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Non-simple abelian varieties in a family: geometric
and analytic approaches

Jordan S. Ellenberg, Christian Elsholtz, Chris Hall and Emmanuel Kowalski

ABSTRACT

We consider, in the special case of certain one-parameter families of Jacobians of curves defined
over a number field, the problem of how the property that the generic fiber of such a family is
absolutely simple ‘spreads’ to other fibers. We show that this question can be approached using
arithmetic geometry or with more analytic methods based on sieve theory. In the first setting,
non-trivial group-theoretic information is needed, while the version of the sieve we use is also of
independent interest.

Introduction

Given a family X — S of algebraic varieties (over a field k, say, with S connected), a natural
question of algebraic geometry is to know what type of properties of the generic fiber X,
extend to other fibers and, indeed, in which way they extend. As examples, one can think of
Grothendieck’s semicontinuity theorem, which is a general purely algebraic result of this type.
As a second example, a family of curves with smooth generic fiber will be smooth over an
open subset of the base and, after an appropriate base change, all the fibers will be stable. In
an arithmetic setting, a celebrated example of great importance is the Hilbert irreducibility
theorem, where it is shown that, for a Galois covering X — P" defined over a number field
k, the fiber over ‘most’ rational points ¢ € P™(k) is a finite set of Galois-conjugate points,
where G acts freely transitively (in other words, the coordinates of any point 2 € X mapping
to t generate a Galois extension with Galois group G). Indeed, quantitative estimates are
known for the size of the complement; see, for example [37, Chapter 9], and arise from very
diverse methods, among which we highlight the large sieve arguments of S.D. Cohen (see, for
example, [6] or [37, Chapter 13]).

There are arithmetic properties for which the classical methods known in the context of
the Hilbert irreducibility theorem do not seem to be directly applicable. One example is the
following question: let A — S be a family of abelian varieties defined over a global field &, and
assume that the generic fiber is simple, or geometrically simple. What can be said about the
set of rational points s € S(k) for which As remains (geometrically) simple over k? (Note here
the similarity with the case of Hilbert’s irreducibility theorem, when interpreted in terms of
irreducibility of specializations of an irreducible polynomial F(X,Y) in two variables.) Note
that, for each prime number ¢, one can pose in this setting the Galois-theoretic question
of understanding how the Galois groups of the ¢-torsion fields of the fibers vary, which are
instances of Hilbert’s irreducibility-type problems. In fact, it turns out that understanding
this, as ¢ varies, plays an important role in the work that follows.

We will develop a variety of techniques to approach this particular problem, especially when
S =P}, and we expect that they would be suitable for many others with a similar flavor.
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In fact, the parallel with the known approaches to Hilbert’s theorem will be obvious: one set
of techniques will be built on arithmetic geometry, while the other will involve sieve methods,
although both will require some group-theoretic information. This familiar appearance should
not be taken too far, however, as the tools involved are quite subtle. In particular, we appeal to
difficult results of group theory, which had not yet, to our knowledge, been applied to arithmetic
problems (for some, the only published proof depends on the classification of finite simple
groups). On the sieve side, the method will also be quite original, and will involve proving a
new generalization of Gallagher’s larger sieve inequality over number fields, which is likely to
be of independent interest. (Because of the interest of this sieve statement for analytic number
theorists, independently of the problem in arithmetic geometry which is involved, we have
summarized in an Appendix enough information to understand the latter; hence, readers who
are not familiar with abelian varieties may want to read this Appendix now, and then continue
with the introduction and then with Section 3.)

Since the goal of this paper is partly to emphasize the general methods, rather than to solve
a specific particular case, and since the tools borrow quite freely from arithmetic algebraic
geometry, group theory, and analytic number theory, which may not be equally familiar to the
interested readers, we have chosen a fairly expository style of writing. For instance, we discuss
informally the characteristic strengths and weaknesses of the two basic approaches, and, for
the sake of clarity, we do not always pursue the strongest possible conclusions.

To give a concrete form to our results, here are prototypical consequences of the more general
theorems proved in the main body of the paper. They concern a particular type of family of
abelian varieties, namely the family

Ay — Al
of Jacobians of the hyperelliptic curves defined by affine equations
v’ = f(x)(x—t), teAl,

for some fixed square-free polynomial f € Z[X] of degree 2¢g for g > 1. It is true (though not
obvious) that the generic fiber of this family is geometrically simple, and hence we can ask
the question discussed above. We phrase it in a quantitative manner. First, for ¢ € Q where
t = a/b with coprime integers a and b # 0, let H(t) = max(|a|, |b|) be the height of ¢. Let then
S(B) denote the set

S(B) ={t€Q | H(t) < B,and the fiber Ay, is not geometrically simple}.
We will show that S(B) is ‘small’ in some sense.

THEOREM A (Arithmetic geometry method). There exists a constant C(f), depending on
f, such that we have

1S(B)| < C(f) (1)
for all B > 1. In other words, there are only finitely many t € Q for which Ay, is not

geometrically simple.

This is a special case of Theorem 8 in Section 1 and is elaborated on in Example 14 in
Section 2.

THEOREM B (Analytic number theory method). There exist absolute constants C' > 0 and
D > 1, independent of f, such that we have
S(B)| < C(g°D(log2B))"" (2)
for all B > 1.
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This is a special case of Theorem 24 in Section 3, where we have simplified the bound by
worsening it somewhat.

These results show that the ‘geometric simplicity’ property does extend to most fibers in
these families. Here is one reason why this is not at all obvious (which also, hopefully, suggests
what other type of properties might be considered similar). Suppose we first ask the question
for all complex fibers (where it remains meaningful): how large is the set of ¢ € C for which
Ay is not geometrically simple? Geometrically, this set is the intersection between the rational
curve in the moduli space M, of curves of genus g, which ‘is’ the family Ay, and the sublocus
NS, of M, parametrizing curves whose Jacobians are non-simple. Difficulty arises from the
fact that V.S, is a countable union of proper subvarieties, and hence it would suffice for each
of those to intersect the family A, in a single rational point (each distinct from the others) for
Theorem A to fail.

In fact, when g = 2, the non-simple locus NS5 is a countable union of divisors, and so a
typical curve intersects this locus infinitely many times; however, our result shows that most
of the intersection points are not rational.

