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Abstract
Rationale, aims and objectives Single-group interrupted time series analysis (ITSA) is a
popular evaluation methodology in which a single unit of observation is being studied,
the outcome variable is serially ordered as a time series and the intervention is expected
to ‘interrupt’ the level and/or trend of the time series, subsequent to its introduction. Given
that the internal validity of the design rests on the premise that the interruption in the time
series is associated with the introduction of the treatment, treatment effects may seem less
plausible if a parallel trend already exists in the time series prior to the actual intervention.
Thus, sensitivity analyses should focus on detecting structural breaks in the time series
before the intervention.
Method In this paper, we introduce a machine-learning algorithm called optimal discrim-
inant analysis (ODA) as an approach to determine if structural breaks can be identified in
years prior to the initiation of the intervention, using data from California’s 1988 voter-
initiated Proposition 99 to reduce smoking rates.
Results The ODA analysis indicates that numerous structural breaks occurred prior to the
actual initiation of Proposition 99 in 1989, including perfect structural breaks in 1983 and
1985, thereby casting doubt on the validity of treatment effects estimated for the actual
intervention when using a single-group ITSA design.
Conclusions Given the widespread use of ITSA for evaluating observational data and the
increasing use of machine-learning techniques in traditional research, we recommend that
structural break sensitivity analysis is routinely incorporated in all research using the
single-group ITSA design.

Introduction

Interrupted time series analysis (ITSA) is a popular evaluation
methodology for study designs in which a single unit of observa-
tion (e.g. an individual, a city or a country) is being studied, the
outcome variable is a serially ordered time series and multiple
observations are captured in both the pre-intervention and
post-intervention periods [1,2]. The study design is called an
interrupted time series because the intervention is expected to
‘interrupt’ the level and/or trend of the time series, subsequent to
its introduction [3,4]. ITSA has strong internal validity, even in
the absence of a comparison group, due primarily to its control
over the effects of regression to the mean [3,5,6]. When the treat-
ment group’s outcomes can also be contrasted with those of one or
more comparison groups, the internal validity is further enhanced
by allowing the researcher to potentially control for confounding
omitted variables [2]. Additionally, ITSA has strong external
validity when the unit of measure is at the population level or
when the results can be generalized to other units, treatments or
settings [4,7].

Interrupted time series analysis has been used in many areas of
study, such as assessing the effects of community interventions
[8,9], public policy [10], regulatory actions [11], and health
technology assessment [12], to cite but a few. ITSA has also been
proposed as a more flexible and rapid design to be considered in
health research before defaulting to the traditional two-arm
randomized controlled trial [13]. In addition, systematic reviews
of the literature increasingly include studies using ITSA as the
primary research design [14].

The validity of ITSA when used for making causal inferences
has begun to receive attention in the literature, specifically the
importance of testing for interruptions in the time series that occur
prior to the actual initiation of the intervention [2]. The assump-
tions necessary for causal inference in the single-group ITSA
may seem plausible when the pre-intervention trend is followed
by a statistically significant change in the trend of the outcome
variable immediately following the introduction of the interven-
tion and sustained over some meaningful period of time. In
contrast, these assumptions seem less plausible if a parallel trend
already exists in the time series prior to the initiation of the
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intervention. Linden [2] suggests conducting an iterative sensitiv-
ity analysis involving testing each pre-intervention time period
treated as a ‘pseudo-intervention’ period. This approach is consis-
tent with regression-based structural break analysis commonly
used in time series econometrics (Hansen [15] and Perron [16]
provide excellent reviews of structural break analysis literature).
The underlying assumptions of the single-group ITSA may be
challenged if interruptions in the level or trend of the outcome
variable are found to exist at other time points prior to the actual
initiation of the intervention.
This paper introduces a machine learning algorithm called opti-

mal discriminant analysis (ODA) [17] to determine if (and to what
degree) structural breaks can be identified in periods prior to the
actual initiation of the intervention. This methodology has several
noteworthy strengths in that it provides intuitive measures of
predictive accuracy (e.g. sensitivity, specificity and effect strength
for sensitivity), model-free permutation tests to derive P values
and cross-validation to assess generalizability of the model to
new cases applied in similar settings [7,18–24]. It is therefore
likely to be an approach that will be of interest to those using ITSA
designs as well as those more generally interested in applications
of machine learning to traditional research designs. To illustrate
the ODA approach for assessing interruptions in times series data
prior to the actual initiation of the intervention, the Methods
section describes study background, data, ODA methodology
and analytic strategy; the Results section reports the findings;
and the Discussion presents discussion and conclusions.

