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Abstract 

Spacecraft measurements reveal perplexing dawn-dusk asymmetries of field and plasma 

properties in the magnetospheres of Saturn and Jupiter. Here we describe a previously 

unrecognized source of dawn-dusk asymmetry in a rapidly rotating magnetosphere. We analyze 

two magnetohydrodynamic simulations, focusing on how flows along and across the field vary 

with local time in Saturn’s dayside magnetosphere. As plasma rotates from dawn to noon on a 

dipolarizing flux tube, it flows away from the equator along the flux tube at roughly half of the 

sound speed (Cs), the maximum speed at which a bulk plasma can flow along a flux tube into a 

lower pressure region. As plasma rotates from noon to dusk on a stretching flux tube, the field-

aligned component of its centripetal acceleration decreases and it flows back towards the equator 

at speeds typically smaller than 12𝐶s.  Correspondingly, the plasma sheet remains far thicker and 

the field less stretched in the afternoon than in the morning. Different radial force balance in the 

morning and afternoon sectors produces asymmetry in the plasma sheet thickness and a net dusk 

to dawn flow inside of L=15, or equivalently, a large-scale electric field (E) oriented from post-

noon to pre-midnight, as reported from observations. Morning-afternoon asymmetry analogous 

to that found at Saturn has been observed at Jupiter, and a noon-midnight component of E cannot 

be ruled out.  
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1. Introduction 

     Earth’s magnetosphere is not fully symmetric about the noon-midnight meridian.  

Asymmetries arise because of the effects of rotation, which carries plasma sunward on the 

morning side and anti-sunward on the evening side, and because hot protons injected on the night 

side move towards dusk through the action of gradient and curvature drift. Resulting 

asymmetries include a slight duskward displacement of the plasmapause and an asymmetric ring 

current, more intense near dusk.  These asymmetries are well understood. 

     The magnetospheres of Jupiter and Saturn also manifest dawn-dusk asymmetries.  In the inner 

magnetosphere, the Io plasma torus is brighter on the dusk side than on the dawn side, a feature 

that has been explained by postulating a dawn-dusk electric field that shifts the torus slightly 

towards dawn and concurrently heats the plasma more on the dusk side than the dawn side 

[Barbosa and Kivelson, 1983; Ip and Goertz, 1983].  

     At the outer planets, flows, although sub-corotational, are predominantly azimuthal through 

much of the equatorial magnetospheres of both Jupiter [Krupp et al., 2001] and Saturn 

[Holmberg et al., 2012; Kane et al., 2014; Sakai et al., 2013; Thomsen et al., 2010 & 2012; 

Wilson et al., 2009]. These flows may produce dawn-dusk asymmetries, especially near the outer 

boundaries where interaction with magnetosheath flow implies a radial gradient of the azimuthal 

flow larger near dawn than near dusk, although the postulated increased probability of Kelvin-

Helmholtz instabilities near dawn [Desroche et al., 2012, 2013] is the opposite of what has been 

observed at Saturn [Delamere et al., 2013].   
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     Additional asymmetries have been identified in the structure of Jupiter’s equatorial plasma 

beyond ~20 RJ (RJ is the radius of Jupiter). Both the field configuration and the distribution of 

plasma along the field change markedly with local time (LT).  The region of significant plasma 

density is far thicker at dusk than at dawn. In the post-midnight to mid-morning sector, 

magnetospheric plasma is concentrated near the centrifugal equator [Hill et al., 1974], and the 

outward force of pressure gradients and the effects of rotating dense plasma stretch the field into 

a tail-like configuration [Mauk et al., 1985; Mauk and Krimigis, 1987]. As local time increases 

from noon to dusk, thickening of the plasma sheet is seen in both data [Lanzerotti et al., 1992; 

Khurana et al., 2004; Kivelson and Southwood, 2005] and global MHD models such as that of 

Fukazawa et al. [2005]. The plasma sheet is typically of order 2 RJ thick post-midnight and 

around to mid-morning and becomes as thick as ~20 RJ near dusk as evident from the ~10 hour 

periodicity of the electron and ion fluxes measured at high latitudes by Ulysses on its outbound 

pass [Lanzerotti et al., 1992]. Correspondingly, the magnetic field is more dipolar near dusk than 

near dawn [Khurana et al., 2004; Kivelson and Southwood, 2005]. It seems that a similar but 

smaller degree of asymmetry exists at Saturn [Arridge et al., 2015]. Although the source of these 

dawn-dusk asymmetries has not been identified clearly, it has been suggested that the structure 

results in part from the effects of magnetopause confinement coupled with LT variation of the 

acceleration arising from the rotation of the plasma, often described as centrifugal force 

[Kivelson and Southwood, 2005; Vogt et al., 2014].  

