
FIBERED KNOTS AND SPHERICAL SPACE FORMS

STEVEN P. PLOTNICK AND ALEXANDER I. SUCIU

1. Introduction

A smooth (n — \)-knot is a smooth submanifold AT of Sn+X diffeomorphic to S1""1.
If Sn~l x D2 is a tubular neighborhood of K, then X = Sn+l-Sn~1 x /52 is called the
exterior of K. Two (n — l)-knots are equivalent if there is a diffeomorphism of Sn+1

throwing one onto the other. For n ^ 3, a given exterior corresponds to at most two
inequivalent knots, Kand K* [4,1, 10] (and see §3). Examples of inequivalent knots
with diffeomorphic exteriors were given by Cappell and Shaneson [2] for n = 4,5 (and
n = 3 in TOP), using fibered knots with fiber a punctured w-torus. Gordon [7] gave
examples for n = 3, using twist-spun knots. In view of [16], Gordon's result can be
rephrased as follows.

THEOREM [7]. Let K = (S4, S2) be a fibered knot with closed fiber covered by R3,
and odd order monodromy. Then the knots K and K* are inequivalent.

The theorem applies to all fc-twist spun torus knots with k odd and greater than
1, except for a few which have closed fiber a spherical space form S^/n, with
n = Q(8) or SL(2,5). We extend Gordon's obstruction theoretic method to the
remaining cases (Proposition 3.1). Furthermore, we show that these knots are the only
non-trivial ones with closed fiber a spherical space form and odd order monodromy
(see the table in §5). This gives the following.

THEOREM 1.1. Let K = (S4, S2) be a non-trivial fibered knot with closed fiber covered
by S3, and odd order monodromy. Then the knots K and K* are inequivalent.

In particular, this answers the question of Zeeman [29, p. 494, problem 2]. The
5-twist spun trefoil is not determined by its exterior. Actually, using different methods,
the first author has generalized the above theorems to any non-trivial fibered 2-knot
with odd order monodromy [20]. However, the methods employed here seem better
suited to the spherical space form case.

Gordon's theorem is also valid in higher dimensions but, in order for it to produce
examples, one first has to find knots of Sn~2 in Sn, n ^ 4, with aspherical cyclic
branched covers. Whether such knots exist is unknown. Another approach is to try
to use Cappell's and Shaneson's method to construct examples with n > 5, but this
requires finding certain elusive matrices. In the light of Theorem 1.1, one is tempted
to consider higher dimensional knots with fiber a punctured space form. However,
this is ruled out by the following.
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THEOREM 1.2. Let K = (Sn+l, Sn~1) be afibered knot with closed fiber a spherical
space form Sn/n. Ifn>2, then n is cyclic and K is determined by its exterior.

This paper is organized as follows. In §2 we study based homotopy equivalences
of I x S1, for Z a spherical space form $P/n. We identify the image of the evaluation
map ev: &0(L x S1) -> Aut(n: x Z) and study in detail ker(ev) in the cases we need
(n = Q(8) and SL(2,5)), via obstruction theory. Section 3 starts with a review of
equivalences of knots and twist spun knots. We then prove Theorem 1.1 for a twist
spun torus knot, following the lines of [7]. In §4 we determine the possible finite groups
n acting freely on Sn, n ^ 3, with the property that (Sn/n)° appears as the fiber of
a knot in Sn+1. This leads to the proof of Theorem 1.2. In §5 we determine all the
fibered knots in S4 with fiber (SP/n)0, expanding previous work by Hillman [8] and
Yoshikawa [28]. This, in turn, finishes the proof of Theorem 1.1.

2. Homotopy equivalences of SP/n x S1

To describe the based self-homotopy equivalences ofSP/n x S1, we first recall some
facts, due to Olum, concerning homotopy equivalences of spherical space forms.

Let <£„(£) denote the based homotopy classes of based self-homotopy equivalences
of I . There is a natural (evaluation) map ev: <fo(Z) -> Aut(7r1(2, *)) given by

ev(/)=/*:7T1(2:,*) ^ ( S , * ) .

If I = Sn/n, where n is a finite group of order m acting freely on Sn, for n odd and
greater than 1, then Hn(n; Z) ^ Zm.

THEOREM [14, 17]. The map ev: SQ{Sn/n) -> Autrc is a monomorphism, with

image(ev) = {<peAut7r|<p«,: Hn(n) >Hn(n) is ± 1}.

