Expression and role of PAICS, a de novo purine biosynthetic genein prostate cancer
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BACKGROUND. Our goal was to investigatde novo purine biosynthetic gene PAICS

expression and evaluate its role in prostate cgmogression.



METHODS. Next-generation sequencing, qRTPCR and immunoblulysis revealed an
elevated expression of de novo purine biosynthetic gene, Phosphoribosylaminoizutz
Carboxylase, Phosphoribosylaminoimidazole Succifmmeamide SynthetaséPAICS) in a
progressive manner in prostate cancer. Functiaralyses were performed using prostate cancer
cell lines- DU145, PC3, LnCaP and VCaP. The oncgproperties of PAICS were studied
both by transient and stable knockdown strategiesjvo chicken chorioallantoic membrane
(CAM) and murine xenograft models. Effect of BETommodomain inhibitor JQ1 on the

expression level of PAICS was also studied.

RESULTS. Molecular staging of prostate cancer is importidtor in effective diagnosis,
prognosis and therapy. In this study, we identifk novo purine biosynthetic gen®AICSis
overexpressed in PCa and its expression correlateddisease aggressiveness. Through several
in vitro andin vivo functional studies, we show that PAICS is necegsEar proliferation and
invasion in prostate cancer cells. We identifiedlJ@ BET-domain inhibitor previously
implicated in regulatingMYC expression and demonstrated role in prostate caabeogates
PAICS expression in several prostate cancer cells. €urtbre, we observe loss oYC

occupancy oif*AICS promoter in presence of JQ1.

CONCLUSIONS. Here, we report that evaluation BAICS in prostate cancer progression and
its role in prostate cancer cell proliferation andasion and suggest it as a valid therapeutic
target. We suggest JQ1, a BET-domain inhibitorpassible therapeutic option in targeting

PAICSin prostate cancer.

INTRODUCTION



Prostate cancer (PCa) is one of the most commotecsammong men in the United States and
across the world (1,2). Prostate organ functiorcriically dependent on steroid hormone
androgen. Early stages of localized prostate carcer usually androgen receptor (AR)
dependent and therefore can be effectively treatddanti-androgens. However, over time PCa
progresses into a castration resistant prostateecafCRPC) that can be either androgen
dependent or independent. The CRPCs are genetieadty molecularly heterogeneous,

aggressive and metastatic PCa are lethal (3).

Besides AR, aberrant levels lgifYC expression either as genetic dysregulation (aroatibn) or
epigenetic modulation (increased expression) in BGassociated with poor prognostication (4-
6). However,MYC is a transcription factor that regulates myriadradtabolic pathways which
includes but is not limited to purine biosynthesigjino acid metabolism, glycolysis, etc (7,8).
MYC targeting has been difficult endeavor and is aereid “undruggable” (9). Alternate
strategies to counteMYC-mediated oncogenesis include targeting synthetital partners for
MYC or pathways regulated directly or indirectly bycreasedMYC expression (10)MYC
mediated regulation of purine biosynthetic pathwagve recently been demonstrated in

androgen sensitive prostate cancer cells (8).

Recently, there has been renewed appreciationl®@fofanetabolism in cancer initiation,
progression and metastasis (11). Numerous metalgelies and metabolites have become
candidates for diagnosis, prognosis and therapd¢atgeting. For example, IDH1 and IDH2
mutations have been discovered to confer alterepepties that results in production of
hydroxyglutarate instead af-ketoglutarate (12). This in turn triggers epigenehanges that
promote oncogenesis. Sarcosine accumulation dymingtate cancer progression is potential

diagnostic marker (13). Among other examples, anmanms such as glycine and glutamine



dependency of rapidly proliferating cells, canceedfic activation of isoform variants of

hexokinase (hexokinase?2) have therapeutic potgiudal

Our present study discovered an increased expresdiale novo purine metabolic enzyme
Phosphoribosylaminoimidazole  Carboxylase, Phospbsylaminoimidazole  Succino-
carboxamide Synthetase, (PAICH prostate cancer. Our analyses show incred&dLS
expression correlates with progression of prostarecer from benign, localized to metastatic
cancer thereby revealing its potential as progoessiarker. Througim vitro andin vivo studies,

we demonstrate the necessary role of PAICS in gi@stancer cell growth, invasion and
metastasis. We demonstrate that PAEXpression can be abrogated using JQ1, a BET-domain
protein inhibitor, potentially through direct tatog of MYC protein. Our study reveals PAICS
as a marker of disease progression. In additionshvesv its essential role in tumor growth and

metastasis that can be potentially targeted uskf Bromodomain protein inhibitors.

