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The sum of the Möbius function

H. Maier and H. L. Montgomery

Abstract

We derive from the Riemann Hypothesis an estimate for M(x) =
∑

n�x µ(n). This is the first
improvement of the bound that Titchmarsh established in 1927.

1. Introduction

Let M(x) =
∑

1�n�x μ(n), where μ(n) denotes the Möbius function. In [3], Littlewood proved
that if the Riemann hypothesis (RH) is true then 1/ζ(1/2 + ε+ it) � tε for any fixed ε > 0,
and it follows by Perron’s formula that

M(x) � x1/2+ε. (1)

The converse is trivial, since this estimate, by partial summation, implies that the series∑∞
n=1 μ(n)n−s = 1/ζ(s) converges for σ > 1/2. Subsequently, Landau [2] showed, still assuming

RH, that (1) is valid with ε� (log log log x)/ log log x, and Titchmarsh [15] improved this to
ε� 1/ log log x. Titchmarsh’s analysis was based on the estimate

ζ

(
1
2

+
1

log log t+ it

)−1

� exp
(
c log t

log log t

)
(t � 4)

that Littlewood [4] derived from RH. The above still stands as the best known estimate of its
kind but, from the work of Selberg [13], we know that a much better estimate applies for most
t. In particular, Selberg (unpublished) derived asymptotic formulae for the moments∫T

0

(log |ζ(σ + it)|)2k dt,

from which it can be seen that the distribution of
log |ζ(1/2 + it)|√

log log t
,

for 4 � t � T , tends weakly to normal distribution with mean 0 and variance 1/2 as T → ∞. By
utilizing Selberg’s techniques, we can bound the frequency with which | log ζ(σ + it)| is large.
Once our basic result is in place, it can be put to various uses. For example, in Corollary 1
below, we find that (1) holds with ε = (log x)−22/61.

Theorem (Assume RH). For any x � 2 there is a piecewise linear contour lying in the
rectangle 1/2 < σ < 1 and −x � t � x that links the bottom edge of the rectangle to the top,
for which the following estimates apply:∫

0�t�16

∣∣∣∣ xsζ(s)

∣∣∣∣ |ds| � x1/2 log log x. (2)
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For 16 � T � exp
(
(log x)39/61

)
, we have

∫

T�t�2T

∣∣∣∣ xsζ(s)

∣∣∣∣ |ds| � x1/2T

(
e log x
log T

)C log T/ log log T

. (3)

For exp
(
(log x)39/61

)
� T � x, we have

∫

T�t�2T

∣∣∣∣ xsζ(s)

∣∣∣∣ |ds| � x1/2T (log x)A exp

((
log x
log T

)39/22
)
. (4)

Finally, for each real number t, where exp
(
(log x)39/61

)
� t � x, let σ(t) be chosen so that

σ(t) + it ∈ . Then the quantity

xσ

|ζ(σ + it)|
is an increasing function of σ for σ(t) � σ <∞.

In the above, and elsewhere, we denote by A and C effectively computable absolute constants,
which may be different from one occasion to the next. The limit of our method would allow
the exponent 39/22 to be replaced by a slightly smaller (presumably transcendental) number,
but, for simplicity, we content ourselves with the above.

Corollary 1 (Assume RH). For x � 2, we have

M(x) � x1/2 exp(C(log x)39/61).

Corollary 2 (Assume RH). There is an absolute constant A such that, if x � 2 and
h � x1−δ, then ∑

x<n�x+h
μ(n) �δ x

1/2(log x)A.

The above estimates are remarkably inferior to the corresponding estimates for π(x):
assuming RH, we know that π(x) = lix+ O

(
x1/2 log x

)
(see [9, Theorem 13.1]). In the opposite

direction it is easy to prove that M(x) = Ω±
(
x1/2

)
. Mertens conjectured that |M(x)| � x1/2,

but this has been disproved by Odlyzko and te Riele [11] by means of extensive numerical
calculations. The finer behavior of M(x) depends in a complicated way both on the distribution
of |ζ ′(ρ)| as ρ = 1/2 + iγ runs over the nontrivial zeros of the zeta function, and on the extent
of linear independence of the imaginary parts of the γ > 0. Based on speculations relating to
random matrix theory, Hughes, Keating, and O’Connell [1] have conjectured that∑