Here ev(/),, = ± 1 according to whether f is orientation preserving or reversing.

Now let n = 3 and assume that n acts linearly on S3, that is, S?/n is a spherical
space form. Then £ = S^/TT is a Seifert fibered space (see [15]). If S is not a lens space,
it does not admit orientation reversing homotopy equivalences [13]. Let Z(n) denote
the center of n.

PROPOSITION 2.1. The map ev: &Q(S*/n x S1) -• Aut(rc x Z) has image

{a e Aut n \ OL+ : H3(n) • H3(n) is ± 1} x (Z(n) x Z2).

Proof Write 7^(2 x S"1) = n x Z, with the generator / of Z represented by * x S1,
and let h be a principal orbit of the ^-action on 2, so that h represents the generator
of Z{n). If <pe Aut(n x 2), then <p{i) = t^h*. From this we easily see that

s Aut n x (Z(n) x Z2).

The generator of Z2 (t-tr1) is geometrically realized by a reflection of S1. The
generator of Z(n) (t -> th) is realized by

where Ox denotes the S^-action on £. If/e<^0(S x S1), then the component of ev(/)
lying in Autrc is exactly evO^), where fx e <£0(I.) is the composition

By taking the identity on the S1 factor, we see that image(ev) is as claimed.
17-2
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We now analyse the kernel of the evaluation map. Let /eker(ev). Since
7T2(I x S1) = 0, we can homotop/to the identity on the 2-skeleton. The obstruction
to homotoping/to the identity on (Z x S1)^ is the class of the difference cocycle

[dz(J, id)] e H*(£ x S1; TT3(Z X S1)) S fP(Z; I) 0 /^(Z; T).

The first component of the obstruction is detected on the top cell of Z, and is precisely
the obstruction for a homotopy fx ~ idz. As /x is a homotopy equivalence, a
well-known degree argument shows that this obstruction vanishes (see the proof of
the theorem). Let 6l{f) denote the second component of the obstruction. If
6x(f) = 0, we meet a final obstruction on the top cell of Z x S1,

02(/)e#4(Z x S1; TT4(Z x &)) s /P(Z; Z2) s Z2.

We shall not try to identify ker(ev) for an arbitrary group n, although this seems
to be an interesting question in its own right. Instead, we analyse the two cases we
need, namely SL(2,5) and Q(8).

The case n = SL(2,5)

The spherical space form 53/SL(2,5) = Z(2,3,5) = Z is the binary icosahedral
space, also known as the Poincare sphere. Note that SL(2,5) is perfect; in fact,
Z(2,3,5) is the only known homology 3-sphere with non-trivial finite fundamental
group. It is well known that Aut(SL(2,5)) £ 5^, the symmetric group on five symbols.
The center of n is Z2, and the inner-automorphisms are SL(2,5)/{± 1} =
PSL(2,5) = A5. The non-trivial outer-automorphism can be given as conjugation by

2 "

The effect of this outer-automorphism on H3(n) s Z120 is multiplication by 49. The
inner-automorphisms, of course, act by multiplication by 1 on H3(n). Thus,

,3,5)) s A5 (see [17, §5] for proofs).

PROPOSITION 2.2. (1) There is a short exact sequence

(2) Le//e^0(Z(2,3,5)x51) be such tha[ ev(/)eA5, and let f denote the lift off
to a homotopy equivalence of SPx S1. Thenf~ idS3x5i.

Proof (1) By the remarks above and Proposition 2.1, image(ev) is as claimed.
Let/eker(ev). We saw t h a t / ^ id on the 2-skeleton. In fact, any two homotopies of
/ to the identity on (Z x S1)*2* are homotopic. To see this, observe that we can find
a homotopy on (Z x 51)(1) x /since 7r2(Z x S1) = 0, and the obstruction to a homotopy
on (Z x S1)^ x / lies in

IP(L x S1 x / , Z x S1 x 6/; TT3(Z X S1)) £ fP(l x S1; Z) £ fP(L; Z) © tP(l; Z) = 0,

since n is perfect.
The obstruction ^1(/)e//2(Z; Z) to homotoping/to the identity on (ZxS1)*3*

vanishes, again since n is perfect. The obstruction on the top cell of Z x S1, namely
02(/), is of course realizable by a homotopy equivalence—modify the identity in a
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small ball by the generator of 7r4(Z X S1)—whose square is homotopic to the identity.
Since this measures the obstruction to deforming/to the identity, up to modifications
of the homotopy on (X x S1)^, and since all homotopies are homotopic on (S x S1)*2*,
it is well defined. Hence, ker(ev) = Z2, proving (1).

