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0. Introduction

In this paper, we consider the class # of poly-(finite or cyclic) groups: F e r6 if it
has normal series

(o.i) r = r1 = r 2 a . . . ^ r n = i

such that each factor group TJTi + l is either a finite group or an infinite cyclic group.
If all the factor groups in (0.1) are oo-cyclic, then F is a poly-Z group; a group is
virtually poly-Z (poly-Z by finite) if it contains a poly-Z subgroup of finite index. It is
well known (cf. [21]) that % is the same as the class of virtually poly-Z groups. We
now state the main result of this paper.

THEOREM 3.2. Let F be a torsion-free, poly-(finite or cyclic) group; then
Wh F = 0 and K0{ZV) = 0.

This extends our earlier result [14; Theorem 3.1] where we showed that
Wh F = 0 if F is a Bieberbach group, that is, if F is torsion-free and contains a
finitely generated abelian subgroup of finite index. To prove Theorem 3.2, we make
frequent use of another class of groups—crystallographic groups. A group F is
crystallographic if it is a discrete cocompact subgroup of E(n)—the group of rigid
motions of Euclidean n-space. The class of torsion-free crystallographic groups is
identical to the class of Bieberbach groups. The intersection of a crystallographic
group F with the translation subgroup of E{n) is the maximal abelian subgroup of F
with finite index; we denote this subgroup by A. It is a finitely generated normal
subgroup of F and the finite factor group V/A—called the holonomy group of f—
will be denoted by G.

The proof of Theorem 3.2 follows the same general outline of our earlier result
[14; Theorem 3.1] but with some new ingredients added and some old ones
modified. We briefly highlight the changes. In §1, we use recent work of Auslander
and Johnson [3] to construct a fibering apparatus s# = (F, </>, / ) for a torsion-free,
poly-(finite or cyclic) group F; $0 consists of a free properly discontinuous action of
F on U" with compact orbit space U"/T, a non-trivial crystallographic group F, an
epimorphism </>: F -» t and a 0-equivariant fibration / : W -+ Um with fiber
diffeomorphic to IT""1".

In §2, we define the notion of an {$2, e, /i)-cobordism; roughly speaking, this is an
/j-cobordisn. over Mn/V supporting deformation retractions generating a family of
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paths in U" each of which projects under / to a path of arc length less than e in U"'.
We also note that the expanding immersion theorem of Epstein and Shub [9] has a
meaning not only for Bieberbach groups but also for crystallographic groups.

Finally, we replace Ferry's metric vanishing theorem (cf. [14; Theorem 2.2]) by
Theorem 2.3 which is valid for any admissible (stf,e, h)-cobordism with e sufficiently
small—how small depends only on f. (An ( j / , e, /i)-cobordism is admissible
provided that Wh((/)"1(F)) = 0 and X0(Z^"1(F)) = 0 for every finite subgroup F
of F.) This theorem is proven in §4; it is derived from Quinn's thin /i-cobordism
theorem [18; p. 284].

We wish to thank Bob Griess, Karl Gruenberg, Frank Raymond and Frank
Quinn for helpful conversations during the preparation of this paper. We are also
indebted to Terry Wall for many very helpful comments about an earlier version of
this paper; for example, he showed us how to use stratification theory to clarify
greatly our original proof of Theorem 2.1.

1. Fibering apparatus

Let F be a torsion-free virtually poly-Z group. A fibering apparatus
stf — (f, (/), f) for F consists of a crystallographic group F ^ E(m) where m > 0, a
group epimorphism (j): F -* F, a properly discontinuous (and hence free) action of F
on R" with compact orbit space and a </>-equivariant fiber bundle map / : U" -> Um

with fiber diffeomorphic to W~m.

THEOREM 1.1. 7/T is a torsion-free, virtually poly-Z group, then F has a fibering
apparatus.

We wish to thank Frank Raymond for showing us how to deduce Theorem 1.1
from the techniques in [6, 7, 19]. We shall give here an alternative line of reasoning
based on the work of Auslander and Johnson [3]. We first prove a special case of
this result.

LEMMA 1.2. 7/T is finitely generated, torsion-free and virtually nilpotent, then F
has a fibering apparatus.

Proof. Let N denote a normal nilpotent subgroup with finite index in F. By
Malcev's work (cf. [21; p. 231]), there exists a simply connected (connected) nilpotent
Lie group L which contains N as a discrete cocompact subgroup. Also, we can form
the "pushout" N „

(1.1)

and write L' as the semi-direct product L' = Lx F, where F = V/N = L'/L. Let
Un = L and the action of F on U" be determined by the sem;-direct product structure
L' = Lx F. (Note that F embects in L' as a maximal compact subgroup. Under this
embedding, the left coset space L'/F can be canonically idei tified with L and the
natural action of F on L'/F induced by left multiplication agrees with the one
mentioned above.)
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Note that the commutator subgroup [L, L] is a closed characteristic subgroup of
L; let U'n be the factor abelian group L/[L, L] and let / be the canonical map
L -> L/[L, L], which is a fiber bundle projection with fiber [L, L] diffeomorphic to
U"~m. Recall next that the image of N in L/[L,L] under / (denoted by A) is a
discrete cocompact subgroup; see [2; p. 231] or [1; p. 4].

The action of F on L induces an action of F on Um = L/\_L, L]. Let Fo be the
kernel of this representation; then F/Fo = G acts effectively on Um and / extends to a
group homomorphism / : L x F -> Um xG. Let f be the image of F under / ; then
f is a discrete cocompact subgroup of Um x G; hence F is a crystallographic group
since Um x G embeds in (Rm x O(m) = E(m) as a closed cocompact subgroup.