MATERIALSAND METHODS

Cdl Lines

Prostate cancer cell lines DU145, PC3 and LnCaPewgown in RPMI 1640 (Life
Technologies, NY), while VCaP was grown in DMEM kvpenicillin-streptomycin (100 U/mL)
and 10% FBS (Invitrogen) in 5% GQell culture incubator. Prostate cancer cells wefected
with lentiviruses expressing PAICS shRNA or nomgé&ding sShRNA controls and stable cell

lines were generated by selection withgIml puromycin (Life Technologies, NY).

Benign and Tumor Tissues



In this study, we utilized tissues from clinicaltcalized prostate cancer patients who underwent
radical prostatectomy. Samples were also obtaimedh fandrogen-independent metastatic
prostate cancer patients from a rapid autopsy progthrough the University of Michigan
Prostate SPORE Tissue Core as described previtbslyl). The detailed clinical and
pathological data are maintained in a secure oglatidatabase. The Institutional Review Board
at the University of Michigan Medical School appedvthis study. Both radical prostatectomy
series and the rapid autopsy program are parteofhiversity of Michigan Prostate SPORE

Tissue Core.

Gene expression from The Cancer Genome Atlas (TCGA)

The patients clinical data for prostate adenocarmm (PRAD) were downloaded using TCGA-
assembler (17). However, downloaded data compwo$enhly tumor pathologic (pT) and node
pathologic (pN) information. Thus based on pT andN pdata as per
"https://cancerstaging.org/references-tools/quiekemces/Documents/ProstateSmall.pdf",
samples were categorized into primary and metastatnor. Afterwards, level3 TCGA RNA-
seq data (including raw_read_count and scaled_a&ifor each sample) for all primary tumor,
metastatic tumor and matched normal samples werenldaded using TCGA-assembler.
Transcript per million values for each gene wasamlgtd by multiplying scaled_estimate by

1,000,000. Boxplot was generated using R [httpsw.c-project.org/].

I mmunohistochemistry

Benign and prostate cancer tissues were obtairmed fhe radical prostatectomy series at the
University of Michigan and from the Rapid Autopsyof§ram, both part of the University of

Michigan Prostate SPORE programs, through apprepinéormed consent. Institutional Review



Board approval was obtained to procure and analyme tissues used in this study.
Immunohistochemistry (IHC) was carried out to ewddu PAICS expression using mouse
monoclonal antibody against PAICS (GeneTex, CA#0ailX83950). IHC was performed
using an automated protocol developed for the DISERY XT automated slide staining
system (Ventana Medical Systems, Inc.,) using Wiga anti-mouse HRP (Cat# 760-
4313,Ventana Medical Systems, Inc.,) and was delaasing ChromoMap DAB (Cat#760-159,
Ventana Medical Systems Inc.). Hematoxylin 1l (T&®&-2208 Ventana-Roche, Tucson, AZ,
USA) was used as the counterstain. The study pagtsdl Dr. Kunju (P.K.) evaluated IHC

staining.

PAICS Progression Analysis (TMA 145)

TMA 145 contained 213 cores from 57 patients. A&gclusion of lost, stromal, and necrotic
tumor cores, 167 cores remained from 50 patiertsr &xclusion of HGPIN samples, 156 cores
remained from 49 patients. Cores were only retaioedsubsequent analysis if their intended
status (localized cancer vs. benign) agreed wihetlaluation status, resulting in 149 cores from
49 patients. Product score (the product of staipeigentage, 0-100%, and staining intensity, O-
4), was computed for each core, resulting in a oreasent of staining ranging from 0 to 400.
Multiple cores from the same patient were aggrebatbenever they were of the same type
(benign, localized cancer, or metastatic) by takigmedian product score across cores for that
patient. This resulted in 54 data points from 49Qigoés. The 5 patients with multiple

measurements each contained both cancer and bEmiggmon the TMA.