(2) Suppose that/eker(ev), with obstruction 02( / )e i / 4 (£ x Sl; Z2). Let

be the cover of 2 x S1 corresponding to n^S1), and let/be a lift of/. Then it is easy
to see that the obstruction to homotoping/to the identity is given by

*.(/) = P*(62(f)) e H*(S* x S1; Z2) s Z,.

Since n has even order, p* = 0, s o / ^ idS3 x si. In general, if ev(/) c A5, we can write
/ = / 0 o ( / 1 x id^i), where/0 e ker(ev) a n d / e ^ E ) , ev(/i) = ev(/). As/X is orientation
preserving, fx ~ id5s and thus

/i x ids' = / i * ids1 ^ id53 x si.

This completes the proof.

The case n = Q(8)

The spherical space form Z = 1(2,3,3) is the quaternion space 5'3/Q(8), where
S3 = {unit quaternions} and Q(8) = {±1 , ± i , ±j, ±k). The double cover corre-
sponding to the cyclic subgroup generated by i is the lens space L(4,1). We have
the following covers.

S* Pl - L(4,1) P* m X

P

A homology computation gives the following.

The lens space L(4,1) admits an ^-action (d, x) -> Ox with a circle e1 of fixed
points (see Figure 1). Pick the base point * = e° on that circle. The map

rotates e2 around e3 once. Hence ^(g) = 1 e//2(L(4,1); 7r3(L(4,1))) ^ Z 4 . We shall
pick base-points * =/>2(*)eI and * ep^i*) e 5^.

PROPOSITION 2.3. (1) 77iere is a short exact sequence

1 • ker(ev) • <f 0(Z(2,3,3) x S1) - ^ U y 4 x Z2 x Z2 • 1.
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X£>2), (S1 XD2)2

FIG. 1

(2) Letfe£0(2(2,3,3)xS1) be such that Q\(J)e^, and let f denote the lift off
to a homotopy equivalence ofSPxS1. Then fez id53X)Si.

Proof Every element of Aut(Q(8)) s 5^ induces the identity on //3(Q(8)) ^ Z8

[24, Proposition 8.3]. Hence image(ev) is as claimed. To prove (2), we may assume,
as in the proof of Proposition 2.2, that,/eker(ev). Pick l i f ts /and/to L(4,1) x S1

and SPxS1, based at * and * respectively. We have the following commutative
diagram.

53 X£i —±_^ SPxS1

As / # = 1, we can homotop / to the identity on (S3 x iS1)*3*. The remaining
obstruction to homotoping/to the identity is

Case 1: 0x{f) = 0. In this case 62(j) = {px id)*(^2(/)) = 0, since degp = 8. Hence
/

Case l'.Ox{f)± 0. Then 9x{f) = {pt x id)*(^(/)) = 0 or 2efP(L(4,1); Z) s Z4.
(i) If ̂ ( / ) = 0, then 02(f) = (p1 x id)*(92(f)) = 0, since degp1 = 4. Hence/ m id.
(ii) \{6l(J) = 2, letTi =fog~2. Then, by additivity and naturality of the difference

cocycle,

*i0) = ^3(/or2,/)]+[^3C/;id)] =Aox(g-*)+ox(f) = - 2 + 2 = 0,

and thus, as_ in (i), £ a id. Now f=Kog2~g2. As ^ (S 8 x 51) s Z2 x Z2 x Z2, it
follows t h a t / ^ id.

3. Twist-spun torus knots

We first review some notation and definitions. Let K = (5B+1, S1""1) be a knot with
exterior A' = sn+1-Sn~1 x /52. Given a gluing diffeomorphism

the pair iL = (S"""1 x Z)2 (Jy X, Sn~l x 0) depends only on the pseudo-isotopy class
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of y. The group of pseudo-isotopy classes of Sn~l x S1 is the same as the group of
self-homotopy equivalences, and is isomorphic to Z2 x Z2 x Z2 [4,1,10]. The first two
factors correspond to orientation-reversals of Sn~l and S1 respectively, and the third
to the 'twist' r, defined by ^ ^

where p(0) rotates Sn~x about its polar Sn~3 through angle 6. Since the generators
of the first two factors extend to diffeomorphisms of (Sn~l x D2, S1""1 x 0), we see that
Ky is equivalent to either K = KiA or K* = Kx. Further, K and K* are equivalent if,
and only if, there is a diffeomorphism of X which restricts on dXto ex, where e belongs
to the first two factors of Z2xZ2xZ2.