Proof of Theorem 1.1. Because of Lemma 1.2, we may assume that F does not
contain a nilpotent subgroup with finite index. By a result of Auslander and Johnson
[3], F contains a normal subgroup G* with finite factor group F such that F is a
discrete cocompact subgroup of D(G*) x F, where D(G*) is a connected solvable Lie
group and D(G*) n F = G*. Furthermore, D{G*) = R{G*)xK where K is a
compact abelian Lie group and R(G*) is a closed connected, simply connected,
solvable subgroup. Let N be the nil-radical of D(G*). Recall that N is the maximal
connected nilpotent normal Lie subgroup of D(G*)\ consequently, N is a closed
subgroup of D{G*). Since [D{G*), D(G*)] c N, it follows that D{G*)/N is an abelian
Lie group; let g: D(G*) -> D(G*)/N be the canonical homomorphism. As a
consequence of Mostow's structure theorem (cf. [2; p. 249]), g{G*) is a discrete
cocompact subgroup of D(G*)/N. Write D(G*)/N as TsxUm where Ts is the
maximal compact subgroup and let g : D(G*) -> IKT be the composite

0 P
(1.2) D(G*) > TsxUm > W",

where p is the canonical homomorphism, so that kerp = Ts. Note that m > 0, since
otherwise g{G*) would be finite, contradicting the fact that F does not contain a
nilpotent subgroup with finite index.

The action of F on D{G*) induces an action on W". Let Fo be the kernel of this
representation; then Ft = F/Fo acts effectively on 1R"1 and g extends to a group
homomorphism g : D(G*)x F ^> Um x Fx. Let Y = g(T); then f is a discrete
cocompact subgroup of Um x F{ and hence a crystallographic group. Let K* be a
maximal compact subgroup of D(G*) x F containing K and K' = g{K*) which is a
maximal compact subgroup of Um x F t . Then g induces a ^-equivariant map /
between the corresponding left coset spaces,

(1.3) f:D(G*)xF/K* > W'xFJK',

where 4> — g\V and F (respectively, F) acts on D(G*)xF/K* (respectively,
W" x FJK') by left multiplication. But / is a fiber bundle projection with base space,
total space and fiber diffeomorphic to U"\ U" and U"~m (respectively).

2. (j>/, e, h)-cobordisms

Let 'F be a torsion-free, virtually poly-Z group and let si = ( F , 0 , / ) be a
fibering apparatus for F. Let K be a closed smooth simply connected manifold such
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that dim K + n > 4 where n = cd F. (See the proof of Theorem 3.2 for a discussion
of cdf.) Consider a smooth h-cobordism (W; d0 W, dx W) such that
d0W = (Un/V)xK; it is an (jtf,e,h)-cobordism (where e > 0 is a real number)
provided there exist smooth deformation retractions ht, kt: W x [0,1] -> W onto
d0 W, dv W (respectively) such that each path in a certain associated family
{ax, yx | x G W) (in Um) has arc length less than e (where W denotes the universal
cover of W). These paths are defined as follows. Let ht, kt:Wx [0,1] -> W be the
liftings of ht, k, (respectively) such that h0 = k0 = id; then

( 2 . 1 ) <xx(t) = f p h { h t ( x ) a n d yx(t) = f p h x k t ( x ) f o r O ^ t ^ l ,

where p: Un x K -> U" is the projection defined by the product structure.
A fibering apparatus ^ = (F, <£,/) is admissible provided, for each finite

subgroup F of f, both Wh0-1(F) and Ko(Z(j)'l{F)) vanish. The following result
can be derived from Quinn's thin /i-cobordism theorem [18; p. 284].

THEOREM 2.1. Let F ^ E(m) be a crystallographic group; then there exists a real
number e > 0 with the following property. Let F be any torsion-free, virtually poly-Z
group with an admissible fibering apparatus srf = (f\ 0 , / ) ; then the Whitehead
torsion (calculated in Wh F) of any (s4', £, h)-cobordism vanishes.

The proof of this result is deferred until §4.

Let F be a torsion-free, virtually poly-Z group and let srf = (F, (p,f) be a
fibering apparatus for F. Let G be the holonomy group of F and A the maximal
abelian subgroup of f of finite index; recall that T/A = G. By a slight extension of
the terminology of [14], we say that a monomorphism \jj : F -> F is s-expansive if i/f
induces multiplication by s on /I (where s is a positive integer) and the identity map
on G. We say that a subgroup F' of finite index in F has level (s, <p) provided
F' = </>-'(i//(F)) for some s-expansive monomorphism ^ : F - > f. We need the
following immediate extension of the Epstein-Shub result [9] from Bieberbach
groups to crystallographic groups. (The Bieberbach case was used in [14].) In fact,
the following result was implicitly proven in [9].

THEOREM 2.2. For any positive integer s = 1 mod \G\, there exists an s-expansive
endomorphism i// of V. Furthermore, for any s-expansive endomorphism i// oft, there
exists a \\i-equivariant diffeomorphism g :Um -> 1R"1 (relative to F ^ E(m)) such that
1^(^)1 = s\X\ for each vector X tangent to Um, where \ | is the Euclidean metric
on Um.

We now apply Theorems 2.1 and 2.2 to obtain a vanishing result for the transfer
map.

