 

the root of the coronary artery to the distal end usually contain more than one coronary segments; for 

example, the branch most often found to be the longest in the left coronary tree contains segments of 380	

left main, proximal left anterior descending (LAD), mid-LAD and distal LAD arteries.  The success of 

segmenting and tracking a long vessel to the distal end in one phase often indicates that the vessel has 

a better quality than those corresponding but shorter tracked vessels in the other phases. Using the 

longest tracked vessel branch as a starting point establishes a tree-stem landmark that can simplify the 

recursive procedure of the RCSM method in finding the corresponding vessel segments among a large 385	

number of vessel segments in multiple phases. The difference between the “artery segments” 

identified by our method and those by the AHA 17-segment model is not a problem because we 



	

envision that the selected segment being displayed for clinician’s interpretation can be shown on a 

“roadmap” in a “navigation” window that highlights the corresponding segment(s) on the coronary 

tree. Alternatively, a coronary artery labeling algorithm may be developed to identify and display the 390	

selected segments following the 17-segment model. 

The cyclic cardiac motion between systole and diastole causes the blurring of the coronary 

artery trees. Fig. 5 shows that although the majority of the AI-BQ segments and the observers’ top 2 

rankings are identified from the 70%-80% phases approximating end-diastole for the left and right 

coronary trees, an average of about 35% and 27% of AI-BQ segments and the observers’ top 2 395	

rankings for the left and right coronary trees respectively were identified from the 40%-50% phases, 

which approximate end systole. This reveals that a substantial number of coronary arteries have better 

image quality in the lower phases. Automated selection of the individual best-quality arterial segments, 

instead of a single “optimal” cCTA phase as a whole, may better extract the most motion free and 

therefore the most accurate data representing the coronary arteries available from multiple-phase 400	

cCTA, and potentially improve the diagnostic accuracy for coronary arterial disease. 

 To evaluate the accuracy of the RCSM method, the automated matched corresponding vessel 

segments from the multiple cCTA phases is visually examined by an experienced medical imaging 

researcher. For this evaluation, the reference segment in a recursive cycle of RCSM and its matched 

segments are highlighted in green and red colors, respectively, on the vessel tree and displayed along 405	

with the GUI used for the observer preference study that showed the corresponding CPR segments; for 

example, Fig. 6(a) was displayed below Fig. 3, Fig. 6(b) was displayed below Fig. 4. The GUI allows 

the evaluator to rotate the coronary artery tree in three dimensions to examine the location of each 

matched segments and determine whether it was a corresponding vessel.  In 203 of the 254 vessel 

groups containing 763 vessel segments, the corresponding vessels from different phases were found to 410	



	

be correctly identified by the RCSM method. In the remaining 51 groups that contain 228 

corresponding segments, 65 segments were mistakenly identified as the corresponding segments. Of 

the 65 segments, 12, 14, 10, 10 and 18 segments were ranked among the top 2 by observer R1, R2, R3, 

R4 and the radiologist, respectively. However, none was identified as the best-quality segments by the 

automated method. Of 999 tracked vessel segments, 8 false positive (FP) segments were segmented 415	

and tracked in one of 6 phases. Six of them were not identified as the AI-BQ segments by our 

automated method, indicating that utilizing the automated identification of best-quality coronary 

segments from different phases has the potential to reduce FPs in automated tracking of coronary 

artery trees because the FPs such as veins have less chance to be selected as the best quality vessels 

compared with true arteries.  420	

(a) 

(b) 

               S1                        S2                       S3                         S4                        S5                        S6 

Figure 6. The reference coronary segment (green) in a recursive cycle of RCSM and its matched 
segments (red) are displayed in the multiple-phase left coronary artery trees. The 
corresponding CPR images of the highlighted (green and red) vessel segments in (a) and (b) 
are shown in Fig. 3 and Fig.4, respectively. In (b), the LAD segment is missing in S1 because it 
could not be tracked and extracted in this tree. The labels Sj (j=1,…,6) correspond to those in 
the respective figure and Table 3.  

 



	

Because there is no ground truth to measure which coronary segments are the best quality 

among corresponding segments in different phases. Our observer preference study was performed to 

provide a reference standard to evaluate the performance of the automated method for identification of 

best-quality segments. In this study, 5 observers including an experienced thoracic cardiac radiologist 425	

assessed the rankings of the vessel quality for corresponding segments in different phases.  Table 3 

shows the ranking of the vessel segments by the 5 observers for the examples in Fig. 3 and Fig. 4. 