If AT is a knot of S1 in S3, and A: is a positive integer, the k-twist spin of AT is a knot
Kk = (S4,S2), with exterior Xk = ]fikx(,S

1. Here Mk is the A;-fold cyclic branched
cover of (S*, K), and Mk = Mk minus an invariant ball. The mpnodromy a is the
canonical branched covering transformation (ln/k rotation in a normal disk to the
branch set) [29]. Gordon [7] showed that S2xD2[JxX

k s S4 and proved that, if
Mk s R3 and k is odd, then Kk £ Kk*. More generally, if (s, k) = 1, and Kks denotes
the s-fold cyclic branched cover of the A>twist spin of K, Pao [16] showed that Kk<s

is a knot in S\ and S2 x D2
 U T ^ * ' 8 = ^4- Gordon's proof also gives Kks £ Kk>s*,

if Mk s U* and k is odd.
Let Kp q be the (p,^)-torus knot, with p,q> \ and coprime. Its fc-fold cyclic

branched cover A/* q is well known to be diffeomorphic to the Brieskorn manifold

Zfo q, k) = {(Zo, Zlt Z2) 6 C3 n 551 Zff + Z? + Z* = 0}.

If 1 //) + 1 /g + 1 /r < 1, Z(/?, q, k)^W\ otherwise, l(p, q, k) s 5s. Gordon's
theorem [7] shows that ^*- * is not determined by its exterior if k is odd and greater
than 1, (s,k) = 1, and ({k,s},{p,q}) is not ({3,1},{2,3}), ({3,1},{2,5}), ({5,1},{2,3}) or
({5,2}, {2,3}). The knot K\ 3 has fiber

The knots K\<b, K\t3 (and also K\b) have fiber 1(2,3,5)° s (53/SL(2,5))°. Although
they have the same fundamental group SL(2,5) x Z, they have different n2 (as
ZTii-modules) [6]. The knots K\ 3 and K\> \ have isomorphic ̂ x and n2 (as ZTTj-modules),
but their exteriors are not homotopy equivalent (rel 3), although it is conceivable that
they are homotopy equivalent [18].

PROPOSITION 3.1. Let Kbe one of the knots K\f 3, K\ 5, K\ 3 or K\> \. Then K%K*.

Proof. The knot K has exterior X = £ x a S
1, where Z is 1(2,3,3) (or 1(2,3,5))

and a has odd order k ( = 3 or 5). If K ^ K*, then there is a diffeomorphism of X
restricting to EX: 3Ar->6Ar. Now pass to the /c-fold cyclic cover £ x S1, obtaining a
diffeomorphism / o : £ X 5 ' — f x5 ' ,

restricting on d(£ x S1) to ezk = er (since k is odd). Extend /0 to a diffeomorphism /
of Z x S1 = I) x S1 u B3 x S1 by taking/|B3 x s . to be the cone on ex. By reversing the
orientation of S1 if necessary, we have that/e^0(Z x S1), ev(/)e^4 (or A5). Letting
/ b e a lift of/to ^ x S 1 , Proposition 2.3 (or 2.2) gives/^ idS3xSi. Let B% be one lift
of Bz to S3. Then/|B3 x sa is the cone on ex. Writing S3 = B% U ^ i , it is easy to define
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a (radial) homotopy from / to eY, where e', x' correspond to e, T in one higher
dimension. This gives eY ^ idss x si; a contradiction.

REMARK. For any knot K in S3, we have A? ^ A?* (Litherland [7, footnote,
p. 595], Montesinos [12], Plotnick [19]).

4. Proof of Theorem 1.2

We wish to determine the fibered knots (Sn+1,5""1), n odd and n ^ 3, with closed
fiber a spherical space form Sn/n. The exterior of such a knot is (Sn/n)° x^S1. The
monodromy a induces an automorphism of n, call it also a, with the following
properties:

(1)

(2f)

(3)

< r , - l :

n/<g~

Hfa)
(

i(T(g)> = {1} (*<7 kills the group'),

• Hi(n) is an isomorphism, 0 < i < n,

7^HJn) >#„(&) is + 1 .