This discussion suggests the following question (which we do not claim to know the
answer to).

QUESTION 1. Is there an absolute constant C' such that, for any square-free polynomial
f € C[z] of degree at least 6, there are at most C' complex numbers ¢ such that the Jacobian
of y? = f(x)(z — t) is not simple? (The condition on the degree ensures that the genus is not
<2)

One can also restrict to integral polynomials and rational values of ¢, and there one may
observe that our proof of Theorem A shows that if we further allow C' to depend on the degree
of f (that is, on the genus of the hyperelliptic curves under consideration), then a conjecture of
Lang [28] implies a positive answer (by the work of Caporaso, Harris, and Mazur [4] who have
deduced from it a bound depending only on g for the number of rational points on a curve of
genus g over Q).

Here are now some general comments to compare Theorems A and B, which also apply more
generally to the two underlying methods. Theorem A may initially appear to be much stronger.
However, note that in (1), we have no idea about the actual value of C(f), in particular about
how it may vary with f, whereas in Theorem B, the bound (2) is effective in terms of f. In
particular this means we can prove bounds for similar problems involving families with more
than one parameter (that is, over a more complicated base than the affine or projective line;
for instance, we could look at the two-parameter family of Jacobians of

y? = f2) (@ —t)(z —v),

for fixed square-free f of degree 2g — 1), and this also means that we can deduce an upper bound
from (2) for the smallest height of a point t € Q such that the variety Ay, is geometrically
simple (indeed, a simple computation shows that there exists some ¢ of height at most B for
which A; is geometrically simple, where

B— C’(D'g4)1192

for some constants C’ > 0 and D’ > 1, which are computable in terms of C' and D).

This situation may be compared with the problem of counting rational points on a plane
curve X of genus at least 2: the theorem of Faltings shows that this set of points is finite, but it
gives no effective bound for the heights of the solutions, and only estimates (depending badly
on X) the number of points, while on the other hand the method of Heath-Brown [22] yields
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a completely explicit bound, depending only on the degree of X, for the number of points on
X of height at most B.

Another remark of interest in the comparison with the Hilbert irreducibility theorem is that
the results are stronger: the bounds for the size of S(B) are much better than those known for
a general ‘thin’ set (see [37, §13.1]). This is particularly transparent with the sieve argument,
since our application of the larger sieve is much stronger than the large sieve.

NOTATION. As usual, | X| denotes the cardinality of a set, and F, is a field with ¢ elements.
For a number field %, Z; denotes its ring of integers, and for a prime ideal p C Zj, F, is the
residue field Zy /p.

By f< g for z € X, or f=0(g) for x € X, where X is an arbitrary set on which f is
defined, we mean synonymously that there exists a constant C' > 0 such that |f(x)| < Cg(z)
for all x € X. The ‘implied constant’ refers to any value of C' for which this holds. It
may depend on the set X, which is usually specified explicitly, or clearly determined by
the context.

1. Methods from arithmetic geometry, I

In this section and the next we consider a field k that is finitely generated over the prime field;
for example, k could be a number field or a function field over a finite field. (These will be
the only fields arising in the analytic section, and the reader can think of these as the most
important.) We also assume that the characteristic of k, if positive, is not equal to 2.

The first conditions arise because we need to know that the following mild weakening of
Mordell’s conjecture holds for k.

THEOREM 2. With k as above, there is a constant g1 (k) such that, for any smooth projective
curve C/k of genus g > g1(k), the set C(k) of k-rational points on C' is finite.

Proof. At a minimum we must have g > 2, and if char(k) = 0, then we may take g; (k) = 2.
If C' is not defined over an algebraic closure of the prime field of &, then this is a combination of
results of Grauert [16] and Manin [31] (for char(k) = 0) and Samuel [34] (for char(k) > 0). If
char(k) = 0 and C' is defined over the algebraic closure of @, then the argument in the corollary
of [32, Theorem 1] reduces this to the celebrated theorem of Faltings [11]. The case which can
force us to take gi(k) > 2 is when k = F,(X) for a smooth projective variety X/F, and C is
defined over F,. If F, is algebraically closed in k, then elements of the complement C'(k) — C(IF,)
correspond to dominant maps X — C' and repeated composition with the Frobenius C' — C'
gives rise to an infinite subset of C(k). However, the following proposition shows that, if
we take g1 (k) = dim H(X xg, Fy,Q'), there are no such elements, and hence C(k) = C(F,)
is finite. U

PROPOSITION 3.  Let Y/Fq be a smooth projective curve of genus g. For any dominant map
f:X =Y, where X/F, is a smooth projective variety, we have g < dim H°(X,Q!).

The following proof was suggested by J. F. Voloch.

Proof of Proposition 3. 1If f: X — Y is inseparable, then there is a purely inseparable map
of curves Z — Y through which f factors and such that X — Z is separable. Moreover, the
genus of Y is at most the genus of Z, and so up to replacing Y with Z we may assume f is
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separable. Then the pullback map of differentials
frHY (Y, QY — H(X, Q)

is an embedding (cf. [38, II1.6.2, Theorem 1]), and since dim(H°(Y,Q')) = g, the conclusion
follows. U

Let now C'/k be a smooth curve, and let A/k(C) be a principally polarized abelian variety
of dimension g over the function field of C'. Let ¢ be a prime which is invertible in k£ and let
Alf] be the (-torsion of A.

There is an embedding of the group G = Gal(k(C)(A[(])/k(C)) into T' = Aut(A[¢]), where
Aut is understood to refer to the group of linear automorphisms preserving the symplectic Weil
pairing, up to a scalar. The subgroup of symplectic automorphisms of A[/] is denoted T'g. We
therefore have the isomorphisms as follows:

I' ~ GSp(2¢9,F,), Ty~ Sp(2g,F,)

(where G'Sp(2g) is the group of symplectic similitudes, also sometimes written C'Sp(2g) or even
SSp(29)).

By the geometric monodromy of A modulo ¢, we mean the image of the absolute Galois
group of k°(C) in I'y. We say A has big monodromy mod ¢ if the geometric monodromy of A
is the whole symplectic group I'g, so that I'o < G. If v is a place of k(C), then we write A, for
the fiber over v of the Neron model of A over C' and GG, < G for the decomposition group. We
say A, has big monodromy modulo /¢ if A, is an abelian g-fold and if I'y < G, < G. In all this,
if £ is clear from the context, then we may simply speak of geometric monodromy, or say that
A or A, has big monodromy, without specifying /.

