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1. Introduction 

In this paper we begin an investigation into the geometry of discrete quasiconfor­
mal groups. The structure of general topological groups is not as well understood 
as that of conformal or Mobius groups, a class of groups which have been studied 
intensively for many years. We hope to gain additional insight into both families 
by studying groups of homeomorphisms of uniformly bounded dilatation acting 
on a domain D in ~n, a class which lies between the two kinds mentioned above. 

One natural way to construct such a group is to conjugate a conformal group by 
a quasiconformal mapping. Gehring and Palka first asked in [9] if this were the 
only method, that is, if each quasiconformal group is the quasiconformal 
conjugate of a conformal group. Sullivan [27] and Tukia [28] answered this 
question in the affirmative for quasiconformal groups acting on subsets of the 
extended complex plane ~2; a recent paper by Hinkkanen [11] establishes an 
analogous result for quasisymmetric or one-dimensional quasiconformal groups 
acting on ~. Later Tukia [29] constructed for every n > 2 a quasiconformal group 
which is not isomorphic as a topological group, and hence not quasiconformally 
conjugate, to a Mobius group. Tukia's examples are not discrete groups and his 
methods were subsequently modified by Martin [21] to yield discrete groups 
which are not quasiconformally conjugate to a conformal group. Finally 
McKemie [22] used Tukia's methods to construct for each K> 1 a K­
quasiconformal group not quasiconformally conjugate to a Mobius group. 

We restrict our attention in this article to discrete quasiconformal groups acting 
on ~ n and show that these groups resemble in many ways their conformal 
counterparts. In § 3 we introduce a characteristic convergence property for 
quasiconformal groups and devote the remainder of Part I of this paper to the 
study of convergence groups, groups of self homeomorphisms of ~n which have 
this property. In § 4 we derive several important properties of the limit set L( G) 
of a discrete convergence group G; for example, L( G) is perfect if it contains 
more than two points. In § 5 we describe the elementary discrete convergence 
groups G, that is, those with card(L( G)) ~ 2, and show that we can classify the 
elements g of a discrete convergence group G as elliptic, parabolic, or loxodromic 
according to their order and number of fixed points. In § 6 we study the 
behaviour of iterates of parabolic and loxodromic elements and then use this 
information to investigate the structure and limit sets of the non-elementary 
discrete convergence groups G with card(L(G)) > 2. Finally, in § 7 we derive a 
condition sufficient to imply that a group of homeomorphisms is a convergence 
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group, and give examples to show that a convergence group need not be 
topologically conjugate to a Mobius group. 

Part II of this article will be published separately. There we will employ 
distortion properties of quasiconformal mappings to derive more detailed results 
concerning the structure of discrete quasiconformal groups. We will also study the 
Poincare series for the groups which map a ball or half space onto itself. 

2. Notation and definitions 

For n ;?! 2 we let IR n denote euclidean n-space, IRn its one point compactification 
IR n U {oo}, and e 1, ... , en the standard orthonormal basis for ~ n. 

A Mobius transformation acting on IR n is a finite composition of reflections in 
spheres and hyperplanes; we let GM (IRn) denote the group of all such 
transformations. 

Stereographic projection p is the mapping from IRn onto the unit sphere sn in 
IR n + 1 given by 

2(x - en +l) 
p(x) = en +l + 1 12 . 

X - en +l 

We define the chordal distance between two points x and y in IR n as 

q(x, y) = Ip(x) - p(Y)I, 

and let Bq(x, r) denote the chordal ball 

Bq(x, r) = {y E IRn: q(x, y) < r}. 

Throughout this paper, the topology of IR n and all notions of convergence will be 
taken with respect to the chordal metric. 

2.1. Groups of homeomorphisms. Suppose that G is a group of self homeo­
morphisms of a domain D in IRn. Then G is a K-quasiconformal group if each 
g EGis K -quasiconformal in D; G is a quasiconformal group if it is K­
quasiconformal for some K. By the general form of Liouville's theorem, a 
l-quasiconformal group is in fact the restriction to D of a Mobius group when 
n ;?! 3. See, for example, [8,26,4]. 

Next we say that G is discrete if it contains no infinite sequence of distinct 
elements which converge uniformly on compact subsets, or simply c-uniformly, in 
D to an element of G. 

The group G is said to be discontinuous at a point xED if there is a 
neighbourhood U of x in D such that 

(2.2) g(U) n U=0 

for all but finitely many g E G. We denote by O(G) the set of all xED at which G 
is discontinuous and call L(G) = D\O(G) the limit set of G; we say that G is 
discontinuous if O( G) is not empty. It is easy to check that a discontinuous group 
is discrete; the converse is not true [2]. 

We say that G is properly discontinuous in an open set 0 c D if for each 
compact set F cO, 

g(F) nF =0 
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for all but finitely many g E G. In this case it follows that G must be discontinuous 
at each point of 0 and that 

(2.3) L(G) cD\O. 

By a sequence we will always mean an infinite sequence of distinct elements of 
G. Finally, we say that a set E cD is G-invariant if geE) = E for each g E G. The 
following result is then an immediate consequence of the definitions given above. 

2.4. LEMMA. The set O( G) is an open set and L( G) is a closed set; they are both 
G-invariant. 

3. Compactness 

Mobius transformations and quasiconformal mappings share certain conver­
gence properties. We give one of these which has far-reaching implications. 

3.1. LEMMA. Suppose that D is a domain in IR n and that F is a family of 
K-quasiconformal mappings of D which is not equicontinuous in D. Then there 
exist a point Xo in D and an infinite subfamily Fo of F which is equicontinuous in 
Do= D\{xo}· 

Proof Since F is not equicontinuous in D, there exist a point Xo E D and a 
positive constant a such that for j = 1, 2, ... we can find a mapping t E F and a 
point Xj E D\{xo} with q(Xj' xo) < l/j and 

q(t(Xj), t(xo)) ~ a> O. 

Let Fo = {t} and for k = 1, 2, ... set 

Dk = D\{xo, Xk, Xk+l, ... }, 

Then for each j and k, IR \t( Dd contains a pair of points whose chordal distance 
from one another is at least min(a, bk ) > O. Thus the family Fo is equicontinuous 
in each domain Db and hence in their union Do, by Theorem 19.2 in [31]. 

The following consequence of Lemma 3.1 plays a crucial role in what follows. 

3.2. THEOREM. Suppose that F is an infinite family of K-quasiconformal self 
mappings of IRn. Then there exists a sequence {t} in F such that one of the 
following is true. 

A. There exists a K -quasiconformal self mapping f of ~ n such that 

limt = f and limf~l = f- 1 

j--HX) j_oo } 

uniformly in IRn. 
B. There exist points xo, Yo in IR n such that 

~imt = Yo and ~imfj-l = Xo 
]---+00 }_OC 
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c-unilormly in IRn\{xo} and IRn\{yo}, respectively. The possibility that Xo = Yo may 
occur. 

Proof. Suppose that F has an infinite subfamily Fo which is equicontinuous in 
IRn. By Ascoli's theorem there is a subsequence {jj} of mappings in Po which 
converge to a limit mapping I uniformly in IR n. Then it follows from Theorems 
21.1,37.2, and 21.11 of [31] that/is a K-quasiconformal self mapping of IRn and 
that I j- 1 converges to I-I uniformly in IRn. In particular, we note that Go = {lj-

1
} 

is an infinite subfamily of G = {I-I: I E F} which is equicontinuous in IRn. 
Suppose now that F contains no infinite subfamily which is equicontinuous in 

IRn. Then by Lemma 3.1, there exist a point Xo and an infinite subfamily Fo which 
is equicontinuous in IRn\{xo}; as before we can extract a subsequence {jj} which 
converges c-uniformly in IRn\{xo} to a mapping I. From Theorems 21.1 and 37.2 
in [31] it follows that I is either a K-quasiconformal mapping of IRn\{xo} or a 
constant. The first possibility would imply that I has a quasiconformal extension 
to IRn, that I ~ Jj uniformly in IRn, and hence that {jj} is an infinite subfamily of F 
which is equicontinuous in IRn, contradicting our hypothesis. Thus I must be equal 
to some point Yo E IRn. 

