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Motivated by the need for understanding neurological disorders, large-scale imaging genetic studies are being
increasingly conducted. A salient objective in such studies is to identify important neuroimaging biomarkers
such as the brain functional connectivity, as well as genetic biomarkers, which are predictive of disorders.
However, typical approaches for estimating the group level brain functional connectivity do not account for
potential variation resulting from demographic and genetic factors, while usual methods for discovering genetic
biomarkers do not factor in the influence of the brain network on the imaging phenotype. We propose a
novel semi-parametric Bayesian conditional graphical model for joint variable selection and graph estimation,
which simultaneously estimates the brain network after accounting for heterogeneity, and infers significant
genetic biomarkers. The proposed approach specifies priors on the regression coefficients which clusters brain
regions having similar activation patterns depending on covariates, leading to dimension reduction. A novel
graphical prior is proposed which encourages modularity in brain organization by specifying denser and sparse
connections within and across clusters respectively. The posterior computation proceeds via a Markov chain
Monte Carlo. We apply the approach to data obtained from the Alzheimer’s Disease Neuroimaging Initiative,
and demonstrate numerical advantages via simulation studies. Copyright c© 2016 John Wiley & Sons, Ltd.
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1. Introduction
During the last two decades, tremendous progress has been made in both neuroimaging and high-throughput genotyping
technology, which has resulted in the development of an emergent interdisciplinary field known as imaging genetics,
focusing on the genetic dissection of neuroimaging and clinical phenotypes. The goal of imaging genetics studies
is to discover the brain-wide, genome-wide association patterns which drive complex neurological disorders (such as
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Alzheimer’s disease, autism spectrum disorder, major depressive disorder, and so on). A key objective in these studies
is to characterize important neuroimaging and genetic biomarkers which are associated with psychological disorders.

One important neuroimaging biomarker that has shown tremendous promise is the group level brain functional
connectivity (Biswal et al., 1995; Smith et al., 2012; Huang et al., 2010, Kim et al., 2015), which characterizes the
coherence of the neural activities among distinct brain regions for a collection of subjects. However typical approaches
for estimating the group level brain network often fail to account for heterogeneity across subjects resulting from
demographic, clinical and genetic variations. This may lead to spurious associations and erroneous inferences. In addition
to functional connectivity, several genetic biomarkers have been shown to be predictive of neurological disorders. Such
biomarkers are often inferred by modeling the association between gene products/ variants and the brain imaging
phenotype (Stein et al., 2010; Zhu et al. 2014; Stingo, 2013), due to the knowledge that some neuroimaging traits are
closer to the action of the gene compared to clinical phenotypes (Mier et al., 2010; Munafo et al., 2008). However,
existing approaches for detecting such associations usually do not take into account the underlying brain functional
network influencing the imaging phenotype.

To our knowledge, the body of work for inferring genetic associations with the imaging phenotype to discover genetic
biomarkers for neurological disorders, and the literature on estimating the brain functional connectivity, have developed
in a largely independent manner. In fact there is a scarcity of approaches which can achieve the two goals simultaneously.
To bridge such a gap through this work, we propose to jointly (a) estimate the group level brain functional network,
after accounting for extrinsic sources of variation; and (b) infer significant genetic and demographic associations
with the imaging phenotype, leading to the discovery of important biomarkers. In addition, the proposed approach
identifies functional modules which contains brain regions having similar activation patterns influenced by covariates,
and deciphers the connectivity within each of these modules. The emphasis on functional modules is motivated by
modular brain networks, which is a well-known feature of brain organization confirmed by several previous studies
(Meunier et al., 2010).

A natural approach to fulfilling the above stated goals is the conditional Gaussian graphical model, which structures
the multivariate outcome as a sum of a linear term involving covariates and a Gaussian residual encapsulating the
graphical structure. The estimated graph under the conditional Gaussian graphical model provides a meaningful group
level brain network comprising intrinsic connections after teasing out effects of third party nodes and external sources
of variation. Another advantage under this model is being able to compare brain networks across multiple groups, where
it is imperative to account for variations due to genetic and demographic factors to make the comparisons meaningful.
This is particularly useful for our real data application where we seek to compare the functional connectivity between
subjects with Alzheimer’s disease, subjects with mild cognitive disorder, and healthy individuals. In this work, we impose
sparsity on brain networks which is supported by findings showing that a brain region usually interacts with only a few
other regions in neurological processes (Stam et. al, 2007; Suprekar et. al, 2008).

To our knowledge, there is a limited literature for conditional graphical models, with the primary focus being essentially
limited to genetic studies. Frequentist approaches such as Yin & Li (2011), Li et. al (2012), and Cai et. al (2013)
mainly focus on graph estimation after adjusting for covariates. However, the performance of the variable selection by
those methods is not well assessed. On the other hand, the Bayesian approach proposed by Bhadra & Mallick (2012)
assumes the same inclusion status for each covariate across all nodes (imaging phenotypes in our case), which makes
this approach clearly inadequate for imaging genetics applications.

