Automated segmentation of regions of interest on hand radiographs?
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Most radiologists do not use texture information contained in the trabecular patterns of hand
radiographs to diagnose erosive changes and demineralization due to systemic inflammatory dis-
eases that affect the skeletal system. However, high-resolution digitization achievable by a laser
digitizer now makes it possible to access texture information that may not be perceived visually. We
are studying the feasibility of computer-assisted early detection of these processes with particular
attention to patients with hyperparathyroidism. In this paper the methods used to extract a region of
interest (ROI) for texture analysis are discussed. The techniques include multiresolution sensing,
automatic adaptive thresholding, detection of orientation angle, and projection taken perpendicular
to the line of least second moment. The methods were tested on a database of S50 pairs of hand
radiographs. We segmented the middle and the index fingers with an average success rate of 83%
per hand. For the segmented finger strips, we located ROIs on both the middle and the proximal
phalanges correctly over 84% of the times. Texture information was collected in the form of a
concurrence matrix within the ROL This study is a prelude to evaluating the correlation between

classification based on texture analysis and diagnosis made by experienced radiologists.

Key words: hand radiograph, least second moment, adaptive thresholding, texture analysis

I. INTRODUCTION

Hand radiographs are used to assess the severity of disease in
patients with hyperparathyroidism.! The features most com-
monly used by radiologists for early detection are the rough-
ness of the lateral phalangeal margins and subperiosteal re-
sorption of the terminal tufts as projected on the
radiograph.>> At present, information related to the texture of
trabecular patterns is not used clinically as a major diagnos-
tic factor. The human visual system is more sensitive to sud-
den changes in intensities such as an edge, rather than small
variations that spread over a region, such as the case with
texture.* This may partially explain the reason for lack of
interest in using texture as a feature for detection.

With technological advances in high-resolution laser digi-
tizers, very fine texture information can now be captured.
High-resolution digitized radiographs make it possible for
computers to access texture information that may not be per-
ceived visually. Our preliminary study on texture analysis of
trabecular patterns indicates that there is a correlation be-
tween the texture features and the severity of disease as de-
termined by experienced radiologists.>® The hand radio-
graphs of a patient with hyperparathyroidism as shown in
Fig. 1(a) is compared with a normal hand radiograph shown
in Fig. 1(b). It is difficult to detect the differences in the
texture between these two by visual inspection. However,
matrices extracted from regions on the two radiographs re-
veal a distinctive difference. The matrices shown in Fig. 2
are called concurrence matrices by Jain,” cocurrence matri-
ces by Rosenfeld and Kak,? and joint probability matrices by
Pratt.” A more detailed discussion of this matrix will be in-
cluded in a later section.

The success of texture analysis depends strongly on the
fidelity of preservation of texture. In previous studies, the
original images are typically rotated to align the longitudinal
direction of the image with the vertical axis of the image
matrix.'® The algorithms that accomplish this task usually
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use interpolation to fill the “holes” resulting from rotating
the coordinate system. In doing so, an equivalent low-pass
filter is applied to the original high-resolution image, result-
ing in a loss in actual resolution. In the approach described in
this paper, regions of interest (ROIs) are extracted directly
from the original image to preserve texture information.

Another important issue in texture analysis is the large
amount of data necessary for training and testing a classifier
to ensure its ability to handle variability in data. Therefore,
the collection of texture information in a consistent manner
by the computer becomes the foremost important step in au-
tomated computer-aided detection of osteopenia. In this pa-
per, we present the results of our study on automated seg-
mentation of ROIs from hand radiographs for texture
analysis. The method we developed includes the following
steps.

(1) Multiresolution sensing: The high-resolution digital
images are compressed to low-resolution images using La-
placian compact code. This step not only reduces the pro-
cessing time but also blurs fine structures that are irrelevant
to, or sometimes even interfering with, the extraction of ROL

(2) Multisegment projections: Vertical and segmented ver-
tical projections are taken. The maxima and minima on those
projection profiles are detected using a zero crossing tech-
nique. A strip containing a finger is then segmented based on
the locations of these zero crossings. Provisions are made for
fingers that do not align with the vertical axis by trimming
off excesses from neighboring fingers.

