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1. Introduction

In this paper we begin an investigation into the geometry of discrete quasiconfor-
mal groups. The structure of general topological groups is not as well understood
as that of conformal or Mdbius groups, a class of groups which have been studied
intensively for many years. We hope to gain additional insight into both families
by studying groups of homeomorphisms of uniformly bounded dilatation acting
on a domain D in R”, a class which lies between the two kinds mentioned above.

One natural way to construct such a group is to conjugate a conformal group by
a quasiconformal mapping. Gehring and Palka first asked in [9] if this were the
only method, that is, if each quasiconformal group is the quasiconformal
conjugate of a conformal group. Sullivan [27] and Tukia [28] answered this
question in the affirmative for quasiconformal groups acting on subsets of the
extended complex plane R?; a recent paper by Hinkkanen [11] establishes an
analogous result for quasisymmetric or one-dimensional quasiconformal groups
acting on R. Later Tukia [29] constructed for every n >2 a quasiconformal group
which is not isomorphic as a topological group, and hence not quasiconformally
conjugate, to a Mobius group. Tukia’s examples are not discrete groups and his
methods were subsequently modified by Martin [21] to yield discrete groups
which are not quasiconformally conjugate to a conformal group. Finally
McKemie [22] used Tukia’s methods to construct for each K>1 a K-
quasiconformal group not quasiconformally conjugate to a Mdbius group.

We restrict our attention in this article to discrete quasiconformal groups acting
on R” and show that these groups resemble in many ways their conformal
counterparts. In §3 we introduce a characteristic convergence property for
quasiconformal groups and devote the remainder of Part I of this paper to the
study of convergence groups, groups of self homeomorphisms of R” which have
this property. In § 4 we derive several important properties of the limit set L(G)
of a discrete convergence group G; for example, L(G) is perfect if it contains
more than two points. In § 5 we describe the elementary discrete convergence
groups G, that is, those with card(L(G)) =2, and show that we can classify the
elements g of a discrete convergence group G as elliptic, parabolic, or loxodromic
according to their order and number of fixed points. In §6 we study the
behaviour of iterates of parabolic and loxodromic elements and then use this
information to investigate the structure and limit sets of the non-elementary
discrete convergence groups G with card(L(G)) > 2. Finally, in § 7 we derive a
condition sufficient to imply that a group of homeomorphisms is a convergence

The research of the first author was supported in part by the Science Research Council of the
United Kingdom, while he was visiting the University of Cambridge, and by the U.S. National
Science Foundation, and that of the second author was supported in part by the Sloan Foundation,
A.M.S. (1980) subject classification: 30 C 60,

Proc. London Math. Soc. (3) 55 (1987) 331-358.



332 F. W. GEHRING AND G. . MARTIN

group, and give examples to show that a convergence group need not be
topologically conjugate to a Mdbius group.

Part II of this article will be published separately. There we will employ
distortion properties of quasiconformal mappings to derive more detailed results
concerning the structure of discrete quasiconformal groups. We will also study the
Poincaré series for the groups which map a ball or half space onto itself.

2. Notation and definitions

For n =2 we let R" denote euclidean n-space, R” its one point compactification
R” U {«}, and e, ..., e, the standard orthonormal basis for R".

A Mébius transformation acting on R” is a finite composition of reflections in
spheres and hyperplanes; we let GM (R”) denote the group of all such
transformations.

Stereographic projection p is the mapping from R” onto the unit sphere $” in
R™*! given by

2(x - en+1)
=t ——— .
p(X) Cht1 |X _en+1|2

We define the chordal distance between two points x and y in R” as

q(x, y)=1p(x) =pB)l,
and let B,(x, r) denote the chordal ball

By(x, r)={y e R": q(x, y)<r}.

Throughout this paper, the topology of R” and all notions of convergence will be
taken with respect to the chordal metric.

2.1. Groups of homeomorphisms. Suppose that G is a group of self homeo-
morphisms of a domain D in R". Then G is a K-quasiconformal group if each
g€ G is K-quasiconformal in D; G is a quasiconformal group if it is K-
quasiconformal for some K. By the general form of Liouville’s theorem, a
1-quasiconformal group is in fact the restriction to D of a Mobius group when
n =3. See, for example, (8, 26, 4].

Next we say that G is discrete if it contains no infinite sequence of distinct
elements which converge uniformly on compact subsets, or simply c-uniformly, in
D to an element of G.

The group G is said to be discontinuous at a point x € D if there is a
neighbourhood U of x in D such that

(2.2) gHNU=2

for all but finitely many g € G. We denote by O(G) the set of all x € D at which G
is discontinuous and call L(G) = D\O(G) the limit set of G; we say that G is
discontinuous if O(G) is not empty. It is easy to check that a discontinuous group
is discrete; the converse is not true [2].

We say that G is properly discontinuous in an open set O < D if for each
compact set F < O,

gANF=g
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for all but finitely many g € G. In this case it follows that G must be discontinuous
at each point of O and that

(2.3) L(G)c D\O.

By a sequence we will always mean an infinite sequence of distinct elements of
G. Finally, we say that a set E c D is G-invariant if g(E) = E for each g € G. The
following result is then an immediate consequence of the definitions given above.

2.4. LemMma. The set O(G) is an open set and L(G) is a closed set; they are both
G-invariant.

3. Compactness

Mbbius transformations and quasiconformal mappings share certain conver-
gence properties. We give one of these which has far-reaching implications.

3.1. LEMMA. Suppose that D is a domain in R" and that F is a family of
K-quasiconformal mappings of D which is not equicontinuous in D. Then there
exist a point x, in D and an infinite subfamily F, of F which is equicontinuous in
Dy = D\{x,}.

Proof. Since F is not equicontinuous in D, there exist a point x,€ D and a
positive constant a such that for j=1, 2, ... we can find a mapping f; € F and a
point x; € D\{xq} with g(x;, xo) <1/j and

q(fi(x;), f(x0)) =a >0.
Let Fo={f} and for k=1, 2, ... set
D= D\{xo, Xies Xke+1> };

b= min q(f(xe). f(xe)) > 0.

Then for each j and k, R\f}(D,) contains a pair of points whose chordal distance
from one another is at least min(a, b;) > 0. Thus the family F, is equicontinuous
in each domain Dy, and hence in their union Dy, by Theorem 19.2 in [31].

The following consequence of Lemma 3.1 plays a crucial role in what follows.

3.2. THEOREM. Suppose that F is an infinite family of K-quasiconformal self
mappings of R". Then there exists a sequence {f} in F such that one of the
following is true.

A. There exists a K-quasiconformal self mapping f of R” such that

limfi=f and limf;'=f""
- jre

J—e

uniformly in R". i
B. There exist points x,, Yo in R” such that

. —_— . _1_
jl,lgﬁ—yo and ]l_ggf,- =X
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c-uniformly in R™\{x,} and R"\{y,}, respectively. The possibility that x,= y, may
occur.

Proof. Suppose that F has an infinite subfamily F, which is equicontinuous in
R”. By Ascoli’s theorem there is a subsequence {f;} of mappings in K, which
converge to a limit mapping f uniformly in R”. Then it follows from Theorems
211, 37 2, and 21.11 of [31] that f is a K-quasiconformal self mapping of R” and
that f;* converges to f ' umformly in R”. In particular, we note that G, = {f; '}
is an infinite subfamily of G = {f': f € F} which is equicontinuous in R".