A key challenge in conditional graphical models is achieving good variable selection and graphical model estimation
simultaneously, with these two goals being closely intertwined. In particular, model mis-specification in terms of an overly
sparse coefficient matrix can lead to spurious associations between nodes due to lack of adjustment for confounders
(as noted in Yin & Li, 2011), while an artificially dense coefficient matrix is expected to cause over-fitting which may
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result in poor estimates for the strength of associations (as evidenced in section 3). Ideally, a parsimonious Bayesian
approach is desirable, which can provide a balance between the two goals, while providing uncertainty quantification
to address the heterogeneity inherent in imaging genetics applications.

To achieve objectives (a)-(b), we propose a flexible Bayesian conditional graphical model for joint covariate selection
and graphical model estimation. The proposed model clusters the columns of the regression coefficient matrix under
an infinite mixture of Laplace prior, which results in groups of nodes having similar activation patterns depending on
covariates. The prior on the regression coefficients shrinks unimportant effect sizes to zero, and yields groups of nodes
which are related to covariates by similar magnitudes. The brain functional connectivity is estimated by a novel class
of semi-parametric graphical priors depending on the unknown cluster allocations, which specify sparse associations
across clusters, but allow for denser connectivity within a cluster. Such a prior is motivated by modular brain networks
(Nicolini & Bifone, 2016), and encourages functional modules characterized by distinct sub-networks. The method is
straightforward to implement via a Markov chain Monte Carlo (MCMC). We design a post-MCMC approach involving
multiplicity corrections for variable selection, which is able to identify important covariates influencing the imaging
phenotype, as well as the functional modules.

We note that the emphasis on functional modules and corresponding sub-networks stems from the concept of modular
brain networks, which describes the brain as a network of inter-connected components comprising anatomically and/or
functionally related brain regions (Sporns, 2010). Modular systems naturally tend to be small-world networks (Pan &
Sinha, 2009), which is a well established property in human brain organization. Moreover, widely used multivariate
methods based on principal component analysis or independent component analysis have confirmed that the brain can
typically be decomposed into sub-systems of functionally connected brain regions (Guo, 2011; Calhoun et al., 2008).
Another recent work by Wang et al. (2016) demonstrated that the brain network (derived using partial correlations)
can be divided into different modules, with sparse connections across these modules but denser connections within
each module. Motivated by such existing studies, we propose a data adaptive approach to estimate a modular brain
network after accounting for covariate information, where the functional modules are learned from the data.

The paper is organized as follows. Section 2 proposes our semi-parametric conditional graphical model and develops
a posterior computation scheme, Section 3 lays out our simulation study, and Section 4 applies our methods to the
analysis of ADNI data.

2. Methodology
2.1. Semi-parametric conditional graphical models
Let X and Z be the n × p and n × q dimensional outcome and covariate matrices respectively, with the i-th row of X
and Z being denoted as xi and zi , i = 1, . . . , n. In our imaging genetics applications, xi corresponds to the multivariate
imaging phenotype, while zi denotes the supplementary genetic and demographic information for the i-th individual.
We assume that the rows of X have been centered, thus, it is not necessary to include an intercept term. Consider
the following conditional graphical model

xi = zi(β1, . . . ,βp) + εi , εi ∼ N(0,ΣG), ΣG ∼ π(ΣG |G),

βk ∼ F, F =

∞∑
l=1

wlδηl , ηl ∼
q∏
j=1

DE(ηl j ;λl), (1)

where δθ denotes a point mass at θ, N(·) and DE(·) denote Gaussian and double exponential/Laplace distributions
respectively, εi denotes the residual, βk = (βk1, . . . , βkq)T is the vector of regression coefficients which captures the
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effect of covariates on the k-th outcome measurement (k = 1, . . . , p), and ΣG is the covariance matrix which is defined
conditional on the graph G. The prior on the covariance matrix and the graph space, is discussed in detail in (2). We
denote B = (β1, . . . ,βp) as the coefficient matrix, so that xi = ziB + εi in (1).

The prior on the regression coefficients in (1) follows an infinite mixture of Laplace distributions, with the k-th
component having a shrinkage parameter λk , and an associated weight wk , , k = 1, . . . ,∞. The weights are structured
as stick-breaking weights, so that wk = νk

∏
l<k(1− νl), νk ∼ Beta(1,M), with

∑∞
k=1 wk = 1. The mixture of Laplace

prior enables dimension reduction by clustering the columns of B into distinct groups, and encourages shrinkage of
unimportant effect sizes towards zero. Each resulting cluster comprises nodes which have similar activation patterns
and are related to the covariates by similar magnitudes. In the special case when λk = λ for all k , the prior on the
regression coefficients reduces to a Dirichlet process mixture of Laplace distributions (Sethuraman, 1994). The total
number of clusters (H) is random and increases with the precision parameter M. The ingenuity of our approach lies
in proposing a novel class of semi-parametric graphical priors in (2) which translates the parsimony implied by the
clustering of the columns of B into sparsity in the precision matrix, via a modular structure.