0<γ�T

1
|ζ ′(ρ)| ∼ αT (log T )1/4, (5)

where α is a certain specified positive constant. This estimate implies (assuming RH) that

M(x) � x1/2(log x)5/4 (6)

for x � 2. However, more should be true, and indeed Gonek (unpublished) conjectured that

lim
x→∞

M(x)
x1/2(log log log x)5/4

≷ 0 (7)
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(see [10]). This corresponds to the conjecture of Montgomery [7] that

lim
x→∞

ψ(x) − x

x1/2(log log log x)2
= ± 1

2π
. (8)

2. Monotonicity principles

The following lemmas capture in a succinct manner some of the main ingredients in the
arguments of Landau [2] and Titchmarsh [15].

Lemma 1 (Assume RH). Let ξ(s) = (1/2)s(s− 1)ζ(s)Γ(s/2)π−s/2. Then, for any fixed t,(
σ − 1

2

)
�ξ

′

ξ
(σ + it) (9)

is a non-negative strictly increasing function of σ for 1/2 � σ <∞.

By the symmetry of the functional equation ξ(1 − s) = ξ(s), it follows that expression (9) is
invariant when σ is replaced by 1 − σ. Thus, for σ � 1/2, the expression is non-negative and
strictly decreasing.

Proof. By Montgomery and Vaughan [9, (10.28) and (10.30)], we know that

�ξ
′

ξ
(s) =

∑
ρ

� 1
s− ρ

, (10)

where the sum is over all nontrivial zeros ρ = 1/2 + iγ of the zeta function. Hence expression (9)
is equal to ∑

γ

(σ − 1/2)2

(σ − 1/2)2 + (t− γ)2
.

Since each term of this sum has the required properties, the result is immediate.

Lemma 2. There is a constant C > 0 such that, if t � C, then(
σ − 1

2

)(
�ζ

′

ζ
(σ + it) −�ξ

′

ξ
(σ + it) +

1
2

log
t

2

)
is a non-negative strictly increasing function of σ for 1/2 � σ � 2.

It seems likely that C = 2.8 is admissible in the above. Certainly C = 2.7 is not.

Proof. Since
ζ ′

ζ
(s) =

ξ′

ξ
(s) − 1

s− 1
+

1
2

log π − 1
2

Γ′

Γ

(s
2

+ 1
)
,

we need to show that
1
2

(
σ − 1

2

)(
2(1 − σ)

(σ − 1)2 + t2
+ log

πt

2
−�Γ′

Γ

(
σ

2
+ 1 +

it

2

))
(11)

is non-negative and increasing. By the Euler–MacLaurin sum formula, we find that

Γ′

Γ
(s) = log s+ O(1/|s|)
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uniformly for |args| � π − δ and |s| � 1 (see [9, Theorem C.1]). By applying Cauchy’s formula
to (Γ′/Γ)(s) − log s, or by applying the Euler–MacLaurin formula to the expansion(

Γ′

Γ

)′
(s) =

∞∑
n=0

1
(s+ n)2

,

we also find that (
Γ′

Γ

)′
(s) =

1
s

+ O
(

1
|s|

2)

uniformly for |args| � π − δ and |s| � 1. By appealing to these estimates, we discover that the
derivative of (11) with respect to σ is (1/2) log π + O(1/t), which is positive if t � C, and so
expression (11) is strictly increasing. Since it vanishes when σ = 1/2, it also follows that it is
non-negative.

On summing the quantities in the two preceding lemmas, we obtain the following.

Lemma 3 (Assume RH). There is an absolute constant C > 0 such that, if t � C, then(
σ − 1

2

)(
�ζ

′

ζ
(σ + it) +

1
2

log
t

2

)
(12)

is a non-negative strictly increasing function of σ for 1/2 � σ � 2.

Lemma 4 (Assume RH). If 1/2 < σ1 � σ2 � 2 and t � C, then

|ζ(σ1 + it)| � |ζ(σ2 + it)|
(
σ1 − 1/2
σ2 − 1/2

)(σ2−1/2)(�(ζ′/ζ)(σ2+it)+(1/2) log(t/2))

.