Immunaoblot Analyses



Antibodies used in the study are listedTiable S1. All antibodies were employed at dilutions
optimized in our laboratory. For immunoblot anadysiOug protein samples were separated on a
SDS-PAGE and transferred onto Immobilon®-P PVDF fmeme (EMD Millipore, Billerica,
MA). The membrane was incubated for one hour ity buffer (Tris-buffered saline, 0.1%
Tween [TBS-T], 5% nonfat dry milk) followed by inleation overnight at 4°C with the primary
antibody. After two washes for five minutes eachthwiBS-T, the blot was incubated with
horseradish peroxidase-conjugated secondary antido8000) for 1 h at room temperature and
signals were visualized by Luminata™ Crescendo doemmescence western blotting substrate

as per manufacturer’s protocol (EMD Millipore, Bilica, MA).
RNA Interference and Transfection

The PAICS and non-targeting small interfering RN&RNA) duplexes Table S2) were

purchased from Dharmacon, Lafayette, CO (GE Heafthc USA). Transfections were
performed with Lipofectamine® RNAIMAX (Life Technogies, NY) reagent. PAICS shRNAs
(Table S2) were purchased from SBI (System Biosciences, NoarView, CA). Lenti-viruses

for these stable knockdowns were generated by theetsity of Michigan Vector Core. For
RNA interference, we seeded prostate cancer cellsxal@ cells per well in a 6-well plate and
twelve hours later the cells were transfected WstRNA duplexes. A second identical
transfection was performed 24 hours later. Sevemyhours after the first transfection, cells

were harvested for RNA isolation or immunoblot ges.
Treatment with JQ1

Prostate cancer cells — DU145, PC3, LnCaP and @B were seeded in 6-well plates and

propagated at 37 °C in an atmosphere of 5 % @G humidified incubator overnight. Cells



were then treated with 1 or 5 uM of JQ1 (Cat# 2748RS Bioscience, Inc., San Diego, CA).
JQ1 was dissolved in dimethyl sulfoxide (DMSO; Ther Fisher Scientific, Waltham, MA,

USA).
Céell Proliferation Assays

Cell proliferation was measured by cell countingr Rhis, transient and stable PAICS
knockdowns were used. After 72 h of transfectioimngisspecific sSiRNA, the cells were
trypsinized and seeded at a density of 10,000/e&lsin 24-well plates (n = 3). Non-targeting
si/sh-RNA-treated cells were served as controlenTie cells were trypsinized and counted at
specified time points by Z2 Coulter particle coun{Beckman Coulter, Brea, CA). Each

experiment has been performed with three repligaéesample.
Cdl cycle analyses

PC3 cells transfected with non-targeting SiRNA®AICS siRNAs in 6-well plate were (1 X10
cells/well) resuspended in 0.5ml Dulbecco's phospbaffered saline (DPBS). Drop-wise 100%
cold ethanol was added to the cells. The cells wertexed and incubated in Ethanol for 20
mins, before storing at 4C for further use. For staining, cells in alcohokres pelleted
(2000rpm/5 min). The alcohol was decanted and eet® washed with DPBS twice. Then, the
cells were resuspended in DPBS containing 50ugropigium iodide and 100ug/ml RNase A.
Cells were incubated in dark for 20 min before flowtometry analyses. Each sample was

measured in triplicate.

Wound Healing Assay



Prostate cancer cells- DU145, PC3 scramble sShRNRAICS stable knock down cells were
seeded in 6-well plates in RPMI-1640 containing 1f#%&l bovine serum and puromycin (1
png/ml), and then allowed to grow to confluent mayek. The cells were serum starved for 12 h
and replenished with 10% FBS-RPMI medium. The weunddiced migration was triggered by
scraping the cells with a 200 ul pipette tip, wakhdth D-PBS and replenished with respective
medium. The wound was imaged immediately (0 h) @&ntl2 h with an inverted phase-contrast

microscope under 4X objective.
Matrigel Invasion Assay

Matrigel invasion assays were performed as destrédzelier (18-20). Various test cells were
seeded onto Corning® BioCoat™ matrigel® matrix (@og, New York) in the upper chamber
of a 24-well culture plate. The lower chamber comitey respective medium was supplemented
with 10% serum as a chemo-attractant. After 4&h&, on-invading cells and matrigel matrix
were gently removed with a cotton swab. Invasivés decated on the lower side of the chamber
were stained with 0.2 % crystal violet in metharaml;dried and photographed using an inverted
microscope (4X). The invaded cells were quantifisd colorimetric assay. For colorimetric
assays, the inserts were treated with 150 pl of &0&ic acid and the absorbance measured at