Here < > denotes normal closure. Condition (2X) is just the abelianization of condition
(1). Condition (2) comes from the Wang sequence and condition (3) follows from
Olum's theorem (see §2) and the fact that a is orientation preserving. Notice that, if
TV is a normal subgroup with a(N) = N, the induced automorphism a eAut(n/N) also
satisfies (1).

PROPOSITION 4.1. Let n be a finite group acting freely on Sn, n odd and n ^ 3, and
oeAutn satisfying conditions (1) and (2). Then n = Gxlm, where G = {\}, Q(8), T(k)
or SL(2,5), m is odd, and (|G|, m) = 1. Moreover, ifn is not cyclic, n = 3.

Proof Finite groups acting freely on spheres are completely classified in six types
(see [27, pp. 179, 195-198; 25]). Condition (2X) permits us to delete from the list any
groups with abelianization cyclic of even order. We are left with types I, II, III, V.
We now decide what are the admissible groups in each type.

Type I.

n = [A,B
BAB-1 = Ar rm* = 1 (mj

The commutator subgroup is Zmi = (A\Ami = 1), and

Hx{n) = »/Zm i s Zm2 = (^|^«. = 1).

The automorphism a induces automorphisms a\z =-i and a = -keAutZmi. By
condition (2X), a— 1 = • ( / : - l )e AutZm2. Hence c has the form

J A4 /* \ I

°' B >BkAi (k,m2) = (k-\,m2)=\.

The condition a{BAB~l) = a(Ar) imposes irk = ir (mx), whence r = 1 (mj. Therefore
' ' nil Wg"
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Type II.

n=\A,B,R

As in I; also

m2 = 2uv, u

/2 = 2«/z-l

/> = 1 (m2)

odd

The conditions (m2(r—l),mx)= 1, rm2 = 1 (mj imply that mx is odd, with
(mvm2) = 1. This, together with the above relations holding in n, easily show the
subgroup Zmi generated by A to be characteristic. Let

G = n/Zmi = (B,R\Bm2=\,R* = B

It is the semidirect product Zma/4 x Q(8), with Zm2/4 generated by B* and Q(8) by
Bm*'* and R. The elements of G are of the form ReBk, e = 0 or 1. If v = 1 and u = .2,
G s Q(8). Otherwise, the induced automorphism a e A u t G takes B to Bk or RBk. If
a{B) = Bk, a induces creAutQ(8), a{B) = Bk, which does not kill Q(8). Hence
a(B) = RBk. From a(54) = B2k«>+» = (54)2""1^, we see that (2u-1k/i,2u-*v)=\,
which gives v odd, u = 2 and (/*, v) = 1. From (/2+ 1, v) = 1 and /| = 1 (4v), we get
/2— 1 = 0 (v), which, together with /2 = — 1 (4), implies that /2 = 2v+1. This shows
that RB'R-1 = B" and thus G s Q(8) x Zv.

The automorphism a has the form

B*

Bv

R- Bv.

(When v = 1, we could also have B
manner.) Hence a has the form

B*

Bv

= (s-\,v)=

R, R-+ RBV; we then continue in the same

BvAl*.

Since a is a homomorphism and BVAB~V = Ar\ BAAB~* = Ar\ RAR-1 = A\ we get
ixlxr

v = ixr\ ixr*8 = ixr*, ixr
v = ixlx (mj. This, together with (i^mj = 1, /? = 1 (mx)

and (4(y-1), v) = 1, yields r = lx = 1 (mj . Therefore n = Q(8) x ZmiW.

III.

n = \A,B,P,Q

As in I; also

1 = Q, = PQ

m2 = 1 (2)

m2 = 0(3)

The subgroup Q(S) = (P,Q\P2 = Q2 = (PQf) is characteristic, and
7t/Q(8) £ Z W i x Z m j is of type I; hence r= 1. Write m2 = 3*w, (m,3)= 1. As
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= P, B3"QB-3k = Q, the subgroup Zmmi generated by B**A is central. If
we let T(k) = Q(8) x Z3* be the subgroup generated by P, Q and Bm, then
n = T(k)xZmmi.