We assume that the support of the graph space is restricted to the class of decomposable graphs M. To construct
the prior on M, first fix the number of clusters induced under the mixture prior in (1) to be H. Further, denote the
clusters as (S1, . . . , SH), with Sh containing the indices of ph nodes belonging to cluster h (

∑H
h=1 ph = p). Define the

edge set E under the graph G as E := {e(k, l), k < l, k, l = 1, . . . , p}, where e(k, l) takes values 1 or 0 depending on
whether the (k, l)-th edge is present in E or not. We formalize the semi-parametric graphical prior π(G | S1, . . . , SH),
defined conditional on cluster allocations, as follows

e(k, l) ∼ Ber(ω1)1(∪Hh=1(k ∈ Sh, l ∈ Sh)) + Ber(ω0)1(∪h 6=h′k ∈ Sh, l ∈ Sh′ , h 6= h′), k 6= l ,

ω1 ∼ Be(aω,1, bω,1), ω0 ∼ Be(aω,0, bω,0), ΣG | G ∼ HIWG(b,D), (2)

where 1(·) is the indicator function, Be(·) denotes a Beta distribution, Ber(ω) denotes the Bernoulli distribution with
inclusion probability ω, and HIW (b,D) refers to the hyper inverse-Wishart prior (Dawid & Lauritzen, 1993; Lauritzen,
1996) with scale matrix D and b degrees of freedom. The scale matrix is assumed to be diagonal in our work, i.e.
D = diag(d1, . . . , dp), with dj ∼ π(dj), j = 1, . . . , p. The hyper inverse-Wishart prior in (2) restricts the support of
Σ−1
G to a space of positive definite matrices having zero off-diagonal elements corresponding to absent edges. We

refer to the prior on the covariance in (2) as the semi-parametric hyper inverse-Wishart prior or spHIW, since it is
defined conditional on the unknown clustering parameters. We note that a change in the number of clusters and cluster
memberships under the mixture distribution in (1), will result in corresponding changes in the graphical prior in (2).

Formulation (2) specifies the edge inclusion probabilities as ω1 or ω0, depending on whether the edge corresponds to
two nodes belonging to the same cluster or different clusters. We choose hyper-parameters aω,0, bω,0, to have a small
prior mean, and aω,1, bω,1, to have a larger prior mean, so as to encourage a higher density of edges within clusters,
and sparse edges across clusters. The proposed approach thus results in a modular structure for the graph, such that
there are sparse connections between modules, but denser connections within each module. The composition of the
functional modules, as well as the sub-networks associated with the modules, are learned from the data.

Since the prior in (2) is defined conditional on the clustering parameters, it is appealing to derive the marginal prior
π(G) after integrating out these parameters. First, note that

π(G | S1, . . . , SH) = K−1

(
ω
aω,1+t1G−1
1 (1− ω1)bω,1+

∑H
h=1 ph(ph−1)/2−t1G−1

)
×

(
ω
aω,0+t0G−1
0 (1− ω0)bω,0+p(p−1)/2−

∑H
h=1 ph(ph−1)/2−t0G−1

)
, (3)
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where G ∈M, K is the normalizing constant, and t1G , t0G , represent the number of edges within and across clusters
respectively. We noted previously that, when λj = λ for all j = 1, . . . ,∞, the prior on the regression coefficients in (1)
is a Dirichlet process mixture of Laplace distributions. In this special case, we can use results from Kyung et al. (2009)
to obtain the following marginal form of the prior on the graph space

π(G) =
Γ(M)

Γ(M + p)

p∑
H=1

MH
∑

(S1,...,SH)∈CH

H∏
h=1

Γ(ph)π(G | S1, . . . , SH)1(G ∈M),

where π(G | S1, . . . , SH) is defined as in (3), Γ(·) denotes the Gamma function, and the set CH contains all possible
clustering allocations S1, . . . , SH, given H clusters.

2.2. Variable selection
We propose a post-MCMC variable selection approach which proceeds by constructing credible regions accounting for
multiplicity corrections. The variable selection enables us to infer (a) covariate effects on individual nodes, and (b)
subsets of covariates determining clusters of nodes. It is understood that the covariates which affect a particular cluster
may influence one or more connections between nodes in that cluster. Further, a group of covariates may affect more
than one cluster, in which case it is possible that these covariates explain the dependence between such co-dependent
clusters.