560 nm.
Colony Formation Assay

After 72 h of transfection, untreated, non-targgt@md PAICS siRNA treated cells were counted
and seeded 800 cells per one well of 6-well plétigsiicates) and incubated at 8¢, 5% CQ
for 10 days. Colonies were fixed with 10% (v/v) tgialdehyde for 30 min and stained with

crystal violet (St. Louis, MO USA) for 20 min. Théime photographs of the colonies were taken



using Amersham Imager 600RGB (GE Healthcare Lifder@es, PA, USA). Colony
guantification was done using ImageQuant TL Colm®yl software (GE Healthcare Life

Sciences, PA, USA).

Chromatin mmunopr ecipitation (ChlP) Assays

ChIP assays were carried out with respective adig#so{l able S1) using the EZ-Magna ChIP
kit (Millipore, Billerica, MA) as described.(19) Ehprimer sequences for the promoters analyzed

are provided i able $4.

Chicken Chorioallantoic M embrane (CAM) Assay

The CAM assay for local cell invasion, intravasafionetastasis and tumor (or xenograft)
formation was performed as previously described22B8 After 3 days of implanting the cells in

each egg, lower CAM was harvested and extra-embryiimors were isolated and weighed.
For metastasis assay, the embryonic livers wereektgd on day 18 of embryonic growth and
analyzed for the presence of tumor cells by quatitg human Alu-specific PCR. Genomic
DNA from lower CAM and livers were prepared usingrégene DNA purification system

(Qiagen, Valencia, CA) and quantification of hunfsn-was performed as described (18-22).

An average of 8 eggs per group was used in eadiriexgnt.

Tumor Xenograft M odel

All procedures involving mice were approved by taiversity Committee on Use and Care of
Animals (UCUCA) at the University of Michigan andrdorm to all regulatory standards. To
evaluate the role of PAICS in tumor formatiornvivo, we propagated stable PAICS knockdown

PC3 cells using two-independent shRNAs and noretarg shRNA control cells, and inoculated



1 x 10 cells subcutaneously into the dorsal flank of ®kveld male Athymic nude mice (n = 8
for each group; Harlan Laboratories, Evigo Indiaotesp IN). The tumor data obtained using
scramble cells is same as used in an earlier stuthe PAICS tumor xenograft study was
conductedsimultaneously using common control animals (19). Tumor size wasasuared
biweekly, and tumor volumes were calculated usimg formula £/6) (L x W), where L =
length and W = width of the tumor. After end of teeperiment, mice from different groups

were sacrificed; the tumors were then photograpivecghed and plotted.
Statistical Analysis

To determine significant differences between twougs, Student’s two-tail t test was used for

all experiments except for microarray, p-value05@onsidered significant.
RESULTS

Through the analysis of publicly available prostagncer gene expression profiling data,
transcriptome sequencing data we establish ovessgjmn ofde novo purine biosynthetic

enzyme PAICS in prostate cancer. Furthermore, inuhistochemistry with prostate tissue
microarray demonstrate PAICS expression increasts disease progression with metastatic
prostate cancer having highest expression. ThrdRigiA interference studies we show that
PAICS is necessary for prostate cancer cell growtégsion and colony formation suggesting
PAICS is required for cancer cells. We then dematstthat PAICS is necessary for tumor
growth and metastasis by xenograft studies in maus# chorioallantoic membrane assay
(CAM). Finally, we demonstrate that PAICS expressian be targeted using JQ1, an inhibitor

of BET bromodomain proteins possibly through disiup of MYC-mediated PAICS regulation.



We therefore conclude that PAICS is potential bickeafor prostate cancer and amenable to

therapeutic targeting using BET-domain inhibitors.