Proof. Let f(σ) denote expression (12). Thus f(σ) � f(σ2) for 1/2 � σ � σ2. We divide
both sides of this by σ − 1/2 and integrate over σ1 � σ � σ2, exponentiate, and discard a
factor (t/2)(σ1−σ2)/2 to obtain the stated inequality.

Littlewood [4] showed (assuming RH) that

log ζ(s) � log τ
log log τ

, �ζ
′

ζ
(s) � log τ (13)

for σ � 1/2 + 1/ log log τ , where τ = |t| + 4. Suppose that 4 � t � x, and take

σ1 =
1
2

+
log t

(log x) log log t
, σ2 =

1
2

+
1

log log t

in Lemma 4. Then, by the estimates (13), we see that

1
ζ(s)

�
(
e log x
log t

) C log t
log log t

for s = σ1 + it. Titchmarsh’s estimate follows immediately by applying Perron’s formula on
this contour.

3. Large value estimates

We first establish a basic tool.
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Lemma 5. Suppose that

S(s) =
∑
p�N

a(p)p−s,

where the a(p) are arbitrary real or complex numbers. Suppose that α, T, and T0 are real
numbers such that T � 2. For 1 � r � R, let sr = σr + itr be points such that σr � α and
T0 � tr � T0 + T . Also, suppose that these points are well spaced to the extent that |sr1 −
sr2 | � 1/ log T for 1 � r1 < r2 � R. If k is a positive integer such that Nk � T, then

R∑
r=1

|S(sr)|2k � T (log T )2k!

⎛
⎝∑
p�N

|a(p)|2p−2α

⎞
⎠
k

.

Proof. Let D(s) = S(s)k =
∑
n�Nk cnn

−s. We show first that

R∑
r=1

|D(sr)|2 � T (log T )2
∑
n

|cn|2n−2α. (14)

To this end, let (a) denote a disc of radius 1/(2 log T ) centered at a. Then

|D(s)|2 � 4
π

(log T )2
∫∫

(s)

|D(x+ iy)|2 dx dy

for any s. Since the discs (sr) are disjoint and since they all lie in the half-strip σ � α− 1/
log T and T0 − 1 � t � T0 + T + 1, it follows that

R∑
r=1

|D(sr)|2 � (log T )2
∫∞

α−1/ log T

∫T0+T+1

T0−1

|D(σ + it)|2 dt dσ.

By a standard mean-value theorem (see [5, Theorem 6.1; 6, 8]), we know that the inner integral
above is

(T + O(Nk))
∑
n

|cn|2n−2σ.

On integrating this with respect to σ, we find that
R∑
r=1

|D(sr)|2 � T (log T )2
∑
n

|cn|2
n2α log n

.

Note that the term n = 1 does not occur in the above, since cn 	= 0 only when Ω(n) = k. Thus
log n
 1 for all the above n, and hence we have (14).

To complete the proof, we note that, if n has the canonical factorization n = pk11 p
k2
2 · . . . · pkm

m

with Ω(n) =
∑
i ki = k, then

cn =
(

k
k1 k2 . . . km

) m∏
i=1

a(pi)ki .

Hence ∑
n

|cn|2n−2α =
∑
n

(
k

k1 k2 . . . km

)2 m∏
i=1

|a(pi)|2ki

p2kiα
i

.

Here the multinomial coefficient is at most k! in all cases, and so the above is at most

k!
∑
n

(
k

k1 k2 . . . km

) m∏
i=1

|a(pi)|2ki

p2kiα
i

= k!

⎛
⎝∑
p�N

|a(p)|2p−2α

⎞
⎠
k
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by the multinomial theorem. The stated result now follows by combining the above
with (14).

We now use the above, and Selberg’s technique, to estimate the number of times that∣∣(ζ ′/ζ)(s)∣∣ is large. It transpires that the exponent ξ in our Theorem 1 depends on the constants
that arise in the next lemma, and so we take care to optimize the parameters. The main
parameter, η, is left undetermined until its optimal value becomes apparent, in the next section.