     At Saturn, an electric field oriented roughly from noon to midnight and corresponding to a net 

radially inward flow on the afternoon side and radially outward flow on the morning side has 
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been identified in the equatorial magnetosphere inside of 10 RS (RS = 60,268 km is Saturn’s 

radius) [Thomsen et al., 2012; Wilson et al., 2013, and Andriopoulou et al., 2012, 2014].  Figure 

1a from Wilson et al. [2013] shows the effect of the field on the flow velocity, revealing an 

asymmetry of the radial flow about the noon-midnight meridian. Such a flow pattern was not 

anticipated in advance of the measurements. There is a slight morning-evening asymmetry in the 

magnetopause location [Kivelson and Jia, 2014; Pilkington et al., 2015], an asymmetry that is 

internally generated and is present even when external forces impose no asymmetry. The fit 

provided by Kivelson and Jia indicates that the magnetopause lies ~5% farther out at 09 than at 

15 LT, an asymmetry small enough that one might expect outward radial flow close to 

symmetric about noon. Yet this is not the case.  The noon-midnight electric field identified inside 

of 10 RS implies morning-afternoon asymmetry of radial flow deep within the magnetosphere. 

Thomsen et al. [2012] say “The source of such an electric field remains a puzzle, but whatever 

the source, it appears to be a dominant factor in the circulation of plasma in Saturn’s inner 

magnetosphere,” Wilson et al. [2013] state that “the origin of the electric field remains a 

mystery,” and Andriopoulou et al. [2014] concur, stating that “the … presence of a convective 

electric field in Saturn’s inner and middle magnetosphere, with an average pointing 

approximately towards midnight. . . is one of the most puzzling findings by the Cassini 

spacecraft.”   

     Our purpose in this paper is to account for some of the morning-evening asymmetries of 

Saturn’s magnetosphere by analyzing magnetohydrodynamic (MHD) simulations previously 

developed for other purposes. The phenomena described appear on scales large compared with 
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characteristic kinetic effects and, thus, the MHD limit is expected to represent the relevant 

properties of the system appropriately.  We use the simulations to identify the dynamical 

response of the plasma of Saturn as it rotates from the morning to the evening side of the 

magnetosphere.  In particular, we examine the intimate link between field configuration and the 

effects of azimuthal flows on plasma properties. We use two different model runs. In the one 

from which we extract most of the results, no internal current sources are imposed from the 

ionosphere [Jia et al., 2012a]. We then show that another model run in which a rotating system 

of field-aligned currents is driven from the southern ionosphere [Jia et al., 2012b] displays 

similar asymmetries. 

 

2. The simulation 

This investigation of flows in Saturn’s magnetosphere is based on outputs from the global 

MHD model, BATSRUS (Block Adaptive Tree Solar-wind Roe-type Upwind Scheme) described 

by Powell et al. [1999], Gombosi et al. [2002] and Toth et al. [2012], coupled to the effective 

ionosphere with an Ionosphere Electrodynamics (IE) solver [Ridley et al., 2004]. The runs on 

which this work is based have been described in detail by Jia et al. [2012a and b] and Jia and 

Kivelson [2012]. Of special importance to this paper are the following features:   

• The planetary magnetic field is represented as a centered dipole aligned with the spin axis 

(z-axis).   

• The solar wind is taken to flow with a velocity of 400 km/s at right angles to the spin 

axis. The solar wind plasma density is set to 0.05 amu/cm3 and its temperature is set to 20 
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eV. The interplanetary magnetic field of magnitude 0.5 nT is oriented southward, thus 

minimizing reconnection with the planetary magnetic field. These solar wind properties 

are kept fixed throughout the times from which we extract output from the two 

simulations. The inner boundary of the simulation is a sphere at 3 RS. The magnetosphere 

is coupled to the ionosphere by mapping potential contours along the magnetic field from 

a sphere at 4 RS and thereafter mapping the modified ionospheric potential contours back 

into the magnetosphere. Ionospheric and magnetospheric flows are, therefore, strongly 

coupled and magnetospheric drag slows the ionosphere. 

• In the simulation of Jia et al. [2012b], which we designate as “with vortex”, the 

ionosphere is perturbed by a pair of flow vortices centered at 70˚ latitude in the south. 