These notions are relevant to our basic problem because of the following sufficient criterion
for geometric simplicity, which will be our main tool in this and the next section. This makes
precise the fairly intuitive fact that a factorization of an abelian variety forces the monodromy
group to preserve the factors, and hence is incompatible with having big monodromy; but
because the factorization may exist only over an extension of k, and is valid only up to isogeny,
this requires some care.

PROPOSITION 4. For any g > 1, there is a constant {1(g) > 1 satisfying the following: if
> ty(g) and A/k is an abelian variety of dimension g over a field k such that A has big
monodromy modulo ¢, then A satisfies End;(A) = Z and in particular is geometrically simple.

Proof. By a theorem of Chow, we have Endj(A) = Endg-(A) for any abelian variety A/k
(see [8, Theorem 3.19]), and hence it suffices to prove the corresponding statement with the
endomorphism ring over k* instead of over k.

Next, for any A/k, note that the rank of the endomorphism ring Ends(A’), as a Z-module,
is constant as A’ runs over the isogeny class of A. If A is not geometrically simple, then there
is an abelian variety A’ in this isogeny class, which splits over k as A; x Ao, with A;, Ay
of dimension at least 1. By the previous paragraph, this means in particular that Endys(A’)
contains a non-trivial endomorphism 7 satisfying 72 = 7 (for example, the projection onto
the non-trivial factor A;), and then Z[r] is a rank-2 Z-submodule of Endgs(A’) and thus
Endgs (A) # Z (since it has rank at least 2). In particular, by contraposition, A is geometrically
simple if Endgs(A) = Z.

Now, let ¢ be a prime number such that some abelian variety A/k has big monodromy
modulo ¢ and satisfies Endgs(A) # Z. Then, by the theory of abelian groups, there is an
endomorphism ¢ in Endgs(A) such that Z[¢] is a rank-2 Z-submodule of Endg:(A) and,
moreover, Endy:(A)/Z[¢] has no ¢-torsion. The latter assumption implies that the image of
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Z[¢] in End(A[(]) ~ My,(F,) is a rank-2 Fy-submodule, because otherwise ) —m would be
divisible by ¢ for some m € Z. More precisely, we may find ¢ such that the image of ¢ in
End(A[(]) does not lie in the scalar subgroup F; .

Let K be the Galois closure of the splitting field of ¢ (that is, K is the fixed field of the
subgroup of Gal(k/k) fixing 1) and let H be its Galois group of K (A[¢])/K. There is a natural
inclusion H — G, where G is the monodromy group of A modulo /.

Since the action of ¥ on A[{] commutes with H and 1 does not lie in the scalar subgroup
F; < End(A[(]), Schur’s lemma implies that the subgroup H < My4(F) does not act absolutely
irreducibly on A[¢]. Since G N Ty = T’y does have this property (because of the big monodromy
assumption), H NTy is a proper subgroup of I'y. Now, if ¢ > 3, then we know that Ty is
generated by its elements of order ¢, because they generate a normal subgroup and Z(T'y) =
{#£1} is the only proper normal subgroup (see [42, Theorem 5]). Thus, there exists at least
one element o of order ¢ in the complement G — H. In particular, the o-orbit of H in the
permutation representation on G/H has ¢ elements, and hence we find that [G : H] > £.

On the other hand, the Galois group Gal(K/k) acts faithfully on the free Z-module End (A),
so that it is isomorphic to a finite subgroup F of GL(n,Z) for some n < 2¢g. By a theorem of
Minkowski, F' injects into GL(n,Z/37Z) (see, for example, [39]) and thus its order is bounded
by a constant depending only on g. Let £1(g) be this constant. Since Galois theory gives

[G: H] < |Gal(K/k)|,
it follows from this and the previous paragraph that
(<[G: H] < |F| < hg),

as desired. 0

Our first (and most general) approach to the problem mentioned in the introduction uses
some deep group-theoretic results of Guralnick [18] and Liebeck and Saxl [30], in order to
apply Proposition 4. This is contained in the following result.

PROPOSITION 5. If g1 > 0 is a constant, then there is a constant l2(gy) satisfying the
following. If ¢ > l5(¢1) and f : X — C is a geometric Galois cover with group G = Sp(2g,Fy),
then for any proper subgroup H < G, the genus of X/H is at least g.

Proof. In the case where f is tamely ramified (for instance, in characteristic zero), this
follows from [30, Corollary 2 to Theorem 1] and, in the general case, this follows from [18,
Theorem 1.5]. O

REMARK 6. The constant ¢5(g1) is conjectured to be independent of g1 (see [18, Conjecture
1.6]), and in the tame case this follows from [13, Theorem A].

What is required for Proposition 5 is a very thorough understanding of the maximal proper
subgroups of Sp(2¢,Fy). As written, the results in [18, 30] both use the classification of finite
simple groups. More precisely, the proof of [18, Corollary 9.5] uses [30, Theorem 1] which
in turn rests on the classification-dependent Theorem 4.1 of [29]. However, we learned from
Guralnick that Magaard has an unpublished proof of [30, Theorem 1], which does not use the
classification.

Proposition 5 forms the main content of the following proposition.
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PROPOSITION 7. If £ > l5(g1(k)) and A has big monodromy mod (¢, then A, has big
monodromy mod £ for all but finitely many v € C(k).

Proof. Let X/k be the smooth curve with function field k(C)(A[¢]). The map of curves
X — C is generically Galois with group G containing I'y. Let v be a point in C'(k) and let w
be a point in X lying over v with the decomposition group G, < I'. If H < G is a subgroup
not containing I'g, and G, < H, then the image of w in the quotient curve X/H has degree
[G,: G, N H] =1 over v, and thus is a k-rational point of X/H. In particular, to prove the
theorem it suffices to show that X/H has genus greater than ¢, (k) for any proper subgroup
H < G because then Theorem 2 implies that

U x/m)k)

H<G
is finite. However, this is exactly Proposition 5 applied to the proper subgroup
HQFO of Fo. ]

We can now deduce the following concrete application.