PAICSisabiomarker for prostate cancer progression

Our analysis of publicly available prostate cargmme expression profiling data using Oncomine
database [Oncomine™ Platform (Life Technologiesn Ambor, MI) (23) suggested significant
overexpressiorPAICS in multiple independent gene expression profilstgdies Fig. 1A).
Analysis of transcriptome sequencing of prostatacea confirmed the increased PAICS
expression in primary prostate cancer as well aastedic prostate tumorgi@. 1B). Moreover,
TCGA data shows that PAICS is over-expressed irnastatic prostate adenocarcinonirag(
1C). Next, we validated this observation by immunofaoalysis using specific antibody against
PAICS, which showed a significantly increased PAI@Stein in primary and metastatic PCa
tissue lysates Hig. 1D). Furthermore, we validated our observations thhou
immunohistochemistry using a prostate tissue mrcagacontaining multiple benign, primary
PCa and metastatic PCa samplEgy.( 1E). We observed a strong cytoplasmic staining for
PAICS in primary PCa as well as metastatic PCa. Staming intensity analysis indicated that
PAICS is a progression associated marker with asing expression observed from primary
PCa and Metastatic PCRi¢. 1F). The difference in PAICS product scores betweamdn and
localized cancer patients is statistically sigm@ifit (P < 0.001, Student’s t-test), as is the

difference between benign and metastatic tissuesQ(B01).

PAICSisessential for prostate cancer cell proliferation and invasion

To determine the role of PAICS in prostate canar growth, we transiently knocked down

PAICS using two specific and independent siRNA dxpt in aggressive prostate cancer cell



lines DU145 and PC3 and conducted cell prolifergtianvasion and colony formation
experiments. Knockdown of PAICS was observed by umoblot analysis Kig. 2A).
Simultaneously, the cell proliferation assays weomducted in DU145 and PC3 cells by
counting the cells at various time intervals. PAI&$ckdown reduced prostate cancer cell
proliferation Eig. 2B). PAICS knockdown reduced the number of colonisscampared to
untreated and non-targeting siRNA treated cellsnaasured by colony formation ass&yg(
2C). Furthermore, knockdown of PAICS reduced canedrinvasion as measured by Boyden
chamber matrigel invasion assdyid. 2D). Additionally, stable knockdowns of PAICS were
achieved using two specific and independent shRNvash in DU145 and PC3 cells
(Supplementary Fig. 1A). Similar to transient knockdowns, stable knockdsvalso reduced
prostate cancer cell proliferatiorBupplementary Fig. S1A). Moreover, knockdown cells
displayed reduced cell motility as compared to tavgeting ShRNA cellsSupplementary Fig.
S1B). Cell cycle analysis in PAICS knockdown, showeecréased population in G1 and
increased S-phase arrested cells consistent witHC®Arole in purine biosynthesis
(Supplementary Fig. S2). Thus, thesen vitro experiments demonstrated the essential role of

PAICS in prostate cancer cell proliferation, coldagmation and invasion.

Role of PAICSin prostate cancer tumor growth

To substantiate then vitro experiments, we took advantage of bathvivo CAM (chick
chorioallantoic membrane) assay and mouse xenogediels. Earlier, CAM assays were used
successfully as amn vivo model to investigate the tumorigenic potential, assess cell
intravasation and metastasis to distant organ22)970 test this, we generated two independent
stable PAICS knockdowns in prostate cancer célig. 3A). These stable PAICS knockdown

cells showed a significant reduction in tumor weigg. 3B), as well as decreased intravasation



(Fig. 3C) and metastasig-(g. 3D) to liver. We demonstrate that PAICS knockdown amg
ability of prostate cells to grow, invade and metsize. Independently, we used mouse prostate
xenograft model for tumor growth using athymic nudie to check role of PAICS in tumor
growth and progression. As observed in CAM assay,saw significant reduction in tumor
growth and weight of PAICS shRNA cells comparedcéotrol shRNA cellsKig. 3E andF),

demonstrating iten vivo crucial role in prostate tumor growth.