The rotating vortical flows were imposed as a way to drive field-aligned currents (FACs) 

from one ionosphere to the other [Southwood and Kivelson, 2007; Andrews et al., 2008] 

and into the magnetosphere. They rotate rigidly at the nominal period of modulation of 

the Saturn kilometric radiation (SKR) [Lecacheux et al., 1997; Galopeau and Lecacheux, 

2000; Gurnett et al., 2005; Kurth et al., 2007 & 2008; Lamy, 2011] relevant to the early 

part of the Cassini mission near southern summer solstice.  In order to mimic the effect of 

asymmetric solar illumination on ionospheric conductance, we specify a 

uniform conductance of 3 S for the southern ionosphere and 1 S for the 

northern ionosphere. In the simulation of Jia et al. [2012a], there is no internal source of 

periodicity, and we refer to it as “without vortex”. In this simulation, we assume a 

uniform conductance of 0.5 S for both ionospheres. 
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• Neutral sources, representing the material originating in the plumes of Enceladus and the 

atmosphere of Titan, are incorporated by including axisymmetric disc-like distributions 

of neutrals [Hansen et al., 2005], one representing water group molecules (W) with the 

ion production rate peaked at ~5.35 RS [Richardson et al., 1998], and one corresponding 

to nitrogen atoms (N) with the ionization production rate peaked around Titan’s orbit at 

~20 RS. Recent Cassini observations show little evidence of N+ production from Titan but 

rather suggest that Titan is an important source of H2
+ [Thomsen et al., 2010]. The 

relatively low production rates of these species suggest that our simulation results would 

be little affected by changing the neutral source model. Source and loss terms in the 

equations of the simulation represent ionization, charge exchange, and recombination. 

Charge exchange does not contribute to the mass balance but changes the temperature 

and momentum.  The process is incorporated based on the results of Richardson et al. 

[1998] that provide information about the oxygen neutral density (peaks at ~ 4 RS) and 

the reaction rate. The total charge-exchange rate used is ~ 70 kg/s. In the simulation with 

vortices, contributions are normalized to give a net mass-loading rate of ~ 6x1027 /s for 

W+ and ~ 5x1025 /s for N+, corresponding to a total mass-loading rate of plasma of ~170 

kg/s assuming an average mass of 16.6 amu for W+ and 14 amu for N+, which are within 

the range of estimated rates. The simulation without vortices uses a smaller mass-loading 

rate (85 kg/s), a difference that decreases the standoff distance of the magnetopause but is 

not expected to produce significant changes of the dynamics of the system. 
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3. Forces acting on the plasma 

     The global MHD simulation of Jia et al. [2012a] was designed to investigate how Saturn’s 

magnetosphere responds to different solar wind drivers. During the first 100 hours of the run, the 

solar wind dynamic pressure is set to 0.02 nPa and the interplanetary magnetic field is 

southward-oriented.  Reconnection with the solar wind is not significant, and the magnetosphere 

is nearly quiescent as expected for such conditions. This quasi-steady state interval is the portion 

of the run that we examine with the objective of understanding the mechanisms that produce 

dawn-dusk asymmetries and, in particular, the observed noon-midnight electric field (E). We 

start by comparing key properties of the field and plasma in five different local time sectors: 06, 

09, 12, 15, and 18 LT, averaged over 5 rotation cycles. Our objective is to identify the processes 

that account for a noon-midnight 𝐄 = −𝐯 × 𝐁 electric field. Noting that the plasma flows 

associated with a given E vary in magnitude inversely with 𝐁, becoming exceedingly small at 

small radial distances, we consider initially the near-equatorial plasma in regions beyond 10 RS 

where 𝐵 ≲ 20 nT and typical flow perturbations are > 10 km s-1 [Wilson et al., 2013]. 

     The density and thermal pressure in five meridian planes centered at noon is shown in Figure 

2.  The plots include projections into these planes of field lines originating in the ionosphere at 

79° (approximately the last closed field line on the day side) and successively lower latitudes 

separated by 1° down to 65°, and some magnetosheath field lines.  The field lines above 73° 

invariant latitude that cross the equator beyond 20 RS and are strongly modified by 

magnetopause currents have similar form in the selected meridian planes, all being close to 

dipolar near the equator. Plasma fills these flux tubes to large distances above the equator.  
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Lower invariant latitude field lines down to ~69° (crossing the equator near 9 RS) are quite tail-

like near the equator, with considerably more stretching pre-noon than post-noon. The plasma 

pressure on these flux tubes falls off rapidly with distance from the equator and the field 

structure and plasma distributions vary significantly with LT.  This range of invariant latitudes 

(~69° to ~73°) is particularly useful in revealing the dynamical responses of the plasma and field 

associated with rotation from pre-noon to post-noon. 

     We start by considering stress balance in the plasma. The governing equation is the 

momentum equation, 𝜌 ( 𝐮 ∙ ∇𝐮) =  𝓕, where 𝜌 is the mass density, u (𝑢𝑟 ,𝑢𝜑 ,𝑢𝑧) is the bulk 

flow velocity and 𝓕 is the force density. Forces acting to move plasma inward are the pressure 

gradient force (−∇𝑝) wherever the pressure gradient is positive outward and the 𝐣 × 𝐁 force.  