(3) Automatic adaptive thresholding: From the histogram
plot of each finger strip, a zero crossing technique is again
used to determine automatically the threshold levels for seg-
mentation of the bone mass. This method provides the
mechanism whereby threshold levels of radiographs obtained
with a wide range of exposure levels may be selected adap-
tively on a case-by-case basis.

(4) Automatic detection of orientation: A technique of the
least second moment is used to locate the line that passes
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(b)

Fi6. 1. Hand radiographs of (a) a patient with hyperparathyroidism and (b)
a normal person.

through the center of the bone mass and has the same orien-
tation as the longitudinal axis of the phalanx. A projection is
then taken along the axis perpendicular to the axis of the
least second moment. Position information about the middle
and proximal phalanges are inferred from the signatures on
the projection profile.

II. METHODS
A. Selection of ROI

The concurrence matrix is an estimate of the joint prob-
ability density function of gray levels at two different loca-
tions (pixels) on the image. A selection rule specifies the
relative direction and distance of the pixel pairs. To estimate
the joint probability density function, we obtain a two-
dimensional histogram whose vertical and horizontal axes
are quantized gray levels. The values of this two-dimensional
array are the cumulative sum of the number of pixel pairs
whose gray levels correspond to the indices in the concur-
rence matrix. The matrix shown in Fig. 2 is an example of a
two-dimensional histogram. The concurrence matrix, as de-
fined in the literature,”” is a normalized version of this his-
togram.
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FiG. 2. Concurrence matrices obtained from the middle fingers of images
shown in Fig. 1: (a) abnormal proximal phalanx; (b) abnormal middle pha-
lanx; {(¢) normal proximal phalanx; and (d) normal middlc phalanx.

The selection rule plays an important role in deciding the
type of texture information to be collected.” We choose to
compare pixels along the center line of the phalanx and lines
parallel to it. This choice is based on the assertion that the
texture patterns are parallel to the median of the phalanx, and
the coarseness of these patterns is correlated to bone mineral
density. The distance between the two parallel} lines is a pa-
rameter which depends upon the resolution of the digitized
image.

The early manifestations of demineralization are most
pronounced in the middle and proximal phalanges of the
index and middle fingers. To gather as much information as
possible to have a meaningful statistical interpretation, while
maintaining manageable computational complexity, the ROI
is selected as a rectangular window consisting of 40X160
pixels. The ROI is located within each phalanx in the region
of cancellous bone, aligned with the longitudinal axis of the
phalanx. The concurrence matrices in Fig. 2 are extracted
from the ROIs on the middle and proximal phatanges of the
middle finger. Every other pixel along the center line is com-
pared with pixels along parallet lines about 0.2 mm away
from the center line. In the following section, we discuss in
detail the techniques used and illustrate how these techniques
may be combined to achieve the following objectives: (1)
automatic separation of the left and right hands; (2) auto-
matic segmentation of strips that contain the middle and the
index fingers, respectively; (3) automatic placement of two
windows along the longitudinal axis of the middle and proxi-
mal phalanges; and (4) collection of texture information
from these two windows.
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FiG. 3. Laplacian pyramid images. From lcft to right: level-zero (3000X 2400 pixcls, 0.1 mm/pixel), level-one (15001200 pixels, 0.2 mm/pixel), level-two

(750x600 pixels, 0.4 mm/pixel), level-three (375X300 pixels, (0.8 mm/pixel).

B. Multiresolution sensing

To preserve the detailed texture information, radiographs
recorded by a screen-film system are digitized by a
LUMISYS high-resolution laser digitizer. The radiographs
are digitized at a pixel size of 0.1X0.1 mm and 12-bit quan-
tization levels. The high resolution resulted in a digital image
of 3000x2400 pixels and 14.4 Mbytes of memory space,
when the 12-bit quantized levels are stored as a two-byte
integer. To reduce the processing time, as well as to blur fine
structures that may otherwise interfere with the detection of
ROIs, the images are compressed to a size of 375X300 pix-
els using the Laplacian pyramid.