Lemma 6 (Assume RH). Suppose that 0 < η � 1/2, that ε > 0, that T � T0(ε), and that
α � 1/2 + 1/ log T. For 1 � r � R, let sr = σr + itr be points such that σr � α and T � tr �
2T, with the tr well spaced in the sense that |tr1 − tr2 | � 1 whenever r1 	= r2. Finally, suppose
that

∣∣(ζ ′/ζ)(sr)∣∣ � η log T for 1 � r � R. Then

R� T (log T )3 exp
(
−(f(η) − ε)

(
α− 1

2

)
(log T ) log

((
α− 1

2

)
(log T )

))
,

where f(η) = 1/
(
ψ + log(1 + 1/2η)

)
. Here ψ is the unique real number such that e−ψ + 1 = ψ.

By Newton’s method it is easily found that ψ = 1.27846 . . . .

Proof. Since ψ > 1, it is clear that f(η) < 1 for any choice of η. Thus the bound to be
proved is worse than the trivial bound R� T if

1
2

+
1

log T
� α � 1

2
+

log log T
(log T ) log log log T

.

Hence we may assume that

α � 1
2

+
log log T

(log T ) log log log T
. (15)

Let

w(n) =

⎧⎪⎪⎨
⎪⎪⎩

1 if n � u,
log uv/n

log v
if u < n � uv,

0 if n > uv.

(16)

Then ∑
n

Λ(n)w(n)
ns

=
−1
2πi

∫ c+i∞
c−i∞

ζ ′

ζ
(s+ z)

uz(vz − 1)
z2 log v

dz.

We move the contour to the left and apply the calculus of residues to see that the above is
equal to

−ζ
′

ζ
(s) +

∑
ρ

uρ−s
(
1 − vρ−s

)
(ρ− s)2 log v

+
u1−s(v1−s − 1)
(s− 1)2 log v

+
∞∑
k=1

u−2k−s(1 − v−2k−s)
(2k + s)2 log v

, (17)

provided that s 	= 1, and that ζ(s) 	= 0. In the case u = v, this is Lemma 2 of Selberg [12]. For
a more elaborate formula of this kind, see [14, Lemma 10]. The above is true unconditionally,
but if we assume RH, then we find that the second term above has modulus at most

u1/2−σ(1 + v1/2−σ)
(σ − 1/2) log v

∑
ρ

σ − 1/2
(σ − 1/2)2 + (t− γ)2

.
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Here the sum is �(ξ′/ξ)(s), which by Lemma 2 is at most �(ζ ′/ζ)(s) + (1/2) log(t/2). Thus
the above is at most

u1/2−α(1 + v1/2−α)
(α− 1/2) log v

(
�ζ

′

ζ
(s) +

1
2

log T
)

(18)

for σ � α and T � t � 2T .
Write S(s) =

∑
p�uv w(p)(log p)p−s. We must choose u and v to be sufficiently large so as

to ensure that |S(sr)| � δ log T . We may assume that u � 2, v � 2, and that uv � T . Thus the
last two terms in (17) are much less than 1/T . Also,

∑
p

∞∑
k=2

w(pk) log p
pks

�
∑
p

log p
p2α

� 1
2α− 1

� (log T ) log log log T
log log T

= o(log T )

by (15), and so the quantity on the left has absolute value at most δ log T for all sufficiently
large T . Hence, if

∣∣(ζ ′/ζ)(sr)∣∣ � η log T , then |S(sr)| � δ log T , provided that

η

(
1 − u1/2−α(1 + v1/2−α)

(α− 1/2) log v

)
− u1/2−α(1 + v1/2−α)

(2α− 1) log v
� 2δ. (19)

We want to take k in Lemma 5 as large as possible. Therefore we want the above to hold with
uv as small as possible. In order to determine the optimal choice of these parameters, we find
it convenient to introduce a change of variables as follows:

u = exp
(

U

α− 1/2

)
, v = exp

(
V

α− 1/2

)
.

Then (19) is equivalent to the inequality

η − 2δ
η + 1/2

�
e−U

(
1 + e−V

)
V

,

and we want U + V to be as small as possible. We take U such that the above holds with
equality, since it would be wasteful to take U any larger than necessary. Then

U + V = log
(

1 + e−V

V

)
+ log

(
η + 1/2
η − 2δ

)
+ V.

This is minimized by taking V = ψ, where ψ is the unique real number such that 1 + e−ψ = ψ.
These considerations lead us to the choice

u =
(
η + 1/2
η − 2δ

)1/(α−1/2)

, v = exp
(

ψ

α− 1/2

)
.