THEOREM 8. Let k be an infinite field of finite type over the prime field, for instance,
a number field. Let g > 1 be an integer, and let f € k[X] be a square-free polynomial of
degree 2g.

Let A be the Jacobian of the hyperelliptic curve of genus g over k(t) with the affine model
as follows:

y* = f@)(@ —1).

Then there are only finitely many t € k such that A, is not geometrically simple.

Proof. By aresult of J.-K. Yu and Hall [19], A has big monodromy modulo ¢ for any ¢ > 3.
Choosing ¢ > max(2,¢1(g),¢2(g1(k))) yields the desired result by combining Propositions 4
and 7. 0

REMARK 9. Zarhin has recently shown [44, Theorem 1.5] that, over any field K of
characteristic 0, the Jacobian of a hyperelliptic curve with the equation

v =flx)(x—1t), feK[X], teK, deg(f)=29>8, f(t)#0,

is always absolutely simple under the condition that the splitting field of the polynomial f
has a Galois group containing the alternating group As,. This gives many examples where the
finite exceptional set of Theorem 8 is actually empty!

In the theorems above we have used the fact that A has big monodromy modulo some prime
£ in order to show that almost all the fibers of A, have big monodromy modulo the same /.
It is worth pointing out that the hypothesis that A, has big monodromy modulo a sufficiently
large fixed ¢y actually implies that it has big monodromy modulo almost all ¢, although we
shall only prove it for global fields.

ProroOSITION 10. Suppose k is a global field, that is, a number field or a function field of
a curve over a finite field. If A, has big monodromy modulo ¢y, for some ¢y > 5, then there is
a constant l3(A,), so that A, has big monodromy modulo { for every prime { > {5(A,).



142 ELLENBERG, ELSHOLTZ, HALL AND KOWALSKI

Proof. 1If A, has big monodromy for ¢y > 5, then the fy-adic monodromy group of A,
contains Aut(Ty, A) =~ Sp(2g, Zy,) (see [36, Lemme 1]). Therefore, if k is a number field, then
[35, 2.2.7; 36, Théoreme 3| imply that for every sufficiently large ¢, the f-adic monodromy
group of B contains Sp(2g,Z,). If k is a function field over a finite field, then one can apply
[36, 8.2] to deduce a similar statement. O

It is worth noting here that this method does not allow the bound ¢3(A4,) to be chosen
independently of A,. To prove such a uniform bound over a rational function field, for example,
would require showing that the Siegel modular varieties parametrizing abelian g-folds with
‘H-level structure’ contain no unexpected rational curves; this can be carried out when g =1,
since the Siegel modular variety is just a curve (see [7]) but seems difficult in general. A theorem
of Nadel [33] proves such a result (as a special case of a much more general theorem) when H
is the trivial subgroup of Sp(2¢,Fy).

2. Methods from arithmetic geometry, 11

In the special case of families of hyperelliptic curves considered in the present paper, we can
also obtain results using easier group theory in place of Proposition 5, as we now explain.
Again, we will use Proposition 4 to obtain geometric simplicity.

We continue with the notation introduced in the previous section except that now we must
work in characteristic zero, and so we assume £k is finitely generated over a number field. This
implies that Theorem 2 is valid with g1 (k) = 2.

First of all, we remark that when A has big monodromy modulo a sufficiently large ¢ and
at least three fibers where the reduction is not potentially good, then one can show that A,
has big monodromy modulo ¢ via the results in the forthcoming paper ‘Maximal subgroups
of classical groups containing a quadratic element’ by Hall, which require only Thompson’s
classification of so-called quadratic pairs [43].

By restricting A further, we can make our work even simpler, while still proving a general
enough result to obtain the theorems stated in the introduction. For this, we say A degenerates
simply at v if the identity component of A, is the extension of an abelian variety by a one-
dimensional torus and if the component group of A, has order prime to ¢. There are only finitely
many v where A degenerates simply. From the group-theoretic point of view, this geometric
condition is useful because of the following fact.

LEMMA 11. With notation as above, if A degenerates simply at v, then the inertia group
I, < G, is generated by a transvection.

Proof. By [17, (2.5.4) and Corollaire 3.5.2], I, is generated by a unipotent element 7
satisfying dim((7 — 1)A[¢]) < 1, and hence 7 either is a transvection or is trivial. Moreover,
A[l] does not split over the strict Henselization of the local field k(C'), because the component
group of A, has order prime to ¢ (cf. [17, (11.1.3)]), and hence k(C)(A[f]) ramifies over v and
7 # 1 is a transvection, as claimed. Ul

We shall also use here the following group-theoretic lemma, the potential significance of
which is clear from the previous one.

LEMMA 12. If¢ > 3, then a subgroup of Sp(2g,F,) that contains ¢?9~ transvections is the
whole of Sp(2g,Fy).
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Proof. This follows immediately from a theorem of Brown and Humpbhries [3], which gives a
criterion for a set of transvections to generate the symplectic group Sp(2g,F,). More precisely,
recall that there is a natural bijection between cyclic groups generated by transvections
and lines in Fgg ; namely, we take the group generated by 7 to the one-dimensional space
(r— 1)(1[7?9). Let S C IP’(]F?") be a set of subgroups generated by transvections. Let G(S) be
the graph with a set of vertices S and with edges given by those pairs (s1,s2) € S x S such
that the space spanned by s; and sy (thought of as lines in ]F?g ) is not isotropic. Then [3]
shows that (for £ > 3) S generates G if and only if the elements of S span F ?g , and if G(95) is
connected. If the lines in S fail to span all of F?g , then obviously

29—t — 1

-1

On the other hand, if G(S5) is the disjoint union of two subgraphs, G; and G, then the
subspaces of F?g spanned by the vertices of G; and G2 must be mutually orthogonal, and so in
particular the union of these vector spaces contains at most (¢2971 —1)/(¢ — 1) lines. In either
case, the number of transvections contained in S is at most ¢29~! — 1. O

5] <

Now we deduce the following.

