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Abstract: Lung fibrosis results from the cumulative effect of dysfunctional wound repair 

involving multiple cell types, including fibroblasts, epithelial cells and macrophages responding 

to an array of soluble and matrix mediated stimuli. Recent studies have shown that a tyrosine 

kinase inhibitor that targets FGF, VEGF and PDGF receptors can slow the rate of decline in 

pulmonary function in patients with idiopathic pulmonary fibrosis. However, each of these 

growth factor families is comprised of multiple ligands and receptors with pleiotropic activities on 

different cell types such that their broad inhibition might have both pro-fibrotic and anti-fibrotic 

effects, limiting the potential therapeutic efficacy. Continued investigation and delineation of 

specific roles of individual proteins and receptors on different cell types holds promise for 

targeting specific pathways with precision and optimizing the potential efficacy of future 

approaches to lung fibrosis therapy. 
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 Lung fibrosis results from dysfunctional wound repair involving aberrant responses of 

multiple cell types, including fibroblasts, epithelial cells and macrophages to an array of soluble 

and matrix derived stimuli [1]. Within the last few years, the demonstration that pharmacologic 

intervention can alter the natural history of declining lung function in idiopathic pulmonary 

fibrosis (IPF) enhanced optimism and enthusiasm among physicians, scientists and patients 

previously frustrated by more than a decade of well-executed, but negative, clinical trials [2].  

However, a lack of detailed understanding of the specific mechanisms by which the clinically 

efficacious drugs, pirfenidone and nintedanib, exert their anti-fibrotic effects highlights the 

ongoing need for a deeper mechanistic understanding of disease pathogenesis and the 

development of therapeutic options with increased specificity. The molecular target of 

pirfenidone has not been identified, and nintedanib is a “triple kinase inhibitor” that broadly 

targets the fibroblast growth factor (FGF), platelet-derived growth factor (PDGF) and vascular 

endothelial growth factor (VEGF) receptor tyrosine kinases as well as intracellular kinases from 

the Src-family [3,4]. Pre-clinical data support a role for each of these in lung fibrosis, but their 

relative contributions to disease development and progression have not been determined. It is 

not clear if the anti-fibrotic effect of nintedanib requires inhibition of each of these kinases or if 

similar efficacy can be achieved with specific targeting of an individual kinase. The cellular 

targets by which nintedanib exerts its beneficial effects have also not been clearly defined. 

Importantly, the FGF, PDGF and VEGF families are each comprised of several distinct ligands 

and receptors with diverse expression patterns and an array of activities on cellular function [5-

7]. Of these, the FGF family is the most diverse, with more than twenty ligands that signal 

through four distinct receptors (FGFR1-4) [5]. Nintedanib potently inhibits FGFR1-3, and has 

similar potency for VEGFR1-3 and PDGFRα and β [4]. It is feasible to hypothesize that such 

This article is protected by copyright. All rights reserved.



broad inhibition of multiple kinases with pleiotropic functions that vary by cell type could have 

unintended effects that limit the potential clinical benefits.  

 

 The FGF family was characterized (and named) by the ability of its members to promote 

fibroblast proliferation. However, it is now recognized that FGF family members influence the 

phenotype of multiple cell types. Indeed, members of the FGF family can also stimulate 

epithelial cell proliferation. For example, FGF-7 (also referred to as keratinocyte growth factor) 

stimulates proliferation in lung epithelial cells and has been studied as potential therapy for lung 

injury [8]. In this manner, within the FGF family some members can be considered “pro-fibrotic” 

through their mitogenic activity on fibroblasts, while others have “anti-fibrotic” effects by 

promoting epithelial cell regeneration. Furthermore, individual FGF family members may exert 

pro- and anti-fibrotic effects, depending on the responding cell and the context of other signaling 

molecules. 