We take k = [(log T )/ log uv] in Lemma 5. If δ is sufficiently small as a function of ε, then

k �
(
f(η) − ε

2

)(
α− 1

2

)
(log T ). (20)

Now ∑
p

(log p)2

p2α
� 1

(2α− 1)2
.

Indeed, with a little work it should be possible to show that the left-hand side above is strictly
less than the right-hand side (that is, that the implicit constant can be taken to be 1), for all
α > 1/2. Since k! � kk, by Lemma 5 it follows that

(δ log T )2kR� T (log T )2
(

Ck

(2α− 1)2

)k
.
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Thus

R� T (log T )2
(

Ck

δ2(2α− 1)2(log T )2

)k
� T (log T )2

(
C

δ2(2α− 1) log T

)k
.

This gives the stated result, in view of (15) and (20).

Lemma 7 (Assume RH). For 1 � r � R let sr = σr + itr be points such that σr � α �
1/2 + 10(log log T )/ log T, T � tr � 2T, |tr1 − tr2 | � 1 when r1 	= r2, and

| log ζ(sr)| � (α− 1
2
) log T, �ζ

′

ζ
(sr) � 1

2
log T. (21)

Then

R� T (log T )3 exp
(
−1

2

(
α− 1

2

)
(log T ) log

(α− 1/2) log T
2 log log T

)
.

Proof. In (17) we replace s by s+ x, where 0 � x � 1. The second term on the right-hand
side has absolute value not exceeding

u1/2−σ−x(1 + v1/2−σ−x)
log v

∑
ρ

1
(σ + x− 1/2)2 + (t− γ)2

� u1/2−σ−x(1 + v1/2−σ−x)
(σ − 1/2) log v

∑
ρ

σ − 1/2
(σ − 1/2)2 + (t− γ)2

.

Here the last sum is �(ξ′/ξ)(s). Hence, by Lemma 2, the above is at most

u1/2−σ−x + (uv)1/2−σ−x

(σ − 1/2) log v

(
�ζ

′

ζ
(s) +

1
2

log T
)

for T � t � 2T . We integrate over 0 � x � 1 to see that∣∣∣∣∣log ζ(s) −
∑
n

Λ(n)w(n)
(log n)ns

∣∣∣∣∣ �
(
u1/2−α

log u
+

(uv)1/2−α

log uv

) �(ζ ′/ζ)(s) + (1/2) log T
(α− 1/2) log v

+ O(1).

We now take u = v = exp(1/(α− 1/2)). Thus, if �(ζ ′/ζ)(s) � (1/2) log T , then the above is
less than (9/20)(α− 1/2) log T . Write S(s) =

∑
p w(p)p−s. We note that∣∣∣∣∣

∑
p

∞∑
k=2

w(pk)
kpks

∣∣∣∣∣ � 1
2

∑
p�uv

1
p

+ O(1) � 1
2

log
2

α− 1/2
+ O(1)

� 1
2

log log T � 1
20

(
α− 1

2

)
log T.

Thus we see that if (21) holds then |S(sr)| � (1/2)(α− 1/2) log T . We apply Lemma 5 with
k = [(1/2)(α− 1/2) log T ]. Thus we find that

(
1
2

(
α− 1

2

)
log T

)2k

R� T (log T )2k!

(∑
p

w(p)2

p2α

)k
.

Now ∑
p

w(p)2

p2α
�
∑
p�uv

1
p

= log
2

α− 1/2
+ O(1) � log log T.
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Hence

R� T (log T )2
(

4k log log T
(α− 1/2)2(log T )2

)k
� T (log T )2

(
2 log log T

(α− 1/2) log T

)k

� T (log T )3
(

2 log log T
(α− 1/2) log T

)(1/2)(α−1/2) log T

.

This gives the stated result.

Lemma 8 (Assume RH). For 1 � r � R let sr = σr + itr be points such that σr � 1/2, T �
tr � 2T , and |tr1 − tr2 | � 1 when r1 	= r2. Suppose also that V � 15 log log T, that log |ζ(sr)| �
−V, and that

�ζ
′

ζ
(σ + itr) � 1

2
log T (22)

for σr � σ <∞. Then

R� T (log T )3 exp
(
−V

3
log

V

3 log log T

)
.