Suppose now that F contains no infinite subfamily which is equicontinuous in
R”. Then by Lemma 3.1, there exist a point x, and an infinite subfamily F, which
is equicontinuous in R™\{x,}; as before we can extract a subsequence {f} which
converges c-uniformly in R"\{x,} to a mapping f. From Theorems 21.1 and 37.2
in [31] it follows that f is either a K-quasiconformal mapping of R™\{x,} or a
constant. The first possibility would imply that f has a quasiconformal extension
to R”, that f — f; uniformly in R”, and hence that {f} is an infinite subfamily of ¥
which is equicontinuous in R”, contradicting our hypothesis. Thus f must be equal
to some point y, € R".

Next it follows from what was proved in the first part that the family
G={f"": feF} does not contain an infinite subfamily which is equicontinuous
in R™. Hence we can argue as above to find pomts x;, y; € R" and a subsequence
of {f/'} which converges to y, c-uniformly in R™\{x,}; by relabelling we may
assume that f;'—y, c-uniformly in R"\{x,}. Then {f;} will be the desired
sequence if we can show that yo=x; and xy=y,.

Suppose that yp#x; and choose x € R™\{xo, y1}. Then f(x)—y, and so for
large j the points f;(x) are compactly contained in R"\{x,}. Hence

x= }i_{gfj“(ﬁ(X)) =y

and we have a contradiction. Thus y, = x,. A similar procedure yields x, = y; and
the proof is complete.

The conclusions of Theorem 3.2 motivate the following definition which will
allow us to see to what extent the above convergence properties determine the
geometric behaviour of Mobius and quasiconformal groups. (See also [19].)

3.3. DeriNiTiON. A family F of self homeomorphisms of R” is said to have the
convergence property if each infinite subfamily of F contains a sequence {f;} such
that one of the following is true.

A. There exists a self homeomorphism f of R” such that

limf,=f and hmf, =f!

Joe

uniformly in R". )
B. There exist points x,, y, in R” such that

: — . H -1 _
limf; =y, and limf; = x,

c-uniformly in R™\{x,} and R"\{y,}, respectively.
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3.4. DeFiNITION. A group G of self homeomorphisms of R” is said to be a
convergence group if it has the convergence property.

3.5. CoroLLARY. If G is a quasiconformal group acting on R”", then G is a
convergence group. In particular, every Mbius group is a convergence group.

3.6. REMARK. If f is a self homeomorphism of R” and if G is a convergence
group, then f oG of " is also a convergence group. Hence there exist convergence
groups which are neither Mobius nor quasiconformal groups. Moreover, Tukia’s
example in [29] is a quasiconformal group which is not isomorphic, and hence not
topologically conjugate, to a Mébius group. See § 7 for further examples.

The convergence property takes the following form for discrete groups.

3.7. TueoreM. If G is a discrete convergence group, then for each infinite
sequence of elements in G there exist a subsequence {g;} and points x,, y, in R"
such that

limg; =y, and limg'=x,
oo

Jroe

c-uniformly in R"\{xo} and R™"\{y,}, respectively. Moreover, x,, ¥, lie in each
G-invariant closed set E which contains at least two points.

Proof. Because G has the convergence property, there exists a sequence {g;}
in G such that g;—g and g; lsg™ umformly in R”, where g is a self
homeomorphism of R”, or such that g;— y, and g/ ' x, c-uniformly in R"\{x,}
and R™"\{y,}, respectlvely, where x,, yo € R”. The first case cannot occur, since
otherwise {g;,,°g; '} would contain an infinite number of distinct elements of G
which converge umformly in R" to the identity of G.

Suppose next that E is a G-invariant closed set with card(£) =2 and choose
x € E\{xo}. Then the points g;(x) must lie in £ and hence so must their limit y,. A
similar argument shows that x, € E and the proof is complete.

The following immediate consequence of Theorem 3.7 further relates the
notions of discreteness and discontinuity for convergence groups.

3.8. COROLLARY. Suppose that G is a discrete convergence group and that E is a
G-invariant closed proper subset of R” which contains at least two points. Then G
is properly discontinuous in, and hence discontinuous at each point of, R R™\E. In
particular, L(G) c E.

Proof. Suppose that G is not properly discontinuous in R™\E. Then there exist
a compact subset F of R”\E and a sequence {g;} in G such that

(3.9) g(F)NF#Q

for all j. By Theorem 3.7 there exist a subsequence, which we again denote by
{g;}, and points xo, Yo€ E such that g;—y, uniformly in F. Let V be a
neighbourhood of y, such that VN F=. Then g(F)cV for large j and we
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obtain a g; for which (3.9) cannot hold. Thus G must be properly discontinuous in
R™\E.

3.10. CoroLLARY. Suppose that G is a discrete convergence group and that E,
E,, E; are pairwise disjoint closed sets in R". Then at most finitely many g in G
satisfy

3.11) gEJNE+D for k=1,2,3.
Proof. If infinitely many g € G satisfy (3.11), then by Theorem 3.7 we can

choose a sequence {g;} in G and points x,, Yo such that g;— y, c-uniformly in
R™\{x,} and such that

(3.12) g(E)NE,#J
for all j and k. By relabelling if necessary, we may assume that E,UE,c
R™\{xo}. Then g;— y, uniformly in E; U E, and with (3.12) we obtain

q(yo, Ex) s,ll,n; q(yo, 8i(Ex)) =0,

whence y; € E; for k =1, 2, a contradiction.

3.13. DermITION. We denote by fix(G) the set of points in R” which are fixed
by each element in G.

3.14. CoroLLary. If G is an infinite discrete convergence group, then
card(fix(G)) < 2.

We consider next to what extent the family of K-quasiconformal mappings is
maximal with regard to the convergence property in Definition 3.3. Cf. [3] and [8,
Theorem 18].

3.15. DeriNimioN. A family F of self homeomorphisms of R” is said to be
complete with respect to Mobius transformations if for each g, h in GM(R") the
mapping g °f ok lies in F whenever f does.

3.16. THEOREM. Let F be a family of self homeomorphisms of R" which is
complete with respect to Mobius transformations. Then F has the convergence
property if and only if there is a constant K such that each f in F is
K-quasiconformal.

Proof. The sufficiency foliows from Theorem 3.2. For the necessity let
K = sup max|f(x)],
{xI=1

where the supremum is taken over all f € F which fix the points 0, e;, . Then
there is a sequence of mappings {f;} in F normalized as above for which

K = lim max |f;(x)].

Jrx |x|=1

Since F has the convergence property and since the mappings f; fix three points,
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there exists a subsequence which converges to a homeomorphism uniformly in
R”. Hence K is finite.

Next let f be any mapping in F. We wish to show that f is K-quasiconformal.
Since F is closed under conjugation by Mobius transformations, we may assume,
without loss of generality, that f also fixes «. Fix x, € R” and r > 0, and choose x,
such that |x; — xo| =7 and

If(x) —fxo)l = mf(xo» r)= Ixr_lli:;r If(x) — f(xo)l.
Let g and & be similarity mappings such that
h(e)=x1, h(0)=xo, g(f(x1))=e1, g(f(xp))=0.

Then gof oh is a normalized element of F,

M (xq, r) = lx‘Pa')(: |f(x) = f (xo)l
= my(xo, r) max g of o h(x)| < Km(xo, 1),
and f is quasiconformal with linear dilatation bounded by K.

3.17. COROLLARY. A self homeomorphism f of R" is quasiconformal if and only
if the family
F={geofoh: g, h e GM(R")}

has the convergence property.

Tukia and Viisila have shown [30] that if G is a quasiconformal group acting
on R" which contains the group of all similarity mappings GM (R"), then G is
precisely the group GM(R"). If we combine this fact with what was proved
above, we obtain the following result.

3.18. TueoreM. If G is a convergence group which contains a subgroup which
is dense in GM(R"), then G is a subgroup of GM(R").