 

 In this issue of The Journal of Pathology [9], Shimbori and colleagues investigate the 

effect of fibroblast growth factor 1 (FGF-1) on alveolar epithelial cells and fibroblasts in vitro and 

lung fibrosis in vivo using a well-established murine model of lung fibrosis induced by TGF-beta 

(TGFβ) overexpression [10]. This study demonstrates that FGF-1 is anti-fibrotic. Specifically, the 

in vitro experiments show that FGF-1 antagonizes TGFβ induced epithelial-mesenchymal 

transition (EMT) by promoting the caveolin-1 dependent proteosomal degradation of the type 1 

TGFβ1 receptor (TGFβR1), thereby reducing TGFβ-mediated signaling. In fibroblasts, FGF-1 

similarly inhibits TGFβ1 mediated signaling and myofibroblast differentiation through 

suppression of TGFβR1 transcription and through enhanced proteosomal degradation of the 
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receptor. These results are consistent with prior reports demonstrating the requirement of TGFβ 

signaling in both alveolar epithelial cells and fibroblasts for the development of fibrosis [11,12]. 

Importantly, the in vivo studies in this paper also support an anti-fibrotic role for FGF-1, as both 

preventive and therapeutic overexpression of FGF-1 diminished TGFβ1 induced lung fibrosis. 

Together, these findings demonstrate that despite its name, FGF-1 inhibits TGFβ1 mediated 

cellular phenotypes that are thought to be integral to fibrogenesis and that these in vitro actions 

of FGF-1 are associated with in vivo limitation of fibrosis. Extrapolating from these findings, one 

would predict that inhibition of FGF-1 might actually exacerbate lung fibrosis. The current study 

similarly shows increased FGF-1 levels in the serum of IPF patients and increased FGF-1 

expression in the alveolar epithelium, but not myofibroblasts in IPF lungs, which the authors 

speculate represents a failed endogenous attempt to limit the extent of lung fibrosis. Consistent 

with this supposition, others have shown that FGF-1 and several FGF receptors are expressed 

at increased levels in IPF lungs and that treating IPF-derived lung fibroblasts with FGF-1 

decreased collagen production and increased apoptosis [13].  

 

 A complex role for the FGFs in fibrosis is not limited to FGF-1 and the “anti-fibrotic” 

activities of several family members have been reported (Figure 1). One study reported that 

FGF-9 and FGF-18 were strongly expressed by epithelial cells and myofibroblasts in IPF lung 

tissue while mesenchymal cells within the fibroblastic foci expressed several FGF receptors 

[14], suggesting that these ligand-receptor interactions contribute to epithelial-mesenchymal 

crosstalk. The reported effects of FGF family members on fibroblast survival and apoptosis have 

been variable. In a recent report, FGF-1 (as well as FGF -9 and -18) decreased the apoptosis 

susceptibility of normal fibroblasts but had no impact on fibroblasts isolated from patients with 
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IPF [14]. In contrast, a prior study by Ramos and colleagues reported that FGF-1 treatment was 

sufficient to induce fibroblast apoptosis [15]. FGF-9 and -18 also increased fibroblast migration 

but prevented myofibroblast differentiation. Additionally, FGF-1 and -9, but not FGF-18, 

decreased basal and TGFβ1 mediated collagen expression and myofibroblast differentiation in 

fibroblasts [14]. Collectively, these studies demonstrate the heterogeneity and contextual nature 

of cellular responses to soluble stimuli within the FGF family, illustrate the limitation in defining a 

family of growth factors as either “pro” or “anti-fibrotic” and emphasize the importance of 

understanding how growth factors modulate different behaviors within a cell population and in 

different types of cells.  