Proof. Write σ′
r = σr + 2V/(3 log T ), and set s′r = σ′

r + itr. Then

V + log |ζ(s′r)| � log |ζ(s′r)| − log |ζ(sr)| =
∫σ′

r

σr

�ζ
′

ζ
(σ + itr) dσ.

By the bound (22), this is at most

(σ′
r − σr)

1
2

log T =
V

3
.

Hence log |ζ(s′r)| � −2V/3. Write α = 1/2 + 2V/(3 log T ), and note that σ′
r � α for all r. The

stated bound now follows from Lemma 7 with the sr replaced by the s′r.

4. Proof of Theorem 1

First we define the contour. The contour is to be symmetric with respect to the real axis, and so
it suffices to describe it in the upper half-plane. Let c = 39/61, and set J = [(log x)c/ log 2]. Thus
2J � exp

(
(log x)c

)
� 2J+1. For 0 � t � 2J we proceed along a polygonal path with vertices

1
2

+
2

log x
,

1
2

+
2

log x
+ 16i,

1
2

+
4

(log 4) log x
+ 16i,

1
2

+
4

(log 4) log x
+ 32i,

1
2

+
5

(log 5) log x
+ 32i,

and, in general,

. . . ,
1
2

+
j

(log j) log x
+ 2ji,

1
2

+
j

(log j) log x
+ 2j+1i,

1
2

+
j + 1

(log(j + 1)) log x
+ 2j+1i, . . .

until we reach the point
1
2

+
J

(log J) log x
+ 2J i. (23)

For j � J set T = 2j . We now define the contour for T � t � 2T . For each integer r, where
T � r < 2T , define σ2(r) to be the least number such that

�ζ
′

ζ
(s) � η log T
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for all s in the half-strip σ � σ2(r) and r � t � r + 1. Here η is a positive parameter whose
value will be chosen later. For the present, we assume only that 0 < η < 1/2. Let 1/2 + iγ be
a zero of the zeta function with r � γ � r + 1. From (10) we see that �(ξ′/ξ)(s) > log T when
s = 1/2 + 1/ log T + iγ. From Lemma 2 it then follows that �(ζ ′/ζ)(s) > (1/2) log T > η log T
for this same s. Thus

σ2(r) � 1
2

+
1

log T
(24)

for all r. With σ2(r) determined in this way, we write

σ1(r) =
1
2

+
(
σ2(r) − 1

2

)
log T
log x

. (25)

To extend our contour from the point (23), we first move to the point σ1(2J ) + 2J i. After that,
for each r � 2J , we move from σ1(r) + ri to σ1(r) + (r + 1)i, and from there to σ1(r + 1) +
(r + 1)i.

We now prove (2). Let γ1 = 14.13 . . . and γ2 = 21.02 . . . denote the ordinates of the first two
zeros of the zeta function. Since ζ ′(1/2 + iγ1) 	= 0, it follows that |ζ(s)| � |s− 1/2 − iγ1| for s
near 1/2 + iγ1. Since γ2 > 16, (2) is immediate.

Next we prove (3). Suppose that T = 2j with 4 � j � J . From Littlewood’s estimates (13)
and Lemma 4 it is clear that

1
ζ(s)

�
(
e log x
log T

) C log T
log log T

for s ∈ with T � t � 2T . Thus we have (3).
With these preliminaries completed, we initiate the proof of the main estimate, (4).

Suppose that T = 2j with j � J . For T � r < 2T , let t1(r) be chosen such that |ζ(σ1(r) + it)|
takes its minimum, for r � t � r + 1, at t = t1(r). Set s1(r) = σ1(r) + it1(r), and set m(r) =
1/|ζ(s1(r))|. Then

∫

r<t<r+1

∣∣∣∣ xsζ(s)

∣∣∣∣ |ds| =
∫ r+1

r

xσ1(r)

|ζ(σ1 + it)| dt � xσ1(r)m(r). (26)

Next we establish the last clause of Theorem 1. The logarithmic derivative of the expression
in question is log x−�(ζ ′/ζ)(σ + it). Suppose that r � t � r + 1. By the definition of σ2(r),
we know that

�ζ
′

ζ
(σ + it) � η log T � 1

2
log T � log x

for σ � σ2(r) and r � t � r + 1. As for the remaining range, σ1(r) � σ � σ2(r), we note that,
by Lemma 3 we have

�ζ
′

ζ
(σ + it) � �ζ

′

ζ
(σ + it) +

1
2

log
t

2
� σ2(r) − 1/2

σ − 1/2

(
�ζ

′

ζ
(σ2(r) + it) +

1
2

log
t

2

)

� σ2(r) − 1/2
σ − 1/2

log T � σ2(r) − 1/2
σ1(r) − 1/2

log T = log x .