The Laplacian pyramid has a wide range of applications,
especially in image compression and progressive image
transmission. Burt and Adelson'' described how classifica-
tion could be accomplished by first searching within a low-
resolution image and then proceeding to a region within a
high-resolution image for more detailed features. This mul-
tiresolution search method is similar to that observed in a
human vision system where the retina processes coarse struc-
tural information at a lower resolution and then zooms in to
a region of finer resolution.”

We implemented the Laplacian pyramid based on an al-
gorithm described by Burt and Adelson."" The lower level
resolution image is obtained by first convolving the higher
resolution image with a 5X5 window. The window is a
Gaussian-like two-dimensional mask, separable in the hori-
zontal and vertical directions. The image size is reduced to
one quarter of the original size by retaining only every other
pixel. This process is similar to down sampling except for
the additional process of first convolving the image with a
window, which is essentially a low-pass filter, thereby pre-
venting aliasing that may occur during down sampling.

Images of four different resolutions in the Laplacian pyra-
mid are shown in Fig. 3. The one on the left is the original
level-zero image and the one on the right is the level-three
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image, which is the level used in the ROI detection described
below.

C. Vertical projections

A vertical projection is defined as the sum of pixel values
along the vertical lines. Figure 4(a) is a profile of the vertical
projection of the hand radiograph shown in Fig. 1(a). The
high projection value near the left is due to the patient label
at the upper left corner. The extremely high projection value
on the right corresponds to the white edge. The low projec-
tion value near the center signifies the dark background arca
separating the two hands. These characteristics are used to
trim the edges and separate the left and right hands.

To extract the middle and index fingers from a hand, we
use segmented projections. Figure 4(b) is a projection taken
from the top of the left-hand image to one quarter from the
top. Only three maxima appear and they correspond to the
tips of the index, middle, and fourth fingers. Figure 4(c) is a
projection taken from the top one quarter to the top half of
the image. Five maxima appear in this projection profile. The
two additional maxima correspond to the thumb and the little
finger.

There are advantages of using projection instead of edge
detection techniques. Taking the projection of an image is an
integration operation whereas edge enhancement techniques
are generally differentiation operations. A differentiator is a
high-pass filter and it amplifies high-frequency noises that
are commonly present in radiographs. An integrator is a low-
pass filter and it averages out random noises.

The above-mentioned techniques may fail if there are in-
terferences with the basic profile. This occurs when there are
large patient identification labels or lead markers placed on
top of the fingers. In addition, when the hands are oriented at
exceptionally large angles with respect to the vertical axis, or
when all the fingers are in contact with one another, the
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projection profile becomes flat and no maxima or minima
can be detected.

D. Zero crossing

To accurately locate the maxima and minima on the pro-
jection profile, the forward differences of the projection val-
ues are taken. A smoothed version of the difference is ob-
tained by convolving the difference with a Gaussian kernel
to smooth out the undesirable peaks due to noises. The zero
crossings of the smoothed difference correspond to the loca-
tions of maxima and minima, which are related to the posi-
tions of different fingers. To detect the zero crossings we
implemented an algorithm described by Kunt, Ikonomopou-
los, and Kocher.'? The algorithm searches for a pair of posi-
tive and negative first derivatives of the profile and deter-
mines if that corresponds to a zero crossing.

A logical operation on the magnitude of the projection
profile at each zero crossing and their neighbors determines
which of these crossings are minima and which are maxima.
We also detect the position of continuous runs of zero values.
Positions of each finger strip are determined by logical op-
erations on the information. The finger strips shown in Fig. 5
are obtained by detecting the minima of the smoothed profile
difference. Some of the finger strips, such as the middle fin-
ger of the left hand, contain small portions of the neighbor-
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FiG. 4. Normalized vertical projections of the image shown in Fig. 1(a): (a)
the two hands; (b) the first segment of left hand; and (c) the second segment
of left hand. Each pixel along the horizontal axis corresponds to a distance
of 0.8 mm on the hand radiograph.

ing fingers. This usually happens when the fingers are not
aligned with the vertical axis, or when the fingers are in
contact with each other. These excesses are trimmed by the
following procedures.

