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HUA’S LEMMA AND SIMULTANEOUS DIAGONAL
EQUATIONS

JÖRG BRÜDERN and TREVOR D. WOOLEY

Abstract

This paper concerns systems of r homogeneous diagonal equations of degree k in s variables, with integer
coefficients. Subject to a suitable non-singularity condition, it is shown that the expected asymptotic
formula holds for the number of such systems inside a box [−P , P ]s, provided only that s > (3r+ 1)2k−2.
By way of comparison, classical methods based on the use of Hua’s lemma would establish a similar
conclusion, provided instead that s > r2k .

In the study of the number of solutions of additive equations of smaller degree,
Hua’s lemma continues to play a prominent role in establishing asymptotic formulae.
A generalization of this lemma due to Cook [2] provides a bound of similar strength
for a system of equations, the number of variables required increasing in proportion
to the number of equations. In order to be precise, we introduce some notation.
Consider an r× rt integral matrix A = (aij) that contains t disjoint r× r non-singular
submatrices. With this matrix A we associate the linear forms

γj =

r∑
i=1

aijαi (1 6 j 6 rt).

Also, when k > 3 is an integer, we define the exponential sum

f(α) =
∑
|x|6P

e(αxk),

where e(z) denotes exp(2πiz). Cook’s lemma asserts that whenever t = 2l−1, with
1 6 l 6 k, then for each positive number ε one has∫

[0,1]r
|f(γ1)f(γ2) . . . f(γrt)|2 dα� P r(2l−l)+ε. (1)

When r = 1, the bound (1) is tantamount to Hua’s lemma (see Vaughan
[8, Lemma 2.5]). Moreover, when the coefficient matrix A contains t disjoint r × r
diagonal submatrices, then the integral on the left-hand side of (1) factorises into
one-dimensional mean values. Hence, in the absence of sharper estimates for r = 1,
and without further constraints on the coefficient matrix A, the estimate (1) is the
best that can be attained. The purpose of this note is to show that for most coefficient
matrices, sharper bounds are nonetheless accessible.

It is convenient to refer to an r × s matrix A that contains no singular r × r
submatrix as being highly non-singular. In the sense usually adopted in analytic
number theory, it is apparent that almost all coefficient matrices are highly non-
singular. Also, when r, s ∈ N, we define the exponent Λ(s, r) to be the least real
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number with the property that whenever A is a highly non-singular r × s matrix,
then for any positive number ε one has∫

[0,1]r
|f(γ1)f(γ2) . . . f(γs)|2 dα� PΛ(s,r)+ε,

where the implicit constant depends at most on ε and A.

Theorem. Let r and s be natural numbers with s > r. Then Λ(s, r) 6M(s, r), where

M(s, r) =

{
s, when s 6 3r − 1,
2s− rk, when s > (3r + 1)2k−3,

and

M(s, r) =
(
2− 21−l) s− (l − 1

2

)
r + 1

2 ,

when

2 6 l 6 k − 1 and max
{

3r − 1 , 2l−1r
}
< s 6 min

{
2lr , (3r + 1)2k−3

}
.

We note that the bound provided by our theorem is essentially dominated by
the diagonal solutions of the underlying diophantine system so long as s 6 3r − 1,
whereas in Cook’s estimate (1), such is the case only for s = rt 6 2r. Likewise,
Cook’s lemma provides an essentially best possible upper bound for s = rt > 2k−1r,
whereas our estimate already reaches this barrier for s > 2k−3(3r + 1). When k > 9
or thereabouts, Vinogradov’s methods may be applied to obtain estimates that
are sharper than those presented in our theorem (but Heath-Brown’s mean value
estimate [5] lacks sufficient power to improve our estimates for Λ(s, r) when r > 2).

Proof. We prove the theorem by induction on r with a subinduction on s. Observe
first that when r = 1, the statement of the theorem follows from Hua’s lemma via
Hölder’s inequality. Also, when r ∈ N and s 6 2r, the desired conclusion is contained
in Cook’s lemma. Finally, on making a trivial estimate for the implicit exponential
sums, it is apparent that the conclusion of the theorem for s > (3r + 1)2k−3 is
immediate from that when s = (3r + 1)2k−3.

In order to discuss the remaining cases, we introduce the numbers σ(l, r), which
we define by

σ(l, r) =


2r, when l = 0,
3r − 1, when l = 1,
2lr, when 2 6 l 6 k − 2,
(3r + 1)2k−3, when l = k − 1.

Consider natural numbers r and s with 2r < s 6 (3r + 1)2k−3 and r > 2, and
let A denote an integral highly non-singular r × s matrix. We may suppose that
Λ(s′, r′) 6M(s′, r′) whenever r′ < r, and likewise whenever r′ = r and s′ < s. We take
l to be the unique natural number satisfying σ(l − 1, r) < s 6 σ(l, r), and put

u = max
{
σ(l − 1, r) , s− 2l−1

}
and t = s− u.

Then, by Hölder’s inequality, one has∫
[0,1]r
|f(γ1) . . . f(γs)|2 dα 6 I1−t21−l

0

∏
u<j6s

I21−l
j , (2)
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where

I0 =

∫
[0,1]r
|f(γ1) . . . f(γu)|2 dα

and

Ij =

∫
[0,1]r
|f(γ1) . . . f(γu)|2|f(γj)|2l dα.