Next it follows from what was proved in the first part that the family 
G = {I-I: I E F} does not contain an infinite subfamily which is equicontinuous 
in IRn. Hence we can argue as above to find points Xl, Yl E IRn and a subsequence 
of {l j-

1
} which converges to Yl c-uniformly in IRn\{XI}; by relabelling we may 

assume that fj-l~ Yl c-uniformly in IRn\{Xl}' Then {jj} will be the desired 
sequence if we can show that Yo = X I and Xo = Yl' 

Suppose that YOi=Xl and choose xElRn\{Xo,YI}' Then jj(x)~yo and so for 
large j the points Jj(x) are compactly contained in IRn\{Xl}' Hence 

x = limfj-\jj(x)) = YI 
j-¥£ 

and we have a contradiction. Thus Yo = Xl' A similar procedure yields Xo = YI and 
the proof is complete. 

The conclusions of Theorem 3.2 motivate the following definition which will 
allow us to see to what extent the above convergence properties determine the 
geometric behaviour of Mobius and quasiconformal groups. (See also [19].) 

3.3. DEFINITION. A family F of self homeomorphisms of IRn is said to have the 
convergence property if each infinite subfamily of F contains a sequence {jj} such 
that one of the following is true. 

A. There exists a self homeomorphism f of IRn such that 

limjj = I and ~imfjl = I-I 
I-x 1-00 

uniformly in IRn. 
B. There exist points xo, Yo in IRn such that 

limjj = Yo and ~imfj-l = Xo 
1-00 }-"'"' 

c-uniformly in ~n\{xo} and ~n\{yo}, respectively. 
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3.4. DEFINITION. A group G of self homeomorphisms of IR n is said to be a 
convergence group if it has the convergence property. 

3.5. COROLLARY. If G is a quasiconformal group acting on IR n, then G is a 
convergence group. In particular, every Mobius group is a convergence group. 

3.6. REMARK. If f is a self homeomorphism of IR n and if G is a convergence 
group, then foG 0 f- 1 is also a convergence group. Hence there exist convergence 
groups which are neither Mobius nor quasiconformal groups. Moreover, Tukia's 
example in [29] is a quasiconformal group which is not isomorphic, and hence not 
topologically conjugate, to a Mobius group. See § 7 for further examples. 

The convergence property takes the following form for discrete groups. 

3.7. THEOREM. If G is a discrete convergence group, then for each infinite 
sequence of elements in G there exist a subsequence {gj} and points xo, Yo in IR n 
such that 

lim g. = Yo and lim g~1 = Xo . J . J 
J--+OO J--+OO 

c-uniformly in IRn\{xo} and IRn\{yo}, respectively. Moreover, xo, Yo lie in each 
G-invariant closed set E which contains at least two points. 

Proof. Because G has the convergence property, there exists a sequence {gj} 
in G such that gj-'" g and g;l~ g-l uniformly in IRn, where g is a self 
homeomorphism of IR n, or such that gj~ Yo and gj-l-",XO c-uniformly in IRn\{xo} 
and ~n\{yo}, respectively, where xo, Yo E ~n. The first case cannot occur, since 
otherwise {gj+log;l} would contain an infinite number of distinct elements of G 
which converge uniformly in ~n to the identity of G. 

Suppose next that E is a G-invariant closed set with card(E) ~ 2 and choose 
x E E\{xo}. Then the points gj(x) must lie in E and hence so must their limit Yo. A 
similar argument shows that Xo E E and the proof is complete. 

The following immediate consequence of Theorem 3.7 further relates the 
notions of discreteness and discontinuity for convergence groups. 

3.8. COROLLARY. Suppose that G is a discrete convergence group and that E is a 
G-invariant closed proper subset of IRn which contains at least two points. Then G 
is properly discontinuous in, and hence discontinuous at each point of, ~n\E. In 
particular, L(G) c E. 

Proof. Suppose that G is not properly discontinuous in ~n\E. Then there exist 
a compact subset F of ~ n\E and a sequence {gj} in G such that 

(3.9) 

for all j. By Theorem 3.7 there exist a subsequence, which we again denote by 
{gj}, and points xo, Yo E E such that gj-'" Yo uniformly in F. Let V be a 
neighbourhood of Yo such that V n F = 0. Then gj(F) c V for large j and we 
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obtain a gj for which (3.9) cannot hold. Thus G must be properly discontinuous in 
IRn\E. 

3.10. COROLLARY. Suppose that G is a discrete convergence group and that Eu 
E2, E3 are pairwise disjoint closed sets in IRn. Then at most finitely many g in G 
satisfy 

(3.11) g(Ek) n Ek =1= 0 for k = 1, 2, 3. 

Proof. If infinitely many g E G satisfy (3.11), then by Theorem 3.7 we can 
choose a sequence {gj} in G and points xo, Yo such that gj ~ Yo c-uniformly in 
IRn\{xo} and such that 

(3.12) 

for all j and k. By relabelling if necessary, we may assume that E1 U ~ c 

IRn\{xo}. Then gj~ Yo uniformly in E1 U E2 and with (3.12) we obtain 

q(yo, Ek) ~ lim q(yo, gj(Ek» = 0, j __ oo 

whence Yo E Ek for k = 1, 2, a contradiction. 

3.13. DEFINITION. We denote by fix(G) the set of points in IR n which are fixed 
by each element in G. 

3.14. COROLLARY. If G is an infinite discrete convergence group, then 
card(fix(G» ~ 2. 

We consider next to what extent the family of K-quasiconformal mappings is 
maximal with regard to the convergence property in Definition 3.3. Cf. [3] and [8, 
Theorem 18]. 

3.15. DEFINITION. A family F of self homeomorphisms of IR n is said to be 
complete with respect to Mobius transformations if for each g, h in GM(lRn) the 
mapping go f 0 h lies in F whenever f does. 

3.16. THEOREM. Let F be a family of self homeomorphisms of IR n which is 
complete with respect to Mobius transformations. Then F has the convergence 
property if and only if there is a constant K such that each f in F is 
K -quasiconformal. 

Proof. The sufficiency follows from Theorem 3.2. For the necessity let 

K = sup maxlf(x)l, 
Ixl=1 

where the supremum is taken over all f E F which fix the points 0, el, 00. Then 
there is a sequence of mappings Ct} in F normalized as above for which 

K = lim max Ijj(x)l. 
j-+oo Ixl=1 

Since F has the convergence property and since the mappings jj fix three points, 
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there exists a subsequence which converges to a homeomorphism uniformly in 
~n. Hence K is finite. 

Next let f be any mapping in F. We wish to show that f is K-quasiconformal. 
Since F is closed under conjugation by Mobius transformations, we may assume, 
without loss of generality, that f also fixes 00. Fix Xo E [Rn and r > 0, and choose Xl 

such that Ix I - xol = rand 

If(XI) - f(xo)1 = mf(xO, r) = min If(x) - f(xo)l· 
Ix-xol=r 

Let g and h be similarity mappings such that 

h(el) = Xv h(O) = xo, g(f(Xl» = el , g(f(xo» = O. 

Then g 0 f 0 h is a normalized element of F, 

Mf(xo, r) = max If(x) - f(xo) I 
Ix-xol=r 

= mf(xO, r) max Igofoh(x)1 ~ Kmf(xO' r), 
Ixl=l 

and f is quasiconformal with linear dilatation bounded by K. 

3.17. COROLLARY. A self homeomorphism f of ~ n is quasiconformal if and only 
if the family 

has the convergence property. 

Tukia and VaisaHi have shown [30] that if G is a quasiconformal group acting 
on [Rn which contains the group of all similarity mappings GM (IRn), then G is 
precisely the group GM([Rn). If we combine this fact with what was proved 
above, we obtain the following result. 

3.18. THEOREM. If G is a convergence group which contains a subgroup which 
is dense in GM(~n), then G is a subgroup of GM(~n). 

Proof. Let H denote the family of self homeomorphisms h of ~n for which 
there exists a sequence {gj} in G such that gr~ h and gj-l~ h- 1 uniformly in ~n. 
Then H is a convergence group which contains GM(~n) and hence a quasi­
conformal group by Theorem 3.16. 