Here 𝑝 is the thermal pressure, 𝐣 is the current density and 𝐁 is the magnetic field. Acting to 

move plasma outward is the pressure gradient force wherever the gradient is positive inward. In 

addition, plasma rotating around the planet experiences inward radial acceleration arising from 

the term proportional to ( 𝐮 ∙ ∇𝐮) in the momentum equation. In cylindrical coordinates, the axial 

radial component of this acceleration is �𝑢𝑟
𝜕
𝜕𝑟
𝑢𝑟 + 𝑢𝜑

𝜕
𝑟𝜕𝜑

𝑢𝑟 + 𝑢𝑧
𝜕
𝜕𝑧
𝑢𝑟 −

𝑢𝜑2

𝑟
�. We are interested 

in the variation of the system with 𝜑, so the second term is of interest.  In both Jupiter’s and 

Saturn’s magnetospheres, the azimuthal velocity is at least an order of magnitude larger than the 

velocity components in the radial direction and parallel to the spin axis, and the velocities change 

slowly in all three directions.  Thus, the first and third terms are small compared with the other 

terms, so we set 
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  ( 𝐮 ∙ ∇𝐮) ≅ 𝑢𝜑
𝜕

𝑟𝜕𝜑
𝑢𝑟 − 𝑢𝜑2 𝑟⁄  (1) 

The (cylindrical) radial component of the momentum equation can then be approximated as 

 𝜌𝑢𝜑
𝜕

𝑟𝜕𝜑
𝑢𝑟 ≅ −∇𝑝 + 𝜌𝑢𝜑2 𝑟⁄ + 𝐣 × 𝐁 (2) 

where the second term on the right side is colloquially referred to as the centrifugal force.   

Recognizing its origin in equation (1), where it represents inward acceleration of the rotating 

mass density, we refer to it as the centripetal term, noting that in equation (2) it is always 

positive.  

     Figure 3 shows the cylindrical radial components of the pressure gradient force (both positive 

and negative) and the centripetal term (always positive) at the different LTs. The outward 

centripetal term is stronger in the morning sector (06 and 09 LT) than in the comparable evening 

sector (15 and 18 LT). Figure 4 shows the cylindrical radial component of the 𝐣 × 𝐁 force, which 

is everywhere inward and particularly large in parts of the post-noon sector.  The figure also 

shows the full right hand side of equation (2) in the selected meridian planes.  

     In Figures 3 and 4, the black curves represent projections into meridian planes of field lines 

from fixed latitudes in the ionosphere starting from 79° and successively lower latitudes with 1° 

separations. Thinner lines indicate that the field lines lag the meridian plane in the sense of 

rotation and thicker lines indicate that the field lines are in the meridian plane or lead it.   The LT 

dependence of field line bending out of meridian planes, is made more evident in Figure 5, which 

shows (blue circles) the equatorial crossing positions of the field lines originating in the 

ionosphere at 09, 12, and 15 LT at latitudes separated by 1° starting at 65°. In the morning 
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sector, field lines lag at all invariant latitude >74° (equatorial crossing at ~12 RS), with the lag 

extreme (> 1 h of LT) beyond 74° invariant latitude (~30 RS). At noon, the lag is present at 

invariant latitudes > 70° (~12 RS) and becomes extreme beyond 76° invariant latitude (>28 RS). 

In the afternoon sector, the field lines lead slightly near 72° invariant latitude (between 15 and 20 

RS); the lead becomes substantial beyond 72° invariant latitude (~25 RS).  

     The field lines drawn in Figures 3 and 4 illustrate another important feature of the LT 

asymmetry. The field lines that emerge from the ionosphere at 09 LT are far more stretched than 

those that emerge at 15 LT. For example, the field line that emerges at 72° (identified by stars 

placed on the plots in the top row of Figure 3) crosses the equator at ~24 RS near 09 LT but 

extends only to ~18 RS at both 12 and 15 LT. The crossing points at 06 LT (39 RS) and 18 LT 

(24 RS) are even more asymmetric. These equatorial crossing distances confirm that the 

dipolarization of flux tubes that occurs beyond the noon meridian does not reverse as the flux 

tubes rotate into the post-noon sector. After having discussed other features of the simulation, we 

will return to this aspect of the asymmetry, which is closely linked to the thickening of the 

plasma sheet in the afternoon sector. 

 

4. Local time variation of forces 

    The force that dominates the radial displacement of plasma differs on the morning and evening 

sides of the magnetosphere. Consider the total force near the equator shown in Figure 4b. It is 

striking that inside of ~17 RS (which includes the region in which a noon-midnight electric field 

has been identified), the sum of the terms governing 𝜌𝑢𝜑
𝜕

𝑟𝜕𝜑
𝑢𝑟 is outward at 06 and 09 LT, 

This article is protected by copyright. All rights reserved.