Type V. n = SL(2,p) xK,p prime and at least 5, K of type I, (\K\, |SL(2,/?)|) = 1.
The group K has to be cyclic, by the discussion for type I. Since n acts freely on

Sn, its cohomology period divides n+\. The /-Sylow subgroups of SL(2,p) are Q(2&),
for 1 = 2, and Zh for / # 2, and

H*(SL(2,p)) = #4*(Q(2fc)) © H^-l)*(Zp) © 0 H4*(Zt),

where H4*(Q(2k)) = Z2* [9]. This shows that SL(2,p) has cohomology period p-1 if
p=\ (4) and 2(/>-l) if p = 3 (4). Therefore ( /?-l) |«+l if p = 1 (4) and
2(p—\)\n + \ if/? = 3 (4). As /f3(/c) = H\n) is cyclic of even order, condition (23)
forces p ^ 5. Hence 7r = SL(2,5) x K.

We have shown that n = GxZm, where G = {\), Q(8), 7\fc) or SL(2,5), and
(\G\,m) = 1. By condition (2X), m is odd. In particular, n is a 3-manifold group (see
[15] or [27, p. 224]), and so Hz(n) = Z^. If n is not cyclic, n has even order, and
condition (23) forces n = 3.

In order to finish the proof of Theorem 1.2, we analyse the knots with closed fiber
a spherical space form Sn/Zm, n = 2d— 1 > 3. These manifolds are generalized lens
spaces L{tn\qx,...,qd}. Since lens spaces admit circle actions with codimension 2
fixed point set, they are 'spun' in the sense of [4, § 17]. Therefore knots with fiber a
punctured lens space are determined by their exterior.

REMARK. If a punctured lens space L(m;q1,...,qd)° is the fiber of a fibered
knot in SI2*, with monodromy a, then a = -reAutZ^ satisfies conditions (1) to (3),
namely, {r,m)= 1, (r*— \,m) = 1 for 1 ̂  / < d, (rd,w) = 1. Ruberman [21] shows
that this implies that L(m,qi,...,qd)

 = L(m; 1,r,...,r**"1) if d = 21+1 and
L(m;q1,...,qd) = L(m; \,r,...,rl-l,b,br,...,brl~x), with (b,m)= 1, if d=2l. Con-
versely, given a e Aut Zm satisfying the above conditions, one can find a fibered knot
in S2d with fiber a punctured lens space and monodromy a [5, 21].

The conclusion that n = Gx Zm, with G and m as in Proposition 4.1, was reached
by Hillman [8] for knots in S4, under the (weaker?) assumption that the knot have
finite commutator subgroup. These groups can be realized as the commutator
subgroups of knots in S4 by 2-twist spinning, except in the case when n = Q(8) x Zm,
m ^ l , when one only, gets a knot in a homotopy 4-sphere [28]. In the next section
we turn to the more delicate question of realizing all the possible pairs (n, a).

5. Realizing monodromies

Let {S4, S2) be a fibered knot with closed fiber a spherical space form SP/n. The
monodromy a satisfies conditions (1) and (3) of §4 (condition (2X) follows from (1)
and (22) from H2(n) = 0). Given an orientation-preserving diffeomorphism a of S*/n
satisfying (1), we can assume that a fixes a small D3; the manifold
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is a homotopy 4-sphere (homeomorphic to 54 by Freedman's work [3]). The pair
(I4, S2) is a knot with fiber (SP/n)0 and monodromy a. If a is periodic, with
(SP/n)/a = SP, then a will necessarily have a circle of fixed points, and we are just
constructing a twist spun knot (or a branched cover) in S4 (see [16]). By [26], a periodic
diffeomorphism a of S3/7* with a one-dimensional fixed point set is geometric, that
is, preserves the Seifert structure. If a reverses the orientation of the fibers, then it
is well known that a expresses S?/n as the 2-fold cyclic branched cover of S3 along
a pretzel knot [11]. Otherwise, SP/n is a cyclic branched cover of S3 along a torus knot.
All such possibilities will occur below.

PROPOSITION 5.1. Given a pair (n,a), with n a finite group acting linearly on S3

and <7eAut7r satisfying conditions (1) and (3), there is a fibered knot (Z4,5"2), £4

homeomorphic to S4, with fiber (SP/n)° and monodromy a.

Proof. Suppose that a e Aut n can be realized as the monodromy of a knot with
exterior (SP/n)° x^S1. Then so can fia±xfi~l, for / / e lnn^ , and the resulting knot
exteriors are diffeomorphic. Consequently, we shall only consider a up to this
equivalence relation. If <p = cro/^, gen, is another automorphism killing the group,
then (n,<p) can be realized by a fibered knot (£4, S2) with exterior SP/nXgS1-
{neighborhood of tg}, where t = * x S1.