Proof. Let H denote the family of self homeomorphisms /4 of R™ for which
there exists a sequence {g;} in G such that g;— h and gj'— h~" uniformly in R".
Then H is a convergence group which contains GM(R") and hence a quasi-
conformal group by Theorem 3.16.

Let Hy={he H: h(0)=0} and let f be a Mébius transformation for which
f(0)=. Then feHy=f “lisa quasiconformal group acting on R” which contains
GM(R"™). Thus

Hy=f"'"*GM(R")of =« GM(R")

by the aforementioned result.
Finally, given any g € G we can find a Md6bius transformation f such that fog is
in H,. Hence g is a Mobius transformation.

Theorem 3.16 shows that the convergence property essentially characterizes
quasiconformal groups which act on R”. We can formulate this property for any
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domain D by replacing R” by D and ‘uniformly’ by ‘c-uniformly’ in Definition
3.3. We conclude this section by observing, however, that an infinite group which
satisfies the convergence property on a proper subdomain of R” cannot be
discrete.

3.19. THeOREM. Suppose that D is a domain in R" and that G is a group of self
homeomorphisms of D which has the convergence property on D. If G is infinite
and discrete, then D = R".

Proof. As in the proof of Theorem 3.7 there exist points xg, yo€ D and a
sequence {g;} in G such that g;—y, and g;'— x, c-uniformly in D\{x,} and
D\{yo}, respectively. Let U, V be chordal balls about x,, y,, respectively, with
closures in D. By the c-uniform convergence there exists an integer j such that
g/(8U) <V and g; (V) < U whence

(3.20) Ag;(HND\V)=¢ and g(U)N(D\V)#J.

Since D\V is connected, (3.20) implies that D\V < g;(U) and hence that
Dcg(O)uVcD.

Thus D = R"

4. Limit set of a discrete convergence group

We assume throughout this section that G is a discrete convergence group
acting on R". We begin with a result which shows that each point of L(G) is the
limit under elements of G of points of O(G).

4.1. LemMa. For each point y, in L(G) there exist a point x, in L(G) and a
sequence {g;} in G such that

limg;=y, and limg;'=x,
]—)00

Jres

c-uniformly in R™\{x,} and R"\{y,}, respectively.

Proof. For each j=1,2, ..., let V;=B_,(y,, r;) where the r; are positive and
converge to 0. Since G is not discontinuous at y,;, we can choose a sequence {k;}
in G such that

(4.2) V)NV, #0

for all j. Next by Theorem 3.7 we can choose a subsequence, which we again label
{h,}, and points x,, y, € R” such that h,—> y, and h;'— x; c-uniformly in R"\{x,}
and R™\{y,}, respectively.

Suppose that y, = xy. Then we get the desired conclusion by taking x,; = y, and
g =h;". Suppose next that y, #x,. By (4.2) we can find for each j a point z;€ V]
with #;(z;) € V;. These points are compactly contained in R"\{x,} for large j and
hi(z;)— y, by the c-uniform convergence. Thus

(3> yo) <lim (g(, Ai(z)) + 9 (hi(2), o)) =0,

Y1 =Yo, and we may take x, =x, and g; = h;.



DISCRETE QUASICONFORMAL GROUPS I 339

If U is a neighbourhood of x; and if x € U\{y,}, then g; '(x)—x,,
g '(eg (NNU#D

for large j, and G is not discontinuous at x,. Hence x, € L(G).

4.3. DerinmioN. For each x in R™ we let L(x, G) denote the set of all y in R"
for which there exists a sequence {g;} in G such that g;(x)—y.

4.4. Lemma. We have L(x, G) c L(G) for all x in R™ with equality whenever x
is not fixed by G.

Proof. Let U be a neighbourhood of a point y; € L(x, G), choose a sequence
{g;} in G such that g;(x) € U for all j, and let h; =g;og7". Then {A;} is a sequence

in G and g(x) e (U)NU#D

for all j. Hence G is not discontinuous at y, and y, € L(G).

Suppose next that y; € L(G) and let x, and {g;} be as in Lemma 4.1. If x is not
fixed by G, there exists ge G such that x#x, or g(x)+#x,. Hence either
gi(x)— y, or g;°g(x)— y; and we conclude that y, € L(x, G).

4.5. THEOREM. If L(G) contains three points, then L(G) is a perfect set.

Proof. Let y, € L(G) and choose x; and {g;} as in Lemma 4.1. Since
card(L(G)) = 3, there exists an x, € L{(G)\{xy, y1}.

If g;(x,) #y for infinitely many j, then {g;(x,)} is an infinite subset of L(G)
which has y, as a limit point. Otherwisc we may assume that

(4.6) gi(x2) =n

for all j. If y; #x,, then by (4.6), {g;(y1)} is an infinite sequence of points in L(G)
which converges to y,. Next if y; = x;, then there exists a point

X3 € L(G)\{xly xz};

and {g;(x5)} is again an infinite subset of L(G) with limit point y,. Thus y, is a
limit point of L(G) and so L(G) is perfect.

The dichotomy that L(G) contain fewer than three points or be perfect is a
classical result for Mobius groups and motivates the following definition.

4.7. DeriNiTioN. We say that G is an elementary group if the cardinality of
L(G) is at most 2. Otherwise we say that G is non-elementary.

We conclude this section with two further results on the limit set which depend
on results established in §85 and 6. The first shows that the notions of
discontinuous and properly discontinuous coincide for convergence groups.

_4.8. TueoreM. If G is discontinuous, then G is properly discontinuous in
R™\L(G).

Proof. By Lemma 2.4 and hypothesis, L(G) is a G-invariant closed proper
subset of R". Hence Corollary 3.8 implies that G is properly discontinuous in
R™\L(G) if L(G) contains at least two points.
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If L(G) = {xo} and if F is any compact set in R"\L(G), then Theorem 5.10 and
Lemma 5.5, with E; = {x,} and E,=F, imply that g(F)NF = for all but a
finite number of g € G.

Finally, if L(G)=(J, then G is finite by Theorem 5.7 and there is nothing to
prove.

4.9. THEOREM. The set L(G) is either nowhere dense or coincides with R”".

Proof. We may assume that G is non-elementary and hence that L(G) is a
non-empty perfect set. Suppose that L(G)# R" Then there exists a point
x € dL(G). Let V denote any neighbourhood of a point y € L(G). Then
y € L(x, G) by Theorem 6.10 and there exists a g € G such that g(x) € V. Hence
g (V) is a neighbourhood of x which contains a point x, € O(G), and y, = g(x,)
lies in VAL(G). Thus int(L(G)) =@ and L(G) is nowhere dense.

5. The elementary discrete convergence groups

We assume again throughout this section that G is a discrete convergence
group. We begin by classifying the elements of G exactly as in the case of a
discrete Mobius group. We then study the structure of the elementary groups and
use this information to show that our classification of elements is exhaustive.

5.1. DerniTioN. For each g in G we let
ord(g) = inf{m >0: g” =identity}, fix(g)={xeR": g(x)=x}.
We say that g is elliptic if ord(g) <, that g is parabolic if ord(g)= and
card(fix(g)) = 1, and that g is loxodromic if ord(g) = % and card(fix(g)) = 2.

The following partially motivates the above classification.

5.2. LemMa. If g is in G and ord(g) = =, then
card(fix(g)) <2, fix(g)< L(G).

Proof. Since ord(g) =, the subgroup (g) generated by powers of g is an
infinite discrete convergence group. Hence

card(fix(g)) = card(fix({(g))) <2

by Corollary 3.14. Next if x is fixed by g, then it is fixed by each element in (g).
Hence G cannot be discontinuous at x and x € L(G).

We say that U is a fopological ball if U is the image of an open euclidean ball
under a self homeomorphism of R”. We then have the following useful condition
which implies that an element of G is loxodromic.