Let Ho = {h E H: h(O) = O} and let f be a Mobius transformation for which 
f(O) = 00. Then f 0 Ho 0 f- 1 is a quasiconformal group acting on IR n which contains 
GM([Rn). Thus 

Ho = f-1oGM(lRn)of C GM(~n) 

by the aforementioned result. 
Finally, given any g E G we can find a Mobius transformation f such that fog is 

in Ho. Hence g is a Mobius transformation. 

Theorem 3.16 shows that the convergence property essentially characterizes 
quasiconformal groups which act on ~n. We can formulate this property for any 
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domain D by replacing [Rn by D and 'uniformly' by 'c-uniformly' in Definition 
3.3. We conclude this section by observing, however, that an infinite group which 
satisfies the convergence property on a proper subdomain of [R n cannot be 
discrete. 

3.19. THEOREM. Suppose that D is a domain in [Rn and that G is a group of self 
homeomorphisms of D which has the convergence property on D. If G is infinite 
and discrete, then D = [R n. 

Proof. As in the proof of Theorem 3.7 there exist points xo, Yo E D and a 
sequence {gJ in G such that gj~ Yo and gj-I~XO c-uniformly in D\{xo} and 
D\{yo}, respectively. Let U, V be chordal balls about Xo, Yo, respectively, with 
closures in D. By the c-uniform convergence there exists an integer j such that 
gi8U) c V and gjl(8V) c U whence 

(3.20) 8gj(U) n (D\V) = ° and giU) n (D\V) *0. 

Since D\V is connected, (3.20) implies that D\V cgiU) and hence that 

jj cgj(O) u iT cD. 

Thus D = [Rn. 

4. Limit set of a discrete convergence group 

We assume throughout this section that G is a discrete convergence group 
acting on [Rn. We begin with a result which shows that each point of L( G) is the 
limit under elements of G of points of O( G). 

4.1. LEMMA. For each point YI in L(G) there exist a point Xl in L(G) and a 
sequence {gj} in G such that 

~im gj = Yl and ~im gj-l = Xl 
J-+oc J-+oo 

c-uniformly in [Rn\{Xl} and [Rn\{YI}, respectively. 

Proof. For each j = 1, 2, ... , let Vj = Bq(Yv rj) where the rj are positive and 
converge to O. Since G is not discontinuous at Yl, we can choose a sequence {hj} 
in G such that 

(4.2) 

for all j. Next by Theorem 3.7 we can choose a subsequence, which we again label 
{hj}, and points Xo, Yo E [Rn such that hj~ Yo and hj-l~xo c-uniformly in [Rn\{xo} 
and [R n\ {yo}, respectively. 

Suppose that Yl = Xo. Then we get the desired conclusion by taking Xl = Yo and 
gj = hj-l. Suppose next that Yl * Xo. By (4.2) we can find f?r each j a point Zj E Vj 
with hiZj) E Vj. These points are compactly contained in ~n\{xo} for large j and 
hj(zj) ~ Yo by the c-uniform convergence. Thus 

YI = Yo, and we may take Xl = Xo and gj = hj' 
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If U is a neighbourhood of Xl and if X E U\{Yl}, then g;l(X)~Xl' 

gj-l(X) E gjl(U) n U =1= 0 

for large j, and G is not discontinuous at X 1. Hence Xl E L( G). 

339 

4.3. DEFINITION. For each x in [Rn we let L(x, G) denote the set of all Y in IR n 

for which there exists a sequence {gj} in G such that glx)~ y. 

4.4. LEMMA. We have L(x, G) c L(G) for all x in ~n with equality whenever x 
is not fixed by G. 

Proof. Let U be a neighbourhood of a point Yl E L(x, G), choose a sequence 
{gj} in G such that gj(x) E U for all j, and let hj = gj ° gIl. Then {hj} is a sequence 

in G and glx) E hj( U) n U =1= 0 

for all j. Hence G is not discontinuous at Yl and Yl E L( G). 
Suppose next that Yl E L( G) and let Xl and {gj} be as in Lemma 4.1. If x is not 

fixed by G, there exists g E G such that x =1= Xl or g(x) i=Xl. Hence either 
gj(x)~ Yl or gjO g(x)~ Yl and we conclude that Yl E L(x, G). 

4.5. THEOREM. If L(G) contains three points, then L(G) is a perfect set. 

Proof. Let Yl E L( G) and choose Xl and {gj} as in Lemma 4.1. Since 
card(L(G»;?! 3, there exists an X2 E L(G)\{Xl' yd. 

If g/X2) =1= Yl for infinitely many j, then {gj(X2)} is an infinite subset of L( G) 
which has Yl as a limit point. Otherwise we may assume that 

(4.6) 

for all j. If Yl =1= Xl, then by (4.6), {gj(Yl)} is an infinite sequence of points in L( G) 
which converges to Yl. Next it Yl = Xl, then there exists a point 

X3 E L(G)\{Xl' X2}, 

and {g/X3)} is again an infinite subset of L( G) with limit point Yl. Thus Yl is a 
limit point of L( G) and so L( G) is perfect. 

The dichotomy that L( G) contain fewer than three points or be perfect is a 
classical result for Mobius groups and motivates the following definition. 

4.7. DEFINITION. We say that G is an elementary group if the cardinality of 
L( G) is at most 2. Otherwise we say that G is non-elementary. 

We conclude this section with two further results on the limit set which depend 
on results established in §§ 5 and 6. The first shows that the notions of 
discontinuous and properly discontinuous coincide for convergence groups. 

4.8. THEOREM. If G is discontinuous, then G is properly discontinuous in 
[Rn\L(G). 

Proof. By Lemma 2.4 and hypothesis, L( G) is a G-invariant closed proper 
subset of ~n. Hence Corollary 3.8 implies that G is properly discontinuous in 
[Rn\L(G) if L(G) contains at least two points. 
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If L(G) = {xo} and if F is any compact set in [Rn\L(G), then Theorem 5.10 and 
Lemma 5.5, with E1 = {xo} and E2 = F, imply that g(F) n F = 0 for all but a 
finite number of g E G. 

Finally, if L(G) = 0, then G is finite by Theorem 5.7 and there is nothing to 
prove. 

4.9. THEOREM. The set L(G) is either nowhere dense or coincides with [Rn. 

Proof We may assume that G is non-elementary and hence that L( G) is a 
non-empty perfect set. Suppose that L( G) =F [Rn. Then there exists a point 
x E aLe G). Let V denote any neighbourhood of a point y E L( G). Then 
y E L(x, G) by Theorem 6.10 and there exists agE G such that g(x) E V. Hence 
g-l(V) is a neighbourhood of x which contains a point Xo E O(G), and Yo = g(xo) 
lies in V\L(G). Thus int(L(G» = 0 and L(G) is nowhere dense. 

5. The elementary discrete convergence groups 

We assume again throughout this section that G is a discrete convergence 
group. We begin by classifying the elements of G exactly as in the case of a 
discrete Mobius group. We then study the structure of the elementary groups and 
use this information to show that our classification of elements is exhaustive. 

5.1. DEFINITION. For each g in G we let 

ord(g) = inf{m > 0: gm = identity}, fix(g) = {x E [Rn: g(x) = x}. 

We say that g is elliptic if ord(g) < 00, that g is parabolic if ord(g) = 00 and 
card(fix(g» = 1, and that g is loxodromic if ord(g) = 00 and card(fix(g» = 2. 

The following partially motivates the above classification. 

5.2. LEMMA. If g is in G and ord(g) = 00, then 

card(fix(g» ~ 2, fix(g) c L(G). 

Proof. Since ord(g) = 00, the subgroup (g) generated by powers of g is an 
infinite discrete convergence group. Hence 

card(fix(g» = card(fix( (g») ~ 2 

by Corollary 3.14. Next if x is fixed by g, then it is fixed by each element in (g). 
Hence G cannot be discontinuous at x and x E L(G). 

We say that U is a topological ball if U is the image of an open euclidean ball 
under a self homeomorphism of rRn. We then have the following useful condition 
which implies that an element of G is loxodromic. 

5.3. LEMMA. Suppose that g is an element of G. If there exists a topological ball 
U such that g( U) c U, then g is loxodromic with one fixed point in U and the other 
in rRn\U. 
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Proof The element g cannot be of finite order m since otherwise we would 
have (j = gm(u) cU. Next the hypotheses imply that g-\V) c V where V = 
~n\U. The Brouwer fixed point theorem [12] then implies that g has a fixed point 
in U and that g -1, and hence g, has a fixed point in V. Thus g has exactly two 
fixed points by Lemma 5.2 and hence is loxodromic. 