 
 

14 

inward at 15 LT, and mostly inward near the equator at 18 LT. Outward acceleration in the pre-

noon sector and inward acceleration post-noon is consistent with the different directions of radial 

flow in the morning and evening LT sectors shown in Figure 1.  Within 17 RS, the pressure 

gradient force is weak and varies little with LT. The strong (outward) centripetal term dominates 

in the morning sector (see Figure 3b) and results in outward flow.  The inward 𝐣 × 𝐁 force 

dominates in much of the afternoon sector and produces inward acceleration sufficient to reverse 

the direction of radial flow.   

   The different directions of radial flow in the meridian planes symmetric about noon are 

consistent with the shift in the principal force acting on the near-equatorial plasma pre- and post-

noon. But why are the forces asymmetric? Consideration of forces acting along the field gives 

insight. In Figure 6 we plot the contributions to radial acceleration parallel to 𝐁 arising from the 

pressure gradient force and the centripetal term; the 𝐣 × 𝐁 force does not act along the field. The 

field-aligned component of the centripetal term is proportional to �̂� ∙ 𝐫�, where �̂� is a unit vector 

along the background field, B, and 𝐫� is a unit vector radially outward from the rotation axis.  

Between L ~ 7 and 15 and near the equator, the net parallel force is directed towards the equator 

in the morning but is directed away from the equator at 12 LT and continues to be so directed at 

15 LT, reversing direction again at 18 LT. The change of the direction of the field-aligned force 

is consistent with the different field configurations pre-noon, at noon, and post-noon.  In the 09 

LT meridian plane, the field is significantly stretched in the middle magnetosphere, implying 

relatively large values of  �̂� ∙ 𝐫� to within a few degrees of the equator. As a flux tube rotates from 

09 LT to 12 LT, the distance to the magnetopause decreases and in most of the meridian plane, 

This article is protected by copyright. All rights reserved.



 
 

15 

the field configuration becomes increasingly dipolar. Although the centripetal term is effective in 

confining plasma near the equator in a stretched field, for which �̂� ∙ 𝐫� is non-negligible over a 

significant part of the flux tube, it is far less effective in a dipolar field for which �̂� ∙ 𝐫� remains 

small over a considerable range of latitudes about the equator. Thus the plasma, confined to very 

low latitudes near 09 LT, expands to fill the flux tube to higher latitude as it rotates to noon and 

becomes more dipolar.  The expansion of plasma on flux tubes crossing the equator between 10 

and 17 RS as they rotate from 09 LT to 12 LT can be identified in the density plots of Figure 2. 

For example, one can follow the low density boundary (dark blue) on the field line at 72 ° 

invariant latitude from 09 LT, where it is located ~18 RS from the spin axis, to 12 LT, where it is 

located at ~13 RS from the spin axis.  

     As the flux tubes rotate from 12 LT to 15 LT, they do not stretch back to their configurations 

at 09 LT. This is the aspect of the system that must be accounted for. We suggest that the 

asymmetry develops because plasma expansion and contraction along a flux tube in a rotating 

system is not symmetric about noon, a feature of a rotating system that has not previously been 

considered. As plasma rotates through the morning quadrant, e.g., from 06 LT to 12 LT, the field 

becomes increasingly dipolar in configuration as a result of magnetopause confinement and 

associated compression. The compression affects the equatorial crossing points of flux tubes 

deep into the middle magnetosphere. (The inward displacement of the equatorial crossing of field 

lines at invariant latitudes >69 ° can be seen in Figure 2, for example.) Because the 𝐣 × 𝐁 force 

has no field-aligned component, it is the combination of the pressure gradient force and the 

centripetal term that determine the distribution of plasma along the flux tube. Dipolarization 
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reduces the outward-directed field-aligned component of the centripetal term and the equator-

directed pressure gradient drives expansion of plasma along the flux tube. In the absence of other 

effects, plasma expands along a flux tube behind a slow mode front that moves away from the 

equator at the sound speed, Cs, but at Saturn the actual speed is reduced by the field-aligned 

component of the centripetal term. As flux tubes rotate into the afternoon sector, the plasma can 

return to the equator no faster than the rate to which it can be accelerated by changes of the field-

aligned component of centripetal acceleration. This upper limit is not achieved because the 

pressure gradient force continues to resist compression. One can estimate the maximum rates of 

expansion away from the equator pre-noon and compression post-noon from the plots of Figure 

7.  Near 10 RS, for example, the sound speed is approximately 50 km s-1.  Rotation from 09 LT to 

noon requires close to 1.7 hours (on average at ~ 80% of rigid corotation speed in the 

simulation), during which time flow at Cs would displace a front by ~ 5 RS along the flux tube.  

The centripetal acceleration near 10 RS at noon is close to 6 m s-2 or 1.3 RS h-2, implying that in 

the approximately 1.7 hours required for a flux tube to rotate from noon to 15 LT a front can 

move no more than ~ 1.9 RS. These estimates give upper and lower bounds, but suffice to 

demonstrate that motion of plasma along a flux tube differ in the morning and the afternoon 

because of the different physical processes that dominate expansion and contraction. The plasma 

cannot easily return to its pre-noon near-equatorial confinement as it rotates into the afternoon 

sector.  