5.3. LEMMA. Suppose that g is an element of G. If there exists a topological ball
U such that g(U) < U, then g is loxodromic with one fixed point in U and the other
in R™\O.
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Proof. The element g cannot be of finite order m since otherwise we would
have U =g"(U)c U. Next the hypotheses imply that g7Y(V)c V where V=
R™\U. The Brouwer fixed point theorem [12] then implies that g has a fixed point
in U and that g7', and hence g, has a fixed point in V. Thus g has exactly two
fixed points by Lemma 5.2 and hence is loxodromic.

5.4. LemMA. Suppose that x,, y, are distinct points in R” and that {g;} is a
sequence in G which converges to y, c-uniformly in R™\{x,}. Then all but a finite
number of the g; are loxodromic.

Proof. Let U= B,(y,, r) where 0<r<gq(x,, y5)- Then U is a chordal ball
compactly contained in R"\{x,} and g;(U) = U for all sufficiently large j by virtue
of the c-uniform convergence. Hence all but a finite number of the g are
loxodromic by Lemma 5.3.

We have next the following sharpened form of Corollary 3.10.

5.5. LeMMA. Suppose that E,, E, are disjoint closed sets in R". Then at most
finitely many non-loxodromic g in G satisfy

EEINE #D fork=1,2.

Proof. Suppose otherwise. Then by Theorem 3.7 we can find points xq, y, and
a sequence {g;} of non-loxodromic elements in G such that g;— y, c-uniformly in
R™\{x,} and such that

(5.6) g(E)NE, #J

for all j and k. If E, U E, = R"\{x,}, then g — Yo uniformly in E,U E, and (5.6)
implies that y,€ E; N E,, a contradiction. Hence we may assume that x,€ E|.
Then g;— y, uniformly in E, and we have y, € E, by (5.6). Thus x,+# y, and all
but a finite number of the g; are loxodromic by Lemma 5.4.

We next classify the elementary groups in terms of the cardinality of their limit
sets.

5.7. TueoREM. The set L(G) is empty if and only if G is a finite group of elliptic
elements.

Proof. The sufficiency is trivial. For the necessity suppose that G were infinite.
Then by Theorem 3.7 there would exist points xo, y, and a sequence {g;} in G
which converges to y, c-uniformly in R™\{x,}: thus we would obtain

Yo€ L(x, G) c L(G)

by Lemma 4.4. Hence G is finite with only elliptic elements.

Theorem 5.7 implies that each finite group of elliptic elements is elementary. It
is natural to ask what one can say about arbitrary groups of elliptic elements.

5.8. LemMaA. If G contains no loxodromic elements, then either G is finite or
L(G) consists of a single point which is fixed by each element in G.
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Proof. Suppose that G is infinite. Then by Theorem 3.7 we can choose points
X0, Yo and a sequence {g;} which converges to y, c-uniformly in R"\{x,}. Since G
contains no loxodromic elements, Lemma 5.4 implies that y, = x,,.

_ Next let g be an element of G and set h; =g;°g~". Then k,— x, c-uniformly in
R™\{g(xo)} and g(x,) = x, again by Lemma 5.4. Hence x, is fixed by the group G.

Finally, suppose that y; is a point of L(G). Then by Lemma 4.1 there exist a
point x, and a sequence {#;} in G which converges to y, c-uniformly in R"\{x,}.
As above we see that y; = x; and we conclude that y; = x,, since otherwise x, # x,
and

Xo = }L‘g hi(xo) = y1.

Thus L(G) = {x¢}.

5.9. CoroLLARY. If G contains only elliptic elements, then G is elementary and
has at most one limit point.

5.10. TueoreM. The set L(G) contains exactly one point x, if and only if G is
an infinite group which contains only elliptic and parabolic elements which fix x,,.

Proof. If L(G) = {x,}, then G must be infinite and
{g(x0)} = g(L(G)) = {x0}

for each g € G since L(G) is G-invariant. Lemma 5.2 then implies that each
element of G is either of finite order or of infinite order with one fixed point. The
sufficiency is an immediate consequence of Lemma 5.8.

5.11. TueoreM. The set L(G) contains exactly two points x, and y, if and only
if G is an infinite group which contains only loxodromic elements which fix x, and
Yo, and elliptic elements which either fix or interchange xy and y,. In addition, G
must contain at least one loxodromic element and at most finitely many elliptic
elements which fix x, and vy, or are of odd order.

Proof. Suppose that L(G) = {x,, ys}. Since L(G) is G-invariant, each g G
satisfies one of the following conditions:
(5.12) 8(xo) =xo, 8(yo) = ¥o;
(5.13) g(xo) =yo,  &(¥o) = o

We show first that each g which satisfics (5.13) is an elliptic element of even
order. Suppose otherwise. Then

{xo, Yo} = fix(g*) = L({g*))

by Lemma 5.2, and by Lemma 4.1 there would exist a point x, and a sequence
{h;} in (g*) which converges to y, c-uniformly in R"\{x,}. Then for
x € R"™\{xy, g '(x,)} we would have

Yo= ,1-1’2 hi(g(x)) =}Lrg g(hi(x)) = g(y0) = xo,

a contradiction. In particular, we see that G does not contain parabolic elements
since no such element g could satisfy (5.12).
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Since card(L(G))=2, G contains a loxodromic element by Lemma 5.8.
Finally, Lemma 5.5 with E; = {x,} and E, = {y,} implies that G has only finitely
many elliptic elements which satisfy (5.12). In particular, G contains only finitely
many elliptic elements g of odd order since no such g can satisfy (5.13).

For the sufficiency G contains by hypothesis a loxodromic element which fixes
xo and y,. Hence {x,, yo} = L(G) by Lemma 5.2.

Suppose next that y, € L(G). Then Lemma 4.1 yields a point x, and a sequence
in G which converges to y, c-uniformly in R™\{x,}. By hypothesis there exists a
subsequence {g;} whose elements either all fix or all interchange the two points
Xo, Yo. In either case,

lim g;(xo) € {Xo, Yo} if xo#xq,
Jjox

h=
}i_)rggj()’o) € {xo, Yoy if yo#uxy.

Thus L(G) = {xo, Yo}

5.14. Remarks. We remind the reader that the classification given in Theor-
ems 5.10 and 5.11 is for discrete convergence groups G.
The situations described in these results can take place. For example,

gi(z2)=z+1, g(z)=-z
generate an infinite discrete convergence group G which contains only elliptic and
parabolic elements that fix © and for which L(G) = {«}. Similarly, if m is a
prime, then

2milm

g1(z) =2z, g(z)=1/z, gs(z)=e z

generate a discrete convergence group G which contains infinitely many loxodro-
mic elements which fix 0 and », m — 1 elliptic elements of order m which fix 0 and
=, and infinitely many elliptic elements of order 2 which interchange 0 and «. In
addition, L(G) = {0, =}.

We show next that every element in a discrete convergence group is of one of
the three types given in Definition 5.1. This fact is a consequence of the above
description of the elementary groups and the following result.