THEOREM 2.3. If stf = (F, (/>, / ) is an admissible fibering apparatus for F, then to
each element b e Wh F there corresponds an integer N(b,stf) with the following
property. For every subgroup F' of level (s, (/)) with s > N(b, stf), oj*(b) = 0 where
OJ : V -> F denotes the inclusion map and OJ* : Wh F -> Wh F' denotes the induced
transfer homomorphism.
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Proof Represent b as the torsion of an /i-cobordism (W; d0W, dx W) with
d0 W = W/V x S5 where S5 denotes the 5 dimensional sphere. (If n > 4, then S5 is
unnecessary, that is we can assume d0 W = tR"/F.) Let ht, kt: W x [0,1] -*• W be
smooth deformation retractions onto d0W, d{ W (respectively); then there exists a
real number U such that the arc length of each path txx or yx in the family
(av, yx | x e W) is less than U, where ax and yx are defined by equations (2.1).

Let e > 0 be the real number (dependent on F) posited in Theorem 2.1; then pick
N(b, ,$?) to be any positive integer larger than U/E. Let \\i: F -> F be an s-expansive
endomorphism such that i/^F) = 0(F') and let g: Um -> Um be the t/f-equivariant
diffeomorphism posited in Theorem 2.2. Then, s4' = (F, il/~l(cf)\r'),g~lf) is a
fibering apparatus for F' and the finite sheeted covering space W of W
corresponding to F' ^ F is an (stf', s, /i)-cobordism. Hence, by Theorem 2.1, the
torsion of W vanishes in Wh(F'); but this torsion is oj*(b).

We shall need the following K0-analogue of the above result.

COROLLARY 2.4. If stf = (F, 0, / ) is an admissible fibering apparatus for F, then
to each element b G K O ( Z F ) there corresponds an integer N(b, stf) with the following
property. For every subgroup F' of level (s, 0) with s > N(b, s$\ oj*(b) = 0 where
co : F' -» F denotes the inclusion map and OJ* : K0(ZV) -> /C0(ZF') denotes the induced
transfer homomorphism.

We deduce this from Theorem 2.3 together with Lemmas 2.5 and 2.6 from [14].
We need a slightly modified version of Lemma 2.5 of [14] which is easily verified.

LEMMA 2.5'. Let co : F' -> F be the inclusion of a subgroup of finite index; then the
diagram

X0(Zr) - ^ Wh(F'xT)

co* | j(coxid)*

X0(ZF) —°-^ Wh (TxT),

where T is the co-cyclic group and a, a' are the canonical embeddings described in
[14; p. 186], commutes.

Proof of Corollary 2.4. Set N(b, ,tf) = N(a(b), .<?), where ,f/ = {txT,
0 x i d , / x i d ) is the fibering apparatus for VxT determined from ;.o/. (Note that
T £ £(1) is the subgroup of all translations of U of the form x i-> x + t where t is an
integer, and the actions of F x T and F x T on U" x U and W" x U, respectively, are
canonically induced.) By Lemma 2.6 of [14], it suffices to show that
(id x g)*cr'oj*{b) = 0, where g : T -> T is multiplication by s. Note that g factors as
the composite cog where co: sT -» T is the inclusion map and g : T -+ sT is an
isomorphism. (We define sT to be the subgroup of T consisting of all elements
divisible by s.) Using Lemma 2.5', we have

(2.2) (id x g)*a'co*(b) = (id x g)*(co x cj)*cr{b);

but by Theorem 2.4, {co x co)*a{b) = 0 since F' x sT ^ F x T has level (s, 0 x id).
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3. The main result

Let F be a crystallographic group, A its maximal abelian subgroup of finite index
and G = V/A its holonomy group. For any positive integer s, define Fs = V/sA and
As = A/sA where sA is the subgroup of A consisting of all elements divisible by s; Fs

is an extension of As by G which is a semidirect product if (s, \G\) = 1. Let T denote
the infinite cyclic group.

THEOREM 3.1. Let F be a crystallographic group with holonomy group G; then

(i) F = n x T, or

(ii) F = B * C where D has index 2 in both B and C, or
D

(iii) there is an infinite sequence of positive integers s with s = 1 mod \G\ such that
any hyper elementary subgroup of Fs which projects onto G {via the canonical
map) projects isomorphically to G.

Note that this result extends Theorem 1.1 of [14] from the class of Bieberbach
groups to that of crystallographic groups. The proof is the same as before with one
modification; namely, in the penultimate paragraph on page 184 of [14] we cannot
use Lemma 4.1 of [13] since this result is only true for Bieberbach groups. Instead,
argue as follows in the case when p \ s (referring to the line of reasoning and
notation used in [14; p. 184, Proof of Theorem 1.1]). Note that the hyperelementary
group S is a semidirect product; namely, 5 = Tkx P where Tk is cyclic of order k and
P is a p-group. Since p \ s , P ^ As and 7̂  projects onto G (via the canonical map);
therefore As n Tk ^ {Asf. If \AS n Tk\ > 1, then F = n x T by [14; Lemmas 1.2
and 1.4]. If \AS n Tk\ = 1, then P is a normal subgroup of S and in fact S = P xTk.
Hence P = 5 n As £ {Asf and if \SnAs\>l, then F = n x T by [14; Lemmas
1.2 and 1.4]. But, if |5 n As\ = 1, then (iii) is satisfied. This completes the
modification to the proof of [14; Theorem 1.1] necessary to prove Theorem 3.1.

We wish to point out that Dan Farkas had proven Lemma 1.4 of [14] many
years before us (cf. [10; p. 432]).

We now formulate the major result of this paper.