     Different distributions of plasma along a flux tube affect the configuration of the field. 

Stretching occurs if the radially outward forces fall off rapidly with increasing latitude along the 
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flux tube. In the absence of anisotropy, mass must be concentrated at the equator in order to 

produce the increased magnetic curvature force present at low latitudes in a stretched field 

configuration.  If the plasma extends to significant distances off the equator, field curvature near 

the equator decreases. The slow return of mass density to the equator as the flux tube rotates 

through the afternoon sector accounts for both a thick plasma sheet on the afternoon side of the 

magnetosphere and a field configuration that remains quasi-dipolar as it rotates through the 

afternoon sector.  

    

5. Asymmetry of flow and the electric field in the middle magnetosphere: Simulation 

     Measurements that imply a noon-midnight electric field have been made inside of 10 RS 

[Thomsen et al., 2012; Wilson et al., 2013, and Andriopoulou et al., 2012, 2014]. A noon-

midnight electric field implies a dusk to dawn flow whose radial component is outward in the 

morning sector and inward in the afternoon sector. In the simulation, the flow asymmetries 

become clearer at distances slightly larger than 10 RS, so we focus initially on simulation results 

in the 69° to 71° invariant latitude range (equatorial crossing from ~ 9 to >15 RS) where key 

features of the simulation can be more easily identified in the figures.  At 09 LT, the field in this 

range of invariant latitudes is somewhat stretched and outward centripetal terms are not fully 

balanced by the sum of pressure gradient and 𝐣 × 𝐁 forces, as can be seen in Figure 4b.  The 

imbalance is feeble, but sufficient to produce outward radial flow. At 15 LT, the imbalance is 

significant and the net force is inward-directed. The radial component of the flow is inward.  

This article is protected by copyright. All rights reserved.



 
 

18 

     In Figure 8 we show in color the radial component of the flow velocity in the equatorial plane 

at all local times extracted from two simulations, the one without an imposed system of rotating 

vortices in the ionosphere [Jia et al., 2012a] that has been used to provide the other plots of this 

paper and the one with vortices [Jia et al., 2012b]. Black arrows show the orientation and the 

magnitude of the electric field (obtained from E = −v×B) after subtraction of the radial electric 

field corresponding to the azimuthal component of the flow averaged over all local times at a 

given radial distance. Figure 8 shows that the flow in the simulation is consistent with a roughly 

noon-midnight electric field everywhere inside of ~15 RS. It is notable that inside of 15 RS the 

electric field vectors differ little between the two models, revealing that in this part of the 

magnetosphere, the morning-afternoon asymmetry does not arise as a result of rotational 

modulation.  As anticipated from the force analysis, there is net outward radial flow in the pre-

noon sector and net inward radial flow in the post-noon sector. Figure 1b shows the radial flow 

velocity from the simulation as a function of LT at a range of radial distances between 5 and 9 

RS, the region in which the flow has been identified in data.  Note that both the amplitude and the 

LT dependence of the radial velocity in the simulation are close to those shown in Figure 1a 

from data analysis by Wilson et al. [2013]. The similarity between the simulated flows and those 

observed gives us confidence that the irreversibility of plasma expansion and contraction along 

flux tubes is the source of the asymmetry. 

Although the flows in the simulations with and without vortex differ little in the region 

inside of 15 RS where the noon-midnight electric field has been identified in data, they differ 

considerably beyond ~15 RS.  In the simulation without vortices, at distances beyond 15 RS the 
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flow is largely inward in the morning sector, where magnetopause confinement dictates inward 

motion, and largely outward in the post-noon sector where the magnetopause location requires 

such flows. In the simulation with vortices, the flows outside of ~15 RS are outward throughout 

the region plotted.  Kivelson and Jia [2014] have shown that the rotating system of field-aligned 

current incorporated in this simulation produces outward-propagating pressure pulses.  The 

pressure pulses cause the morning side of the magnetopause to move significantly outward for a 

large part of each rotation period.  They suggest that the outward displacement may be linked to 

the appearance of a flux rope in the magnetotail once each rotation. This average outward motion 

is captured in the plot of the radial component of the flow in the outer magnetosphere. The fact 

that the outward flow in the outer part of the morning sector is absent in the simulation without 

vortex supports the interpretation provided by Kivelson and Jia [2014]. 