5.15. TueoreM. If G is an abelian group, then G is elementary.

Proof. Suppose that L(G) contains three points y;, y,, y;. Then by Lemma 4.1
there are points X, X,, X3 € L(G) and sequences {g,;}, {g2,}, {§3,} in G such
that for k=1, 2, 3, ge;—yx c-uniformly in R"\{x.}. By symmetry and
relabelling, we may assume that one of the following two cases occurs:

(5.16) VWFEX, VaF X5
(5.17) ViF X2, NaF X3 YiFXL

Suppose first that (5.16) holds and choose disjoint neighbourhoods U;, U, of
Y1, ¥a, respectively, so that

U, cR™\{x,}, U,cR™\{x,}.
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Fix x € R™\{x,, x,}. Since U;U {x} is compactly contained in R™\{x,}, there
exists an integer j, such that

g (UU{x})c U
for j > j,. Similarly, there exists an integer j, such that
g],j(UZ U {x}) o Ul

for j >j,. Hence for j > j, = max (J,, j,) we have

81;°82/(x) €Uy, g2,°81,(x)e Uy,

a contradiction since G is abelian and U,, U, are disjoint.
Suppose next that (5.17) holds and choose pairwise disjoint neighbourhoods
U, Uz, Us of y1, ¥, ¥, respectively, so that

Uy = R"\{x,}, U, = R™\{x3}, Us = R"\{x,}.
If x € R™\{xy, x5, x5}, then as above there exists an integer j, such that for j > j,,
LNV {xH)cl;, g(LbUu{x)cls;, g(LhU{x})cl

from which we obtain

81,°83;°82;(x) € U1, 82;°81;°83(x) € Uy,
again contradicting the fact that G is abelian. This completes the proof.

5.18. THEOREM. 'Each element g in G is elliptic, parabolic, or loxodromic.
Moreover, g and g’ are always elements of the same type for each integer j # 0.

Proof. If g € G, then (g) is abelian, and hence elementary, and g is elliptic,
parabolic, or loxodromic by Theorems 5.7, 5.10, and 5.11. Next g is of finite
order if and only if g’ is. If g is of infinite order, then Theorems 5.10 and 5.11
imply that each element of (g) other than the identity is parabolic or loxodromic
depending on whether L({g)) contains one or two points, respectively.

We conclude this section with the following consequences of the results proved
above. The first is reminiscent of the fact that analytic functions which agree in an
open set must agree everywhere.

5.19. CoroLLarY. If fand g in G agree on an open set, then they are identical.

Proof. Let h=f"'eg. Then h(x)=x in an open set, h is elliptic since
card fix(h) >2, and hence h is equal to the identity by a classical result of
Newman’s [25] on periodic homeomorphisms of [R”.

5.20. CoRrOLLARY. Suppose that f is a quasiconformal self mapping of R™ which
has no fixed points and suppose that the iterates of f have uniformly bounded
dilatation. Then either ' is equal to the identity for some integer j or there exists a
sequence of integers {ji.} such that {f'c} converges to the identity uniformly in R".

Proof. By hypothesis F=(f) is a quasiconformal, and hence convergence,



DISCRETE QUASICONFORMAL GROUPS 1 345

group. If the second conclusion fails, then F is discrete and f must be elliptic by
Theorem 5.18, since f has no fixed points. Hence the first conclusion holds.

6. The non-elementary discrete convergence groups

We consider first how the iterates or powers of an element of a discrete
convergence group behave and then apply this information to study the
non-elementary groups. As earlier, we continue to let G denote a discrete
convergence group acting on R”.

Since elliptic elements are of finite order, the convergence properties of G
reveal little about the behaviour of the iterates of such an element. The situation
is different for elements of infinite order and we have the following result for
parabolic elements.

6.1. THEOREM. If g is a parabolic element in G with fixed point x,, then

limg/ =x, and limg™~ =x,

j—o joo

c-uniformly in R™\{x,}.

Proof. The group (g) contains only parabolic elements by Theorem 5.18.
Hence if U is any neighbourhood of x,, Lemma 5.5 with E;={x,} and
E, =R™U implies that there exists an integer k such that

gR\U)cU and g/ (R™\U)cU

forj=k.

We establish next the important analogue of Theorem 6.1 for loxodromic
elements.

6.2. THEOREM. If g is a loxodromic element of G with fixed points x,, yo, then
these points can be labelled so that
limg' =y, and limg ™ =x,
¥ Apedod j—wo
c-uniformly in R™\{x,} and R"\{y,}, respectively. We call y, the attractive and x,
the repulsive fixed point for g.

Proof. Since L({g))= {x¢, o}, by Lemma 4.1 there exist a sequence {g;} in
(g and a point x; € L(G) such that g;— y, and g; '— x; c-uniformly in R"\{x,}
and R™\{y,}, respectively; since x, is fixed by each g;, it follows that x; = x,.
Hence by passing to a subsequence and relabelling the fixed points, if necessary,
we obtain integers k(j) > 0 such that
(6.3) limg“?P =y, and limg *¥ =x,

oo oo
c-uniformly in R™\{x,} and R™\{y,}, respectively.
Let U, V be disjoint chordal balls about x,, y,, respectively. We shall show that
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there exists an integer k£ >0 such that
(6.4) gR\U)cV and g7/(R™\V)cU

for j = k. Since g fixes y;, we may assume that g(V)N U =¢.
Let E=R"™(UUYV). Then Corollary 3.10 with E;= {x,}, E,={y,}, and
E; = E implies that

(6.5) gEYNE=J and g/EYNE=
for all but finitely many j > 0. Hence with (6.3) we can choose an integer £ >0

such that (6.4) holds for j = k and (6.5) holds for j = k.
If (6.4) holds for some j =i =k, then

gHEYNUcg(@R\U)NUcg(VINU=,
so that g™*'(E) = V by (6.5). Then
gi+l(av) CgH-](E) P V

whence g*'(V) < V and we obtain the first part of (6.4) for j =i + 1. The second
part follows similarly for j =i + 1 and hence (6.4) holds for all j = k by induction.

6.6. COROLLARY. Suppose that g is an element of G. Then g is loxodromic if
and only if there exist an integer j and a topological ball U such that g¢(U) < U.

Proof. By Lemma 5.3, h =g’ is loxodromic if g/(U) < U for some integer j and
topological ball U; hence g is loxodromic by Theorem 5.18. Conversely, if g is
loxodromic and if U is any neighbourhood of one of the fixed points whose
closure does not contain the other, then g’({/) c U for some integer j by Theorem
6.2.

Thus the criterion in Lemma 5.3 essentially characterizes loxodromic elements
in a discrete convergence group. We show next that the fixed point sets for pairs
of loxodromic elements either are disjoint or coincide.

6.7. THEOREM. If [ and g in G have a fixed point in common and if g is
loxodromic, then f and g have two fixed points in common and there exists a
non-zero integer k such that fog* =g*of.

Proof. Suppose that x, is a fixed point of f and that x, and y, are respectively
the repulsive and attractive fixed points for g. Next let U, V be disjoint chordal
balls about x,, y,, respectively, chosen so that g(U)NV =, and let
E =R™\(UU V). By Theorem 6.2, there is an integer j, such that

fe87(E) = U\{xo}
for j = jo. Theorem 6.2 also implies that for each such j,
(6.8) gkofog (ENU #

for sufficiently large k. Let k(j) denote the smallest k for which (6.8) holds and
set h;=g"Pofog™ Then

hj(.xO) =Xo, h}(E) NnE+ @,
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for j > j,, while
tim A;(yo0) = yo
Jre

since k(j)— = as j— . Hence for large j, the closed sets
Ei={xo}, E;={h(yo): k=j}U{y}, E,=E

are pairwise disjoint and Corollary 3.10 implies that there exist j,, j, with j, <j,
for which h;, = h;, whence

gk =feg'°f,
where j = j, —j; and k = k(j,) — k(j,). From this it follows that
g =fogmof!

for all integers m, and that f(y,) = yo.
We want to show that k =j. If kK <j, we can choose m > 0 such that

g“™(f(U)cU and gUTOM(F(V)) V.
Then U, = g™ (U) is a topological ball, U, does not contain y,, and
F(O) =f(g"(0)) =g""(f(U)) =g""(g~""(U)) = .