THEOREM 3.2. Let F be a torsion-free virtually poly-Z group. Then Wh F = 0 and
K0(ZF) = 0.

Proof. Recall that the cohomological dimension of F, denoted by cd (F), is the
largest integer n such that H"(F, Z2) ^ 0; cd (F) is identical to the dimension of any
closed aspherical manifold with fundamental group F. Define the holonomy number
of F, denoted by /i(F), to be the minimum order of the holonomy group of a
crystallographic group f that can occur in a fibering apparatus (F, <f>,f) for F. We
proceed in our proof by induction first on cd (F) and next on h(V); that is, we assume
that Wh FI = 0 and K0(ZYl) = 0 for all torsion-free virtually poly-Z groups U where
either cd(FI) < cd(F) = n, or both cd(FI) = n and h{Yl) < /i(F) = /.

Let s# = (F, (/>, / ) be a fibering apparatus for F such that \G\ = /i(F), where G is
the holonomy group of F. Start by considering Wh F; Theorem 3.1 shows there are
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three possibilities, (i), (ii) and (iii), for the structure of F. In (i), F = f x T and
hence F = n x T where FI = c/)"1^). Since ZFI is right regular, we have by [12]
the exact sequence

(3.1) W h n • WhF • K0{ZTl).

Since cd (FI) < n, both Wh n and K0(ZFI) vanish; hence Wh F = 0. In the case of
possibility (ii), F = B * C where D has index 2 in both B and C; hence F = B' * C

where B' = (j)~l(Bl C = 0 - 1 ( Q and D' = <f>~l(D). We have by [20] an exact
sequence

(3.2) W h ( B ' ) 0 Wh(C') > Wh F > Ko{ZD'),

which yields Wh F = 0 by our induction hypothesis since
cd(fl') = cd(C') = cd(D') = « - l . If possibility (iii) applies, let b £ Wh F be
arbitrary and s be one of the integers given by Theorem 3.1 subject to the added
constraint that s > N(b, stf\ where N(b, stf) is the integer posited in Theorem 2.3.
(Note that $2 is an admissible fibering apparatus for F; this is a consequence of our
induction hypothesis since c d f ^ ' ^ F ) ) < cd(F) for each finite subgroup F of F.)
Now apply Frobenius induction to Wh F relative to the factor group Fs. (Recall that
Fs is a factor group of F and hence of F via 0.) Let p : F -> Fs denote the composite of
4> and the canonical homomorphism q : F -* Fs. As 5 varies over the subgroups of Fs,
Wh(p- 'S) is a Frobenius module over Swan's Frobenius functor G0(5) (cf. [15]).
Hence, it suffices to show that b vanishes under the transfer maps associated to the
hyperelementary subgroups E of fs. If E projects (via the canonical map) to a proper
subgroup of G, then the holonomy group of the crystallographic group V = q~l{E)
has order less than \G\. Let V = p~l{E); then s&' = (F, (f)\T',f) is a fibering
apparatus for F', and hence h(V) < \G\ = /i(F). Therefore, Wh F' = 0 by the
induction hypothesis; consequently, oj*(b) = 0 where OJ : F' -*• F is the inclusion
map. Otherwise, Theorem 3.1 says that E projects isomorphically onto G; but all
such subgroups of Fs are conjugate since Hl(G ; As) = 0. (Recall that A denotes the
maximal abelian subgroup of finite index in F.) Hence, it suffices to consider one of
them; for example, let E = ^ ( F ) where ¥ : V -> V is s-expansive. (The existence of
T is a consequence of Theorem 2.2.) Let F' = p~l(E); then F' has level (s, 0) since
F' = ^ " ^ ^ ( r ) ) . Therefore, we can apply Theorem 2.3 to obtain a>*(b) = 0 where
OJ : F' -»• F denotes the inclusion map. Hence b vanishes under all the appropriate
transfer maps; this implies that 6 = 0 and completes the inductive argument to show
that Wh F = 0.

To show K0(ZF) vanishes, we proceed similarly. If case (i) of Theorem 3.1
applies, then (as above) F = n x T. Hence, we have by [12] an epimorphism
K0(ZFI) -• £0(ZF); therefore, K0(ZF) = 0. If case (ii) applies, then (as above)
F = B' * C where D' has index 2 in both B' and C. By [4], K0(ZF) is isomorphic to

a subgroup of Wh (F x T); hence, it suffices to show that Wh (F x T) = 0. But this is
done exactly as in the last paragraph on page 187 of [14]. Finally, consider the
situation where case (iii) of Theorem 3.1 applies. Then, proceed exactly as in the
similar situation for Wh F considered above; that is, apply Frobenius induction to
/C0(ZF) using Corollary 2.4 in place of Theorem 2.3 to see that K0(ZF) = 0. This
completes the proof of Theorem 3.2.
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4. Proof of Theorem 2.1

We first formulate a variant of Quinn's thin /i-cobordism theorem; it will be used
to prove Theorem 2.1. Let X be a compact Riemannian manifold and C be a
codimension-0 submanifold of X such that dX n C = 0. Let Nn be a compact
smooth manifold and E" be a codimension-0 submanifold (with corners) of N" such
that d0E = E n cW is a codimension-0 submanifold of d£; let dxE = dE — d0E.
(Note that £ has a corner at d0E n 51 £.) Let p : £ -> X be a fiber bundle projection
with fiber S such that Wh(7t1SxZl") = 0 for all i ^ 0 where Z1' denotes the free
abelian group of rank i. Let W"+l be a compact smooth manifold containing N" as a
codimension-0 submanifold of dW; denote N" by <3_ W and the closure of
dWn + 1 -N" by d+ W. Let 1/ be an open subset of W such that E ^ dU c dW and
h,, /cr: U x [0, 1] -» Vy be homotopies such that

(4.1) (1) ho = ko = identity;

(2) image (/ij cz d_W and image (/q) cz d+ VF;

(3) if x E d _ W n ( / , then/!,(*) = x;

(4) likewise, i fxe5+kKn t/, then kt(x) = x;

(5) h^iE) is compact.