Now let (n,o) be a pair as in the hypothesis. By Proposition 4.1 (or [8]),
n = GxZm, G = {1}, Q(8), T(k) or SL(2,5), m odd and (\G\,m) = 1. We write
a = (a|G,<7|Zm). If c|zm = '>•>tnen (r—l,m)= 1, by condition (1), and r2 = 1 (AW), by
condition (3). Hence a|2fn = — 1. We now analyse each type.

Type I. n = Zm = {A \Am = \,m odd), o(A) = A'1. This is realized by 2-twist spinning
a certain 2-bridge knot [23].

Type II. n = Q(8)xZm = (B,R\B2 = R2 = (BR)2)x(A\Am=l,m odd). Any auto-
morphism of Q(8) which kills it is equivalent to y/: B -• R, R -* RB, of order 3. The
pair (Q(8), if/) can be realized by 3-twist spinning the trefoil knot. The automorphism
(y/, — l )e Aut(Q(8) x Zm), m # 1, is realizable by a diffeomorphism of SP/n [22], and
thus by a knot in a I 4 .

The manifold P/n is Seifert fibered over S2, with invariants (b; (2,1), (2,1), (2,1)),
where m = |2£ + 3| (see [15]). The group n has a Seifert presentation

n = {<li,q*qzih\(l\h = q\h = q\h = q1q2q3h~b = [q{,h] = 1),

where qx = B^RA-1, q2 = BA~X, q3 = RA~\ h = B2A2. The automorphism (y/, -1)
translates to qx -*• q^q^q^h"1, q2 -> q^h™, qz -> q\~x, h -> h'1. Notice that if m = 1
(& = — 1, n = Q(8)), then h2 = 1, and (^, — 1) = y/ can be simplified to qx -* q^q^q^
q% -* q*i qz ~> q\~xq\ #3> h-*h. Arrange the three (2,1) fibers to lie equally spaced on
the equator, and put the ( 1 , - 1 ) fiber at the north pole. Then y/ is geometrically
realized by a map of period three given in the complement of these fibers by a 27r/3
polar rotation of S2 and a 2TT/3 rotation of the S1 fibers. One checks that this extends
to a map of period three on S3/Q(8), the (2,1) fibers produce one (2,1) fiber in the
quotient, and the (regular) fiber over the south pole produces a (3,1) fiber. The map
is branched along the ( 1 , - 1 ) fiber, which descends to a regular fiber, and we have
the 3-fold cyclic branched cover of S3 along the trefoil knot. When m ^ 1, (y/, — 1)
has order 6, but cannot be realized by a periodic diffeomorphism.
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Type III.

Zm = [P,Q,B

By conditions (1) and (3), the automorphism (<T|T(&))# of

is multiplication by — 1. Using the presentation of hut{T(k)) given in [8], we deduce
that (j\T(k) belongs to the subgroup of Aut(T(k)) generated by ptP, fiQ, nB and
p: P -> Q~l, Q -> P~l, B -* B~x. It is now easy to see that cr|T(fc) is conjugate (by inner
automorphisms) to either the involution p or the order 4 automorphism

(p = PMPB:P >P, Q >PQ, B >B~*P.

(The possible automorphism 99 was overlooked in [8].)
The pairs (T(\),p) and (T(l), (p) can be realized by 2-twist spinning the (3,4) torus

knot, respectively 4-twist spinning the trefoil knot. The pairs (T(k),p) and
(T(k) x Zm, (p, — 1)) can be realized by 2-twist spinning certain pretzel knots
[11,28]. As <P = PHPB and (99, - 1 ) = (p, — \)op.PB, the pairs (T(k),(p) and
(T(k) x Zm, (99, — 1)) can be realized by knots in a £4.