We construct rectangular credible regions incorporating multiplicity corrections as D := {βjk : |βjk |/std(βjk ) ≤ Uα∗ , j =

1, . . . , q, k = 1, . . . , p}, where std(βjk) is the standard deviation for βkl , and α∗ is the multiplicity adjusted width of
the credible intervals. The above credible intervals enable us to test a set of local hypotheses H0,jk : |βjk | ≤ U∗jk versus
|βjk | > U∗jk for j = 1, . . . , q, k = 1, . . . , p, where the threshold for each regression coefficient is adjusted according to its
standard deviation, and hence is different from hard thresholding approaches which choose a fixed threshold. The local
hypothesis tests can be done using a t-test at a significance level α∗ = α/(pq) under a Bon-ferroni correction. Although
it is straightforward to use more sophisticated alternatives such as the false discovery rate approach (Benjamini &
Hochberg 1995), a simple Bon-feronni correction performs adequately for our simulations studies and data applications.

2.3. Posterior computation
We propose an efficient approximate posterior computation scheme using a parameter expansion strategy. Under the
original formulation (1), the computation of cluster membership probabilities for different columns of B will require
p matrix inversions of order p − 1 each, which can be computationally restrictive. We devise a parameter expanded
model to bypass the need of inverting matrices when computing cluster memberships. We fit the modified model

xi = ziB + αi + εi , εi ∼ N(0, δIp), αi ∼ N(0,ΣG), i = 1, . . . , n, (4)

where αi = (αi1, . . . , αip)T can be interpreted as the intercept term which captures the graph information, and
δ ∼ Be(aδ, bδ) is the residual variance. The prior on the graph and the covariance matrix is defined similarly as in
(2). Marginalizing out the intercept in (4) yields xi ∼ N(ziB,ΣG + δI) ≈ N(ziB,ΣG), when δ ≈ 0, which essentially
gives back our original formulation (1).

The computational advantage of (4) stems from the fact that all elements in the data matrix X are independent
conditionally on B,α1, . . . ,αn, δ. This allows the following form of the posterior distribution, conditional on the
clustering (S1, . . . , SH)

L ∝
( n∏
i=1

N(xi ; zi(ηs1
, . . . ,ηsp) + αi , δIp)N(αi ; 0,ΣG)

)( H∏
h=1

q∏
l=1

DE(ηhl ;λh)

)
π(ΣG | G)π(G|S1, . . . , SH), (5)
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where sj ∈ {1, . . . , H} denotes the cluster membership for the j-th column in B, j = 1, . . . , p. Under (5), it is
straightforward to compute the cluster membership for a particular column independently of the other columns, in a
computationally inexpensive manner which does not involve matrix inversions. In practice, the approximation under (4)
is implemented by specifying a conjugate prior on δ with mode near zero and having a small variance which results in
posterior samples of δ = O(10−3), where a1 = O(a2) implies that |a1/a2| is bounded. In our experience, this choice
works adequately for a variety of scenarios.

We use a MCMC algorithm for the posterior computation, which proceeds by (a) updating the cluster memberships
and cluster atoms conditional on other parameters; (b) updating the graph conditional on the cluster memberships,
and then updating the inverse covariance matrix conditional on the graph; and (c) updating the intercepts and residual
variance conditional on the other parameters. We update the graph using a Metropolis-Hastings step in a manner
similar to Bhadra & Mallick (2012), where the proposal distribution changes a non-zero element in the adjacency
matrix to a zero element with probability 1− aG , and the reverse proposal occurs with probability aG . Except for the
graph, all remaining parameters in (5) can be sampled via closed form posteriors. The MCMC steps are described in
detail in the Supporting Information section.

Inferring optimal clustering and point estimate for the graph: Our computation yields posterior samples of cluster
membership allocations for each column of B. In order to estimate functional modules we compute the optimal
clustering over MCMC iterations using the least squares criteria in Dahl (2006). Denote by S(m), the vector of cluster
allocations at the m-th MCMC iteration. The optimal cluster is selected as

S∗ = arg minS(m),m=1,...,T

p∑
i=1

p∑
j=1

(∆i ,j(S(m))− π̂i ,j)2,

where ∆i ,j(S(m))=1 if (i , j) belong to the same cluster under S(m), and 0 otherwise, m = 1, . . . , T , and π̂ is the
estimated matrix of pair-wise probabilities of belonging to the same cluster, computed over all MCMC iterations. The
final estimated graph structure is computed in a manner consistent with this optimal clustering, by computing the
marginal inclusion probabilities of edges using MCMC samples corresponding to the clustering S∗, and including edges
with high probabilities.