PROPOSITION 13. Let k be a field finitely generated over a number field, let C/k be a
smooth projective curve, and let A/k(C) be a principally polarized abelian g-fold. Suppose
£ > 3 is a prime such that A has big monodromy modulo ¢ and that A degenerates simply at

(g2g —
==

or more places. Then A, has big monodromy modulo ¢ for all but finitely many v € C(k).

Proof. 'We can assume that the places where A degenerates simply are in C(k), because the
conclusion will be even stronger after extending scalars to a field of definition of those places.
Then, again let X/k be the smooth curve with the function field k(C')(A[¢]). The map of curves
X — C is generically Galois with group G contained in I'. Again, we use Theorem 2, applied
to the curves X/H as H ranges over proper subgroups of I'y. As in the proof of Proposition 7,
and because g1 (k) = 2 now, it suffices to show that all such X/H have genus at least 2.

Fix a proper subgroup H < I'y and let Y/k be the quotient curve X/H. Suppose that v is a
point where A degenerates simply and let 7 € I,, be a generator. There is an action of 7 on the
sheets of Y x k®, which is exactly the permutation action on the cosets of I'g/H: the orbits
correspond to the points of Y X k® over v and the size of an orbit is the ramification index.
Every orbit has 1 or £ elements and the coset gH is fixed by 7 if and only if g~ !7g lies in H. In
particular, the computation of the ramification of Y — C' at v is reduced to a problem about
the conjugates of transvections in G.

By Lemma 12, we have

TCnH| _ 91
o S e

and so there are at least
2972(0 - 1)
029 —1
points of Y X k® over v of ramification degree ¢. Therefore, if we write m for the number
of v in C(k), where A degenerates simply, then from the Riemann-Hurwitz formula we

G : H]
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have that

ml29-2(¢ — 1)2
2(Y) — 2> [G: H] (W +2¢(C) —2) .

In particular, the right-hand side is positive since m(¢9 — ¢9=1)2 > 2(¢29 — 1), and hence
Y = X/H has genus at least two. O

ExXAMPLE 14. When A is the Jacobian of

y? = f(z)(z—1t)

with deg(f) = 2g, we observe that, for £ > 3, A degenerates simply at every prime v in k(t)
corresponding to the specialization of ¢ to a root of f(xz). A priori, one could apply the
description of the monodromy of A about v given in Section 5 of Hall’s forthcoming paper
‘Maximal subgroups of classical groups containing a quadratic element’ to deduce that it is a
transvection, which is why we want it to be simply degenerate (see Lemma 11), but we can
also perform a geometric computation to check this directly.

The fact that A, is the extension of an abelian variety by a one-dimensional torus follows,
for instance, from [1, §9.2, Example 8]. The key point is that the fiber of the curve over v is
smooth away from a single ordinary double point.

To compute the order of the component group of A,, one must compute the minimal regular
model of the curve over v, which a straightforward calculation reveals to be the union of curve
Cy of genus g — 1 and a curve Cy of genus 0 ([41, Remark IV.7.7 and Example IV.7.7.1] gives
a nice concrete treatment of the blowing-up process required for this computation). Moreover,
C and C5 intersect at two points, from which it follows that one has the divisor intersection
numbers C? = C2 = —2 and C; - Cy = 2 (cf. [41, Proposition IV.8.1]). Using this information
one applies [1, §9.6, Theorem 1] to deduce that the component group of A, is isomorphic
to Z/27.

Thus, when g > 2, we immediately recover Theorem 8 using Proposition 13. (The case g = 1
is standard; see, for example, [7].)

3. Methods from analytic number theory

The analytic approach to our problem is based on the conjunction of two sieves: the sieve for
Frobenius of Kowalski (see [25]), which is a version of the large sieve, and a generalization of
Gallagher’s larger sieve [14]. The prototype of this approach was described in [25, Proposition
6.3], which used a standard large sieve instead of the larger sieve. The latter is much more
efficient here.

This combination of two sieves is quite appealing, and it may be of interest in other
applications. Although we do not know of any previous use of the large sieve to set up a larger
sieve, the Elsholtz has, in an earlier work, used the larger sieve to prepare for application of
the large sieve (see [10]).

The sieve arises because, instead of the ‘big monodromy’ argument in Proposition 4, we
detect non-simple abelian varieties by means of the following alternate criterion.

PROPOSITION 15. Let k be a number field and A/k be an abelian variety. Let p C Z
be a prime ideal of k with residue field F, such that A has good reduction at p. If the
abelian variety A,/F, obtained by reduction of A modulo p is geometrically simple, then
so is A.
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Proof. This is a tautology, given the theory of reductions of abelian varieties: if A is not
geometrically simple, then there exists an isogeny

A’XAlXAQ

with dim Ay, dim A5 > 1, which is defined over some finite Galois extension k' /k. The factors 4,
and As have good reduction at p, and so, after reducing, we obtain a corresponding non-trivial
factorization for A, defined over the residue extension of k'/k at p. U

REMARK 16. It is well known that there exist integral polynomials that are irreducible
over Q but are reducible modulo every prime (this is due to Hilbert; see, for example, [2],
where it is shown that such polynomials exist of every non-prime degree). Similarly, there are
examples of geometrically simple abelian varieties defined over a number field, which are not
geometrically simple modulo any prime (see [12, 21]). It would be interesting to know if the
analog of the finiteness statement (1) holds for the set S’'(B) of parameters of height at most
B for which A; is not simple modulo all primes.

Sieve methods, in particular the large sieve, will be used to detect factorizations of abelian
varieties over finite fields (much as they can be used to detect irreducible polynomials), and
thus we will proceed by applying Proposition 15 to many different primes.

We first give a new formulation of Gallagher’s sieve in number fields. The works of
Goldberg [15] and Hinz [23] contain other versions, which are much more restricted and
weaker, and there is also an ongoing work in progress by D. Zywina with a similar result.
It is quite interesting that the efficiency of our argument depends crucially on using the height
function in the number field, and not some cruder measure of size based on the coefficients in
some integral basis, for instance (other sieves are usually not really sensitive to this type of
choice of a norm).

Note that the terminology ‘larger sieve’ arises because this statement is most efficient when
trying to control the size of a set that does not intersect a very large number of residue classes
modulo a set of primes.

PROPOSITION 17. Let k/Q be a number field, let B > 0 be a constant, and let A be a
finite set of elements of k such that H(a) < B for all a € A, where H denotes the height in k,
normalized as described below.