Methods

Background and data

We examine data from the 1988 voter-initiated Proposition 99, a
widespread effort in California to reduce smoking rates by raising
the cigarette excise tax by 25 cents per pack and to fund anti-
smoking campaigns and other related activities throughout the
state (Breslow & Johnson [25] provide a comprehensive discus-
sion of this initiative).
Per capita cigarette sales (in packs) is the most widely used in-

dicator of smoking prevalence found in the tobacco research liter-
ature [26] and serves here as the aggregate outcome variable under
study, measured annually at the state level from 1970 until 2000
(with 1989 representing the first year of the intervention). The
current data were obtained from Abadie et al. [27], who obtained
the data from Orzechowski & Walker [28]. The current study
limits analysis to cigarette sales in only the pre-intervention years
between 1970 and 1988 to determine if there are additional inter-
ruptions in the time series prior to actual initiation of the interven-
tion in 1989.

Brief description of optimal discriminant analysis

Optimal discriminant analysis is a machine learning algorithm
introduced over a quarter century ago [17]. Derived using mathe-
matical programming methods, ODA was developed as a method-
ology for identifying exact non-parametric statistical models that
explicitly maximize predictive accuracy normed against chance
[23,24]. The objective function maximized by ODA – predictive

accuracy – is in contrast to alternative methods developed to
explicitly maximize the amount of variance explained or the value
of the likelihood function [29,30]. In general, for an ordered or
continuous variable (e.g. an outcome score) and a two-category
class variable (e.g. an intervention), an ODA model has the form:
if score ≤ (value) predict that the observation is from class A;
otherwise, predict that the observation is from class B. ODA iden-
tifies the cut-point that explicitly maximizes the predictive accu-
racy of the model (i.e. in terms of the correct classification of
actual members of class A and of class B) indexed using the effect
strength for sensitivity (ESS) statistic described later.

Assessing statistical significance of optimal discriminant
analysis models

Statistical significance (P value) of ODA models is computed as a
permutation probability: no distributional assumptions are required
of the data and P values are exact [17,24]. In study designs
involving two or more tests of statistical significance, a sequen-
tially rejective Sidak Bonferroni-type multiple comparisons meth-
odology is used to prevent ‘alpha inflation’ and ensure the desired
experimentwise P value (here, P< 0.05) [23].

Ecological significance of optimal discriminant analysis
models

Ecological significance (normed accuracy) of ODA models is
assessed using the ESS statistic – a chance-corrected (0 = the level
of predictive accuracy expected by chance) and maximum-
corrected (100 = perfect prediction) index of the predictive accu-
racy of a statistical model (computation of ESS is discussed else-
where [19,20,22;23,24]). The cut-point identified by ODA
explicitly maximizes the ESS yielded by the ODA model devel-
oped for the total (‘training’) sample. Using ESS, investigators
may directly compare the predictive accuracy of different models
(relative to chance), regardless of structural features such as sam-
ple size, skew, or ‘outliers’ [24]. By convention, ESS values of
25% or less indicate a relatively weak effect, values of 50% or less
indicate a moderate effect, values of 75% or less indicate a rela-
tively strong effect, values of 90% or less indicate a strong effect
and ESS values greater than 90% indicate a very strong effect [23].

Assessing generalizability of optimal discriminant analysis
models

Cross-validation in the ITSA context connotes estimating the
generalizability of the model when it is applied to future points
in the time series or to similar series (e.g. other states implementing
anti-smoking campaigns) assuming they are comparable on other
characteristics. Several algorithms commonly used to estimate
model generalizability include k-fold cross-validation, bootstrapping
and leave-one-out jackknife (LOO) cross-validation [19,23,24,31,32].
Presently, ODA implements the LOO approach, which is simply
n-fold cross-validation, where n is the number of observations in
the dataset. Each observation in turn is left out, the predicted class
membership is obtained for the hold-out observation and accuracy
is determined as success or failure in predicting the actual class
membership of that observation. The results of all n predictions
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are used to calculate LOO (validity) accuracy, which is then
compared with total sample (training) accuracy.