Hence f is loxodromic by Lemma 5.3 and since f fixes xo, f has x, as its attractive
fixed point. Similarly V;, = g™"(V) does not contain x; in its closure, while

fV)=f7(V)) =g " (f(V)) =g~ (“™(V)) = V.

Thus x, cannot be the attractive fixed point for f and we conclude that &k =j.
Reversing the roles of f and f ! in the above argument shows that k <j and hence
that k =j. Thus fog*=g*-f.

6.9. CoroLLARY. If f, g in G are loxodromic, then either
fix(f)Nfix(g) =< or fix(f) = fix(g).

In the latter case there exist non-zero integers j and k such that f' = g~.

Proof. Theorem 6.7 implies that fix(f) and fix(g) are disjoint or coincide.
Hence it remains only to establish the existence of the integers j and k in the
second case. For this let xq, y, and U, V, E be as in the proof of Theorem 6.7. By
replacing f by f~' we may further assume that x, and y, are, respectively, the
repulsive and attractive fixed points for f as well as g. Then

f(E) < U\{xo},

for j=j,, and as in the proof of Theorem 6.7 we can find for each such j an
integer k(j) such that #;(E) N E #, where h; =g*@Pof~/. Corollary 3.10 with
Ei={xo}, E;={yo}, and E;= E then implies that k; = h,, for some j, <j, and
hence that f/ = g* where j =, — j; and k = k(j,) — k(j,).

We now apply Theorem 6.7 to show that a non-elementary group contains
infinitely many loxodromic elements and that its limit set is the closure of the set
of fixed points of these elements.
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6.10. TueoReM. If G is non-elementary, then fix(G) = and L(x, G) = L(G)
for each point x in R”™.

Proof. Lemma 5.8 implies that G contains at least one loxodromic element .
To establish the first conclusion we show there exists a second element g € G such
that

fix(f) N fix(g) =2.

Choose y; € L(G)\fix(f). By Lemma 4.1 there exist a point x; € L(G) and a
sequence {g;} in G which converges to y; c-uniformly in R”\{x,}. Suppose that

(6.11) fix(f) N fix(g;) I,
(6.12) fix(f) N g;(fix(f)) #

hold for all j. Then x, € fix(f), since otherwise g; would converge to y, uniformly
in fix(f) and (6.12) would not hold for large j. Hence x; #y,, all but a finite
number of the g; are loxodromic by Lemma 5.4, and fix(f) = fix(g;) for large j by
(6.11) and Corollary 6.9. If fix(f) = {x,, ¥} and x, =x,, then

Yo=lim & (¥o) =n
e

and we have a contradiction. Hence (6.11) or (6.12) fails for some j and we may
take g =g; or g = g;of og;", respectively.
The second conclusion then follows directly from Lemma 4.4.

6.13. THEOREM. If G is non-elementary, then L(G) is the smallest closed
non-empty G-invariant subset of R".

Proof. 1f x is a point of a closed G-invariant set E, then L(G) = L(x, G)c E
by Theorem 6.10; Lemma 2.4 implies that L{G) is such a set.

6.14. Remark. Theorem 6.13 yields a great deal of information about the limit
set L(G) of a non-elementary group. For example, it implies that L(G) lies in the
closure of any non-empty G-invariant set in R".

6.15. CoroLLARY. If G is non-elementary, then G contains infinitely many
loxodromic elements, no two of which have a common fixed point, and L(G) is
the closure of the set of fixed points of the loxodromic elements in G.

6.16. CoroLLARY. If G is non-elementary and if G contains an element g which
is either parabolic or is elliptic with fix(g) # &, then L(G) lies in the closure of the
set of fixed points of the parabolic or elliptic elements in G, respectively.

Proofs. Let Fg, Fp, F; denote the set of fixed points for the elliptic, parabolic,
loxodromic elements in G. If f and g are in G, then gofog™" is the same type of
element as f with fix(gofeg~!)=g(fix(f)). Hence each of the above sets is
G-invariant.

Lemma 5.8 implies that F, is non-empty; Fp and Fp are non-cmpty by
hypothesis. The conclusions for Corollaries 6.15 and 6.16 now follow from
Corollary 6.9 and Theorem 6.13.
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We establish next an extension of Corollary 6.15 which says that the fixed point
pairs (xo, o) of loxodromic elements are dense in L(G) X L(G).

6.17. TuEOREM. If G is non-elementary and if V, and V, are disjoint open sets
both of which intersect L(G), then there exists a loxodromic element g in G with
one fixed point in V, and the other in V;.

Proof. We may clearly assume that V; and V, are chordal balls which both
meet L(G). Then by Corollary 6.15, for k=1,2 there exists a loxodromlc
element g, € G with fixed points x;, y. and y, € V. By replacing g, by gi', if
necessary, we may assume that y, is the attractive fixed point for g,. Since V; and
V, are disjoint, y; #y, and hence x; #x, by Corollary 6.9. Again by Corollary
6.15 there exists a loxodromic element g, with x, and y, as its repulsive and
attractive fixed points such that

{X0, Yo} N {x1, X2} =D

Let Uy, Vo, Uy, U, be pairwise disjoint neighbourhoods of xo, yo, X1, X3,
respectively. Then

VLeR™\yi}, TieR™N\x}, VocR™\{x},

and we obtain

gV cly, gV, giVo)c Vs,
for large j. Similarly,

g V) el g'()cl, gi(l)<=W,
for large j. Hence we can choose j such that

h(V)eVy, h\(V)eW,

where h; = ghoghogi’. Then by Lemma 5.3, g = A; is a loxodromic element which

has fixed points in V; and V5.

We conclude this section with some topological properties of the limit set of a
non-elementary convergence group.

6.18. Lemma. If g is a loxodromic element in G, then the fixed points of g either
are point components of L(G) or they lie in the same non-degenerate component of
L(G).

Proof. Suppose the repulsive and attractive fixed points x,, y, belong to

different components C(xo), C(yo) of L(G). Since these components are invariant
under g and since g’ — y, and g~/ — x, uniformly in C(y,) and C(x,), respectively,

q(C(yo)) = lim 9(8'(C(»))) =0,

9(Cxo)) = lim g(g™(C(x0))) =0,

where g(C) denotes the chordal diameter of C.
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6.19. THEOREM. If G is non-elementary and if C is a component of L(G), then
either C = L(G) or C lies in the closure of L(G)\C.

Proof. Choose x, € C, suppose there exists a point y,e L(G)\C, and let U, V
denote disjoint neighbourhoods of x,, y, such that V N C =, By Theorem 6.17
there exists a loxodromic element g € G with fixed points x; € U and y, € V. If C is
non-degenerate, then x cannot lie in C since otherwise by Lemma 6.18, y; would
also lie in C and hence in V N C; thus

(6.20) x e (L(G)\C)N U.

If C = {x,}, then because L(G) is perfect there exists a point x; for which (6.20)
holds.

6.21. CoroLLARY. If G is non-elementary and if L(G) is not connected, then
L(G) is not locally connected at any point of L(G).

Proof. Let U be a neighbourhood of a point x, € L(G) and let C denote the
component of L(G) containing x,. By Theorem 6.19 there exists a point
x1 € (L(G)\C)N U and hence L(G) is not locally connected at x,.

We say that a point x of an arcwise connected continuum C is an endpoint if
there is no arc in C which contains x as an interior point.

6.22. THEOREM. Suppose that G is non-elementary and that L(G) is locally
connected. Then L(G) is arcwise connected, and either L(G) contains a simple
closed curve or the fixed points of every loxodromic element in G are endpoints of
L(G).