If <5 > 0, we say that (Wn + 1, Nn) is a (<5, h)-cobordism over a compact set K cz X
{relative to U, ht, kt) provided that

(4.2) (1) d{K, dX) > 3 where d( , ) is the metric on X;

(2) for each xeh^ip-^K)) define ax(t) = h^x)) and yx(t) = h^x))
(for 0 < t ^ 1); then ax, yx are curves in E and the diameters (in X) of
the images of the composite curves pax, pyx are less than <5.

For e > 0 and B a subset of a metric space Y, define BE by

(4.3) BR = {y\yeY, d(y,B) < e} ,

where d{ , ) denotes the metric on Y. We say that an embedding
F : p~l{K5) x [0,1] -> W is a <5-product structure over K relative to hx provided that

(4.4) (1) F(x,0) = x;

(2) K\p

(3) for each xep~l(K), /j1(F(x,t))e£ and the diameter (in X) of
{p/ij^x, 0) | 0 ^ t ^ 1} is less than <5.

THEOREM 4.1. Given e > 0 with 4e < d{C, dX), there exists a 3 > 0 depending
only on e, X and C (in particular, 3 is independent of p) such that any (3, h)-cobordism
(W" + i, Nn) over the closure ofC2e (relative to U, /?,, kt) has an s-product structure over
C relative to hx (provided that n > 4).
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Proof. The submanifold C has a handlebody decomposition with a finite
number of handles Hl,H2,...,Hm attached in the order of their numerical index.
Since the bundle p: E -> X is trivial over each handle Hh we can use Quinn's thin
/i-cobordism theorem [18; Theorem 2.7] to put first a product structure over / / , and
then extend this structure inductively over a handle at a time so that after m steps we
obtain the desired product structure over C. This is an outline of the proof; the
details are left as an exercise for the reader.

We next formulate the relative version of Theorem 4.1; it will be the main
ingredient in the proof of Theorem 2.1. Suppose we have a product structure already
given in an open neighbourhood V of dN in N; that is, we are given an embedding
F : V x [0,1] -> W such that

(4.5) (1) F|KxO = identity;

(2) (F(dNx[0, l ] ) u F ( K x l ) ) c d+W.

We wish to extend this structure in a metrically controlled way over C. To do this,
we slightly modify the notion of (<5, /i)-cobordism over C. Let d_xW denote
N = d_ W, let d0 W = F{dN x [0, 1]) and let 5, W be the closure of d+ W- d0 W.
Let U be an open subset of W such that

(4.6) (£ u F{d0E x [0, 1]) u F ( £ n K x 1)) c dU c dW

and /?,, kt: U x [0, 1] —> W be homotopies satisfying both property (4.1) in which
d_W, d+W are replaced by d_, W, dxW, respectively, and the following property:

(4.7) if F(x,t)eU and 0 < s ^ 1, then hs(F(x, t)) = F(x, ( l - s ) t ) and

We say that (M^n + 1,N") is a ((5, /?)-cobordism over a compact set K c X with
product structure F near dN (relative to U,ht, kt) provided property (4.2) is satisfied
and U, h,, k, satisfy (4.1), (4.6) and (4.7).

COROLLARY 4.2. Given e > 0 with 4e < d(C, dX) and n > 4, there exists a <5 > 0
depending only on e, X and C such that any (S, h)-cobordism (W" + l, N") over the
closure ofC2l) with a product structure F near dN (relative to U ,ht, l<() has an e-product
structure F over C relative to h{ such that F(x, t) -— F(x, t) provided x e d0E, p(x) s O
and 0 ^ t ^ 1.

Proof. First, we construct a cobordism (W\ N') (using (W, N)) which satisfies
the hypotheses of Theorem 4.1. Let N' = N u d0W, W = W and define d+ W,
c_ W as before relative to N'. Let E' = E u F(d0E x [0, 1]) and define p': E' -• X
by

(4.8) Pl(x) = p{x) i f x e £ , and

p'(F(x,f)) = p(.v) i f x e a o £ ( 0 ^ f ^ 1).
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Note that p': E' -» X is a fiber bundle and its fiber is homeomorphic to the fiber of
p:E^X; hence, p' satisfies the hypotheses of Theorem 4.1. Let U' = U; then
E' c dV c dW because of (4.6); also, let k't — kt. To construct h't, put a 'nice' collar
on N". Namely, let G : dN x [0,1] -» N be an embedding such that

(4.9) (1) G\dN x 0 = identity;

(2) image (G) c V;

(3) i f x e d o £ a n d 0 ^ 1, then G{xJ)eE and p(G{x,t)) = p(G(x,0)).