Analytic approach

While there currently is no ‘rule of thumb’ for defining the circum-
stances in which structural breaks invalidate treatment effect
estimates drawn from an ITSA model, the identification of one
or more structural breaks in the pre-intervention period should
serve as an indicator that further scrutiny of the data is warranted,
and assumptions of a treatment effect should be challenged. In
order to systematically assess the presence or absence of structural
breaks in years prior to 1989, a series of 18 ‘pseudo-interventions’
was generated – one for each year commencing in 1970 and
ending in 1988. For example, in the pseudo-intervention year
1970, the intervention is set to 1 for all years from 1971 onward,
while 1970 represents the sole pre-intervention period and is set
to 0. At the other end of the continuum, this layout is reversed,
with the final pseudo-intervention year being 1988: here, all years
from 1970 to 1987 represent pre-pseudo-intervention periods and
are set to 0, while 1988 represents the pseudo-intervention year
and is set to 1.
In ODA each pseudo-intervention is treated as a class variable

with two categories – either pre-pseudo-intervention (0) or post-
pseudo-intervention (1) period. In this study the relationship be-
tween the pseudo-intervention and per capita cigarette pack sales
was ascertained using an ODA model of the form: if annual ciga-
rette sales ≤ (cut-point) then predict that the observation is from the
post-pseudo-intervention; otherwise predict the observation is
from the pre-pseudo-intervention period (in the actual analysis a
non-directional ‘two-tailed’ hypothesis was tested for all ODA
analyses).
As this study involved a total of 18 tests of statistical significance,

we controlled for the effect of multiple testing by performing a
sequentially rejective Sidak Bonferroni-type multiple comparisons
procedure to ensure an experimentwise P< 0.05 [23]. Exact P
values were estimated using 25000 Monte Carlo experiments.
Finally, the upper-bound of expected cross-generalizability of

ODA models across time was assessed using LOO analysis, in
which sequential classification of every year in the training sample
was used to generate a model holding out the year being classified.
When identical ESS is obtained in training and validity analysis,
this suggests the training model may cross-generalize to the
following year with comparable reliability and strength. However,
obtaining ESS that is lower in LOO than in training analysis
suggests the cut-point that maximizes predictive accuracy in train-
ing analysis may not cross-generalize to the following year with
comparable reliability and strength [23,24]. LOO requires at least
two observations in both the pseudo-pre-intervention and
pseudo-post-intervention periods, and thus is not reported for
pseudo-interventions with one observation per class category
(1970, 1987 and 1988).

Results
The Table 1 presents the annual actual cigarette sales per capita,
the ODA derived cutpoint on cigarette sales for predicting belong-
ing to the pre-pseudo-intervention and post-pseudo-intervention

periods, and reliability and accuracy measures (P values and
ESS) for training and LOO analysis. While no ODA model could
be obtained for 1988 and no LOO model could be obtained for
1970, 1987 or 1988, ODA identified statistically significant struc-
tural breaks (i.e. generalized P< 0.05) for all years between 1975
and 1986 based on analyses involving the total sample (training
analysis) and between 1976 and 1985 when considering LOO
cross-validation. When considering only structural breaks meeting
the more stringent Sidak adjusted P values, then all years between
1977 and 1985 met the experimentwise criterion for the training
analysis, and 1979 through 1983 and 1985 met the experimentwise
criterion in LOO cross-validation analysis. ESS values ranged
from 53% to 100% for the training analysis (representing rela-
tively strong to perfect effect strength), and from 28% to 100%
for LOO analysis (representing moderate to perfect effect
strength).

When considering Sidak-adjusted P values, ESS, and type of
analysis (training and LOO) together, perfect structural breaks
(i.e. the ESS in training and in LOO analysis are both 100% and
have experimentwise P< 0.05) are identified for the years 1983
and 1985, and strong, reproducible, statistically reliable structural
breaks are identified for the years 1979 through 1982.