The manifold S3/T(k)xZm is Seifert fibered over S2, with invariants
(b; (2,1),(3,1),(3,1)), where m = \6b + l\, if k = 1, and (b; (2,1),(3,1),(3,2)), where
3*w = |66+9|, if A: * 1. When k=\,

\h = q\h = q\h = q1q2 q3h~b = [qu h] = 1),

where ql = PA3b+\ q2 = p-lB~lA2b+i, q3 = P^B^A2^2, h = P2A (or h = P2 if
m = 1). The automorphism (<p, — 1) translates to qx -> qx h

6b+s, q2 -*• qz h8b+10,
«3->9r1^2^iA8*+1°. A-*/*"1- If m = 1 (6 = - l , TT= 7X1)), ^2 = 1 and ( ^ , - 1 ) = ^
simplifies to qx -* qx, q2 -> ^3, ^3 -• qi^q^q^ h-*h. Arrange the two (3,1) fibers to lie
on the equator of 52, put the (2,1) fiber at the north pole and the (1, — 1) fiber at the
south pole. Then 99 is geometrically realizable by a map of period four which rotates
S2 by n, and rotates the S1 fibers by In. The two (3,1) fibers produce one (3,1) fiber
in the quotient, the ( 1 , - 1 ) fiber produces a (2,1) fiber, and the map is branched along
the (2,1) fiber, which descends to a regular fiber. Thus we have the 4-fold cyclic
branched cover of SP along the trefoil knot. If m # 1, (99, — 1) has order four, but
cannot be realized by a periodic map.

When k # 1,

n = (<Ji,q2>q3>h\q2h = q\h = q\h2 = qxqtq*hrb = [qt,h] = 1),

where ql = P-1hb+1, q2 = P~1B~1Ai, q3 = B-2A~i-1, h = P2B3A (or h = P2BZ if
m = 1), where, if m = 3/± 1, then / = +/. The automorphism (99, — 1) translates to
qx -> qxh~2b~2, q2 -»• q3h, q3 -*• qi^q^qxh,h-> / r1 , but cannot be realized by a periodic
map.

Type V. n = SL(2,5) x Zm, (m, 30) = 1. First consider the case when m = 1. Then

n = SL(2, 5) = (qx,q2,q3\q\ = q\ = q\ = qxq2q3),

the fundamental group of the Seifert manifold 1(2,3,5) = ( - 1 ; (2,1), (3,1), (5,1)).
Given ae Autrc with am = 1: H3(n) -* H3(n), the result in [17] mentioned in §2 shows
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a to be inner. As the identity does not kill the group, we are left with four conjugacy
classes (in Inn(SL(2,5)) £ A5), represented by conjugation by qv q2, qz and q\ (q3 and
q\ are conjugate in Aut(SL(2,5)) = y5, but not in A5). These automorphisms are
realized by JC|t6, jq>6, K{t and K\\ [18].

For n = SL(2,5) x Zm, the automorphism a is of the form {jig, — 1), where g is
tfi> #25 #3 o r #1- The involution (jiqi, — 1) can be realized by 2-twist spinning a certain
pretzel knot [11, 28]. The automorphisms (jxg, -1 ) = (Mqi, -l)ofiq-ig (g = q2, q3 or
ql) can be realized by knots in a I4. One can translate these automorphisms in terms
of the Seifert presentation of n corresponding to S?/n = (b; (2,1), (3,1), (5,1)), where
m = |306 + 31|. As before, the diffeomorphisms realizing these automorphisms (of
order 6, 10 and 10) are not periodic.

The information gained in proving Propositions 5.1 and 3.1 is summarized in
Table 1.

TABLE 1

order of a realized by is * = ;

0(8)
Q(8)xZm

T(l)

T(k)

T(k)xlm

SL(2,5)

SL(2,5)xZ,

2

3
6
2
4
2
4
2
4
2
3
5
5
2
6

10
10

#2,#=2-bridgeknot

^2,3

knot in Z4

*! . ,
/:2, A" = pretzel knot
knot in S4

A:2, K = pretzel knot
knot in Z4

^3,6

^2,5

^2,3
AT6-2

•^2,3A:2, K = pretzel knot
knot in Z4

knot in Z4

knot in Z4

yes

no
?

yes
?

yes
?

yes
?

yes
no
no
no
yes
?
?
?

We can complete now the proof of Theorem 1.1. Let K be a non-trivial fibered
2-knot, with fiber (SP/n)0 and odd order monodromy. From Table 1, we see that
n = Q(8) or SL(2,5). If n = Q(8), the n acts linearly on S3 [22], and thus Proposition
2.3 (2) holds. If n = SL(2,5), it is not known whether n acts linearly, but the proof
of Proposition 2.2 (2) does not require that. Now the proof of Proposition 3.1 shows
that K £ K*.
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