5.4. LEMMA. Suppose that xo, Yo are distinct points in ~n and that {gj} is a 
sequence in G which converges to Yo c-uniformly in ~n\{xo}. Then all but a finite 
number of the gj are loxodromic. 

Proof Let U = Bq(Yo, r) where 0 < r < q(xo, Yo). Then U is a chordal ball 
compactly contained in ~n\{xo} and gj( U) c U for all sufficiently large i by virtue 
of the c-uniform convergence. Hence all but a finite number of the gj are 
loxodromic by Lemma 5.3. 

We have next the following sharpened form of Corollary 3.10. 

5.5. LEMMA. Suppose that EJ, E2 are disjoint closed sets in ~n. Then at most 
finitely many non-loxodromic g in G satisfy 

g(Ek) n Ek *0 for k = 1,2. 

Proof Suppose otherwise. Then by Theorem 3.7 we can find points xo, Yo and 
a sequence {gj} of non-Ioxodromic elements in G such that gj~ Yo c-uniformly in 
~n\{xo} and such that 

(5.6) 

for all j and k. If E1 U E2 C ~n\{xo}, then gj~ Yo uniformly in E1 U E2 and (5.6) 
implies that Yo E E1 n E2, a contradiction. Hence we may assume that Xo E E 1. 
Then gj~ Yo uniformly in E2 and we have Yo E E2 by (5.6). Thus Xo * Yo and all 
but a finite number of the gj are loxodromic by Lemma 5.4. 

We next classify the elementary groups in terms of the cardinality of their limit 
sets. 

5.7. THEOREM. The set L( G) is empty if and only if G is a finite group of elliptic 
elements. 

Proof. The sufficiency is trivial. For the necessity suppose that G were infinite. 
Then by Theorem 3.7 there would exist points xo, Yo and a sequence {gj} in G 
which converges to Yo c-uniformly in ~n\{xo}; thus we would obtain 

Yo E L(x, G) c L(G) 

by Lemma 4.4. Hence G is finite with only elliptic elements. 

Theorem 5.7 implies that each finite group of elliptic elements is elementary. It 
is natural to ask what one can say about arbitrary groups of elliptic elements. 

5.8. LEMMA. If G contains no loxodromic elements, then either G is finite or 
L( G) consists of a single point which is fixed by each element in G. 
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Proof. Suppose that G is infinite. Then by Theorem 3.7 we can choose points 
xo, Yo and a sequence {gJ which converges to Yo c-uniformly in IRn\{xo}. Since G 
contains no loxodromic elements, Lemma 5.4 implies that Yo = Xo. 

Next let g be an element of G and set hj = gjog-l. Then hr~xo c-uniformly in 
IRn\{g(xo)} and g(xo) = Xo again by Lemma 5.4. Hence Xo is fixed by the group G. 

Finally, suppose that Yl is a point of L( G). Then by Lemma 4.1 there exist a 
point Xl and a sequence {hj} in G which converges to YI c-uniformly in ~n\{Xl}' 
As above we see that YI = X I and we conclude that YI = Xo, since otherwise Xl =1= Xo 
and 

Xo = lim hj(xo) = Yl' 
j ...... oo 

Thus L(G) = {xo}. 

5.9. COROLLARY. If G contains only elliptic elements, then G is elementary and 
has at most one limit point. 

5.10. THEOREM. The set L( G) contains exactly one point Xo if and only if G is 
an infinite group which contains only elliptic and parabolic elements which fix Xo. 

Proof. If L(G) = {xo}, then G must be infinite and 

{g(xo)} = g(L(G» = {xo} 

for each g E G since L( G) is G-invariant. Lemma 5.2 then implies that each 
element of G is either of finite order or of infinite order with one fixed point. The 
sufficiency is an immediate consequence of Lemma 5.8. 

5.11. THEOREM. The set L(G) contains exactly two points Xo and Yo if and only 
if G is an infinite group which contains only loxodromic elements which fix Xo and 
Yo, and elliptic elements which either fix or interchange Xo and Yo. In addition, G 
must contain at least one loxodromic element and at most finitely many elliptic 
elements which fix Xo and Yo or are of odd order. 

Proof Suppose that L(G) = {xo, Yo}. Since L(G) is G-invariant, each g E G 
satisfies one of the following conditions: 

(5.12) 

(5.13) 

g(xo) = Xo, g(yo) = Yo; 

g(xo) = Yo, g(yo) = Xo· 

We show first that each g which satisfies (5.13) is an elliptic element of even 
order. Suppose otherwise. Then 

{xo, Yo} = fix(g2) C L( (g2» 

by Lemma 5.2, and by Lemma 4.1 there would exist a point Xl and a sequence 
{hj} in (g2) which converges to Yo c-uniformly in IRn\{Xl}' Then for 
x E ~n\{Xb g-l(Xl)} we would have 

Yo = lim hj(g(x» = lim g(hj(x» = g(yo) = xu, 
j ...... oo j-H~;; 

a contradiction. In particular, we see that G does not contain parabolic elements 
since no such element g could satisfy (5.12). 
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Since card(L(G)) = 2, G contains a loxodromic element by Lemma 5.8. 
Finally, Lemma 5.5 with El = {xo} and E2 = {Yo} implies that G has only finitely 
many elliptic elements which satisfy (5.12). In particular, G contains only finitely 
many elliptic elements g of odd order since no such g can satisfy (5.13). 

For the sufficiency G contains by hypothesis a loxodromic element which fixes 
Xo and Yo. Hence {xo, Yo} c L(G) by Lemma 5.2. 

Suppose next that Yl E L( G). Then Lemma 4.1 yields a point Xl and a sequence 
in G which converges to Yl c-uniformly in ~n\{Xl}' By hypothesis there exists a 
subsequence {gj} whose elements either all fix or all interchange the two points 
Xo, Yo. In either case, 

Thus L(G) = {xo, Yo}. 

5.14. REMARKS. We remind the reader that the classification given in Theor­
ems 5.10 and 5.11 is for discrete convergence groups G. 

The situations described in these results can take place. For example, 

gl(Z) = z + 1, g2(Z) = -z 

generate an infinite discrete convergence group G which contains only elliptic and 
parabolic elements that fix 00 and for which L( G) = {oo}. Similarly, if m is a 
prime, then 

gl(Z) = 2z, g2(Z) = liz, g3(Z) = e2nilmz 

generate a discrete convergence group G which contains infinitely many loxodro­
mic elements which fix 0 and 00, m -1 elliptic elements of order m which fix 0 and 
00, and infinitely many elliptic elements of order 2 which interchange 0 and 00. In 
addition, L(G) = {O, oo}. 

We show next that every element in a discrete convergence group is of one of 
the three types given in Definition 5.1. This fact is a consequence of the above 
description of the elementary groups and the following result. 

5.15. THEOREM. If G is an abelian group, then G is elementary. 

Proof. Suppose that L(G) contains three points Yl1 Y2, Y3' Then by Lemma 4.1 
there are points Xb X2, X3 E L(G) and sequences {gl,j}, {g2,j}, {g3,j} in G such 
that for k = 1, 2, 3, gk,j~ Yk c-uniformly in ~n\{xd. By symmetry and 
relabelling, we may assume that one of the following two cases occurs: 

(5.16) 

(5.17) 

Yl=1=X2, Y2=1=XI; 

Yl =l= X2, Y2 =l= X3, Y3 =1= Xl' 

Suppose first that (5.16) holds and choose disjoint neighbourhoods VI, V2 of 
Yl, Y2, respectively, so that 

01 C ~n\{X2}' O2 C ~n\{Xl}' 
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Fix x E IRn\{XI' X2}' Since UI U {x} is compactly contained in IRn\{xz}, there 
exists an integer jz such that 

gZ,j(UI U {x}) C Uz 

for j > jz. Similarly, there exists an integer jl such that 

gl,j(U2 U {x}) CUI 

for j > jl' Hence for j > jo = max (jl, jz) we have 

gl,j°gZ,j(x) E Uv gZ,jogl,j(X) E Uz, 

a contradiction since G is abelian and Ub U2 are disjoint. 
Suppose next that (5.17) holds and choose pairwise disjoint neighbourhoods 

Uv UZJ U3 of Yl, Y2, Y3J respectively, so that 

(;1 c 1R1l\{Xz}, (;Z C IR n\{X3}, (;3 C IRn\{xd. 