Discussion
The present ODA analysis indicates that numerous structural
breaks occurred prior to the actual initiation of Proposition 99 in
1989 – including perfect structural breaks (i.e. ESS = 100 in both
training and LOO analyses) in 1983 and 1985 – thereby casting
doubt on the validity of treatment effects estimated for the actual
intervention when using a single-group ITSA design [2]. More
broadly, these results highlight the importance of routinely
performing structural break analyses when using the single-group
ITSA framework as a way to test the sensitivity of treatment effect
estimates [33].

The ODA-based approach described here provides a robust
framework for analyzing structural breaks in ITSA designs due
to the following features. First, as a machine learning algorithm,
ODA is not as constrained by a small number of observations as
are conventional statistics-based methods. This is particularly
important for short time-series where regression-based structural
break analyses fail to obtain parameter estimates for observations
near to the beginning or to the end of the sample [34]. Of course,
for ODA, the smaller a sample becomes, the greater the model
ESS is needed to render a statistically reliable result, and for very
small samples, only models achieving perfect or nearly perfect
accuracy yield P< 0.05 [24,35,36].

Second, the ODA algorithm, with its associated measure of clas-
sification performance (ESS) and non-parametric permutation
tests, can be universally applied to any variable type and is not
affected by skewed data or outliers – a concern that may arise in
the context of meeting assumptions underlying the validity of the
estimated P value using conventional statistics [29,30]. And third,
ODA can directly estimate the generalizability of the model when
it is applied to future points in the time series or to other interven-
tions with similar characteristics.

In summary, for applications using the single-group ITSA
framework for estimating treatment effects, this paper highlights
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the importance of – and an intuitive, transparent machine learning
methodology for – assessing the existence of structural breaks that
may occur in the time series prior to the initiation of an actual in-
tervention. We recommend that structural break sensitivity analy-
sis is routinely incorporated in all research using the single-
group ITSA design, as a means of evaluating the unique efficacy
of the actual intervention in influencing the trajectory of a tempo-
ral outcome measure.

Acknowledgement
We wish to thank Julia Adler-Milstein for reviewing the manu-
script and providing many helpful comments.

References
1. Linden, A. & Adams, J. L. (2011) Applying a propensity-score based

weighting model to interrupted time series data: improving causal
inference in program evaluation. Journal of Evaluation in Clinical
Practice, 17, 1231–1238.

2. Linden, A. (2015a) Conducting interrupted time-series analysis for
single- and multiple-group comparisons. The Stata Journal, 15, 480–500.

3. Campbell, D. T. & Stanley, J. C. (1966) Experimental and Quasi-
Experimental Designs for Research. Chicago, IL: Rand McNally.

4. Shadish, W. R., Cook, T. D. & Campbell, D. T. (2002) Experimental
and Quasi-Experimental Designs for Generalized Causal Inference.
Boston: Houghton Mifflin.

5. Linden, A. (2007) Estimating the effect of regression to the mean in
health management programs. Disease Management and Health
Outcomes, 15, 7–12.

6. Linden, A. (2013) Assessing regression to the mean effects in health
care initiatives. BMC Medical Research Methodology, 13, 1–7.

7. Linden, A., Adams, J. & Roberts, N. (2004) The generalizability of
disease management program results: getting from here to there.
Managed Care Interface, 17, 38–45.

8. Biglan, A., Ary, D. & Wagenaar, A. C. (2000) The value of
interrupted time-series experiments for community intervention
research. Prevention Science, 1, 31–49.

9. Gillings, D., Makuc, D. & Siegel, E. (1981) Analysis of interrupted
time series mortality trends: an example to evaluate regionalized
perinatal care. American Journal of Public Health, 71, 38–46.

10. Muller, A. (2004) Florida’s motorcycle helmet law repeal and fatality
rates. American Journal of Public Health, 94, 556–558.

11. Briesacher, B. A., Soumerai, S. B., Zhang, F., Toh, S., Andrade, S. E.,
Wagner, J. L., Shoaibi, A. & Gurwitz, J. H. (2013) A critical review of
methods to evaluate the impact of FDA regulatory actions.
Pharmacoepidemiology and Drug Safety, 22, 986–994.