3. Simulation studies
3.1. Description
We consider three simulation settings (Cases I–III) with varying dimensions involving a true model of the form
xi ∼ N(ziB0,Σ0) where Σ0 is the true covariance matrix, and B0 = (β01, . . . ,β0p) are the true regression coefficients.
For Cases I and II the number of non-zero rows in the coefficient matrix (B0) are 10 and 5 respectively, where the
elements in these non-zero rows are randomly set to 2,3, or 0, and the proportion of zeros are high to ensure a
sparse coefficient matrix. For both these cases, the inverse covariance matrix Σ−1

0 = Ω0 is generated as follows. First,

we generate Σ∗ having elements σ∗(l , l ′) = 0.5

(
||l − l ′|+ 1|1.4 − 2|l − l ′|1.4 + ||l − l ′| − 1|1.4

)
, l , l ′ = 1, . . . , p, which

corresponds to a fractional Gaussian noise process with Hurst parameter as 0.7. We then invert Σ∗ to obtain Ω∗, and
subsequently fix all off-diagonal elements of Ω∗ to be zero if the absolute value is less than 0.05, to obtain Ω∗1. Finally
we rescale the diagonal elements of Ω∗1 as ω∗1,kk = 0.1 +

∑p
j 6=k,j=1 |ω∗1,jk | to obtain a diagonally dominant matrix which

is positive definite, denoted as Ω0 = Σ−1
0 . This is the true precision matrix that is used to generate the data. The
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true graph G0 is obtained by including all edges corresponding to an absolute partial correlation greater than 0. Note
that the true model is a violation of the clustering as well as the block diagonal assumptions inherent in the proposed
methodology. We consider dimensions (n, p, q) = (100, 80, 100), (100, 80, 200) for Cases I and II.

For Case III, we fit our model (1)-(2) to the PET data for individuals with mild cognitive impairment (MCI) obtained
from the ADNI dataset, and then use the fitted model to simulate data. The dataset in question contains PET
measurements recorded for 121 MCI samples (n), with additional information on q = 546 SNPs. The imaging
measurements were summarized into p = 42 regions of interest (ROIs) in the brain as in Huang et. al (2010), which
are outlined in Table 1. These regions are distributed in the frontal, parietal, occipital, and temporal lobes, and are
considered to be potentially related to Alzheimer’s disease. We fit our model using dichotomized SNP data with value
1 if the minor allele frequency is 1 or 2, and 0 otherwise. This fitted model which is used to generate data which
corresponds to a high dimensional multivariate response regression model, having 546 covariates, and 140 edges.

We compare our approach (spHIW) to (a) the sparse seemingly unrelated regression (SSUR) method in Bhadra
& Mallick (2012) for simultaneous graphical model estimation and variable selection; (b) a multivariate version of
the Bayesian lasso (Park & Casella, 2008) denoted as BLASSO designed to perform variable selection; and (c)
the frequentist graphical lasso (Friedman et. al, 2007) denoted as GLASSO for graphical model estimation without
accounting for covariates; We implemented spHIW and BLASSO in MATLAB, while the MATLAB code for SSUR
was obtained from the authors of that article. The GLASSO was implemented using the R package glasso.

For the Bayesian approaches, we ran 25,000 MCMC iterations with a burn in of 5,000. The initial adjacency matrix
for the proposed approach and SSUR was chosen to be identity corresponding to a null graph, and the parameters in
the hyper inverse-Wishart prior for these approaches was defined as b = 3, D = dIp. We imposed a conjugate Gamma
prior on d which seemed to work well in a variety of scenarios. In addition, we specify independent Gamma priors on
λl , l = 1, . . . , q,, as well as M ∼ Ga(1, 1), and δ−1 ∼ Ga(1000, 1). All results are reported over 50 replicates.

3.2. Comparison criteria
We looked at several metrics for comparisons, including (i) out of sample prediction in terms of mean squared error
or MSE; (ii) estimation of true regression coefficients in terms of L2 error; (iii) estimation of the precision matrix in
terms of L1 error; (iv) area under the ROC curve for variable selection; and (v) area under the ROC curve for graphical
model estimation. The predicted test samples were obtained using posterior predictive distributions under Bayesian
approaches, and this was used to compute MSE. However, it was not possible to report MSE under GLASSO since
it does not incorporate covariate information. Estimation of the precision matrix and regression coefficients under our
approach was based on MCMC samples corresponding to the optimal clustering as outlined in Section 2.3, while it
was based on all MCMC samples for the other Bayesian approaches.

To compute the area under the curve (AUC) for variable selection accuracy under our approach and BLASSO, we
examine a series of regression models obtained by including all covariates for which |β̂kl |/se(β̂kl) > tkl , and excluding
remaining variables. Here tkl is a threshold which controls the sparsity of the regression model, and β̂kl , se(β̂kl) are
the estimated mean and standard errors for βkl , k = 1, . . . , q, l = 1, . . . , p. For SSUR, the AUC for variable selection
was computed by looking at a series of regression models obtained by varying the threshold for the posterior inclusion
probabilities. On the other hand, we computed the AUC for graphical model estimation under the spHIW, and SSUR
by examining a series of graphs obtained by varying the threshold for posterior inclusion probabilities for edges. Again,
only the MCMC samples corresponding to the optimal clustering was used to compute the graph under our approach.
The AUC for graph estimation under GLASSO was obtained by examining a series of models corresponding to different
values of the penalty parameter.
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3.3. Results
The numerical results under all approaches are reported in Table 2. Our approach exhibits a lower error for estimating
the true regression coefficients compared to BLASSO under Case I, but slightly higher error under Case II. The error
under our approach was lower compared to SSUR for all scenarios. The AUC for variable selection is the highest
under BLASSO, while it is the lowest for SSUR (close to 0.5). The poor AUC under SSUR is due to the inclusion
of almost all covariates in the model, which indicates the inability of the approach to differentiate between important
and unimportant covariates. In spite of having a lower AUC for variable selection compared to BLASSO, the proposed
approach does significantly better in terms of out of sample prediction. This points to the advantage of incorporating
the graph structure for prediction purposes, as opposed to assuming independence within the outcome measurements.
SSUR has the largest out of sample MSE, in spite of reporting a overly large regression model.