Since xσ/|ζ(σ + ir)| is monotonically increasing for σ � min(σ1(r − 1), σ1(r)), and since the
interval from σ1(r − 1) + ir to σ1(r) + ir has length at most 1, it follows that

∫

t=r

∣∣∣∣ xsζ(s)

∣∣∣∣ |ds| � m(r − 1)xσ1(r−1) +m(r)xσ1(r).
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On combining this with (26), we deduce that
∫

T<t�2T

∣∣∣∣ xsζ(s)

∣∣∣∣ |ds| �
2T∑
r=T

xσ1(r)m(r). (27)

From the definition of σ1(r), it is clear that xσ1 = x1/2T σ2(r)−1/2. Also, by Lemma 4 we see
that

m(r) =
1

|ζ(σ1(r) + it1(r))| � (log x/ log T )(σ2(r)−1/2)(η+1/2) log T

|ζ(σ2(r) + it1(r))|
since �(ζ ′/ζ)(σ2(r) + it1(r)) � η log T . On combining this with (27), we deduce that

∫

T<t�2T

∣∣∣∣ xsζ(s)

∣∣∣∣ |ds| � x1/2
2T∑
r=T

(8 log x/ log T )(σ2(r)−1/2)(η+1/2) log T

|ζ(σ2(r) + it1(r))| . (28)

To estimate the right-hand side above, we consider three types of r. Let 1 denote the set
of those r, where T � r � 2T , for which

1
|ζ(σ2(r) + it1(r))| � (log T )15 exp

(
ε

(
σ2(r) − 1

2

)
(log T ) log

((
σ2(r) − 1

2

)
log T

))
. (29)

Let 2 denote the set of those r, where T � r � 2T , for which

σ2(r) � 1
2

+
C1 log log T

(log T ) log log log T
(30)

and
1

|ζ(σ2(r) + it1(r))| > exp
(
ε

(
σ2(r) − 1

2

)
(log T ) log

((
σ2(r) − 1

2

)
log T

))
. (31)

Here C1 = C1(ε) is a large constant whose value will be determined later. Finally, let 3 denote
the set of those r, where T � r � 2T , for which

σ2(r) � 1
2

+
C1 log log T

(log T ) log log log T
(32)

and
1

|ζ(σ2(r) + it1(r))| > (log T )15. (33)

We note that, if (30) holds but (31) fails, then r ∈ 1, and that, if (32) holds but (33) fails,
then r ∈ 1. Thus every r is in at least one of the i.

For r ∈ 1, choose t2(r), where r � t2(r) � r + 1, such that �(ζ ′/ζ)(σ2(r) + it2(r)) =
η log T . Among the r ∈ 1, consider those for which α � σ2(r) < α+ δ, where δ = (log T )−2.
By Lemma 6, the contribution of these r to (28) is at most of the order of

x1/2T (log T )18 exp(g(α)),

where

g(α) =
(
α− 1

2

)
(log T )

(
η +

1
2

)
log

8 log x
log T

−(f(η) − 2ε)
(
α− 1

2

)
(log T ) log

((
α− 1

2

)
log T

)
.

This function assumes its maximum at

α =
1
2

+
1

e log T

(
8 log x
log T

)(η+1/2)/(f(η)−2ε)

.

