

Supporting Information

for Macromol. Rapid Commun., DOI: 10.1002/marc.201600437

Needleless Electrohydrodynamic Cojetting of Bicompartmental Particles and Fibers from an Extended Fluid Interface

Jacob H. Jordahl, Stacy Ramcharan, Jason V. Gregory, and Joerg Lahann*

((Supporting Information should be included here for submission only; for publication, please provide Supporting Information as a separate PDF file.))

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013.

Supporting Information

for Macromol. Rapid Commun., DOI: 10.1002/marc.201600437

Needle-less electrohydrodynamic co-jetting of bicompartmental particles and fibers

Jacob H. Jordahl, Stacy Ramcharan, Jason V. Grergory, Joerg Lahann*

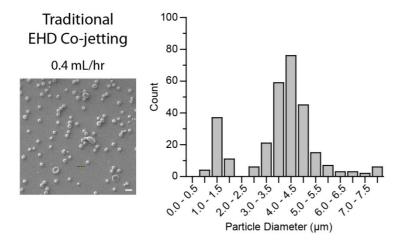
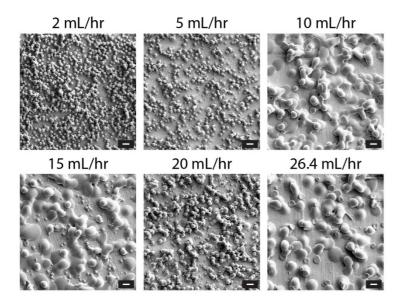
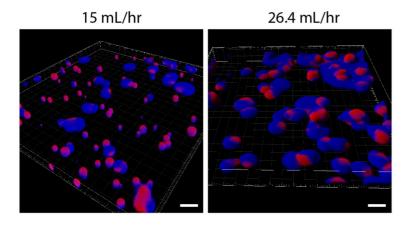




Figure S1. Microparticles fabricated using traditional EHD co-jetting technique. Parallel capillaries were utilized to obtain bicompartmental particles. A stable cone-jet is obtained at 0.4 ml hr⁻¹, and produces particles of a similar morphology and particle size distribution as particles fabricated using the needle-less high-throughput co-jetting device (Figure 3).

Figure S2. The effect of flow rate on resultant particle morphology. At flow rates of 2.0 to 5 ml hr⁻¹, particles with a spherical morphology were produced. At flow rates between 10 and 20 ml hr⁻¹ a mixture of spherical particles and flattened disc morphologies were observed. The 26.4 ml hr⁻¹ flow rate contained both discs and red blood cell shaped particles. Scale bars indicate 10 μm.

Figure S3. Bicompartmental particle architecture is maintained at higher flow rates despite different particle morphologies. At 15 ml hr⁻¹ a combination of bicompartmental particles and discs were fabricated. Similarly, bicompartmental discs were observed at 26.4 ml hr⁻¹ flow rates. Scale bars indicate 20 μ m.

Movie S1. Demonstration of the device operation during fabrication of bicomponent PLGA/PVAc fibers at a flow rate of 26.4 ml hr⁻¹, collector distance of 40 cm, and applied voltage of 75 kV.

Movie S2. Deposition of the resultant bicomponent PLGA/PVAc fibers on the collection electrode at a flow rate of 26.4 ml hr⁻¹, collector distance of 40 cm, and applied voltage of 75 kV.