E. Automatic adaptive thresholding

It is necessary to segment out the bone mass for accurate
determination of the longitudinal axis of a phalanx. The zero-
crossing detection technique is also used in automatic adap-
tive thresholding. The histogram of the finger strip shown in
Fig. 5(a) is plotted in Fig. 6. The histogram is approximately
a trimodal Gaussian distribution. The peak on the left corre-
sponds to the background, the peak at the center is the soft
tissue, and bone masses contribute to the peak on the right.
Michael and Nelson'® estimated the mean and the variance
of such distributions and selected a fixed threshold level to
segment out the bone masses. We differ from their approach
in that we determine the threshold levels for each radiograph
based on each individual histogram. In a sense, this is a
“true” adaptive method when the threshold level is selected
on a case-by-case basis. This method is particularly suited
for histograms that have distinctive peaks and valleys. The
method fails, however, when the radiographs are excessively
over- or under-exposed.
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(b)

Fic. 5. Segmented finger strips of the hands in Fig. 1(a): (a) middle finger of
left hand; (b) index finger of left hand; (c) middle finger of right hand
(mirror image); and (d) index finger of right hand (mirror image).

Again, the forward difference of the histogram profile is
taken and convolved with a smoothing Gaussian kernel. The
smoothed version is then subjected to zero-crossing detec-
tion. The zero crossing corresponding to the first minimum
from the high-intensity-level end of the histogram deter-
mines the threshold level that segments out the bone masses.
The image in Fig. 7(a) is a result of applying the automatic
adaptive thresholding method to the image in Fig. 5(a). No-
tice that the soft tissue of the finger strip and a portion of the
neighboring fourth finger disappear.

To trim off the remaining small portion of bone mass of
the adjacent index finger, four segmented vertical projections
are taken. Positions of maxima, minima, and continuous runs
of zeros are found. There should be one distinctive maximum
value for each segmented projection. The excess portion of
neighboring fingers is then trimmed based on the locations of
the secondary maxima, as shown in Fig. 7(b).
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Fi¢. 6. Histogram of the finger strip shown in Fig. 5(a).

F. Orientation through the least second moment
method

To locate a region on a finger, it is necessary to first deter-
mine the line that passes through the center of bone mass
with the same orientation as the phalanx. Horn used binary
images to calculate the line of the least second moment as a
way of determining the angle of orientation.'* We modify his
method for application to gray level images. The following
equations were derived to find the center of mass (x,y()
and the angle of orientation 6 for the axis of least second
moment, defined with respect to the horizontal axis.

1
Hz—tan’(#7—"~§), (1a)
Y

(a) (b}

FiG. 7. (a) Threshold segmentation of finger strip shown in Fig. 5(a). Notice
that the soft tissue of the finger strip and the portion of the fourth finger
disappcar. (b) The excess of the index finger is trimmed. The center of mass
and axis of the least second moment are superimposed on the trimmed
image.
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Fi6. 8. Projection taken perpendicular to the axis of least second moment.
The arrow points to the position corresponding to the joint between the
middle and proximal phalanges. Each pixel along the horizontal axis corre-
sponds to a distance of 0.8 mm on the hand radiograph.

N, -1 N,—1
175 N,
Xo=5 X i—;)f,-j, (1b)
i=0 j=0
N,—1 N,—1
)’o:% yE (f‘%)fij, (1¢)
i=0 j=0
where
1 Ny=1 Ny—1
=G (i=[x))*fy; - (1d)
=0 j=0
1 Ny—1 Ny—1
=z G=Dyofy (e)
i=0 j=0
Ne—1 Ny—1
=l < '_& '._A_[y_ (lf)
pxy C t 2 J 2 fl] ’
i=0  j=0
N,=1N,~1
Cc= fijs (1g)
i=0 j=0

where f;; is the pixel value at the (i,j) pixel, and N, and N,
are the number of pixels along x and y directions, respec-
tively. In Fig. 7(b), the axis of least second moment and the
center of mass are superimposed on the trimmed image. For
this image, the center of mass is located at (—4.44, —30.9),
with respect to the center of the 48X150-pixel level-3 finger
strip image array. The orientation angle is 83.44 degrees.