Using G and F, we obtain an embedding H: 5AT x [0, 1] x [0, 1] -* W defined by
H(x,s,t) = F(G(x,s),t). Note that, by (4.7), the homotopy h, inside image(H)
follows the "vertical" lines t \-* H{x, s, r), that is, it follows the images under H(x, , )
(for x e'dN) of the dashed vertical lines in [0, 1] x [0, 1] which are illustrated in the
left half of Figure 1.
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Figure 1

If we instead follow the images under H{x, , ) of the bent lines in [0, 1] x [0, 1]
illustrated in the right half of Figure 1 by dashed lines, we obtain a new homotopy h\
such that property (4.1) is satisfied when ht, kt, W, U, E are replaced by h't, k'n W,
U', E', respectively. In addition, we have the following properties:

(4.10) (1) p'(/i'1(x)) = p(fi1(x))ifx6/ir1(fi);

(2) (h\)-l(E) = h;l(E);

(3) the composite curves p'y'x and p'a'x are the same as pyx and pax

(respectively) provided x e {h\)~l(p~l(K)) where K denotes the closure
of C2\ a'x(t) = h\(h't(x)) and y'x(t) = h\{k't(x)).

In particular, (W, N') is a (<5, /i)-cobordism over C2/! (relative to U', h't, k't). Hence, let
the number d in Corollary 4.2 be the same as the number S posited in Theorem 4.1.
Then, the hypotheses of Theorem 4.1 are satisfied by (W',N') and we obtain an
e-product structure F' for {W, N') over C relative to h\.

It is easy to construct a homeomorphism L: d_l Wx [0, 1] -»• d_ W x [0, 1]
such that

(4.11) (1) L(x,0) = ( x , 0 ) i f x e N = d_xW\

(2) L(x, 0 = (F(x, t), 0) if x e dN (0 ^ t ^ 1);

(3) the family of vertical lines t\—>{x,t) in d.Wx[0, 1] (where
x e [d0 W u image (G)]) is transformed by the composite map FITl into
the same family of curves in W as are obtained by applying the maps
H(x, , ) (for x e dN) to the bent lines in [0,1] x [0,1] illustrated in the
right half of Figure 1 by dashed lines.
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We now define the product structure F, posited in Corollary 4.2, by the composition
F(x,t) = F'(L(x,0) where x e p " 1 ^ 8 ) and r e [0,1]. Using (4.10), (4.11), we see
that F is an e-product structure over C relative to h{. This completes the proof of
Corollary 4.2.

Next, we recall some elementary facts about a smooth action of a finite group G
on a closed manifold M. (Some general references are [5] and [8].) l'"or x, y e M, we
say that x,y are of the same orbit type if their isotropy subgroups Gx,Gy are
conjugate. If {H) is the conjugacy class of the subgroup H of G, then M{H) denotes the
submanifold (generally not closed) of M consisting of the points whose isotropy
subgroup is in (H); that is

(4.12) M(H)={x\xcM,Gx€(H)};

M(H) is an invariant subset of M under G. Partition M into the G-orbits of the
connected components of the sets M(H): these are the strata X of a stratification £
of M.

Now let us consider the action of f on Um. The decomposition
l - » 7 l - > r - > G - * l factors the action into two steps. The subgroup A acts on W"
freely and the orbit space, denoted by M"\ is a flat torus. Also, the finite group G acts
on Mm as a group of isometries such that W'/V = M'"/G. Apply the above facts
about a finite group action to the present situation. Since the action of G on M'" is
locally linearized, the stratification •% is locally a product along each stratum; a
fortiori it satisfies Whitney's conditions. Hence according to Mather [17] (see also
[16; pp. 46-50]) we obtain a controlled tube system. Namely, we have the following
extra properties and objects.

(4.13) (1) The strata X are locally closed smooth submanifolds defining a locally
finite partition of Mm.

(2) If X meets Y, then X c Y (we write X < Y). (Here Y denotes the
closure of Y.)

(3) Each stratum X has a tubular neighborhood (TY, nx, px); that is, Tx is a
neighborhood of X in M"1, nx : Tx -> X, px : Tv -> [0, oo] are
continuous maps, with X = Px'(0).

(4) Tx meets TY only if X < y, X = V or V < X. Assuming that X < Y,
(nx, px) defines by restriction a smooth submersion

{ n X Y , pXY) : T x n Y -*• X x ( 0 , o o ) .

(5) nXY o nYZ = nxz a n d PA-V0 KYZ = Pxz (where X < Y < Z).

In the case at hand, one has more: nx and px can be chosen smooth, and
(KX, px): Tx— X -> X x (0, oo) a smooth submersion. Moreover, it is trivial that the
construction can all be done equivariantly.

Furthermore, each tube Tx can be identified with an open neighborhood of the
0-section of a Riemannian vector bundle over X in such a way that nx and px

become the projection map and quadratic function of the Riemannian metric of the
bundle, respectively.
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We say that l e i is a proper stratum if dimX < dirnM"1 = m. Let
X, , X2, ••., Xs be an enumeration of the proper strata in SC such that X{ < Xj
implies t h a t ; < i, and abbreviate TXj, pXi, nx. by Th ph nh respectively. If r ^ 0
define 7^[r] and T^r) by

(4.14) T^ = {xeTi\pi(x)^r} and Tt{r) = {x e Tt | Pi(x) < r} .

Given positive numbers r1+1,. . . , rs, define

(4.15) 7][r;r i + 1 , . . . , r s ] = 7^[ r ] - Q ^ ( r t ) ;
k = i + 1

and since 7][0] = Xi5 let

(4.16) ^ [ r i + 1 , . . . , r J = 7;[O;ri + 1 , . . . , r J .