For graphical model estimation, we note the the proposed approach, SSUR, and GLASSO all have a similar AUC.
However the proposed approach produces the smallest error for estimating the precision matrix, which points to a
superior ability to accurately estimate partial correlations. We conjecture that a lower error in estimating the partial
correlations is due to the removal of external sources of variation, which when unaccounted for, can potentially lead
to erroneous estimates for strength of associations.

In summary, for Cases I and II, the proposed conditional graphical model has superior out of sample prediction
performance by incorporating the underlying graph structure, but suffers from a poorer variable selection performance
due to the presence of a sizable number of additional covariance parameters. In contrast, the competing SSUR approach
does very poorly in terms of variable selection and out of sample prediction. Both SSUR, which includes almost all
covariates in the regression model, and GLASSO, which does not include any covariate at all, have comparable graph
estimation performance, but higher errors when estimating the strength of associations. This underlines the role of
accurate variable selection as an important factor in the estimation of conditional associations.

For Case III where the data resembles a real world application, the proposed approach has superior performance
compared to all approaches. In particular, the method has comparable out of sample prediction, but a lower error
for estimating true regression coefficients, and a significantly higher AUC for variable selection. The higher AUC
compared to Cases I and II, points to the increased ability of the proposed method to differentiate between important
and unimportant variables when the dimension of the multivariate outcome is moderate compared to the sample size,
even when the number of candidate predictors is large. We also observe that the proposed approach has an improved
graphical model estimation performance relative to competing approaches, as evident from significantly higher AUC,
and a substantially smaller error for estimating partial correlations.

4. Application to imaging genetics
4.1. Description of ADNI data
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) collected a large amount of imaging, genetic and clinical
data. The goal of the ADNI study is to determine whether different imaging biomarkers, along with genetic variants
and clinical markers are strongly associated with the Alzheimer’s disease (AD) and the progression of mild cognitive
impairment (MCI). In this article, we primarily concentrate on identifying (i) important connections in the functional
brain network after accounting for age, gender, handedness, weight, and genes; (ii) functional modules or collections
of ROIs in the brain which work together to drive brain functions, and the corresponding sub-networks; and (iii)
important genes influencing the imaging phenotype and the functional modules. The brain network is computed using
PET measurements, however it is straightforward to apply the method to other imaging modalities such as MRI. We
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perform the analysis separately for the MCI, AD groups, and healthy controls (HC), and compare results across the
three groups. We begin with a data description.

Imaging data: ADNI 1 collected the longitudinal PET scans at multiple time points across different imaging sites.
To study the association between the imaging biomarkers and genetic variants, we used the PET scans at baseline
for 49 AD patients, 121 MCI patients and 71 healthy subjects. The standard pre-processing steps including co-
registration, normalization and spatial smoothing (8 mm FWHM) were applied to the PET dataset. We considered 90
brain regions that are defined according to the automated anatomical labeling (AAL) system. We computed the PET
regional summaries using the first principal component scores over all voxels with each region, in a similar fashion as
in Bowman et. al (2012). This 90× 1 dimensional summary vector of PET scans is our outcome variable.

Genetics data: The SNPs in the ADNI study were genotyped using the Human 610-Quad BeadChip (Illumina, Inc.,
San Diego, CA, USA). By following Zhu et al (2014) and Wang et al (2012), we only focused on SNPs that belong
to the top 40 candidate genes reported in the AlzGene database (www.alzgene.org) as of June 10, 2010. Before the
data analysis, we performed standard pre-processing steps (see Wang et. al 2012) on the SNP data for quality control.
We also removed the SNPs having (a) more than 1% missing values; (b) minor allele frequency less than 5% and (c)
the Hardy-Weinberg Equilibrium p-value less than 10−6. The final dataset includes 614 SNPs on 37 genes. Figure 1
shows the number of the SNPs in the analysis per gene. The total number of covariates is 618 including pre-selected
614 SNPs and four demographic variables including handedness, age, gender and weight.