12. Ramsay, C. R., Matowe, L., Grilli, R., Grimshaw, J. M. & Thomas, R.
E. (2003) Interrupted time series designs in health technology
assessment: lessons from two systematic reviews of behavior change
strategies. International Journal of Technology Assessment in Health
Care, 19, 613–623.

13. Riley, W. T., Glasgow, R. E., Etheredge, L. & Abernethy, A. P.
(2013) Rapid, responsive, relevant (R3) research: a call for a rapid
learning health research enterprise. Clinical and Translational
Medicine, 2, 1–6.

Table 1 Cigarette sales per capita, ODA model cutpoint on cigarette sales for predicting group assignment in the pseudo-intervention period, and ac-
curacy measures (P values and ESS) for corresponding training and LOO analyses

Training set LOO analysis

Year
Per capital
sales (in packs)

Predict intervention
if sales ≤ P value ESS P value ESS

1970 123.00 122.45 0.8474 61.11% — —

1971 121.00 120.60 0.5262 52.94% 0.3217 47.06%
1972 123.50 120.60 0.2956 56.25% 0.1703 50.00%
1973 124.40 120.60 0.1530 60.00% 0.3329 28.33%
1974 126.70 120.60 0.0686 69.23% 0.1842 37.14%
1975 127.10 120.60 0.0204* 75.00% 0.0914 44.87%
1976 128.00 120.60 0.0069* 81.82% 0.0399* 52.38%
1977 126.40 120.60 0.0018** 90.00% 0.0149* 60.23%
1978 126.10 120.60 0.0003** 90.91% 0.0045* 68.89%
1979 121.90 120.60 0.0001** 100.00% 0.0010** 78.89%
1980 120.20 119.40 0.0001** 100.00% 0.0002** 87.50%
1981 118.60 117.00 0.0001** 100.00% 0.0003** 85.71%
1982 115.40 113.10 0.0001** 100.00% 0.0006** 83.33%
1983 110.80 107.80 0.0003** 100.00% 0.0001** 100.00%
1984 104.80 103.80 0.0007** 100.00% 0.0158* 68.33%
1985 102.80 101.25 0.0020** 100.00% 0.0010** 100.00%
1986 99.70 98.60 0.0122* 100.00% 0.2047 44.12%
1987 97.50 93.80 0.1053 100.00% — —

1988 90.10 — — — — —

Notes:
— No ODA model possible
**Experimentwise P< 0.05;
*Generalized P< 0.05
ESS, effect size sensitivity (0 = chance accuracy, 100 = perfect accuracy)
LOO, leave-one-out (jackknife) cross-validation.

A. Linden and P.R. YarnoldMachine learning to identify structural breaks

854 © 2016 John Wiley & Sons, Ltd.



14. Effective Practice and Organisation of Care (EPOC). (2015) Interrupted
Time Series (ITS) Analyses. EPOC Resources for review authors. Oslo:
Norwegian Knowledge Centre for the Health Services. Available at:
http://epoc.cochrane.org/epoc-specific-resources-review-authors (Accessed
date 26 February 2016)

15. Hansen, B. E. (2001) The new econometrics of structural change:
dating breaks in US labor productivity. The Journal of Economic
Perspectives, 15, 117–128.

16. Perron, P. (2006) Dealing with structural breaks. In Palgrave
Handbook of Econometrics: Econometric Theory, Vol I (eds T. C.
Mills & K. Patterson), pp. 278–352. Basingstoke, UK: Palgrave.

17. Yarnold, P. R. & Soltysik, R. C. (1991) Theoretical distributions of
optima for univariate discrimination of random data. Decision
Sciences, 22, 739–752.

18. Linden, A. (2006) Measuring diagnostic and predictive accuracy in
disease management: an introduction to receiver operating characteristic
(ROC) analysis. Journal of Evaluation in Clinical Practice, 12, 132–139.

19. Linden, A. & Yarnold, P. R. (2016) Using data mining techniques to
characterize participation in observational studies. Journal of
Evaluation in Clinical Practice, 22, 835–843.

