ESTIMATION OF COEFFICIENTS OF UNIVALENT FUNCTIONS BY A TAUBERIAN REMAINDER THEOREM

PETER L. DUREN

Let S denote the class of functions

$$f(z) = z + a_2 z^2 + a_3 z^3 + \ldots$$

analytic and univalent in the unit disk $|z| < 1$. One of the most penetrating results on the coefficients a_n is Hayman's theorem [6, 7] that

$$\lim_{n \to \infty} \frac{|a_n|}{n} = a \leq 1,$$ \hspace{1cm} (2)

for each $f \in S$, with equality only for the Koebe function

$$k(z) = z(1-z)^{-2} = \sum_{n=1}^\infty nz^n$$

or for one of its rotations. Hayman's proof begins with the elementary observation that each $f \in S$ has a direction $e^{i\theta_0}$ of maximal growth, in the sense that

$$\lim (1-r)^2 |f(re^{i\theta_0})| = \alpha \hspace{1cm} (3)$$

and the limit is 0 for every other direction. In particular, the direction $e^{i\theta_0}$ is unique if $\alpha > 0$ (see also Milin [12; p. 82]). The second step is the deduction of (2) from (3). Hayman's argument is relatively simple for $\alpha = 0$, but quite complicated for $\alpha > 0$.

Milin [11, 12] has recently simplified this latter step in the case $\alpha > 0$. His argument is essentially based upon the following result, which may be viewed as a new Tauberian theorem. Let

$$g(r) = \sum_{n=0}^\infty b_n r^n, \hspace{1cm} b_0 = 1,$$

be a power series with complex coefficients, convergent for $-1 < r < 1$. Let

$$s_n = \sum_{k=0}^n b_k, \hspace{1cm} \sigma_n = \frac{1}{n+1} \sum_{k=0}^n s_k,$$

and

$$\log g(r) = \sum_{n=1}^\infty c_n r^n.$$ \hspace{1cm} (4)

Theorem A (Milin). Suppose $|g(r)| \to \alpha$ as $r \to 1$, and

$$\sum_{n=1}^\infty n|c_n|^2 < \infty.$$
Then $|s_n| \to \alpha$ and $|\sigma_n| \to \alpha$ as $n \to \infty$.

This theorem is applied to the function
\[g(r) = \frac{(1-r)^2}{r} f(r), \]
where f is given by (1) and it is assumed, after a rotation, that $\theta_0 = 0$. Then a calculation gives
\[s_n = a_{n+1} - a_n \quad \text{and} \quad \sigma_{n-1} = a_n/n. \]

The Tauberian condition $\sum n |c_n|^2 < \infty$ is a consequence of the following theorem of Bazilevich [2, 12], for $\alpha > 0$.

Theorem B (Bazilevich). Let $f \in S$, and let
\[\log \left\{ \frac{f(z)}{z} \right\} = 2 \sum_{n=1}^{\infty} \gamma_n z^n. \]

Suppose $\alpha > 0$ and $\theta_0 = 0$. Then
\[\sum_{n=1}^{\infty} n|\gamma_n - (1/n)|^2 \leq \frac{1}{2} \log 1/\alpha. \]

One curious feature of Milin's Tauberian theorem is the assumption that $|g(r)|$, rather than $g(r)$, has a limit. An early step in Milin's proof is to show that the partial sums s_n are bounded. Hence, if $g(r) \to \alpha$, one can appeal to a classical Tauberian theorem [5; p. 154] to conclude that $\sigma_n \to \alpha$.

Under a much stronger hypothesis, Bazilevich [1, 2, 12] has estimated the rate of convergence of $|a_n/n|$ to α. He assumes that $f \in S$ maps the unit disk onto the exterior of an analytic arc. Since the arc is analytic at ∞, a Schwarz reflection shows that the square-root transform of f has the form
\[\sqrt{(f(z^2))} = \frac{\sqrt{(\alpha)}z}{1-z^2} [1 + B_1(1-z^2) + B_2(1-z^2)^2 + \ldots] \]
near the pole at $z = 1$. In fact, an elementary argument [1] shows that B_1 is purely imaginary. Bazilevich concludes that
\[|a_n| \leq \alpha n + C_1 \sqrt{(\log n)} + C_2, \]
where C_1 and C_2 depend only on α, B_1, and $\text{Re } B_2$.

The purpose of the present paper is to show that under a relatively mild assumption on the behaviour of f along its ray of maximal growth, one can obtain a somewhat weaker estimate on the rate of convergence of a_n/n. The result is as follows. Observe the implicit assumption, made without loss of generality, that $\theta_0 = 0$.