Bromodomain inhibitor JQ1 inhibits PAICS expression

Inhibitors of bromodomain and extra-terminal (BE@dmain family of epigenetic reader
proteins have been demonstrated in anti-tumor igctiv various cancer models (24-27). Earlier
it was demonstrated that BET inhibitor JQ1 redlM&€ expression in several cancers including
multiple myeloma (28), prostate (24), liver(29)adhdler (30), pancreatic ductal adenocarcinoma
(27) and others. Moreover, recent studies showekdicible MYC mediated transcriptional
activation of PAICS expression in androgen-dependerostate cancer cells (7,8). To
therapeutically identify the role of JQ1 in MYC-matkkd PAICS expression, we treated
androgen-independent DU145, PC3, and androgentisensiostate cancer cell lines LnCaP and
VCaP with 1 or 5 uM of JQ1 for 48 h. JQ1 treatmdramatically reduced both MYC and
PAICS expression both at RNAypplementary Fig. S3) and proteinKig. 4A) levels. Next, we
sought to conduct chromatin immunoprecipitation I§husing MYC-specific antibody and
followed by qRTPCR using both DMSO and JQ1 tre&&dP-DNA. QRTPCR analysis using
severalPAICS-promoter specific primers, we demonstrate that dQ@dlished MYC binding at
the PAICS promoter. Thus we conclude JQ1 can decrd®8ECS expression by directly

interfering with MYC binding to its promoteFi{g. 4B).Moreover, Barfeld et al., demonstrated



that the purine biosynthetic pathway genes-PAICRI dMPDH2 (IMP (Inosine 5'-

Monophosphate) Dehydrogenase 2) are regulated b MYprostate cancer (8).

DISCUSSION

Next-generation sequencing data have identifiedeowbar and genetic features that reveal
prostate cancer as a clinically heterogeneous sbs€3d1). Nearly 90% of prostate-specific
antigen (PSA) screening identifies PCa to be laedliat diagnosis (32). Anti-androgen therapies
that target the androgen receptor remain imporearty and therapeutic strategy that has
improved survival. However, a sizeable patient pafon develops resistant variants that are
aggressive and metastatic. Clinical heterogenaitihis population leads to poor prognosis and
therefore dearth of therapeutic options. Biomarkéet have clear diagnostic and predictive
value will lead to risk stratification and potemtsystemic therapies. Recently, we demonstrated
that PAICS expression correlated with lung cancer progres$i#f). In this study, we have
identified PAICS expression quantitatively correlate with differesthges of prostate cancer
where it is negligible in benign PCa, moderatelypressed in localized PCa and intensely
expressed in metastatic PCa. Further, we see aemncer ofPAICS expression with respect to
transcript, protein and immunohistochemistry in igrat samples. PAICS catalyzes the
production of Phosphoribosylaminoimidazolesuccimbcgamide (SAICAR), an intermediate

metabolite in @ novo purine biosynthetic pathway (33,34).

Through severain vitro andin vivo studies we demonstrate that PAICS is necessaryrtstate
cancer proliferation and invasion. Specifically, slgow thatPAICS function is imperative in
DU145 and PC3 both of which are androgen-indepdamatestate cells. Thus we extrapolate that

PAICS function is necessary and therefore a passitdrapeutic target in androgen independent



castration resistant prostate cancer (CRPC) clisietdings. Furthermore, sincle novo purine
biosynthetic pathway genes including PAICS is esped in transformed cells as compared to
salvage pathway in normal cells; therapeutic tamgebf PAICS can avoid toxicity issues.
Moreover, SAICAR has potential value as non-invagliagnostic marker and chemical mimetic

with therapeutic implications.

Recent molecular analyses of 333 primary prostateiromas identified ~26% subset (of good
and poor clinical prognosis) with unexplained malac alterations that identified amongst
others, amplifications of chromosome 8 spanning.nMéCN was identified to be amplified in
prostate cancer with lymph node metastasis N2YCN was also identified as oncogene in
CRPC-neuroendocrine cancer (2). AdditionadltyyC amplification and over-expression predicts
poor outcome. MYC also has well-demonstrated moleeveral anabolic pathways such as amino
acid metabolism and purine biosynthesis. Previooskvwshowed that inducible MYC over-
expression increased expressiondefnovo purine biosynthesis pathway enzymes including
PAICS, in LnCaP (an androgen responsive PCa aedl) I(7,8). Though role of MYC as
oncogene remains indisputable, its role as traoen factor has made it difficult to be
therapeutically targeted. The “undruggability” of Y@ has been circumvented by synthetic
lethal approaches (10) or targeting genes thagiétner directly or indirectly regulated by MYC.
In this study, we identified JQ1, the bromodomaihilitor concurrently alleviates both MYC
and PAICS expression across several PCa cellatbdtoth androgen sensitive and independent.
We demonstrate that JQ1 mediates abrogation of BAdkpression by directly reducing MYC
occupancy orPAICS promoter. This study furthers previous observatdbMYC mediatedde
novo purine biosynthetic pathway regulation by identifyJQ1 as potential therapeutic reagent

for MYC regulated gene, PAICS in prostate cancés.ce
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Figure legends