Proof. Corollary 6.21 implies that L(G) is connected and hence arcwise
connected [12]. Suppose that there exists a loxodromic element g € G with fixed
points xg, yo where x, is not an endpoint of L(G); by replacing g by g~' we may
assume that y, is the attractive fixed point for g. Then there exists an arc
@« < L(G) with endpoints x,, x, which contains x, as an interior point. Let U be a
neighbourhood of y, which does not contain x, Because L(G) is locally
connected there exists a neighbourhood V of y, such that each pair of points in
V N L(G) can be joined by an arc in UN L(G) [12, pp. 113-118]. By Theorem
6.2 we can choose an integer j such that g/(x;) and g’(x,) lie in V N L(G) and
hence can be joined by an arc B in UNL(G). Since xo€ g’(a)\B, g/(a)U B
contains a simple closed curve which lies in L(G).

7. Groups of homeomorphisms

We saw in § 6 that the iterates of elements of a discrete convergence group
behave in a very regular fashion. We consider now what conditions on an
arbitrary group G of self homeomorphisms of R” allow one to conclude that G is
a discrete convergence group. A sufficient condition is given in Theorem 7.8.

Next, the fact that we can classify the elements g of a discrete convergence
group G in exactly the same way as elements of a Mbius group makes it natural
to ask if each such g is the topological conjugate of a Mdbius transformation #.
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More important, is each convergence group G topologically conjugate to a
Mobius group H? We provide examples to show that, except in the case of a
loxodromic element, the answer to both questions is, in general, ‘no’.

We assume throughout this section that g is an arbitrary self homeomorphism
of R™ and that G is a group of such elements. Theorems 6.1 and 6.2 suggest how
to extend the classification of Definition 5.1 to elements g of G.

7.1. DerFINITION. We say that g is elliptic if ord(g) <o, that g is parabolic if
there exists a point x, such that
(7.2) limg/=x, and limg~ =x,
j—)oo j—)co
c-uniformly in R”\{x,}, and that g is loxodromic if there exist two points x,, Yo
such that
(7.3) limg'=y, and limg~ =x,

Joo F

c-uniformly in R™\{x,} and R"\{y,}, respectively.

7.4. LemMma. The homeomorphism g is elliptic, parabolic, or loxodromic
according to Definition 7.1 if and only if (g) is a discrete convergence group and g
is an elliptic, parabolic, or loxodromic element of {g), respectively.

Proof. We may exclude the elliptic case where there is nothing to prove. Then
the necessity follows from Theorems 6.1 and 6.2. For the sufficiency, (7.2) or
(7.3) imply that ord(g) == and that (g) is a discrete convergence group with
L({g)) ={xo} or L({g))={x¢, Yo}, respectively. Then g is a parabolic or
loxodromic element of {g) with fix(g) = {x,} or fix(g) = {x,, ¥o} by Theorems
5.10 and 5.11, respectively.

The classification in Definition 7.1 is clearly not exhaustive for the elements of
an arbitrary group G. Moreover, Example 7.20 shows that G need not be a
convergence group even if it contains only elements of the three types described
above. However, we prove next that G is a convergence group if it is properly
discontinuous in R\E where E is closed and has only point components. We
begin with the following result.

7.5. LEmMa. Suppose that E is a totally disconnected closed set, that {r,} is a
sequence of positive numbers which converge to 0 and that {D.} is a non-
decreasing sequence of domains in R"\E such that
(7.6) sup q(x, E)sr,

xe3Dy
for each k. If x4 is in E and if C; is the component of R"\Dy, which contains x,,
then

(7.7) lim ¢(C,)=0.

Proof. Suppose that (7.7) does not hold. Then {C,} is a non-increasing
sequence of continua whose intersection is a continuum C which contains x, [32].
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Since E is totally disconnected, there exists a point y, € C\E which can be joined
by an arc a cR™E to a point zoe D;,. Fix k so that r, <g(«, E). Then
zo€ oo N D, while a N 3D, = by (7.6). Hence o = D, which contradicts the fact
that y, € C c R™\D,.

7.8. THeEOREM. If E is a totally disconnected closed set and if G is properly
discontinuous in R"\E, then G is a discrete convergence group with L(G) c E.

Proof. By (2.3), L(G) < E and hence G is discontinuous and discrete. Thus it
remains to show that for each infinite sequence of elements in G there exist a
subsequence {g;} and points x,, y, such that g;— y, and g; ' x, c-uniformly in
R™\{xo} and R"\{y,} respectively; here x, and y, need not be distinct.

Fix z, € R"\E. By compactness we can choose a subsequence {g;} of the given
sequence and points xg, yo such that

(7.9) lim g;(z0) = yo, lim g7 '(20) = Xo.

Then x, yo€ L(G) <= E as in the proof of Lemma 4.4. Next let U, V be
neighbourhoods of x,, y,, respectively. We shall complete the proof by showing
there exists a j, such that

(7.10) g(R™\U)cV, g (R"\V)cU,

whenever j = jj,.
Let {r,} be a decreasing sequence of numbers in (0, g(zy, E)) which converge
to 0, and set

E,={xeR™ q(x, E)<r}

for k=1,2,.... Next let D, denote the component of R"\E, which contains z,.
Then 8D, < E,, the domains D, satisfy the hypotheses of Lemma 7.5, and hence
for each x € E,

lim g(Ci(x)) =0,

k—x
where C,(x) denotes the component of R”\D, which contains x. Thus we can fix
k = kg such that
(7.11) C(xp) =Ci(x0) = U, C(y0)=Ci(y) =V,

and such that C(xo) # C(yo) if xo# yo. Then since D = D, is compactly contained
in R"\E, there exists a j, such that

(7.12) gDYND=C, g XDYND =g,
and, with (7.9), such that
(7.13) yi=8/(z)€C(y0), x=8; '(20) € C(xg)

whenever | = j,.

Suppose that j = j,. Since D is connected, (7.12) implies that g;(D) and g;° 1(D)
each lie in a component of R™\D. If C;, C, are different components of R"\D
and if

(7.14) g(D)cCy, gACH\C1#J,
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then R™\C, is connected [32, Theorem 1.9.11] while
3g,(C2) N (R™\Cy) e g(D) N (R™\C)) =,

8(C) N ®R\C) = 2.

Thus R™\C; = g;(C;), whence
(7.15) g(R\C,) = Cy,
(7.16) g (D)< C,.

Since zy€ D, (7.13) implies that
(7.17) yi€ Cyo) Ng(D), x;€Clxo) Ng; (D),
and hence that
(7.18) gi(D) = C(yy), 8; (D)<= Clxo).

If xo#yo, then C(xy), C(yo) are different components of R"\D,

zp€ D < g(C(xo))\C(y0)
by (7.18), and (7.14) holds with C, = C(y,) and C, = C(x,). Thus
gj(R"\C(xo)) < C(yo)

by (7.15). This and (7.11) imply the first half of (7.10). The second half follows
similarly.
Finally, if x4 = y,, then C(x,) = C(y,) and

(7.19) g(R™\C(y5)) = C(y0).

For otherwise we could find a component C of R”\D different from C(y,) such
that g,(C\C(y,) #<, (7.14) would hold with C;=C(y,) and C,=C, and we
would obtain

8 (D)= Clx)NC=C(y)NC

from (7.16) and (7.18), a contradiction. The first half of (7.10) is now a
consequence of (7.11) and (7.19); the proof for the second half is similar.

The proof of Theorem 7.8 depends crucially on (7.7) of Lemma 7.5. There the
hypothesis on E was used to conclude that E contains no continua and that R"\E
is connected. The following example shows that this second property is not
sufficient to imply the desired conclusion in Theorem 7.8.

7.20. ExamrLE. For each tamely imbedded Jordan curve C in R” there exists a
group G with the following properties: G contains only parabolic elements
besides the identity, G is properly discontinuous in R”\C with L(G)=C, and G
is not a convergence group.