G. Automatic extraction of ROI

The profile shown in Fig. 8 is a projection taken perpendicu-
lar to the axis of least second moment. The notches on the
projection profile correspond to the joints on a finger. The
higher projection values at both the left and the right of the
notch correspond to the enlarged areas surrounding the joint.
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F1G. 9. Coordinate system for a projection along a line.

Locations of the middle and proximal phalanges can then be
inferred from these signatures. In order to obtain this projec-
tion profile, we derived an expression to efficiently evaluate
the projection perpendicular to the axis of least second mo-
ment.

A projection line L(¢,V) is defined by the view angle ¥
and the translation distance ¢ as shown in Fig. 9. A projection
p(t,'¥) is an integration of the pixel values f(x,y) along the
line L(¢,"¥). Mathematically, a projection is expressed as

p(t,‘I’)=J flx,y)dl
L(t,¥)

:f f(t cos ¥ —u sin V,t sin ¥+u cos V)du.

(2a)

For digitized images, f(x,y) is assumed to be piecewise
constant within each pixel, and the projection may be ap-
proximated as

p(,¥)= Wiifij, (2b)

(i,j) along L(1,¥)
where f;; is the pixel value at the (i,j)th pixel and W;; is the
weighting function, and the summation is performed over
pixels along the projection line.

For the convenience of arriving at a closed-form expres-
sion of the weighting function, a circular pixel of radius & is
assumed. The center of the circular pixel is defined by the
polar coordinates as shown in Fig. 9. For the purpose of
clearer illustration, the pixel is not drawn to scale. The con-
tribution of each pixel to the total projection value is deter-
mined by the length of intersection between the projection
line and the circular pixel. Therefore, the weighting function
is equal to

W,=28-d? for 6>d;
0, otherwise. (2¢)
where

d=t—r cos(¢—V¥)=t—(x; cos ¥+y; sin V) (2d)
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FiG. 10. Location of ROIs superimposed on the four phalanges shown in
Fig. 5.

and (x;.y;) is the rectangular coordinate of the center of the
(i.j)th pixel.

The projection algorithm was tested on several standard
computer-simulated test images such as lines with different
orientations. The error in the projection value, due to ap-
proximating a square pixel by a circular pixel, was found to
be between 0% and 8%. depending upon the relative orien-
tation of the projection line. The error is tolerable for our
purpose.

The locations of the notches on the projection profile cor-
responds to the zero crossings of the forward ditferences of
the projection values. The middle phalanx is located between
the second and the third crossings, and the proximal phalanx
is located between the third crossing and the bottom edge.
With this information in place, the positions of the ROIs on
the level-3 image can be determined. The positions of these
ROIs are then translated to positions on the original level-
zero image to extract high-resolution ROls. In Fig. 10, each
finger strip shown in Fig. 5 is overlayed with two boxes
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indicating the locations of the ROIs determined for the
middle and the proximal phalanges.

lll. RESULTS

We tested the procedures described in the previous sec-
tions on a data base consisting of 50 pairs of hand radio-
graphs. The data set did not include hands having exception-
ally large orientation angles or having fingers that were
extremely tightly placed. The procedures successfully sepa-
rated the left hand 100% of the times but only 76% for the
right hand. The failed cases were due to large patient identi-
fication labels placed near or, in some cases, in contact with
the right wrist, causing the small finger to be cut off. The
right-hand segmentation rate could have increased to 100%
if these cases were discarded.