If x E 1R1l\{XI' X2, X3}, then as above there exists an integer jo such that for j > jo, 

g2,j(UI U {x})c Uz, g3,j(U2U {x})c U3, gl,iU3U {x})c U1 

from which we obtain 

gl,jog3,jogZ,lx) E Uv gZ,jogl,jog3,j(X) E Uz, 

again contradicting the fact that G is abelian. This completes the proof. 

5.18. THEOREM. Each element g in G is elliptic, parabolic, or loxodromic. 
Moreover, g and gj are always elements of the same type for each integer j -=1= O. 

Proof If g E G, then (g) is abelian, and hence elementary, and g is elliptic, 
parabolic, or loxodromic by Theorems 5.7, 5.10, and 5.11. Next g is of finite 
order if and only if gj is. If g is of infinite order, then Theorems 5.10 and 5.11 
imply that each element of (g) other than the identity is parabolic or loxodromic 
depending on whether L( (g») contains one or two points, respectively. 

We conclude this section with the following consequences of the results proved 
above. The first is reminiscent of the fact that analytic functions which agree in an 
open set must agree everywhere. 

5.19. COROLLARY. Iff and gin G agree on an open set, then they are identical. 

Proof. Let h = f- I 
0 g. Then h(x) = x in an open set, h is elliptic since 

card fix(h) > 2, and hence h is equal to the identity by a classical result of 
Newman's [25] on periodic homeomorphisms of IRn. 

5.20. COROLLARY. Suppose that f is a quasiconformal self mapping of 1R1l which 
has no fixed points and suppose that the iterates of f have uniformly bounded 
dilatation. Then either fj is equal to the identity for some integer j or there exists a 
sequence of integers {jk} such that {fjk} converges to the identity uniformly in IRn. 

Proof By hypothesis F = (f) is a quasiconformal, and hence convergence, 
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group. If the second conclusion fails, then F is discrete and f must be elliptic by 
Theorem 5.18, since f has no fixed points. Hence the first conclusion holds. 

6. The non-elementary discrete convergence groups 

We consider first how the iterates or powers of an element of a discrete 
convergence group behave and then apply this information to study the 
non-elementary groups. As earlier, we continue to let G denote a discrete 
convergence group acting on ~ n. 

Since elliptic elements are of finite order, the convergence properties of G 
reveal little about the behaviour of the iterates of such an element. The situation 
is different for elements of infinite order and we have the following result for 
parabolic elements. 

6.1. THEOREM. If g is a parabolic element in G with fixed point xo, then 

lim gj = Xo and lim g-j = Xo 
j-+oo j-+oo 

c-uniformly in ~n\{xo}. 

Proof. The group (g) contains only parabolic elements by Theorem 5.18. 
Hence if U is any neighbourhood of xo, Lemma 5.5 with El = {xo} and 
£2 = ~n\u implies that there exists an integer k such that 

gj(~n\u) c U and g-j(~n\u) c U 

for j ~ k. 

We establish next the important analogue of Theorem 6.1 for loxodromic 
elements. 

6.2. THEOREM. If g is a loxodromic element of G with fixed points xo, Yo, then 
these points can be labelled so that 

lim gj = Yo and lim g-j = Xo 
j-+oo j-+oo 

c-uniformly in ~n\{xo} and ~n\{yo}, respectively. We call Yo the attractive and Xo 

the repulsive fixed point for g. 

Proof. Since L( (g») = {xo, Yo}, by Lemma 4.1 there exist a sequence {gj} in 
(g) and a point Xl E L(G) such that gj~ Yo and gjl~Xl c-uniformly in ~n\{xd 
and ~n\{yo}, respectively; since Xo is fixed by each gj' it follows that Xl = Xo. 
Hence by passing to a subsequence and relabelling the fixed points, if necessary, 
we obtain integers k(j) > 0 such that 

(6.3) lim gk(j) = Yo and lim g-k(j) = Xo 
j-+oo j-+oo 

c-uniformly in ~n\{xo} and ~n\{yo}, respectively. 
Let U, V be disjoint chordal balls about xo, Yo, respectively. We shall show that 
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there exists an integer k > 0 such that 

(6.4) gj(~n\u) c V and g-j(~n\ V) c U 

for j ~ k. Since g fixes Yo, we may assume that g(V) n U = 0. 
Let E = ~n\(u U V). Then Corollary 3.10 with E1 = {xo}, E2 = {Yo}, and 

E3 = E implies that 

(6.5) 

for all but finitely many j > O. Hence with (6.3) we can choose an integer k > 0 
such that (6.4) holds for j = k and (6.5) holds for j ;?: k. 

If (6.4) holds for some j = i ~ k, then 

gi+1(E) n U C g(gi(~n\u)) n U c g(V) n u = 0, 

so that gi+1(E) c V by (6.5). Then 

gi+\ BV) c gi+l(E) c V 

whence gi+1(V) c V and we obtain the first part of (6.4) for j = i + 1. The second 
part follows similarly for j = i + 1 and hence (6.4) holds for all j ~ k by induction. 

6.6. COROLLARY. Suppose that g is an element of G. Then g is loxodromic if 
and only if there exist an integer j and a topological ball U such that gj (0) c u. 

Proof. By Lemma 5.3, h = gj is loxodromic if gj( 0) c U for some integer j and 
topological ball U; hence g is loxodromic by Theorem 5.18. Conversely, if g is 
loxodromic and if U is any neighbourhood of one of the fixed points whose 
closure does not contain the other, then gi ( 0) c U for some integer j by Theorem 
6.2. 

Thus the criterion in Lemma 5.3 essentially characterizes loxodrorilic elements 
in a discrete convergence group. We show next that the fixed point sets for pairs 
of loxodromic elements either are disjoint or coincide. 

6.7. THEOREM. If f and g in G have a fixed point in common and if g is 
loxodromic, then f and g have two fixed points in common and there exists a 
non-zero integer k such that f 0 gk = gk of. 

Proof. Suppose that Xo is a fixed point of f and that Xo and Yo are respectively 
the repulsive and attractive fixed points for g. Next let U, V be disjoint chordal 
balls about Xo, Yo, respectively, chosen so that g(U) n V = 0, and let 
E = ~n\(u U V). By Theorem 6.2, there is an integer jo such that 

f 0 g-j(E) c U\{xo} 

for j ~ jo. Theorem 6.2 also implies that for each such j, 

(6.8) 

for sufficiently large k. Let k(j) denote the smallest k for which (6.8) holds and 
set hj = gk(j) of 0 g-i. Then 
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for j > jo, while 

lim hiyo) = Yo 
j~x 

since k(j) ~ 00 as j ~ 00. Hence for large j, the closed sets 

El = {xo}, E2 = {hk(yo): k;?: j} U {Yo}, E3 = E 

are pairwise disjoint and Corollary 3.10 implies that there exist jl' h with jl <h 
for which hh = hjz whence 

gk = f 0 gj 0 f -1 , 

where j = h - jl and k = k(h) - k(jl). From this it follows that 

gkm=fogjm of-l 

for all integers m, and that f(yo) = Yo. 
We want to show that k = j. If k <j, we can choose m > 0 such that 

g(k-j)m(f( U» c V and g(j-k)m(f(V» C V. 

Then Vo = gjm( V) is a topological ball, Uo does not contain Yo, and 

f(Uo) = f(gjm(u» = gkm(f(U» C gkm(g(j-k)m(v» = Vo. 

Hence f is loxodromic by Lemma 5.3 and since f fixes xo, f has Xo as its attractive 
fixed point. Similarly Vo = g-jm(v) does not contain Xo in its closure, while 

f(Vo) = f(g-jm(v» = g-km(f(V» C g-km(g(k-j)m(v» = Yo. 

Thus Xo cannot be the attractive fixed point for f and we conclude that k;?: j. 
Reversing the roles of! and f- 1 in the above argument shows that k ~ j and hence 
that k = j. Thus f 0 gk = gk 0 f. 