Let S be a finite set of prime ideals in the ring of integers Zy,. If the order of the image of A
under the reduction map k — P (F,) is < v(p) for all p € S, then we have

ZpeS log Np — 1og(2[k:Q]BZ)

Yes 105(3*’ — log(2(-QI B2)’

provided the denominator in this expression is positive.

|Al <

REMARK 18. For many applications, the weaker estimate
ZpeS IOg Np
> peslog Np/v(p) — log(2(-Q1B2)”

also valid when the denominator is positive, is sufficient. Indeed, this is what we will use.

|Al < 3)

We indicate which definition of the height we consider, since there are competing normal-
izations; we follow [40, VIIL5], that is, our H is the same as Silverman’s Hj. Thus let My
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be the set of places of k, defined as in [40, VIIL.5, p. 206] (the set of absolute values on £,
which coincide with the standard absolute values when restricted to Q), and let |- |, denote
the absolute value associated with v € M.

For a € k, the height of a is defined by

H(a) = H max(1, [a[y”),
veE My

where n,, is the local degree at v, that is, n, = [k, : Q,], where k, and Q, are the completions
of k and Q, respectively, with respect to the metric defined by | - |, (in particular n, = 2 if v
is a complex place).

We will need the following easy and well-known results:

H(a)=H(a™'), H(ab) < H(a)H(b), H(a+0b)<2FUH(a)H(b) (4)

for all a, b € k*. We also recall that if v € M}, is a non-archimedean place, associated with a
prime ideal p, then we have

b= (Np) @, (5)

la

where v, is the p-adic valuation and Np = |Fp| = |Zj/pZs| is the order of the residue field.
We also comment briefly on the reduction map k — P'(F,): if a € k and vy(a) < 0 (that

is, if p ‘divides the denominator’ of a), then the image of a modulo p is the point at infinity

(denoted oo) in P*(F,). We write simply a = oo (mod p) to indicate that this is the case.

Proof of Proposition 17.  The proof is very similar to the original argument of Gallagher [14].
Let

A= ] H@-b),
a,be A
a#b

which is a real number at least 1. We compare upper and lower bounds for A to obtain the
larger sieve inequality. By (4), we first have the following easy lower bound:

A< (Q[k:Q}B2)|A|(\AI*1)_ (6)

On the other hand, we bound the height from below as follows: by (4) again, switching to
the inverse to use (5) with positive valuations, we have

A=T[H(@-0 =] I (ve).

a#b a#b pes
vp(a—b)>0

It follows that

log A=Y " > (ogNp)=>_ > (logNp).

a#b peS a#b pes
vp(a—b)>0 a=b (mod p)

Now, for all p € S and o € P1(F,), define

Ry(a) ={a € A | a=a(modp)}|.



NON-SIMPLE ABELIAN VARIETIES 147

We obtain
log A > Z (log Np) Z 1
pes a#b
a=b (mod p)
:Z(long) Z 1—|A|Zlong
peSs a,be A pes
a=b (mod p)
=> (logNp) > Ry(a)®—|AlD_log Np.
pes acP(Fp) pes

However, by Cauchy—Schwarz, and by definition of v(p), we have the familiar lower bound

2
(Zaepl(Fp) Rp(a)) _ |'A|2
v(p) - vip)

Z Ry()? >

a€PL(F,)

)

and therefore we obtain

A?
log A > —— — |A] ; log Np.
> w1

Finally, putting things together, we obtain

Al? .
Z{L(;) - ‘A|} log Np < log A < |A|(JA| — 1) log (2% B?).
pes

Simplifying by |A| and re-arranging gives the result. O

When applying this proposition, we typically know some upper bound on v(p), on average
over S, and estimate the right-hand side of (3). In our case, v(p) will be quite small (less than
(Np)t=2 for some § > 0), so that if the set S is chosen to be

S={pCZy | Np<uz}

for some parameter x > 2 (as is typically the case), then the first sum in the denominator
grows fairly rapidly as x grows.

The strength of the final estimates stems from this, but in a way that is rather surprising
compared with the large sieve (for instance): it will come from the fact that one can choose
x quite small to make the denominator positive; then the numerator is also fairly small, and
hence so is A, but the actual size of the denominator is, in fact, of little significance (though
it does contribute a small saving factor; the quality of the upper bound, in this range at least,
comes mainly from the small size of x).

From this sketch, one can guess that the only really delicate issue that may arise is if one
tries to have estimates uniform in terms of k, since one is then led directly to the difficult issue
of showing that there are sufficiently many prime ideals with small norm.

In order to clarify the mechanism, we define

Bela;8) = min{t >2 Y (vp) > x} fort>2, 0<4<1, (7)
Np<t

which, intuitively, quantifies the ‘convergence to equilibrium’ in the Prime Ideal Theorem for
k. Note in particular that

Br(z;8) = min{n > 2 | there is some prime ideal of norm n},

since any sum over primes of smaller norm is zero by definition.
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If k is considered to be fixed, then we can deduce, by summation by parts, from the Prime

Ideal Theorem that
1 10
O(log 5 + {oeroye)
HO(ees Tt (log t%)2

> (Np) =

5
Npet logt

for > 0 and ¢ > 2 with t° > 2, where the implied constant depends on k only. It then follows
easily that

Br(;6) < (2xlogx)'/? (8)

for > 2, where the implied constant depends only on k.

COROLLARY 19. Let k/Q be a number field and let A be a finite set of elements of k such
that H(a) < B for all a € A, and such that, for all prime ideals p in Zj,, the order of the image
of A under the reduction map k — P'(F,) is < v(p), where

v(p) < C(Np)'="" (log Np)

for some constants C' > 0 and v > 1.
Then we have

Al < 2[k : Q)6 (2C 1082 B2);771) (10g (29 B2)) 1.