For each fixed j with u < j 6 s, by considering the underlying diophantine system
and performing the appropriate elementary row operations, one finds that the last
integral is equal to ∫

[0,1]r
|f(γ̃1) . . . f(γ̃u)|2|f(bαr)|2l dα, (3)

where γ̃m = γ̃m(α) is defined by

γ̃m =

r∑
i=1

ãimαi (1 6 m 6 u)

and the integers ãim and the positive integer b arise from the row operations

alluded to above. It is therefore apparent that the matrix (Ã|b), where Ã = (ãim)
and b = (0, . . . , 0, b)T , remains highly non-singular. But, by Weyl differencing, one
obtains

|f(bα)|2l � P 2l−1 + P 2l−l−1
∑

0<|h|6bk!(2P )k

che(αh), (4)

where the integers ch satisfy ch = O(|h|ε). On substituting (4) into (3), one finds that
the mean value (3) is bounded above by

P 2l−1+Λ(u,r)+ε + P 2l−l−1
∑

0<|h|6bk!(2P )k

chT (h),

where

T (h) =

∫
[0,1]r
|f(γ̃1) . . . f(γ̃u)|2e(αrh) dα.

On considering the underlying diophantine system, one finds that T (h) > 0, and
that ∑

h

T (h) =

∫
[0,1]r−1

|f(γ̂1) . . . f(γ̂u)|2dα1 . . . dαr−1,

where γ̂m = γ̃m(α1, . . . , αr−1, 0), for 1 6 m 6 u. But the matrix obtained from Ã by
deleting the rth row is a highly non-singular (r−1)×u matrix, and hence we deduce
that ∑

0<|h|6bk!(2P )k

chT (h)� PΛ(u,r−1)+2kε.

On noting that I0 � PΛ(u,r)+ε, we thus conclude from (2) that

Λ(s, r) 6 t21−l max
{

2l − 1 + Λ(u, r) , 2l − l − 1 + Λ(u, r − 1)
}

+
(
1− t21−l)Λ(u, r). (5)

In order to extract the desired conclusion from this last bound, it is useful to
observe that in all the situations under consideration, one has M(u, r−1) 6M(u, r)+l.
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To verify this assertion, we note first that when l = 1, one has u 6 σ(1, r)−1 = 3r−2,
and further that M(u, r) = u and

M(u, r − 1) =

{
u, when u 6 3r − 4,
3
2u− 1

2 (3r − 4), when 3r − 4 < u 6 3r − 2.

Thus we find that when l = 1, one has

M(u, r − 1)−M(u, r) 6 max {0 , 1
2 (u− 3r + 4)} 6 1.

We observe next that for 2 6 l 6 k − 2, one has σ(l, r)− 2l−1 < σ(l + 1, r − 1). Then
for the latter values of l, one has u < σ(l + 1, r − 1). Consequently,

M(u, r) =
(
2− 21−l) u− (l − 1

2

)
r + 1

2 ,

and

M(u, r − 1) =

{ (
2− 21−l) u− (l − 1

2

)
(r − 1) + 1

2 , when u 6 σ(l, r − 1),(
2− 2−l

)
u− (l + 1

2

)
(r − 1) + 1

2 , when u > σ(l, r − 1),

whence

M(u, r − 1)−M(u, r) 6 max
{
l − 1

2 , 2−l
(
2lr − 2l−1

)
+ l − r + 1

2

}
= l.

Finally, when l = k − 1, one finds that

M(u, r) 6
(
2− 22−k) u− (k − 3

2

)
r + 1

2 ,

and

M(u, r − 1) =

{ (
2− 22−k) u− (k − 3

2

)
(r − 1) + 1

2 , when u 6 σ(k − 1, r − 1),

2u− (r − 1)k, when u > σ(k − 1, r − 1),

and hence

M(u, r − 1)−M(u, r) 6 max
{
k − 3

2 , 22−k ((3r + 1)2k−3 − 2k−2
)

+ k − 3
2 r − 1

2

}
= max

{
k − 3

2 , k − 1
}

= k − 1.

Equipped with the discussion of the previous paragraph, and making use of the
inductive hypothesis, we infer from (5) that

Λ(s, r) 6 t21−l max
{

2l − 1 + M(u, r), 2l − l − 1 + M(u, r − 1)
}

+
(
1− t21−l)M(u, r)

= 2t− t21−l + M(u, r)

= M(s, r).

In view of our earlier comments, the conclusion of the theorem now follows by
induction in all cases.

We finish this note by discussing an application of our theorem to the solu-
bility of simultaneous diagonal equations. Let r and s be natural numbers with
s > (3r+ 1)2k−2. Let N(P ) denote the number of integral solutions of the system of
equations

s∑
j=1

cijx
k
j = 0 (1 6 i 6 r) (6)

with |xj | 6 P (1 6 j 6 s), where (cij) is an r×s integral matrix with the property that
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the first (3r + 1)2k−3 columns form a highly non-singular submatrix, and likewise
also the final (3r + 1)2k−3 + 1 columns. Then, by standard methods originating in
work of Davenport and Lewis [3, 4] (a model for the relevant argument may be
found in Brüdern and Cook [1]), one may apply our theorem to show that for large
P one has

N(P ) = v∞

(∏
p

vp

)
P s−rk + o(P s−rk), (7)

where v∞ is the area of the manifold defined by (6) in the box [−1, 1]s, and

vp = lim
h→∞ p

h(r−s)card

{
x ∈ (Z/phZ)s :

s∑
j=1

cijx
k
j ≡ 0 (mod ph) (1 6 i 6 r)

}
.

We note that when k = 3, the methods of this note permit the proof of the asymp-
totic formula (7) whenever s > 6r + 3. Meanwhile, even the strongest speculative
hypotheses concerning mean values of cubic Weyl sums (see Heath-Brown [6] and
Hooley [7]) provide such a conclusion only for s > 6r + 1. Indeed, the sharpest
conclusions available in the literature hitherto (see Brüdern and Cook [1]) establish
(7) for s > 8r and the lower bound N(P ) � (

∏
p vp)P

s−rk for s > 7r, though with
weaker conditions on the coefficient matrix.
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