Although the visual differences in the quality of the corresponding segments in each group of 

corresponding vessels are very small, for the vessel group in Fig. 3, one segment (S2) was ranked 

among the top 2 by all 5 observers and another segment (S3) was ranked among the top 2 by 3 430	

observers and selected by the automated method; for the group shown in Fig. 4, four observers ranked 

the same two segments (S5, S6) to be the top 2 and one of which (S5) was the AI-BQ segment.  For the 

254 vessel groups, the agreement between the top 2 rankings of the radiologist and the best-quality 

vessel by the automated method was 78.3% (Table 1).  The agreement between the radiologist’s top 2 

ranking and the top rankings of the other four observers averaged 79.9%3% (range: 76.8% to 435	

82.3%) (Table 2).  These results indicate that the performance of the automated method for the 

identification of the AI-BQ vessel is comparable to that of the human observers selecting the top 

ranked vessels.  In addition, 89.4% of AI-BQ segments agreed with at least two observers’ top 2 

rankings, and 96.5% agreed with at least one observer’s top 2 rankings. This demonstrates the 

feasibility of using our automated method to identify the best quality segments among different phases.  440	

 
  



	

 

Table 3. The rankings of 1 to 6 (1 = best) by one experienced cardiothoracic radiologist 
and 4 experienced medical imaging researchers (R1 to R4), and the AI-BQ 445	
segments in the two groups of corresponding vessel segments shown in Fig. 3 
and Fig. 4.  Note that the labels Sj are used to indicate the images displayed in 
the figures for one of the observers. The rankings of the same segment from 
different observers are arranged in the same row for comparison in this table 
although the images were displayed to each observer in a randomized order.   450	

 
 

 

 

In comparison with our previous pilot study 16 that demonstrated the feasibility of an 455	

automated best-quality vessel segment identification approach using a single feature and two cCTA 

cases, our current approach uses a new method to improve the matching of corresponding segments 

from different phases, extracts new features from the original CT volume in addition to the 

straightened CPR vessel volume, and identifies the best-quality segments by using a newly designed 

weighted voting ensemble classifier. The observer preference study with five observers confirms that 460	

the automated method has reasonable performance, within the variability of human observers, in 

  Radiologist R1 R2 R3 R4 AI-BQ 

Fig. 3 S1 4 5 6 6 6  

S2 2 1 1 2 1  

S3 1 3 4 1 2 1 

S4 3 2 2 4 4  

S5 6 4 5 5 5  

S6 5 6 3 3 3  

Fig. 4 S1       

S2 3 5 4 4 1  

S3 4 3 3 3 2  

S4 5 4 5 5 3  

S5 2 2 1 2 5 1 

S6 1 1 2 1 4  



	

selecting best-quality vessels from multiple-phase cCTA. Although the results show the promise of 

this approach, one limitation is the relatively small number of cases. A larger training data set will 

allow designing more complex classifiers and/or additional image features to characterize the quality 

of the vessels, which may further improve the performance of the automated method24, 25. A large test 465	

data set is also needed to include the variety of relevant clinical occurrences of coronary 

abnormalities in cCTA (e.g., different types of plaques of different degrees of occlusions at different 

segments of the coronary trees), so that the robustness of the method can be assessed in cases more 

representative of the patient population.  Another limitation is that the current method is not fully 

automated, requiring a manually marked seed point at the origin of each coronary artery tree to initiate 470	

the tracking of the tree.  This step will be replaced when we can develop a reliable method to identify 

the seed point location accurately and automatically. Besides the manual identification of the seed 

points, the other processes are all automatically performed without any user interaction in this study.  

Ultimately, after the automated method for best-quality vessel selection is fully developed and its 

robustness validated, the usefulness of this method for improving the detection of atherosclerotic 475	

plaques in cCTA by radiologists or a computer-aided detection system, as well as its potential benefits 

in improving workflow and consistency in the selection of the coronary arteries for interpretation, will 

need to be investigated in future studies.  

 
V. CONCLUSION	480	

 
We developed an automated method for the matching of corresponding segments from coronary 

artery trees extracted from multiple phases of a cCTA examination, and designed a new weighted 

voting ensemble classifier using four vessel quality measures for identification of the best-quality 

segment among the corresponding segments. The results of our observer preference study showed that 485	

the performance of the automated method was comparable, within the inter-observer variations, to the 



	

selection of the best-quality coronary segments from the multiple cCTA phases by human observers.  

The study demonstrates the potential of using our automated method to identify the best-quality phase 

for individual coronary arteries.  The virtual composite coronary artery trees containing the collection 

of the best-quality coronary segments selected from all phases will enable interpreting physicians to 490	

fully utilize the best available information in cCTA for diagnosis of coronary disease, without 

requiring manual search through the multiple phases and minimizing the variability in image phase 

selection for evaluation of coronary artery segments across the diversity of human readers with 

variations in expertise. The automated method will also be useful as a pre-processing step in a 

computer-aided image analysis system for detection of atherosclerotic plaques in cCTA. 495	
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