Proof. Write § = y~!. Applying Proposition 17 (in the form of (3)) with S taken to be
the set

S={p | Np<z}
for some = > 2 to be determined later, the denominator of (3) is

—1og(2U€=@]BQ)+Z1°gN10 > ~log@FUB%) 4 ¢ Y (Vp)
peS V( ) Np<Lzx

Thus if we take
x = [ (20 log(21F¥ B2): 5),

then the definition (7) shows that the denominator is at least log(2*@ B2).
We bound the numerator, on the other hand, rather wastefully in terms of k:

> log Np < [k : QJ(log )7 (z) < 2[k : Qla,
Np<Lx

(by the Brun-Titchmarsh or Chebychev upper bound for 7(z)). The result is then a direct
translation of Proposition 17. |

Under various assumptions, one can easily transform this into concrete results. For simplicity,
we do this for a fixed number field; in that case, using (8), we obtain the following.

COROLLARY 20. Let k be a fixed number field. With an assumption as in Corollary 19,
we have

|A| < (log(2F ¥ B2))7=1(4C log(2C log(21¥¥ BY))™

for all B > 2, the implied constant depending only on k.
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ExampLE 21. For k = Q, using a lower bound such as

1 =z
m(z) > =
6 logx

for > 2 (which follows, for example, from [20, p. 342]), one gets easily (and rather wastefully)

that
122 2x\1/8
Bo(z;6) < (7 log f) :

508
1/6 1/6
Al <2 (2450> (log 2B2)1/6-1 <log {450 log(232)}) ,

under the assumption of Corollary 19 for k = Q.

and hence

Now we come to the application of the splitting of Jacobians in our hyperelliptic families.
We use the following result, which is itself proved using a version of the large sieve, to derive
assumptions such as those in Corollary 19, involving the type of conditions in Proposition 15.

ProrosITION 22. Let F, be a finite field with q elements, let g > 1 be an integer and let
f € F4[X] be a square-free polynomial of degree 2g. For t € F,, let A, be the Jacobian of the
hyperelliptic curve Cy with affine equation

Cp : y? = fa)(z —1).
Then we have
{t € F, | f(t) # 0 and A, is not geometrically simple}| < ngl_fl (log q), (9)
where v = 49 + 2g + 4 and the implied constant is absolute.

Proof. Fix a prime number ¢ # p. For ¢t € F,, we let P, denote the numerator of the zeta
function of C;, which is the integral polynomial of degree 2g given by

Py =det(1 —TF | H (A4, Zy)),

where HY(Ay,Zy) ~ H*(Cy,7Zy) is the first étale cohomology group of A; or C; (this is the
‘spectral interpretation’ of the zeros of the zeta function of Cy).

Let G} be the Galois group of the splitting field of P;. We write W for the Weyl group of
the symplectic group Sp(2g) or, more concretely, the group of order 29¢g! consisting of signed
permutation matrices in GL(n,Z). From the application of the sieve for Frobenius in [26,
Remark after Theorem 8.13], it is known that Gy is, most of the time, isomorphic to W:
we have

{t €F, | f(t) #0and G, £ W} < ¢’¢" (logq),

where v = 492 + 2g + 4 and the implied constant is absolute (the earlier result in [25, Theorem
6.2] has v = 4¢% + 3g + 5 instead, which is virtually indistinguishable; it also misses the g¢?
factor, due to a slip in the final step of the estimate).

Precisely, this result trivially implies (9) if ‘geometrically simple’ is replaced by ‘simple’,
since an isogeny (over F,) of the type

Ay~ Ay x Ay (10)
with dim Ay, dim As > 1, implies that
P, =det(1 —TF | H (A, Zy))det(1 — TF | H' (A2, Zy)), (11)
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where both factors are integral polynomials of degree > 1, which can certainly not occur if P,
has the Galois group W.

To claim the result stated in the geometric context, one must exclude factorizations as
above, which hold after A; is base-extended by a finite extension of IF,. For fixed g, one can
adapt straightforwardly the corresponding qualitative argument of Chavdarov [5, Theorem 2.1,
Lemma 5.3]. The dependency on g might be worse than what we claim when applying this
directly, but for g > 5 (at least), one can use instead the following elementary argument
exploiting the size of the Galois group. First, one can show (see [27, Proposition 2.4(2)])
that Gy ~ W and g > 5 imply that the only multiplicative relations between zeros of P, must
follow from the Riemann hypothesis, that is, if (v, .., as4) are the inverse roots of P, then
we have Q ®7 R = T, where we denote

R= {(m)eZQﬂ e =1}7

T =< (m;) € Q% | ij =0, andm; =m; if a; = @;
J

Now if (10) holds over Fym, m > 1, then it is easy to see that there must be a relation o =
apr with j # k, and this corresponds to a relation (n;) € R with n; = 0 except n; = ny =m,

which is incompatible with the definition of 7. |

REMARK 23. The uniformity in g is a nice additional feature of the sieve method, but it is
not necessarily crucial here; the uniformity in terms of the characteristic of I, is what matters
for the later use of this proposition.

It is worth noting one common feature of the geometric and analytic approaches here: the
proof of Proposition 22 depends crucially on the same result of J.-K. Yu (reproved in [19])
concerning the monodromy modulo ¢ of our hyperelliptic families, over finite fields.

THEOREM 24. Let k/Q be a number field, let g > 1 be an integer and let f € k[X] be a
square-free polynomial of degree 2g. For t € k, t not a zero of f, let A; be the Jacobian of the
hyperelliptic curve with the affine equation as follows:

y* = fz)(z ).
For B > 1, let
S(B)={tek | H(t) < B and A, is not geometrically simple}.
Then there exists an absolute constant D > 0 such that, for B > 2, we have
IS(B)] < (log(252 B2)) 1 (¢2D log log(2%2 B))",

with v = 4¢® + 2g + 4, where the implied constant depends only on k.

Proof. The basic observation is that, if ¢ € S(B), then for any prime ideal p, ¢ (modp) €
P!(Fy) is either a zero of f modulo p, or oo, or else (f(¢) being non-zero modulo p so that
A; has good reduction modulo p, and its fiber over p then being not geometrically simple)
t (mod p) lies in the set 2, defined by (9) for f relative to ¢ = Np.