Figure 1. De novo purine biosynthetic enzyme PAICS shows increased expression in
prostate cancer. (A) Gene expression profiling analysis of multiple gtede cancer datasets
using Oncomine database sugdeAlCS expression across the datasets (35-44) betweemahor
prostate and primary prostate cancer. (The rank fpgne is the median rank for that gene across
each of the analyses. The p-value for a gene ig-walue for the median-ranked analysi€B)
Transcriptome sequencing of prostate cand®ICS expression in benign, primary and
metastatic prostate cancer were measured in RPE3 (per million Kilobase).Q) Expression
of PAICS in normal prostate, primary and metastdtimor samples from TCGA(D)
Immunoblot analysis ofPAICS using lysates from benign prostate, primary ptestand
metastatic prostate cancer tissue lysat@sactin served as a loading contro(E)
Immunohistochemical staining of prostate tissué Wil CS specific antibody(F) The staining

was scored and the intensity was measured as fireclue and plotted as box plots.

Figure 2. Purine biosynthetic pathway enzyme PAICS isrequired for prostate cancer cell
proliferation and invasion. (A) Immunoblot analysis of PAICS using lysates frongragsive
prostate cancer cell lines DU145 and PC3 treatatl two specific and independeRAICS
siRNA duplexes or non-targeting siRNBxactin is used as a loading contrd) (Knockdownof
PAICS reduced the prostate cancer cell proliferatind C) colony formation andL) invasion

in Boyden chamber matrigel invasion assay, respsgti

Figure 3. PAICS plays a role in prostate cancer growth and metastasis in vivo. (A)
Immunoblot analysis of PAICS knockdown cell lysatesing two independent shRNAs in
DU145 cells. B) The PAICS knockdown cells were utilized in the vivo chicken
chorioallantoic membrane (CAM) assay. Tumor growHs measured in the knockdown as well

as in control DU145 non-targeting shRNA cells. Tunstze plotted corresponds to average



tumor size of 8 eggs per groupgC)(and (D) PAICS knockdown reduces intravasation and
metastasis of DU145 cells in the CAM models. Matsiged cells to the lower CAM and liver of
chicken embryos were quantified using human AlwcsjpePCR. E€) PAICS knockdown in PC3
cells inhibits tumor growth in a mouse xenograftd@o Athymic nude mice were injected with
PC3 cells that had either stable PAICS knockdowman-targeting sShRNA and tumors were
monitored at indicated time points, and plotte@detniImmunoblot analysis of PAICS using these
stable knockdown lysated=)( Tumor weights of corresponding mouse xenograft rnsod¢on-
targeting shRNA was used as a control. The soadkoline is for Non-T shRNA, the dashed line
is for shRNA1 and dotted line is for shRNA2. N=8cmiper group; P<0.006, compared with

non-targeting ShRNA xenografts.

Figure 4. Bromodomain inhibitor JQ1 inhibits PAICS expression. Prostate cancer cells were
treated with JQ1 for 48 HA) Decreased MYC and PAICS expression in prostateecarells
treated with JQ1 (1 and 5 uM) by immunoblot analy@iactin is used as a loading contrd) (
and(C) Chromatin immunoprecipitation analysis for the M6€cupancy ofPAICS promoter in
androgen sensitive prostate cancer cell lines Ln@a® VCaP following JQ1 or DMSO
treatment for 48 h.B) Schematic representation of tRAlICS genomic region showing gene and
amplicon positions. ChIP-gRTPCR analysis using owmi primers designed at indicated
positions. ChIP was performed using antibodiesregdYC and a control IgG. Error bars: n =

3. All bar graphs are shown with + SEM.
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