If 0 < i < s, define

(4.17) M,.[r,. + 1 , . . . , r s ] = M - U Tfc(rfc).
fc = ; + i

Although 7i;: 7^[r] -> X^ may not be the entire closed disc bundle of radius r, it is
easy to construct a sequence of positive numbers ri,r2,...,rs such that for any
sequence of numbers ti? ti+l,..., ts with rfc ^ fk ^ 5(s + l)rfe (where i ^ /c ̂  s), we
have that

(4.18) 7i,.: 7I[t,; ti + 1,..., t j - . ^ [ t J + 1 , . . . , t j

is the entire closed disc bundle of radius t,; furthermore, X{[ti + 1,..., t j and
M;_![£,,..., ts] are smooth codimension-0 submanifolds (perhaps with boundaries or
corners) of Xt and Mm, respectively.

Define triples of compact submanifolds of Mm, denoted by C{ <= X{ c Xi (for
0 < i < s), by

(4.19) C0 = M 0 [4r 1 ,4r 2 , . . . ,4r s ] ,

0 = M0[2r1,2r2,...,2rs]; and for i

Xt = ^ [ ( ) i + 1 , ( ) , + 2 , , (

1 + 2 , . . . , (5i + 2)rJ .

Let q : Mm -*• Mm/G be the natural map. Now Mm/G has an induced metric from
Mm: namely, if a, b e M/G, then we define the distance dM/G(a, b) between a and b in
M/G to be d ^ " 1 ^ ) , q~Hb)\ Let AT denote DT/r and

(4.20) g:Nn = Un/T -• OT/f = Mm/G
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be the projection induced from the given admissible fibering apparatus
$$ = (f, (/>,/). (To avoid obscuring our argument, we shall assume that the
manifold K is not present. Its only use is to avoid technical difficulties when n ^ 4.)

Note that q{C{) is a codimension-0 submanifold of the Riemannian manifold
qiXi); we shall eventually apply Theorem 4.1 or Corollary 4.2 using the pairs g(C,),
q{X{) in place of C, X.

Define triples of compact codimension-0 submanifolds of Mm, denoted by
M[ c M( c Mt (for 0 ^ i ^ s), by

(4.21) Mi = Mi[(

Mi = M,.[(5i + 6)ri + 1, (5i + 6)r,.+2 (5i + 6)rJ ,

M\ = M,[(5i + 7)rl + 1,(5i + 7)ri+2,...,(5» + 7 ) r J ,

and let N\ c Nt < N( be codimension-0 submanifolds of N" defined by

(4.22) Nt = g-l(q(Mi)), Nt =

Also, define triples of codimension-0 submanifolds of Mm, denoted by T\
by

(4.23) TJ =

7J = 7i

Notice that

(4.24) Mi+1 c M J u r i + 1 .

Since 7C|t: 7̂  —• X, is G-equivariant, it induces a map

(4.25) n , : q(ti) = TJG - XJG =

Consider the map p, defined (for 1 ^ i ^ s) as the composite

(4.26) 9-l(q{td)

it is a fiber bundle projection. Furthermore, pt = Pi\g~l(q(Ti)) is also a sub-fiber
bundle projection onto q{X{); in particular, we obtain the fibers of p, by deleting
collar neighborhoods from the boundaries of fibers of p,. The fundamental groups of
the fibers of p, are (f)~l(Gx) where x e Xt a X{ and (f): F ->• F is the homomorphism
in the fibering apparatus «R/ = (F, 0, / ) mentioned in the statement of Theorem 2.1.
Since $$ is admissible and Z(0~1(G;c)) is right regular, we have by the Bass-Heller-
Swan Theorem together with Serre's Theorem (cf. [4]) that Wh(0" 1 (GJ x Zfc) = 0
for all k ^ 0. Consequently, each p, satisfies the condition hypothesized for the fiber
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bundle projection p in Corollary 4.2; we shall eventually apply Corollary 4.2 using
each of these pr Also define

(4.27) po:g-1(q(Xo))-+q(Xo) = Xo/G

to be g\g~[(q(X0)). Then, p0 is a fiber bundle projection and the fundamental group
of the fiber of p0 is (j)~l{l). Hence, by the same reasoning as above, p0 satisfies the
condition hypothesized for p in Theorem 4.1.

Let f = min (rt-1 1 ^ i ^ s}. Construct inductively a sequence of pairs of positive
numbers <5,, e, (for 0 ^ i ^ s) subject to the constraints that

(4.28) (1) £,._! <-r/(5s + 5),

(2) £,- <Si + l < e I + i ,

(3) <5,-<£,,

where <5,- is the number <5 posited in Theorem 4.1 (if i = 0) or Corollary 4.2 (if i > 0)
when we set e = e,, X = q{X{) and C = q(C,). The symbol a <t b in (4.28) means the
ratio b/a is very large. How large depends on the geometry of the chosen controlled
tube system (together with the choice of numbers r,) for the stratification of
Mm = Um/A induced by the G-action (and on the order of G). More precisely, the
sizes of the ratios in (4.28) depend on the maximum expanding Lipshitz constants
for the maps n-t, pv in (4.18); that is, they depend on the maximum of the ratios
|rf7r,.(y)|/|y| and |dp;(p)l/M as v varies over all the non-zero vectors tangent to
TJ[(5s + 5)rf; rI + 1, ri + 2 , . . . , r j , where | | denotes the Riemann metric on M"\ (The
ratios of the diameters of curves in S to their images in S/G, where S is any
G-invariant smooth submanifold of M"\ are dominated above by a number
depending only on \G\.) The inductive construction can be started by setting ES = 1
and letting <5S be any number smaller than both Ss and ss. Clearly, this construction
can be continued to produce pairs e;, <5,- (for 0 ^ i ^ s) satisfying (4.28).