Of the correctly segmented hands, the procedures success-
fully extracted 82% of the middle fingers and 90% of the
index fingers for the left hand. The correct segmentation
rates were 82% and 79%, respectively, for the right hand.
The average segmentation rate, therefore, was 83%. We
found that, in some cases, the presence of lead markers used
for identification of the left or right hands in the areas above
the fingers misled the computer programs. In other cases the
patient identification labels were placed above the little fin-
ger. These markers and labels distorted the characteristic sig-
natures of the projection profiles. However, the problem can
be readily avoided if x-ray technologists are instructed to
place the labels in designated areas away from the patient’s
hands. The segmentation rates will increase if cases with
prominent markers or labels in the critical regions of the
image are not present.

A total of 147 segmented finger strips were used for test-
ing the automatic extraction of ROI along the longitudinal
axis of phalanges. A finger strip was deemed usable if it
contained only one finger and perhaps only a small portion
of another finger. We found that 84% of the times, the ROIs
were identified correctly on both the middle and the proximal
phalanges. When the finger strip contained a significant por-
tion of a neighboring finger, the method failed. The success
rate of this step was dependent upon how well the fingers
were segmented as well as how effective the adaptive thresh-
olding method was in isolating the bone masses. Most of the
failed cases were due to interferences caused by partial
neighboring fingers. Some were caused by incorrect thresh-
old levels. The results of successful segmentation rate are
summarized in Table I.

IV. DISCUSSION

To quantify the difference between normal and abnormal
cases, we evaluate the inertia and the moments of a concur-
rence matrix associated with the ROIs. Our preliminary re-
sults indicate that there are differences in these quantities
which may be used for classification of the normal and the
abnormal cases. In order to make a definitive conclusion
about the correlation between these texture features and the
degree of severity of mineral resorption, a large sample of
data is required for training and testing. The data collection
will be a very tedious process if it is done manually. The
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TaBLE 1. Segmentation success rate.

Hand Segmentation (Average: 88%)

Two-hand image Left hand
50 50 (100%)

Right hand
38 (76%)

Finger strip segmentation (Average: 83%)

Single hand Middle finger Index finger

Left hand 50 41 (82%) 45 (90%)
Right hand 38 31 (82%) 30 (79%)
Total 88 72 (82%) 75 (85%)
ROI Segmentation (Average: 84%)
ROI on both
middle and
Fingerstrips proximal
Left-hand middle finger 41 35(85%)
Left-hand index finger 45 36(80%)
Right-hand middle finger 31 26(84%)
Right-hand index finger 30 27(90%)
Total 147 124(84%)

techniques outlined in the previous discussion are used to
accomplish this task automatically by a computer so that we
can collect texture information in a consistent manner. Auto-
mation of texture information collection is critical to the suc-
cess of computer-aided diagnoses of mineral resorption and
bone loss, if it is to be implemented for clinical applications.

A major factor affecting our success rate in this study is
the interference with the projection profiles by patient iden-
tification labels and lead markers placed too close to the
fingers. For future studies, we suggested that a radiation
transparent template overlaying the cassette be used for the
patients to align their finger placements, and for the tech-
nologists to place the markers and labels. This approach will
also eliminate the occurrence of hand images with exception-
ally large orientation angles or having fingers that are ex-
tremely tightly placed.

V. CONCLUSION

We demonstrated the use of multiresolution sensing, pro-
jection along a line, zero-crossing detection, automatic adap-
tive thresholding, and the least second moment technique to
focate ROIs on hand radiographs. Once the ROl is seg-
mented, we can then collect texture information by way of a
concurrence matrix. Features such as inertia and moments
are evaluated to quantify the differences in texture coarse-
ness. We are in the process of implementing an artificial
neural network classifier for texture discrimination. The suc-
cess of a classifier depends largely on how well the statistical
properties of the data are. A large training set is essential to
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ensure the versatility of this classifier. The procedures de-
scribed in this paper pave the way for implementing a reli-
able classifier by providing techniques for automated texture
information gathering so that a large amount of training data
can be collected in a fast and consistent manner. The issue of
texture classification using artificial neural networks will be
addressed in future studies.
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