Theorem. For some positive constants B and δ, and for some complex number $s \neq 0$, let $f \in S$ satisfy the inequality
\[\left| \frac{(1-r)^2}{r} f(r) - s \right| \leq B(1-r)^{\delta}, \quad 0 < r < 1. \]
Then

\[\left| \frac{a_n}{n} - s \right| \leq \frac{C}{\log n}, \quad n = 2, 3, \ldots, \]

where \(C \) depends only on \(|s|, B, \) and \(\delta \).

The proof depends upon a Tauberian remainder theorem, essentially due to Freud [3] and Korevaar [9], which we now state in the notation of Theorem A. A proof of Theorem C by the Karamata–Wielandt method is also implicit in Ganelius’ notes [4; pp. 3–6].

Theorem C (Freud–Korevaar). For some positive constants \(B \) and \(\delta \), suppose

\[|g(r) - s| \leq B(1-r)^\delta, \quad 0 < r < 1, \]

and suppose \(|s_n| \leq M, \quad n = 1, 2, \ldots. \) Then

\[|\sigma_n - s| \leq C/\log n, \quad n = 2, 3, \ldots, \]

where \(C \) depends only on \(B, M, \) and \(\delta \).

Proof of Theorem. Let \(\alpha = |s|, \) and define \(g \) by the relation (5). Since \(\sigma_{n-1} = a_n/n, \) we need only obtain a uniform bound for \(s_n = a_{n+1} - a_n \) in terms of \(\alpha \) and \(B. \) It is known, of course, that \(\left| a_{n+1} - a_n \right| \) has an absolute bound. Our hypothesis on \(f \) implies [12; p. 87] that \(|a_n| \to \infty \) and \(\arg a_n \to \arg s, \) but it seems difficult to estimate the rate of convergence in terms of \(\alpha \) and \(B \) alone. Accordingly, we follow Milin’s argument to estimate \(s_n. \)

Let \(c_n \) be defined by (4), and \(\gamma_n \) by (6). Then \(c_n = 2(\gamma_n - 1/n), \) and Theorem B gives

\[\sum_{n=1}^{\infty} n|c_n|^2 \leq 2 \log 1/\alpha. \quad (7) \]

On the other hand,

\[\sum_{n=0}^{\infty} s_n r^n = \frac{g(r)}{1-r} = \exp \left(\sum_{n=1}^{\infty} (c_n + (1/n)) r^n \right). \]

Hence, by an inequality of Lebedev and Milin [12; p. 51],

\[|s_n|^2 \leq \exp \left\{ \sum_{k=1}^{n} k|c_k| + (1/k)^2 - \sum_{k=1}^{n} (1/k) \right\} \]

\[\leq (1/\alpha^2) \exp \left\{ 2 \Re \sum_{k=1}^{n} c_k \right\}, \]

where (7) has been used. Furthermore, by hypothesis,

\[\exp \left(\Re \sum_{k=1}^{n} c_k \right) = |g(r)| \exp \left(\Re \left(\sum_{k=1}^{n} c_k - \sum_{k=1}^{\infty} c_k r^k \right) \right) \]

\[\leq (\alpha + B) \exp \left\{ \sum_{k=1}^{n} c_k - \sum_{k=1}^{\infty} c_k r^k \right\}. \]
But as in the proof of Fejér's Tauberian theorem [10; p. 65],

\[\left| \sum_{k=1}^{n} c_k - \sum_{k=1}^{\infty} c_k r^k \right| \leq \left| \sum_{k=1}^{n} c_k (1 - r^k) \right| + \left| \sum_{k=n+1}^{\infty} c_k r^k \right| \]

\[\leq \left\{ \sum_{k=1}^{n} |c_k|^2 \right\}^{1/2} \left\{ \sum_{k=1}^{n} (1/k) (1 - r^k)^2 \right\}^{1/2} + \frac{1}{n} \left\{ \sum_{k=n+1}^{\infty} k |c_k|^2 \right\}^{1/2} \left\{ \sum_{k=n+1}^{\infty} kr^{2k} \right\}^{1/2} \]

\[\leq 2(2 \log (1/\alpha))^{1/2}, \]

with the choice \(r = 1 - (1/n) \). This establishes the required bound on \(s_n \), which completes the proof of the theorem.

One can make a similar quantitative statement when \(\alpha = 0 \). In this case one can proceed directly, without recourse to Tauberian remainder theorems. Since there is no longer a unique direction of maximal growth, the natural counterpart of our theorem simply estimates \(a_n \) in terms of the rate of growth of the maximum modulus of \(f \). See, for example, Hayman [8; p. 392].

I wish to thank the referee for helpful criticism of the manuscript.

References

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104 U.S.A.