Choose the number e posited in Theorem 2.1 to be So and let (W ; d0 W, 5, W) be
any (,ptf, e, /i)-cobordism (as defined in §2) relative to smooth deformation retractions
h,, kt where d0W = N" = Un/V. We shall construct inductively product structures
over No, N!, . . . , Ns = N. (See (4.22) for the definition of N£; note that Theorem 2.1
is proven when this construction is finished.) We start by applying Theorem 4.1
(setting e = e0, C = <?(C0), X = q{X0)) to the {50, h)-cobordism (W,N) where
p = p0 : E = ^"^^(^o) ) ~* <?(^o) a n d U = W. Since g(N0) a q{C0), we obtain an
£0-product structure over g(N0) relative to h{, and, in particular, an embedding

(4.29) Fo : .sV0 x [0, 1] -• W

satisfying (4.4), where ./VQ = g~i{g{NQfl).
Then, we construct inductively embeddings fj: ./!^x [0, 1] -»• W (for 1 ^ i ^ s)

where .¥• = N'i_l \J g~l{q(Ti)) is a neighborhood of A/,- in N (cf. (4.24)). These
embeddings will satisfy the following properties:

(4.30) (1) F(\. IfxO = identity;

(2) h;l(N,)c: imaged);



322 F. T. FARRELL AND W. C. HSIANG

(3) if x e N'{_, and t e [0,1], then Ft(x, t) = F^^x, t);

(4) if xeg-^qiT'S) and t e [0 ,1 ] , then h^x^^eg-^qit,)) and the
diameter in q{X{) of the path t \-> pihlFi(x, t) is less than 2e,.

(Recall formulae (4.26), (4.23) and (4.19).)
Assuming that Fl, F2,..., Fi_1 satisfying (4.30) have been constructed, we shall

use Corollary 4.2 to construct Ft.

(4.31) Let W and N denote the closures of W-Fi_1(N'i_l x [0,1]) and N-/Vj_, ,
respectively.

Define C, X, £', E, E and p: E -> X by

(4.32) C = g(Q), X = q{Xt), E = r ' W * ) ) . E =

£ = 0- ^(TJ)) and p = p., (cf. formula 4.26).

(Note that E = p~\C\) Let (7 be the interior oi-hl\E)nW inside of W,
V = N n inter ior(^.J and F = fj . jKx [0,1].

Homotopies ^f, fc,: 0 x [0,1] -> Ŵ  are obtained by simple taperings of hn kt

(respectively) into F. To be more specific, for each xeU, there is a number
0 ^ tx ̂  1 such that h,{x) = ht(x) for t ̂  tv and {/ir(x) 11 > tx) is contained in a
line of the form |F(x ,s) |0 ^ s ^ l}. Likewise, kt(x) = kt(x) for t ^ tx and
|/cf(.x) 11 > tx) is contained in a line of the form {F(x, 5) | 0 ^ s ^ 1}. The number tx

varies continuously with x and depends on the distance between hY(x) and N'i_i; if
the distance is large, tx •— 1; if it is small, tx — 0. We leave as an exercise the details
of this tapering construction so that property (4.7) is satisfied where V a V is an
appropriately chosen smaller neighborhood of dN and F = F\V. (We give a hint: to
define tx, make use of the function x i-> Pi{g{hi(x))) where P(: q{Tj) = TJG -» [0, 00)
is induced by p,-: Tt -> [0, 00).) Additional consequences of this tapering construction
are that

(4.33) d(pMx)>pMxj)<dt

for x G /1 j" *(£) n W, and that (VF, N) is a (£,•, /?)-cobordism over the closure of C2C|

(relative to UJit,kt).
We now apply Corollary 4.2 with e, C, X, W, N, F, U, E, ht, k, replaced by sh C,

X, W, N, F, 0, E, h,, /<,, respectively. In this way, we obtain an e,-product structure
F over C relative to hl extending F. Glue these two product structures together to
define Ft satisfying (4.30); namely, let

C fi-i(x,f) i f x e N U i ,
(4.34) F,(x,f) =

{

This completes the proof of Theorem 2.1.

5. Final remarks

An arbitrary virtually poly-Z group T can contain elements of finite order
different from the identity element. In particular, any finite group belongs to this
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class. Hence, in general, Wh F does not vanish. But, since a lot is known about the
X-theory of finite groups, one would like to calculate Wh F in terms of the /C-theory
of the finite subgroups of F. Unfortunately, ZF is no longer a right regular ring when
F contains non-trivial elements of finite order; hence the Nil-groups in the Bass-
Heller-Swan formula can occur in calculating Wh F; these are difficult to calculate.
For instance, for any ring R, if Nil R ^ 0, then NilR is not finitely generated [11].
This is a major difficulty in extending the techniques of this paper to calculate Wh F
in terms of the K-theory of the finite subgroups of F. In some cases this difficulty can
be overcome; for example, it can be shown by the techniques of this paper that
W h ( ( T @ T ) x G ) = 0 where (T © T) x G is the 2-dimensional crystallographic
group with holonomy group cyclic of order 3.

On the other hand, since the rational group ring QF is right regular, the
following proposed calculation in terms of sheaf homology is probably true.

Conjecture. Let F be a crystallographic group; then

where Jfo denotes the coefficient sheaf on U"/V whose stalk over the orbit xF is
KO(QFX) and Fx is the isotropy subgroup of F fixing xeR" .
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