6.9. COROLLARY. Iff, gin G are loxodromic, then either 

fixe!) n fix(g) = ° or fix(f) = fix(g). 

In the latter case there exist non-zero integers j and k such that F = gk. 

Proof. Theorem 6.7 implies that fix(f) and fix(g) are disjoint or coincide. 
Hence it remains only to establish the existence of the integers j and k in the 
second case. For this let xo, Yo and V, V, E be as in the proof of Theorem 6.7. By 
replacing f by f- 1 we may further assume that Xo and Yo are, respectively, the 
repulsive and attractive fixed points for f as well as g. Then 

f-j(E) c V\{xo}, 

for j;?: jo, and as in the proof of Theorem 6.7 we can find for each such j an 
integer k(j) such that hiE) n E=I=0, where hj=gk(j)of-j. Corollary 3.10 with 
El = {xo}, E2 = {Yo}, and E3 = E then implies that hh = hjz for some jl <h and 
hence that fj = gk where j = h - jl and k = k(j2) - k(jl). 

We now apply Theorem 6.7 to show that a non-elementary group contains 
infinitely many loxodromic elements and that its limit set is the closure of the set 
of fixed points of these elements. 
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6.10. THEOREM. If G is non-elementary, then fix(G) = 0 and L(x, G) = L(G) 
for each point x in ~n. 

Proof Lemma 5.8 implies that G contains at least one loxodromic element f. 
To establish the first conclusion we show there exists a second element g E G such 
that 

fix(f) n fix(g) = 0. 

Choose YI E L(G)\fix(f). By Lemma 4.1 there exist a point Xl E L(G) and a 
sequence {gj} in G which converges to Yl c-uniformly in IRn\{xl}' Suppose that 

(6.11) 

(6.12) 

fix(f) n fix(gj) =1= 0, 

fix(f) n g/fix(f» =1= 0 

hold for all j. Then Xl E fix(f), since otherwise gj would converge to YI uniformly 
in fix(f) and (6.12) would not hold for large j. Hence Xl =1= Yl, all but a finite 
number of the gj are loxodromic by Lemma 5.4, and fix(f) = fix(gJ for large j by 
(6.11) and Corollary 6.9. If fix(f) = {xo, Yo} and Xl = xo, then 

Yo = lim g/yo) = Yl 
j-'H>O 

and we have a contradiction. Hence (6.11) or (6.12) fails for some j and we may 
take g = gj or g = gj 0 f 0 gjl, respectively. 

The second conclusion then follows directly from Lemma 4.4. 

6.13. THEOREM. If G is non-elementary, then L(G) is the smallest closed 
non-empty G-invariant subset of ~n. 

Proof. If X is a point of a closed G-invariant set E, then L( G) = L(x, G) c E 
by Theorem 6.10; Lemma 2.4 implies that L( G) is such a set. 

6.14. REMARK. Theorem 6.13 yields a great deal of information about the limit 
set L( G) of a non-elementary group. For example, it implies that L( G) lies in the 
closure of any non-empty G-invariant set in ~n. 

6.15. COROLLARY. If G is non-elementary, then G contains infinitely many 
loxodromic elements, no two of which have a common fixed point, and L( G) is 
the closure of the set of fixed points of the loxodromic elements in G. 

6.16. COROLLARY. If G is non-elementary and if G contains an element g which 
is either parabolic or is elliptic with fix(g) =1= 0, then L( G) lies in the closure of the 
set of fixed points of the parabolic or elliptic elements in G, respectively. 

Proofs. Let FE, Fp, FL denote the set of fixed points for the elliptic, parabolic, 
loxodromic elements in G. If f and g are in G, then g of 0 g -1 is the same type of 
element as f with fix(g 0 fog-I) = g(fix(f». Hence each of the above sets is 
G-invariant. 

Lemma 5.8 implies that FL is non-empty; FE and Fp are non-empty by 
hypothesis. The conclusions for Corollaries 6.15 and 6.16 now follow from 
Corollary 6.9 and Theorem 6.13. 
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We establish next an extension of Corollary 6.15 which says that the fixed point 
pairs (xo, Yo) of loxodromic elements are dense in L( G) X L( G). 

6.17. THEOREM. If G is non-elementary and if V1 and V2 are disjoint open sets 
both of which intersect L( G), then there exists a loxodromic element g in G with 
one fixed point in V1 and the other in V2. 

Proof. We may clearly assume that V1 and V2 are chordal balls which both 
meet L(G). Then by Corollary 6.15, for k = 1, 2 there exists a loxodromic 
element gk E G with fixed points Xb Yk and Yk E Vk • By replacing gk by g;l, if 
necessary, we may assume that Yk is the attractive fixed point for gk. Since V1 and 
V2 are disjoint, Y1 -=1= Y2 and hence Xl -=l=X2 by Corollary 6.9. Again by Corollary 
6.15 there exists a loxodromic element go with Xo and Yo as its repulsive and 
attractive fixed points such that 

{xo, Yo} n {Xl, X2} = 0. 

Let Vo, Va, V1, V2 be pairwise disjoint neighbourhoods of Xo, Yo, Xl, X2, 
respectively. Then 

V2 C ~n\{Y1}, [;1 C ~n\{XO}, Yo C ~n\{X2}, 

and we obtain 

gli(V2) C Vb g~(U1) C Va, g~(Vo) c V2, 

for large j. Similarly, 

gZ"i(V1) c V2, goi(V2) C Vo, g{(Vo) C V1, 

for large j. Hence we can choose j such that 
- 1 -

h/V2) C V2, hi (V1) c V1, 

where hi = g~ 0 gb 0 gli. Then by Lemma 5.3, g = hj is a loxodromic element which 
has fixed points in V1 and V2 • 

We conclude this section with some topological properties of the limit set of a 
non-elementary convergence group. 

6.18. LEMMA. If g is a loxodromic element in G, then the fixed points of g either 
are point components of L( G) or they lie in the same non-degenerate component of 
L(G). 

Proof. Suppose the repulsive and attractive fixed points Xo, Yo belong to 
different components C(xo), C(Yo) of L( G). Since these components are invariant 
under g and since gj ~ Yo and g-j ~ Xo uniformly in C(Yo) and C(xo), respectively, 

q(C(yo» = lim q(gi(C(yo») = 0, j __ oo 

q(C(Xo» = lim q(g-j(C(xo») = 0, 
j_oo 

where q (C) denotes the chordal diameter of C. 
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6.19. THEOREM. If G is non-elementary and if C is a component of L(G), then 
either C = L( G) or C lies in the closure of L( G)\C. 

Proof. Choose Xo E C, suppose there exists a point Yo E L(G)\C, and let U, V 
denote disjoint neighbourhoods of xo, Yo such that V n C = 0. By Theorem 6.17 
there exists a loxodromic element g E G with fixed points x lEU and YI E V. If C is 
non-degenerate, then Xl cannot lie in C since otherwise by Lemma 6.18, YI would 
also lie in C and hence in V n C; thus 

(6.20) 

If C = {xo}, then because L(G) is perfect there exists a point Xl for which (6.20) 
holds. 

6.21. COROLLARY. If G is non-elementary and if L(G) is not connected, then 
L( G) is not locally connected at any point of L( G). 

Proof Let U be a neighbourhood of a point Xo E L( G) and let C denote the 
component of L(G) containing Xo. By Theorem 6.19 there exists a point 
Xl E (L(G)\C) n U and hence L(G) is not locally connected at Xo. 

We say that a point X of an arcwise connected continuum C is an endpoint if 
there is no arc in C which contains X as an interior point. 

6.22. THEOREM. Suppose that G is non-elementary and that L( G) is locally 
connected. Then L( G) is arcwise connected, and either L( G) contains a simple 
closed curve or the fixed points of every loxodromic element in G are endpoints of 
L(G). 