 

 The findings in this study highlight several of the challenges and opportunities in basic 

and translational lung fibrosis research. For one, the effects of ligand/receptor interactions and 

signaling pathways need to be appreciated in multiple cell types, as inhibiting a pathway for 

beneficial effects on one cell type may have deleterious effects in other cells. Evidence for this 

is provided by previous studies of imatinib mesylate, a multi-tyrosine kinase inhibitor targeting 

Bcr/c-Abl and PDGFR, that was viewed as a promising potential therapeutic agent due to its 

inhibition of fibroblast proliferation, differentiation and ECM production [16,17] and the 

prevention of bleomycin-induced fibrosis in mice [16]. However, this tyrosine kinase inhibitor 

was also found to induce apoptosis and impair differentiation in epithelial cells, and failed to 

demonstrate an in vivo effect on fibrosis when it was introduced during the late-inflammatory 

phase of the bleomycin model [17]. It was speculated that the adverse effects of the drug on the 

epithelium masked any beneficial anti-fibrotic effects on myofibroblasts. Ultimately a clinical trial 

of imatinib for IPF demonstrated no benefit [18]. 
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 In the current study, FGF-1 effectively inhibited EMT. Although it is clear that alveolar 

epithelial cells (AECs) have a critical role in the pathogenesis of fibrosis, the mechanisms by 

which the alveolar epithelium contributes to the perpetuation of the wound-repair process in 

fibrosis have not been fully defined. We have shown that TGFβ1 treated alveolar epithelial cells 

undergo a phenotypic transition and elaborate soluble mediators that, in turn, promote fibroblast 

activation [19,20]. While “epithelial-mesenchymal transition” has become a controversial term, it 

is clear that AECs have phenotypic plasticity in the context of injury and repair responses [21]. 

This controversy regarding full or partial EMT has distracted from important studies on the 

regulation and precise functional contribution of AEC plasticity during fibrosis. As noted above, 

AEC responses to TGFβ are critical for fibrosis and TGFβ is a major regulator of AEC plasticity. 

Importantly TGFβ signaling can be modified through crosstalk with other signaling pathways 

such as FGF-1, as demonstrated in this report.  

  

 The variable responses of different cell types to soluble growth factors and cytokines 

and the dynamic evolution of lung injury, repair and fibrosis highlight the need to use in vivo 

models in which the comprehensive effects of altered cell signaling can be assessed. Much has 

been written about the strengths and weakness of different murine models which will not be 

recapitulated here [1,22], but it is important to recognize that there are no perfect murine models 

of IPF. While developing better models is a goal in the field, it remains to be seen if any model 

will fully recapitulate IPF [1,23]. Accordingly, each murine model of lung fibrosis represents a 

tool that can be used to address specific aspects of the pathogenesis of fibrosis.  Through 

integration of findings from several models, we hope to gain valuable insight into fundamental 
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mechanisms of lung repair and assess the feasibility of specific therapeutic approaches. 

Transgenic models that allow us to control the cell-specificity and timing of interventions can 

complement the broader manipulation of a pathway achieved with adenoviral delivery to the 

lungs, systemic administration of a drug, or germline knockouts and contribute to an increasing 

mechanistic understanding.   

 It is said that perfection is the enemy of the good. However, good must not become the 

enemy of better. There is a growing appreciation that diseases involving every organ and tissue 

in humans are attributable to fibrosis, and the likelihood is that shared underlying mechanisms 

contribute to the pathogenesis across organ systems such that novel and targeted anti-fibrotic 

therapies have the potential to have a significant impact on human health.  The success of 

recent clinical trials in IPF provides the motivation for us to re-double our efforts to develop a 

better understanding of the basic mechanisms that underlie fibrosis. Such advancement should 

embrace mechanistic heterogeneity and define different endotypes that can be targeted with 

more selective therapies [24,25].  
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Figure Legend: 

Figure 1: Pleiotropic effects of different fibroblast growth factors. FGF-1 (red) prevents TGF-β1 
induced alveolar epithelial cell (AEC) transition to a mesenchymal cell phenotype (EMT) while 
also preventing TGF-β1 mediated myofibroblast differentiation and elaboration of collagen. FGF-
9 (green) inhibits collagen production by fibroblasts while both FGF-9 and FGF-18 (blue) prevent 
myofibroblast differentiation. FGF-1 has been reported to inhibit fibroblast survival, but has also 
been reported to inhibit apoptosis (as has FGF-9 and FGF-18). FGF-7 (also known as keratinocyte 
growth factor), promotes proliferation of alveolar epithelial cells. 
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