4.2. Analysis results
Brain network identification: Based on the MCMC samples, we computed the posterior edge inclusion probabilities of
the brain network for each group. By thresholding the probability at 0.5, the group-specific brain networks are obtained
in Figure 2. Specifically, the AD, MCI and HC networks have 79, 102 and 73 important edges, respectively. There are
14 edges shared by all the three groups. Some of the common edges are in the default mode network (Buckner et
al, 2008). For example, the functional connections between left and right Precuneus (related to self-consciousness)
appear in all the three networks, which implies that AD or MCI subjects have similar functional activities between
the two Precuneus regions as the HC subjects. Also, all the three networks contain edges between the left and right
Hippocampus, which indicates that the two regions are still functionally connected in the AD and MCI groups, although
the damage in the Hippocampus has been confirmed to be related to AD.

As one of the defining features of the proposed method, it can identify functional modules or communities for each
group specific network. In our analysis, there are three, three and two functional modules identified in the AD, MCI
and HC groups, respectively, which are shown in Figure 3. It can be seen that AD and MCI have two similar functional
modules: communities 1 and 2, while the modules related to HC are quite different from the AD and MCI groups.
Functional module 1 for AD and MCI groups collect many regions in parietal and temporal lobes, with the number of
connections being 29 and 42 respectively. We observe that some functional connections between the two hemisphere
are missing in the AD group compared to the MCI group. For example, the AD network does not have the functional
connections between the right and left fusiform gyrus, the functionality of which is mainly related to face and body
recognition (McCarthy et.al. 1997).

The functional module 2 in both AD and MCI networks include Hippocampus (HIP) and ParaHippocampal (PHG)
in temporal lobe. The total number of connections between these two regions and all other regions are six in the
MCI network and only two in the AD network. This implies that these regions become more isolated in AD group
compared to the MCI group, which has been confirmed by previous findings (Supekar et al., 2008; Huang et al. 2010).
The functional module 3 for the AD group mainly includes four regions: Postcentral gyrus (PoCG), Precentral gyrus
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(PreCG), Paracentral lobule (PCL) and Supplementary motor area (SMA), whose functions are mainly related to
the motor skill and sense of touch. Since this is a separate module in the AD group, these regions have much fewer
connections compared to the HC group which potentially implies reduced motor skills and sense of touch for AD
subjects. Compared to the brain networks for AD and MCI groups, our analysis only detects two functional modules
for the HC, which implies increased connectivity compared to the AD and MCI patients.

Important genes for brain networks: Based on the MCMC samples, we identify important SNPs associated with each
functional module for AD, MCI, and HC groups (Table 3). For example, SNP “rs2018334" on NEDD9 is significantly
associated with the sub-network community 2 in the AD group, which is supported by the findings in Wang et.al. (2012).
GAB2 was also recognized as an important gene for both AD and MCI groups, but not the HC group; this corresponds
to prior evidence implying that the gene modifies late onset AD risk in APOE ε4 carriers and influences Alzheimer’s
neuropathology (Reiman et al., 2007). Keeping in line with prior findings, CH25H was found to be significantly
associated with AD risk but not MCI or HC (Wollmer, 2010). Further, genes which promote MCI disease risk but are
not associated with HC individuals include ECE1 which is associated with cognitive ability in elderly individuals and
disease risk (Hamilton et. al, 2012), as well as ADAM-10 which regulate neuronal plasticity affecting AD (Marcello
et. al, 2013), and PICALM, which was one of the first AD loci identified by GWAS, and which has also been validated
in independent samples. In addition, SORL1 which is known to be a potential tool for identifying MCI subjects at high
risk of conversion to AD (Piscopo et. al, 2015), is found to be significant in the MCI and HC groups, but not with the
AD group. In addition to the above genes, we found that age is a significant predictor for community 1 in the MCI
group.

5. Discussion
We have developed a new Bayesian semi-parametric conditional graphical model for imaging genetics studies, and
applied it for analyzing the ADNI dataset. Our approach can jointly estimate the brain network after accounting
for external sources of variation, and infer important genetic and demographic factors associated with the imaging
phenotype and the brain network. It can also simultaneously discover functional modules in the brain and infer the
connectivity within each such module. To our knowledge, the proposed method is among the first to jointly address
the above aims and is expected to provide deeper insights in imaging genetic studies, compared to existing approaches.
Given the high dimensional nature of the data in imaging genetics applications, it would be interesting to explore the
scalability of the proposed approach as p and/or q increases. Our initial experiments suggest that the semi-parametric
conditional graphical model scales well with the number of covariates q, but the computational speed may become
slower as p is increased. However, more effort is needed to examine such scalability issues, and we leave this topic for
future investigation.
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Table 1. List of 42 regions of interest for simulation Case III.