20. Linden, A. & Yarnold, P. R. (2016) Using machine learning to assess
covariate balance in matching studies. Journal of Evaluation in
Clinical Practice, 22, 844–850.

21. Linden, A. (2015b) LOOCLASS: stata module for generating
classification statistics of leave-One-Out cross-validation for binary
outcomes. Statistical Software Components s458032, Boston College
Department of Economics. Downloadable from http://ideas.repec.org/
c/boc/bocode/s458032.html [Accessed on 26 February 2016].

22. Linden, A. (2015c) CLASSTABI: Stata module for generating
classification statistics and table using summarized data. Statistical
Software Components s458127, Boston College Department of
Economics. Downloadable from https://ideas.repec.org/c/boc/bocode/
s458127.html [Accessed on 26 February 2016]

23. Yarnold, P. R. & Soltysik, R. C. (2005) Optimal Data Analysis: A
GuidebookWith Software for Windows. Washington, DC: APA Books.

24. Yarnold, P.R., & Soltysik, R.C. (2016) Maximizing Predictive Accuracy.
Chicago, IL: ODA Books. DOI: 10.13140/RG.2.1.1368.3286

25. Breslow, L. & Johnson, M. (1993) California’s Proposition 99 on
Tobacco, and Its Impact. Annual Review of Public Health, 14, 585–604.

26. Abadie, A., Diamond, A. & Hainmueller, J. (2010) Synthetic control
methods for comparative case studies: estimating the effect of
California’s tobacco control program. Journal of the American
Statistical Association, 105, 493–505.

27. Abadie, A., Diamond, A., & Hainmueller, J. (2014) SYNTH: Stata
module to implement synthetic control methods for comparative
case studies. Statistical Software Components S457334, Department
of Economics, Boston College. https://ideas.repec.org/c/boc/bocode/
s457334.html

28. Orzechowski, W. & Walker, R. C. (2005) The Tax Burden on
Tobacco. Historical Compilationvol. 40. Arlington, VA:
Orzechowski & Walker.

29. Grimm, L. G. & Yarnold, P. R. (eds) (1995) Reading and
Understanding Multivariate Statistics. Washington, D.C.: APA
Books.

30. Grimm, L. G. & Yarnold, P. R. (eds) (2000) Reading and
Understanding More Multivariate Statistics. Washington, D.C.: APA
Books.

31. Witten, I. H., Frank, E. & Hall, M. A. (2011) Data Mining: Practical
Machine Learning Tools and Techniques, 3rd edn. San Francisco:
Morgan Kaufmann.

32. Linden, A., Adams, J. & Roberts, N. (2005) Evaluating disease
management program effectiveness: an introduction to the bootstrap
technique. Disease Management and Health Outcomes, 13, 159–167.

33. Linden, A., Adams, J. & Roberts, N. (2006) Strengthening the case for
disease management effectiveness: unhiding the hidden bias. Journal
of Evaluation in Clinical Practice, 12, 140–147.

34. Andrews, D. W. K. (1993) Tests for parameter instability and
structural change with unknown change point. Econometrica, 61,
821–856.

35. Yarnold, P. R. (2013) Percent oil-based energy consumption and
average percent GDP growth: a small sample UniODA analysis.
Optimal Data Analysis, 2, 60–61.

36. Yarnold, P. R. (2015) UniODA vs. McNemar’s test: a small sample
analysis. Optimal Data Analysis, 4, 27–28.

Machine learning to identify structural breaksA. Linden and P.R. Yarnold

855© 2016 John Wiley & Sons, Ltd.

http://epoc.cochrane.org/epoc-specific-resources-review-authors
http://ideas.repec.org/c/boc/bocode/s458032.html
http://ideas.repec.org/c/boc/bocode/s458032.html
https://ideas.repec.org/c/boc/bocode/s458127.html
https://ideas.repec.org/c/boc/bocode/s458127.html
http://dx.doi.org/10.13140/RG.2.1.1368.3286
https://ideas.repec.org/c/boc/bocode/s457334.html
https://ideas.repec.org/c/boc/bocode/s457334.html