Proof. Corollary 6.21 implies that L( G) is connected and hence arcwise 
connected [12]. Suppose that there exists a loxodromic element g E G with fixed 
points xo, Yo where Xo is not an endpoint of L(G); by replacing g by g-l we may 
assume that Yo is the attractive fixed point for g. Then there exists an arc 
a c L(G) with endpoints Xl, X2 which contains Xo as an interior point. Let U be a 
neighbourhood of Yo which does not contain Xo. Because L( G) is locally 
connected there exists a neighbourhood V of Yo such that each pair of points in 
V n L(G) can be joined by an arc in un L(G) [12, pp. 113-118]. By Theorem 
6.2 we can choose an integer j such that gj(Xl) and gj(X2) lie in V n L(G) and 
hence can be joined by an arc {3 in un L(G). Since Xo E gj(a)\{3, gj(a) U {3 
contains a simple closed curve which lies in L( G). 

7. Groups of homeomorphisms 

We saw in § 6 that the iterates of elements of a discrete convergence group 
behave in a very regular fashion. We consider now what conditions on an 
arbitrary group G of self homeomorphisms of [Rn allow one to conclude that G is 
a discrete convergence group. A sufficient condition is given in Theorem 7.8. 

Next, the fact that we can classify the elements g of a discrete convergence 
group G in exactly the same way as elements of a Mobius group makes it natural 
to ask if each such g is the topological conjugate of a Mobius transformation h. 
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More important, is each convergence group G topologically conjugate to a 
Mobius group H? We provide examples to show that, except in the case of a 
loxodromic element, the answer to both questions is, in general, 'no'. 

We assume throughout this section that g is an arbitrary self homeomorphism 
of ~n and that G is a group of such elements. Theorems 6.1 and 6.2 suggest how 
to extend the classification of Definition 5.1 to elements g of G. 

7.1. DEFINITION. We say that g is elliptic if ord(g) < 00, that g is parabolic if 
there exists a point Xo such that 

(7.2) lim gj = Xo and lim g-j = Xo 
j-+oo j-+oo 

c-uniformly in ~n\{xo}, and that g is loxodromic if there exist two points xo, Yo 
such that 

(7.3) lim gj = Yo and lim g-j = Xo 
j-+oo j-+oo 

c-uniformly in ~n\{xo} and ~n\{yo}, respectively. 

7.4. LEMMA. The homeomorphism g is elliptic, parabolic, or loxodromic 
according to Definition 7.1 if and only if (g) is a discrete convergence group and g 
is an elliptic, parabolic, or loxodromic element of (g), respectively. 

Proof. We may exclude the elliptic case where there is nothing to prove. Then 
the necessity follows from Theorems 6.1 and 6.2. For the sufficiency, (7.2) or 
(7.3) imply that ord(g) = 00 and that (g) is a discrete convergence group with 
L( (g» = {xo} or L( (g» = {xo, Yo}, respectively. Then g is a parabolic or 
loxodromic element of (g) with fix(g) = {xo} or fix(g) = {xo, Yo} by Theorems 
5.10 and 5.11, respectively. 

The classification in Definition 7.1 is clearly not exhaustive for the elements of 
an arbitrary group G. Moreover, Example 7.20 shows that G need not be a 
convergence group even if it contains only elements of the three types described 
above. However, we prove next that G is a convergence group if it is properly 
discontinuous in ~\E where E is closed and has only point components. We 
begin with the following result. 

7.5. LEMMA. Suppose that E is a totally disconnected closed set, that {rk} is a 
sequence of positive numbers which converge to 0 and that {Dk} is a non­
decreasing sequence of domains in ~ n\E such that 

(7.6) sup q(x, E) ~ rk 
xEiJDk 

for each k. If Xo is in E and if Ck is the component of ~n\Dk which contains xo, 
then 

(7.7) lim q( Ck ) = O. 
k-+oo 

Proof. Suppose that (7.7) does not hold. Then {Ck} is a non-increasing 
sequence of continua whose intersection is a continuum C which contains Xo [32]. 
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Since E is totally disconnected, there exists a point Yo E C\E which can be joined 
by an arc a c IRn\E to a point Zo E D1• Fix k so that rk < q(a, E). Then 
Zo E an Dk while an aDk = 0 by (7.6). Hence a c Dk which contradicts the fact 
that Yo E C c IRn\Dk· 

7.8. THEOREM. If E is a totally disconnected closed set and if G is properly 
discontinuous in ~n\E, then G is a discrete convergence group with L(G) c E. 

Proof. By (2.3), L(G) c E and hence G is discontinuous and discrete. Thus it 
remains to show that for each infinite sequence of elements in G there exist a 
subsequence {gj} and points xo, Yo such that gj~ Yo and gj-l~XO c-uniformly in 
[Rn\{xo} and ~n\{yo} respectively; here Xo and Yo need not be distinct. 

Fix Zo E IRn\E. By compactness we can choose a subsequence {gj} of the given 
sequence and points Xo, Yo such that 

(7.9) ~im g/zo) = Yo, ~im gj\zo) = Xo. 
J-~ J-+~ 

Then Xo, Yo E L( G) c E as in the proof of Lemma 4.4. Next let U, V be 
neighbourhoods of Xo, Yo, respectively. We shall complete the proof by showing 
there exists a jo such that 

(7.10) gj(lRn\U) c V, gj\lRn\ V) c U, 

whenever j ~ jo. 
Let {rd be a decreasing sequence of numbers in (0, q(zo, E)) which converge 

to 0, and set 

Ek = {x E IRn: q(x, E) ~ rk} 

for k = 1, 2, .... Next let Dk denote the component of IRn\Ek which contains zoo 
Then aDk c Ek, the domains Dk satisfy the hypotheses of Lemma 7.5, and hence 
for each x E E, 

lim q( Ck(x)) = 0, 
k-+ao 

where Ck(x) denotes the component of IRn\Dk which contains x. Thus we can fix 
k = ko such that 

(7.11) 

and such that C(xo) =1= C(yo) if Xo =1= Yo. Then since D = Dk is compactly contained 
in IRn\E, there exists a jo such that 

(7.12) 

and, with (7.9), such that 

(7.13) Yj = gj(zo) E C(yo), Xj = gj-l(ZO) E C(xo) 

whenever j ~ jo. 
Suppose that j ~ jo. Since D is connected, (7.12) implies that gj(D) and gj-\D) 

each lie in a component of IRn\D. If Cv C2 are different components of IRn\D 
and if 

(7.14) 
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then ~n\CI is connected [32, Theorem 1.9.11] while 

ogj(G.) n (~n\CI) c gj(D) n (~n\CI) = 0, 

gj(G.) n (~n\CI) *0. 

Thus ~n\CI cgj(C2), whence 

(7.15) 

(7.16) 

gj(~n\C2) c C l1 

gj-I(D) C C2. 

Since Zo E D, (7.13) implies that 

(7.17) 

and hence that 

(7.18) 

If Xo * Yo, then C(xo), C(Yo) are different components of ~n\D, 

Zo E D cg;(C(xo))\C(yo) 

by (7.18), and (7.14) holds with CI = C(Yo) and C2 = C(xo). Thus 

g;(~ n\c(xo)) c C(Yo) 
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by (7.15). This and (7.11) imply the first half of (7.10). The second half follows 
similarly. 

Finally, if Xo = Yo, then C(xo) = C(Yo) and 

(7.19) gj(~n\c(yo)) c C(Yo). 

For otherwise we could find a component C of ~n\D different from C(Yo) such 
that gj(C)\C(yo) * 0, (7.14) would hold with CI = C(Yo) and C2 = C, and we 
would obtain 

g;I(D) c C(xo) n C = C(Yo) n C 

from (7.16) and (7.18), a contradiction. The first half of (7.10) is now a 
consequence of (7.11) and (7.19); the proof for the second half is similar. 

The proof of Theorem 7.8 depends crucially on (7.7) of Lemma 7.5. There the 
hypothesis on E was used to conclude that E contains no continua and that ~n\E 
is connected. The following example shows that this second property is not 
sufficient to imply the desired conclusion in Theorem 7.8. 

7.20. EXAMPLE. For each tamely imbedded Jordan curve C in ~n there exists a 
group G with the following properties: G contains only parabolic elements 
besides the identity, G is properly discontinuous in ~n\c with L( G) = C, and G 
is not a convergence group. 