The maximum value attained is

f(η) − 2ε
e

(
8 log x
log T

)(η+1/2)/(f(η)−2ε)

.
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This motivates us to take η so as to minimize the above exponent; that is, we take η to be the
unique real number such that

ψ + log
(

1 +
1
2η

)
=

1
2η
. (34)

Numerically, η = 0.196570958763 . . ., f(η) = 0.393141917526 . . ., and (η + 1/2)/f(η) = 1/2 +
1/(4η) = 1.771805365213 . . . < 39/22. We also set ε = 10−4, and observe that (η +
1/2)/(f(η) − 2ε) < 39/22. On summing over α = 1/2 + 1/ log T + kδ, we conclude that the
total contribution of all r ∈ 1 is at most of the order of

x1/2T (log T )20 exp

((
log x
log T

)39/22
)
. (35)

Among the r ∈ 2, we consider those for which α � σ2(r) < α+ δ and V � − log |ζ(σ2(r) +
it1(r))| < 2V , where

α � 1
2

+
C1 log log T

(log T ) log log log T
, V � V0 = ε

(
α− 1

2

)
(log T ) log

((
α− 1

2

)
log T

)
.

We now take C1 = (4/ε) exp(9/ε). This ensures that

log
V

3 log log T
� 9
ε
.

Hence, by Lemma 8, the number of such r is at most of the order of T (log T )3 exp(−3V/ε).
Since 1/|ζ(σ2(r) + it1(r))| � exp(2V ) for these r, on summing over V = V02k we deduce that
the total contribution to (28) of those r ∈ 2 for which α � σ2(r) < α+ δ is at most of the
order of x1/2T (log T )3 exp(h(α)), where

h(α) =
(
α− 1

2

)
(log T )

(
η +

1
2

)
log

8 log x
log T

−
(
α− 1

2

)
(log T ) log

((
α− 1

2

)
log T

)
.

This is of the same form as the function g(α) that arose in the preceding case, but with a more
favorable constant. By proceeding as in the former case, we find that the total contribution to
(28) of all r ∈ 2 is at most of the order of

x1/2T (log T )5 exp
(

log x
log T

)
. (36)

Suppose that V � 15 log log T , and consider those r ∈ 3 for which V � − log |ζ(σ2(r) +
it1(r))| < (51/50)V . By Lemma 8, the sum of 1/|ζ(σ2(r) + it1(r))| over such r is at most of
the order of

T (log T )3 exp
(

51
50
V − V

3 log log T

)
.

On summing this over V = 15
(
51/50

)k log log T , we find that∑
r∈ 3

1
|ζ(σ2(r) + it1(r))| � T (log T )11.

On the other hand, for r ∈ 3 we have(
8 log x
log T

)(σ2(r)−1/2)(η+1/2) log T

�
(

8 log x
log T

)C1(log log T )/ log log log T

. (37)

The ratio of the above with exp
(
((log x)/ log T )39/22

)
is largest when (log x)/ log T is of the

form

C

(
log log T

log log log T

)22/39

,



THE SUM OF THE MÖBIUS FUNCTION 225

and therefore the right-hand side of (37) is at most of the order of

(log T )A exp

((
log x
log T

)39/22
)
.

Hence the total contribution of all r ∈ 3 to (28) is at most of the order of

x1/2T (log T )A exp

((
log x
log T

)39/22
)
.

On combining this with (35) and (36) in (28), we obtain (4), and the proof is complete.

5. Proof of the corollaries

By the truncated form of Perron’s formula (see [9, Corollary 5.3]), we know that

M(x) =
1

2πi

∫ c+iT
c−iT

xs

ζ(s)s
ds+ O

(
x log x
T

)
,

where c = 1 + 1/ log x. Let σ(T ) be chosen such that σ(T ) + iT ∈ . By the last clause of the
Theorem 1, we know that ∫ c+iT

σ(T )+iT

xs

ζ(s)s
ds� x log x

T
.

Hence

M(x) =
1

2πi

∫

−T�t�T

xs

ζ(s)s
ds+ O

(
x log x
T

)
. (38)

We take T = x1/2, and apply the estimates (2)–(4) to obtain Corollary 1.
In proving Corollary 2, we may assume that h � x3/4, as otherwise the stated bound follows

directly from Corollary 1. From (38) we see that

M(x+ h) −M(x) =
1

2πi

∫

−T�t�T

(x+ h)s − xs

ζ(s)s
ds+ O

(
x log x
T

)
.

Clearly,

(x+ h)s − xs

s
�
{
hxσ−1 (|t| � x/h),
xσ/|t| (|t| � x/h).

Hence from (2)–(4) we see that

M(x+ h) −M(x) �δ x
1/2(log x)A.

This suffices.
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