Frontal lobe Parietal lobe Occipital lobe Temporal lobe
Frontal_Sup_L Parietal_Sup_L Occipital_Sup_L Temporal_Sup_L
Frontal_Sup_R Parietal_Sup_R Occipital_Sup_R Temporal_Sup_R
Frontal_Mid_L Parietal_Inf_L Occipital_Mid_L Temporal_Pole_Sup_L
Frontal_Mid_R Parietal_Inf_R Occipital_Mid_R Temporal_Pole_Sup_R
Frontal_Sup_Medial_L Precuneus_L O ccipital_Inf_L Temporal_Mid_L
Frontal_Sup_Medial_R Precuneus_R Occipital_Inf_R Temporal_Mid_R
Frontal_Mid_Orb_L Cingulum_Post_L Temporal_Pole_Mid_L
Frontal_Mid_Orb_R Cingulum_Post_R Temporal_Pole_Mid_R
Rectus_L Temporal_Inf_L 8301
Rectus_R Temporal_Inf_R 8302
Cingulum_Ant_L Fusiform_L
Cingulum_Ant_R Fusiform_R

Hippocampus_L
Hippocampus_R
ParaHippocampal_L
ParaHippocampal_R

Table 2. Numerical comparison for different approaches under all Cases. MSE stands for out of sample mean squared error;
||β̂||2L2

implies squared L2 error in estimating the regression coefficients; AUC(graph) and AUC(var) denote area under the curve
for graphical model estimation and variable selection respectively; and ||Ω̂||L1

denotes error for estimating the precision matrix.

Case (n,p,q) Method MSE ||β̂||2L2
AUC(graph) AUC(var) ||Ω̂||L1

I spHIW 0.27 0.05 0.80 0.82 0.0138
(100,80,100) BLASSO 0.55 0.07 NA 0.98 NA

SSUR 0.62 0.12 0.78 0.50 0.0389
GLASSO NA NA 0.79 NA 0.0447

I spHIW 0.28 0.05 0.79 0.80 0.0141
(100,80,200) BLASSO 0.56 0.09 NA 0.96 NA

SSUR 0.60 0.10 0.76 0.52 0.0917
GLASSO NA NA 0.78 NA 0.0401

II spHIW 0.26 0.10 0.80 0.85 0.0112
(100,80,100) BLASSO 0.54 0.08 NA 0.96 NA

SSUR 0.61 0.13 0.77 0.50 0.0271
GLASSO NA NA 0.79 NA 0.0432

II spHIW 0.28 0.10 0.79 0.92 0.0127
(100,80,200) BLASSO 0.57 0.08 NA 0.97 NA

SSUR 0.65 0.11 0.78 0.52 0.12
GLASSO NA NA 0.80 NA 0.0391

III spHIW 0.01 0.0015 0.88 0.94 0.17
(121,42,546) BLASSO 0.02 0.0028 NA 0.51 NA

SSUR 0.02 0.0031 0.87 0.78 0.97
GLASSO NA NA 0.89 NA 0.56
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Figure 1. Top 37 genes in the analysis and the number of SNPs per gene. There are a total of 614 SNPs included in the analysis.

AD MCI HC Common

Figure 2. Functional brain network estimation for AD, MCI and HC groups and the common edges shared by the three networks
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AD

MCI

HC

CH25

ECE1, DAPK1, 
SORCS1,PICALM,
SORL1, ADAM10,
ACE

NEDD9, GAB2

ECE1, DAPK1, 
SORCS1.

TF,NEDD9,SORL1 
SORCS1, DAPK1, 

NEDD9, CR1, 
CALHM1, DAPK1

ECE1

DAPK1, 
SORCS1,GAB2,
ECE1,PICALM

Community 1 Community 2 Community 3

Figure 3. Functional modules or communities for AD, MCI and HC groups, along with important genes. The arrows relate the
sub-networks to the significant genes influencing them. Each such gene can influence one or more connections in the functional
modules, as well as one or more phenotypes in that module.
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Table 3. Important SNPs (genes) that are significantly associated with the sub-network communities for each group

AD MCI HC

Community 1 rs4933497 (CH25H)

rs11590928 (ECE1),
rs3026886 (ECE1),
rs1015477 (DAPK1),
rs10868609 (DAPK1),
rs1105384 (DAPK1),
rs10509825 (SORCS1),
rs10501608 (PICALM),
rs1790213 (SORL1),
rs12594742 (ADAM10),
rs4309 (ACE)

rs4428180 (TF),
rs7748486 (NEDD9),
rs661319 (SORCS1),
rs4713432 (NEDD9),
rs10868644 (DAPK1),
rs11601559 (SORL1)

Community 2
rs2018334 (NEDD9),
rs11603112 (GAB2)

rs3026868 (ECE1),
rs3026886 (ECE1), rs871495
(DAPK1), rs12248564
(SORCS1), rs821962
(SORCS1), rs1015477
(DAPK1)

rs16871157 (NEDD9),
rs6691117 (CR1),
rs729211 (CALHM1),
rs7036781 (DAPK1)

Community 3 rs212518 (ECE1)

rs1015477 (DAPK1),
rs1415020 (SORCS1),
rs821962 (SORCS1),
rs2450135 (GAB2),
rs7941639 (GAB2),
rs3026886 (ECE1)
rs10509825 (SORCS1),
rs34634755 (GAB2),
rs666682 (PICALM)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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