 

6. The global electric field: Comparison with observations 

As previously noted, comprehensive data from the Cassini spacecraft have been used in 

several analyses of the global electric field.  (A radially-oriented electric field associated with the 

azimuthal flow is present in addition to the perturbation electric field on which we focus.) The 

field magnitude and orientation were inferred from the displacement of “micro-signatures” of 

satellites in energetic particle fluxes [e.g., Paranicas et al., 2005; Roussos et al., 2007; 

Andriopoulou et al., 2012 & 2014], from the local time asymmetry of ring absorption signatures 

in energetic particle fluxes [Paranicas et al., 2010], from the day/night asymmetries of low 

energy ion and electron temperatures and the phase-space densities of energetic ions and 
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electrons [Thomsen et al., 2012], and from the local time dependence of plasma radial velocities 

[Wilson et al., 2013].  In all cases, the magnitude of the convection electric field was found to be 

of order ~0.1 mV/m to ~0.3 mV/m and, on average to point from post-noon to post midnight. 

The simulation yields flow magnitudes close to 2.5 km/s, decreasing slightly with radial distance 

from 9 to 5 RS, close to the values found by Andriopoulou et al. [2012] but lower that the values 

reported by Wilson et al. [2013] (see their Figure 8).  

The electric field orientation in Figure 10 of Wilson et al. [2013] is close to the direction 

shown in the simulation with vortex in Figure 8.  The slight twist towards 01 LT is less apparent 

in the simulation without vortex but the strongest fields at 7.5 RS do have a net rotation from 

midnight in the sense observed.  In both simulations, the magnitude of the electric field in the 

inner magnetosphere falls in the range reported from observations. 

 

7. Discussion and Summary 

The simulated plasma and field properties of the near equatorial regions between L = 5 and 

10 reproduce the published results on flows and electric field to within the differences in the 

values reported by different observers.  Analysis of two simulations provides an interpretation of 

the net flow from dusk to dawn.  The plasma distribution along flux tubes rotating through the 

dayside magnetosphere is controlled by the balance of the centripetal term and the pressure 

gradient force. In the morning quadrant, the field is stretched by both pressure gradient and 

centripetal terms.  The field-aligned component of the centripetal term is large and the plasma is 

confined near the equator, producing a thin plasma sheet. As the plasma rotates through the 
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morning sector, the flux tubes dipolarize in response to the inward 𝐣 × 𝐁 force. This reduces the 

effect of the centripetal term and the plasma expands along the flux tube.  If the pressure gradient 

force parallel to B acted alone, expansion would occur at the sound speed, a speed high enough 

to allow the plasma to move many RS along the flux tube as it rotates to noon. The expansion 

rate is reduced by the confining effects of the centripetal term, but plasma moves away from the 

equator at a significant fraction of the sound speed. The plasma sheet becomes thick. As the 

plasma continues to rotate beyond noon, one might expect the plasma to return to the equator and 

the flux tubes to become stretched, but that does not happen because the field-aligned component 

of the centripetal term is small near the equator in a dipolar geometry.  We find that the 

maximum displacement through centripetal acceleration acting for 3 hours is less than half the 

displacement possible if plasma moves at the sound speed.  With a thick plasma sheet and a 

quasi-dipolar field configuration, the inward 𝐣 × 𝐁 force dominates the outward centripetal term 

in the middle magnetosphere in the afternoon sector.  Thus the radial component of the plasma 

flow is inward post-noon. The simulated flow velocity is of the order of that reported from data 

analyses and implies an electric field of the right magnitude and an orientation close to noon-

midnight, with a tendency to point a bit dawnward of midnight. 

The processes that account for the configuration of Saturn’s magnetosphere, especially its 

morning-afternoon asymmetries, are likely to be relevant to the Jovian magnetosphere as well.  

Jupiter’s post-noon plasma sheet is known to be thicker than its pre-noon plasma sheet and its 

field configuration is known to be more dipolar; the irreversible nature of plasma expansion and 

contraction must play a role at Jupiter as it does at Saturn.   
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One is tempted to ask whether there is a noon-midnight component of the electric field in 

Jupiter’s middle magnetosphere as there is at Saturn.  It is worth noting that the orientation of 

Jupiter’s electric field is not firmly established. Earth-based observations of the dawn-dusk 

asymmetry of the intensity of ultraviolet emissions from the Io plasma torus establish the 

presence of a finite component of the electric field in the dawn-dusk direction. However, the 

existence of a dawn-dusk asymmetry of intensity tells us nothing about the component of the 

electric field along the line of sight. A noon-midnight component of the electric field would 

create noon-midnight asymmetry in UV images, but such asymmetry cannot be detected from 

Earth [Thomas, 1993]. There is, however, some evidence of a component of the electric field 

oriented from day to night. Voyager 1 identified day-night asymmetries in the flux of energetic 

particles measured inbound (day side) and outbound (night side) on the same magnetic shell 

[Cheng et al., 1984]. Cheng et al. suggested a noon-midnight component of the electric field 

comparable in magnitude to the nominal dawn-dusk component as one way to account for their 

measurements. If this field component were present, the total field would point somewhere 

between dusk and midnight, differing by only a few hours of local time from the orientation 

identified at Saturn. It is, however, also possible that the day/night asymmetry reported from the 