Proof. Let a be any irrational number and let G be the group generated by 

gl(XI, X2, ... , xn) = (Xl + a, X2, ... , xn), 

g2(XI, X2, ... , xn) = (Xl + 1, 2x2, ... , 2xn). 
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Then each g EGis of the form 

g(XI' X2, ... , xn) = (Xl + pa + q, 2QX2, ... , 2Qxn ), 

where p, q = 0, ±1, ±2, .... If g is not the identity, then pa + q =1= ° and g satisfies 
(7.2) with Xo = 00. 

Let L denote the closure of the xraxis. From the above representation we see 
that each sequence in G contains a subsequence {gj} such that 

(7.21) ~im gj = 00 or ~im gj-l = 00 
J-+OO J-+OO 

c-uniformly in IR n\L; hence G is properly discontinuous in IRn\L. Next for each 
integer t > 1, there exist integers p and q such that 1 ~ P ~ t and Ipa + q I < 1/ t 
[20, Theorem 7.1]. This implies the existence of a sequence {gt} in G such that 

(7.22) limgt(x) =x and limgt-\x) =x 
j-+oo j-+oo 

for all X E L. Hence L(G) = L while (7.21), with gj = gt, and (7.22) show that G 
does not have the convergence property. Thus G is the desired group for the case 
where C=L. 

For the general case let I be a self homeomorphism of IR n for which I(L) = C 
and replace G by loG 0/- 1

• 

7.23. REMARKS. It is easy to modify the above construction and obtain a group 
G such that G contains, besides the identity, only loxodromic elements with 
common fixed points, G is properly discontinuous in IR n with L(G) = C, and Gis 
not a convergence group. 

Many of the results derived for discrete convergence groups in §§ 4, 5, and 6 do 
not hold for arbitrary discrete groups G. For example, the group G in Example 
7.20 is abelian but non-elementary; the group cited above is non-elementary 
while its loxodromic elements all have the same fixed points. 

We turn now to the question of deciding if convergence groups are topologi­
cally conjugate to conformal groups. 

7.24. DEFINITION. We say that an element g of G is standard if it is topologically 
conjugate to a Mobius transformation h, and that G is standard if it is 
topologically conjugate to a Mobius group H. 

Since the classification in Definition 7.1 is invariant with respect to topological 
conjugation, a homeomorphism which is conjugate to an element of a discrete 
Mobius group must be elliptic, parabolic, or loxodromic. We consider what can 
be said about each of these classes. 

7.25. Elliptic elements. By a theorem due in part to Brouwer, Kerekjarto, and 
Eilenberg [5], each periodic self homeomorphism I of S2 is topologically 
conjugate to an orthogonal transformation. 

The situation is different in higher dimensions. Montgomery and Zippin 
constructed in [23] a self homeomorphism I of S3 with period 2 where fix(/) is a 
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wild knot; hence f is not topologically conjugate to an orthogonal transformation. 
More exotic examples can be found among counter-examples to the generalized 
Smith conjecture. In particular, Giffen [10] has shown that for n ~ 4 there exist 
smooth, and hence quasiconformal, periodic orientation-preserving homeo­
morphisms f of sn which are not conjugate to an orthogonal transformation. The 
recent affirmative solution of the Smith conjecture shows that no such examples 
exist when n = 3 [24]. In summary we have the following result. 

7.26. THEOREM. When n = 2, each elliptic element g is standard. For each n ~ 3 
there exists a non-standard elliptic element g and, when n ~ 4, we can choose g so 
that it is quasiconformal. 

7.27. COROLLARY. For each n ~ 3 there exists a finite non-standard convergence 
group G. 

Proof. If g is the element in Theorem 7.26, then (g) is a finite convergence 
group which is not standard. 

7.28. Parabolic elements. If g is parabolic with fixed point Xo = 00, then (7.2) 
says that 

lim gj = 00 and lim g-j = 00 
j_oo j_oo 

c-uniformly in ~n. This is known as Sperner's condition and the orientation­
preserving self homeomorphisms g of ~n which satisfy it are called 
quasitranslations. Obviously each such mapping has a homeomorphic extension 
to ~n. 

By results due to Sperner and Kerekjarto [16], each quasitranslation in ~2 is a 
topological translation, that is, it is topologically conjugate to a mapping of the 
form f(x) = x + el' Again the situation is different in higher dimensions, and for 
each n ~ 3, Kinoshita [18] and Husch [14] have exhibited quasitranslations of ~n 
which are not topological translations. 

7.29. LEMMA. Each sense-preserving parabolic Mobius transformation h is a 
topological translation. 

Proof. We may assume that h fixes 00. Then by [1, pp. 47-49], h(x) = u(x) + a 
where u is an orthogonal transformation and a considered as an n-vector has a 
non-zero projection b onto the k-plane fix(u), where 1 ~ k ~ n - 2. Let E denote 
the (n - I)-plane through the origin orthogonal to b. If Xo E E, then 

h(xo) = u(xo) + a = Xl + b where Xl E E. 

Hence by induction, 

hj (xo) = Xj + jb where Xj E E, 

and the (n - I)-planes hj(E) are pairwise disjoint for j = 0, ±I, ±2, .... Since 
h - b is isotopic to the identity, we can now argue as in [14, p. 59] to obtain a self 
homeomorphism g of ~n such that h = g-lo fog where f(x) = X + el' 
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Thus a quasi translation is standard if and only if it is a topological translation 
and we obtain the following result. 

7.30. THEOREM. When n = 2, each orientation-preserving parabolic element g is 
standard. For each n;::= 3 there exists an orientation-preserving non-standard 
parabolic element g. 

7.31. THEOREM. For each n;::= 2 there exists a non-standard convergence group 
G with exactly one point in L( G). 

Proof. When n;::= 3, we can set G = (g) where g is the element in Theorem 
7.30. 

We give an alternative argument which includes the case where n = 2. Let H be 
a Mobius group with at least n + 1 generators that contains only loxodromic 
elements which map the unit n-ball B n onto itself. Next let f be a homeomorph­
ism which maps Bn onto ~n and set G = 1 0 Hoi-I. Then each g in G has a 
homeomorphic extension g* to IR n and the corresponding group of extensions G* 
is a discrete convergence group all of whose elements are parabolic and fix 00. 

However G* cannot be topologically conjugate to a Mobius group since each 
such group is, in turn, conjugate to a discrete group of euclidean isometries of ~n 
and hence can have at most n generators of infinite order by, for example, [33, 
Theorem 3.2.8]. 

7.32. Loxodromic elements. If g is loxodromic with Xo = 0 and Yo = 00 as its 
repulsive and attractive fixed points, then 

lim gj = 00 and lim g-j = 0 
j--+oo j--+oo 

c-uniformly in IRn\{o} and ~n, respectively. The orientation-preserving mappings 
g which satisfy this condition are called topological dilations, and by results due to 
Kerekjart6 [17], Homma and Kinoshita [13], and Husch [15], they are topologi­
cally conjugate to a mapping of the form f(x) = 2x whenever n = 2, 3, or n ;::= 6. 

7.33. THEOREM. When n = 2, 3 or n ~ 6, each sense-preserving loxodromic 
element g is standard. 

Theorem 7.33 probably holds when n = 4, 5; the difficulty for these cases 
involves a problem in four-dimensional topology. In any case, Theorem 7.33 
suggests that it may be more difficult to exhibit a non-standard discrete 
convergence group G with card( L( G)) ;::= 2 than for the cases where 
card(L(G)) = 0 and card(L(G)) = l. 

When n = 3, the existence of such a group G with card(L(G)) > 2 is an 
immediate consequence of the following important result due to Freedman and 
Skora [6]. 

THEOREM 7.34. For n = 3 there exists a non-standard non-elementary discrete 
quasiconformal group G. 
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In Part II of this article we shall use combination theorems to construct 
non-standard non-elementary discrete quasiconformal, and hence convergence, 
groups in ~n for each n > 3. 

7.35. Lifting problem. An important tool for studying discrete groups of 
Mobius transformations acting on ~ 2 results from the fact that each such group G 
can be extended to a Mobius group G* acting on ~3. Thus it is natural to ask 
when a discrete convergence group G acting on ~ n can be extended to a discrete 
convergence group G* acting on ~n+l. A recent result of Freedman [7] shows 
that this is possible for the case where n =1= 3 if G is isomorphic to a free group 
with k generators and L( G) is a Cantor set. The case where n = 3 is equivalent to 
the validity of 4-dimensional surgery [7]. 
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