Hence the image of S(B) modulo p has cardinality v(p) with

v(p) < 29+ 1+ Q] < g2(Np)' =" (log Np),
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where the implied constant is absolute by Proposition 22. Thus Corollary 20 directly implies
the result. ]

REMARK 25. In an extremely narrow range, the large sieve (as used originally in [25]) is
better than the larger sieve. Indeed, as discussed with many examples in [9], the original larger
sieve is better when the number of permitted residue classes (that is, the size of Q,, in our
case) is smaller than half of Np (this is not quite true any more in our inequality because of
the term log(2(*¥ B?) in the denominator). Proposition 22 clearly shows that we cannot prove
this (it may be true, for all we know) unless Np is (roughly) larger than §=/¢ (with § =< ¢?).
However, the bound in Proposition 22 also becomes trivial for ¢ not much beyond this point,
and so the range of applicability where the large sieve would be the best is very small.

Appendix. Survey of abelian varieties for analytic number theorists

While the basic information about abelian varieties that we use will certainly be well known
to readers more familiar with the methods of Sections 1 and 2, this is less likely to be the
case for readers whose interests lie more in the direction of analytic number theory and sieves.
In order to motivate the basic problem for these readers, we summarize here briefly some
background information, which we hope will suffice to make accessible the contents of Section 3
for such readers.

The simplest case of abelian varieties is that of elliptic curves; although our basic question of
geometric simplicity is not of interest in this setting (any elliptic curve is geometrically simple),
a basic knowledge of elliptic curves can help motivate and understand the general theory. We
refer for this to Silverman’s book [40], and to the summary in [24, §11.10], which may also
be helpful.

Let k be a number field (for instance, k = Q). An abelian variety A defined over k is, first
of all, a proper irreducible variety over k; that is, we may think of A as a subset of projective
space over k cut out by some set of homogeneous equations in the coordinates, which generate a
prime ideal. (In practice, though, one almost never writes down these equations!) What makes
A an abelian variety is the presence of a group law: a map from A x A to A which is given by
polynomials in the coordinates, and satisfies the usual group axioms: associativity, presence of
an inverse, and so on. (One might compare A with the more familiar example of SL,, /k, which
is also determined as a subset of k" by a set of equations, and which also has a group operation
that is polynomial in the matrix entries. The difference is that A is cut out by equations in
projective space, while SL,, is cut out by equations in the affine space k”z.)

Since k is contained in C, we can ask not only about the group of solutions over k to the
defining equations of A, but about the set of complex solutions, denoted by A(C). Write ¢
for the dimension of A. It is known that A is necessarily isomorphic to C9/A for some lattice
A ~ 729 C C9; in the one-dimensional case g = 1, A is an elliptic curve over k.

In particular, it follows that the subgroup A[n| of elements of order dividing n in A, for
any integer n > 1, is isomorphic to (Z/nZ)?9, and moreover the fact that A is defined over k
easily implies that the coordinates of elements in A[n] are algebraic numbers, which together
generate a finite Galois extension k(A[n]) of k.

Algebraic curves provide a natural source of abelian varieties via the construction of the
Jacobian, which over C goes back to Jacobi, and over k to Weil. To each non-singular algebraic
curve C'/k of genus g, one can attach a natural abelian variety J(C') over k of dimension g. One
nice feature of Jacobians is that they are principally polarized: this is a kind of self-duality,
which imposes on J(C)[n] a natural perfect pairing

J(O)[n] x J(C)[n] — p, ~Z/nZ,

where p,, denotes the group of n th roots of unity.



152 ELLENBERG, ELSHOLTZ, HALL AND KOWALSKI

In fact, the action of Gal(k/k) on the coordinates of k(A[n]) is not merely linear, but
compatible with the symplectic pairing above and its action on the roots of unity; thus it
provides a representation

Gal(k/k) — Aut(A[n]) ~ GSp(2g,Z/nZ).

The primary examples of abelian varieties treated in this paper are Jacobians of curves; in
any event, all the abelian varieties we consider are for simplicity assumed to be principally
polarized.

The most delicate issue for Section 3 is that of reductions of an abelian variety modulo
prime ideals of Zj. Suffice it to say here that this can be defined for all but finitely many
prime ideals of k (the ‘primes of bad reduction’), and that if concrete equations for A are given
so that, modulo p, the resulting equations still define a smooth algebraic variety, then the
reduction coincides pretty much with the naive notion of looking at solutions of the equations
with coefficients in extensions of the residue field Zj /p.

Now our basic problem takes root in the following definition: an abelian variety A/k is simple
if and only if there is no non-trivial abelian variety B over k which is a subvariety of A, except
A itself. It is geometrically simple if it remains simple even when considered as an abelian
variety over an algebraically closed field containing & (such as C when k is a number field, or
an algebraic closure of a finite field when k is finite).

Implicit in the notion of geometric simplicity is that, for most lattices A C CY, the quotient
CY9/A is not an abelian variety. It is merely a complex torus; the condition that it embeds as
an algebraic subvariety of projective space imposes very strong restrictions on A (originally
described by Riemann). In particular, if C9/A is an abelian variety, it is not usually possible
to find a subspace V.C C9, V ¢ {0,C9}, such that ANV is a lattice in V and V/(ANV) is an
abelian variety. In other words, abelian varieties over C are ‘typically’ simple.

Now the question considered in this paper is essentially the following: we form a family,
parameterized by elements in k, of curves; then we have an associated family of Jacobian
varieties, and we ask: how frequent is it that those abelian varieties are not geometrically
simple?

The basic approach in Section 3 is founded on the following fact: if an abelian variety A/k
is not geometrically simple, then its reduction modulo a prime ideal p has the same property
(which is intuitive enough). Moreover, a result going back in principle to Poincaré shows that
a non-trivial subvariety B C A is ‘essentially’ a direct factor, that is, we have

A~BxC

for some other abelian subvariety C, up to finite groups (‘up to isogeny’). This is the
property (10), which leads to the factorization (11), which we use to control the occurrence of
non-geometrically simple varieties.

Note added in proof. We thank J. Achter for pointing out to us a paper of D. Masser
(‘Specializations of endomorphism rings of abelian varieties’, Bull. S.M.F. 124 (1996), 457-476),
where questions similar to those of this work are considered using methods of transcendence
theory. Masser’s main theorem, applied to the special case of our Theorem A, leads to a bound
|S(B)| < (log B)* for some fixed ), like our Theorem B, but the value of \ is super-exponential
in terms of the genus.

Acknowledgements. We wish to thank the referee for indicating a simplification and slight
strengthening of our larger-sieve bound.
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