Voyager measurements may have resulted from the well-studied temporal and azimuthal 

variability of the Io plasma torus [Steffl et al., 2006 & 2008] and that available data are too 

sparse to establish the average electric field orientation.  
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Figure Captions 
 
Figure 1.  (a) From Wilson et al. [2013], their Figure 4. Average radial (cylindrical) drift 
velocity at different radial distances as indicated by the color bar at the top.  (b) Average radial 
drift velocities from a magnetohydrodynamic model discussed in this paper with the same 
color/distance correspondence and black for flow at r= 5 RS. Dotted vertical lines have been 
added at 09, 12, and 15 LT to call attention to the change of the direction of the radial component 
of the flow between 3 hours pre-noon, at noon and 3 hours post-noon. 
 
Figure 2. From the simulation of Jia et al. [2012b]. (a) Density (rho, in #/cm3) and (b) Thermal 
pressure (p in nPa) represented by color in the 06, 09, 12, 15 and 18 LT meridian planes.  Field 
lines emerging from 79° and lower latitudes, separated by 1°, are projected into the meridian 
planes illustrated.  Heavier black lines show where the field lines lie in the meridian plane or 
ahead of it in the sense of rotation and lighter lines show lagging field lines. Additional 
magnetosheath field lines are shown.  Magenta circles are separated by 5 RS. 

 

Figure 3. Cylindrical radial component (in N/m3) arising from (a) pressure gradients (Fprc) and 
(b) the centripetal term (Fcen) at three different local times. From left to right these are 06, 09, 12, 
15 and 18 LT.  Outward forces are plotted in red. Inward forces are plotted in blue. Magenta 
circles on the axes are separated by 5 RS. As in Figure 2, field lines emerging from 65° to 79° 
latitude are shown at the three selected local times. Green stars identify 72° invariant latitude 
field lines. 

Figure 4. As for Figure 3, the cylindrical radial component of (a) the cylindrical radial 𝐣 × 𝐁 
force density (JxBrc in N/m3) at five local times centered at noon and (b) the sum of the 
cylindrical radial contributions to the right side of equation 2 (NetFrc in N/m3). 

Figure 5. Equatorial crossings of field lines that start in the ionosphere at different latitudes in 
the 09, 12, and 15 LT meridian planes.  At 09 LT, the blue circles correspond to 65° to 74° 
invariant latitude. At 12 and 15 LT the blue circles correspond to 65° to 79° invariant latitude. 
The background color shows the equatorial plasma density. 

Figure 6. The sum of the field-aligned components of the pressure gradient and the centripetal 
term in the 06, 09, 12, 15, and 18 LT planes in N/m3. Color bars range from negative to positive 
values, with positive values implying that the force is in the direction of the field (i.e., towards 
the equator in the north). Because the radial component of the field reverses across the equator, 
positive values of the net force are equatorward above the equator and away from the equator 
below the equator. Green vertical lines are drawn at 15 RS from the spin axis. At 09 LT, the net 
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force is equatorward on L-shells between 7 and 15 but at 15 LT, the net force in the same L-
range is mostly away from the equator.  

Figure 7.  (a) Sound speed (Cs) in km/s and (b) centripetal acceleration (component of 𝑢𝜑2 𝑟⁄  
parallel to B) in m/s2 in the 12 LT meridian plane.   
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Figure 8.  In color: the radial component of the flow velocity (km/s) in the equatorial plane (the 
Sun is to the left).  The image in (a) labeled “Without Vortex” is extracted from the simulation of 
Jia et al. [2012a]. The image in (b) labeled “With Vortex” is extracted from the simulation of Jia 
et al. [2012b] that includes rotating field-aligned current driven from both the northern and the 
southern ionospheres. In both cases the simulation parameters are averaged over 5 rotation 
periods. Arrows show the direction and intensity of the −𝐯 × 𝐁 electric field after removing the 
radial electric field associated with the azimuthal plasma flow, and the reference scale is shown 
at the bottom. Green circles have radii of 10, 15, and 20 RS.  

 

This article is protected by copyright. All rights reserved.



2015JA021950-f00-z-.png

This article is protected by copyright. All rights reserved.



2015JA021950-f01-z-.png

This article is protected by copyright. All rights reserved.



2015JA021950-f02-z-.png

This article is protected by copyright. All rights reserved.



2015JA021950-f03-z-.png

This article is protected by copyright. All rights reserved.



2015JA021950-f04-z-.pngThis article is protected by copyright. All rights reserved.



2015JA021950-f05-z-.png

This article is protected by copyright. All rights reserved.



2015JA021950-f06-z-.png

This article is protected by copyright. All rights reserved.



2015JA021950-f07-z-.png

This article is protected by copyright. All rights reserved.