Proof. Let a be any irrational number and let G be the group generated by

gl(xlixZ’ '--’xn)z(x1+a7 X2, oeny xn))
gz(xl, X2, enny x,,) =(x1 + 1, ZXQ, ey Zx,,).
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Then each g € G is of the form
g(xI’ X2y oony xn) = (xl +pa + q, 2qx2) ooy 2qxn)y

where p, g =0, £1, £2, ... . If g is not the identity, then pa + q # 0 and g satisfies
(7.2) with x5 = .

Let L denote the closure of the x,-axis. From the above representation we see
that each sequence in G contains a subsequence {g;} such that

(7.21) limg;=» or limg '=wx

j—o jr=

c-uniformly in R™\L; hence G is properly discontinuous in R"\L. Next for each
integer ¢ > 1, there exist integers p and g such that 1<p =<t and |pa +¢q| <1/t
[20, Theorem 7.1]. This implies the existence of a sequence {g/} in G such that

(7.22) limg/(x)=x and limg; '(x)=x
j—oo .

j—roo

for all x e L. Hence L(G) = L while (7.21), with g; =g/, and (7.22) show that G
does not have the convergence property. Thus G is the desired group for the case
where C = L.

For the general case let f be a self homeomorphism of R” for which f(L)=C
and replace G by foeGof L

7.23. Remarks. It is easy to modify the above construction and obtain a group
G such that G contains, besides the identity, only loxodromic elements with
common fixed points, G is properly discontinuous in R” with L(G) = C, and G is
not a convergence group.

Many of the results derived for discrete convergence groups in §§ 4, 5, and 6 do
not hold for arbitrary discrete groups G. For example, the group G in Example
7.20 is abelian but non-clementary; the group cited above is non-elementary
while its loxodromic elements all have the same fixed points.

We turn now to the question of deciding if convergence groups are topologi-
cally conjugate to conformal groups.

7.24. DeriNtTioN. We say that an element g of G is standard if it is topologically
conjugate to a Mobius transformation h, and that G is standard if it is
topologically conjugate to a Mobius group H.

Since the classification in Definition 7.1 is invariant with respect to topological
conjugation, a homeomorphism which is conjugate to an element of a discrete
Mobius group must be elliptic, parabolic, or loxodromic. We consider what can
be said about each of these classes.

7.25. Elliptic elements. By a theorem due in part to Brouwer, Kerékjart6, and
Eilenberg [5], each periodic self homeomorphism f of $? is topologically
conjugate to an orthogonal transformation.

The situation is different in higher dimensions. Montgomery and Zippin
constructed in [23] a self homeomorphism f of S> with period 2 where fix(f) is a
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wild knot; hence fis not topologically conjugate to an orthogonal transformation.
More exotic examples can be found among counter-examples to the generalized
Smith conjecture. In particular, Giffen [10] has shown that for n =4 there exist
smooth, and hence quasiconformal, periodic orientation-preserving homeo-
morphisms f of §” which are not conjugate to an orthogonal transformation. The
recent affirmative solution of the Smith conjecture shows that no such examples
exist when n =3 [24]. In summary we have the following result.

7.26. THEOREM. When n =2, each elliptic element g is standard. For each n =3
there exists a non-standard elliptic element g and, when n =4, we can choose g so
that it is quasiconformal.

7.27. CoROLLARY. For each n =3 there exists a finite non-standard convergence
group G.

Proof. If g is the element in Theorem 7.26, then (g) is a finite convergence
group which is not standard.

7.28. Parabolic elements. If g is parabolic with fixed point x, ==, then (7.2)
says that

limg/=c and limg7/ =

jroe j—»co
c-uniformly in R”. This is known as Sperner’s condition and the orientation-
preserving self homeomorphisms g of R" which satisfy it are called
quasitranslations. Obviously each such mapping has a homeomorphic extension
to R".

By results due to Sperner and Kérékjdrto [16], each quasitranslation in R? is a
topological translation, that is, it is topologically conjugate to a mapping of the
form f(x) =x + e,. Again the situation is different in higher dimensions, and for
each n =3, Kinoshita [18} and Husch [14] have exhibited quasitranslations of R”
which are not topological translations.

7.29. Lemma. Each sense-preserving parabolic Mobius transformation h is a
topological translation.

Proof. We may assume that 4 fixes . Then by [1, pp. 47-49], h(x) =u(x) +a
where u is an orthogonal transformation and @ considered as an n-vector has a
non-zero projection b onto the k-plane fix(u), where 1<k =<n—2. Let E denote
the (n — 1)-plane through the origin orthogonal to b. If x, € E, then

hixg)=u(xp) +a=x,+b where x,€E.
Hence by induction,
W (xo) =x; +jb where x; € E,

and the (n — 1)-planes A/(E) are pairwise disjoint for j=0, £1, £2, .... Since
h — b is isotopic to the identity, we can now argue as in [14, p. 59] to obtain a self
homeomorphism g of R” such that & =g~ 'efog where f(x) =x +e,.
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Thus a quasitranslation is standard if and only if it is a topological translation
and we obtain the following result.

7.30. THEOREM. When n =2, each orientation-preserving parabolic element g is
standard. For each n=3 there exists an orientation-preserving non-standard
parabolic element g.

7.31. THEOREM. For each n =2 there exists a non-standard convergence group
G with exactly one point in L(G).

Proof. When n =3, we can set G = (g) where g is the element in Theorem
7.30.

We give an alternative argument which includes the case where n = 2. Let H be
a Mobius group with at least # +1 generators that contains only loxodromic
elements which map the unit n-ball B” onto itself. Next let f be a homeomorph-
ism which maps B” onto R” and set G=foHeof"'. Then each g in G has a
homeomorphic extension g* to R” and the corresponding group of extensions G*
is a discrete convergence group all of whose elements are parabolic and fix .
However G* cannot be topologically conjugate to a Mo6bius group since each
such group is, in turn, conjugate to a discrete group of cuclidean isometries of R”
and hence can have at most n generators of infinite order by, for example, [33,
Theorem 3.2.8].

7.32. Loxodromic elements. If g is loxodromic with xo=0 and y,= as its
repulsive and attractive fixed points, then

limg/=» and limg7=0

j—oe ]'—)oo
c-uniformly in R™\{0} and R", respectively. The orientation-preserving mappings
g which satisfy this condition are called topological dilations, and by results due to
Kerékjart6 [17], Homma and Kinoshita [13], and Husch [15], they are topologi-
cally conjugate to a mapping of the form f(x) =2x whenever n =2, 3, or n =6.

7.33. THEOREM. When n=2, 3 or n=6, each sense-preserving loxodromic
element g is standard.

Theorem 7.33 probably holds when n =4, 5; the difficulty for these cases
involves a problem in four-dimensional topology. In any case, Theorem 7.33
suggests that it may be more difficult to exhibit a non-standard discrete
convergence group G with card(L(G))=2 than for the cases where
card(L(G)) =0 and card(L(G)) = 1.

When n =3, the existence of such a group G with card(L(G))>2 is an
immediate consequence of the following important result due to Freedman and
Skora [6].

THEOREM 7.34. For n =3 there exists a non-standard non-elementary discrete
quasiconformal group G.
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In Part II of this article we shall use combination theorems to construct
non-standard non-elementary discrete quasiconformal, and hence convergence,
groups in R” for each n > 3.

7.35. Lifting problem. An important tool for studying discrete groups of
Mobius transformations acting on R results from the fact that each such group G
can be extended to a Mdbius group G* acting on R?. Thus it is natural to ask
when a discrete convergence group G acting on R” can be extended to a discrete
convergence group G* acting on R"*', A recent result of Freedman [7] shows
that this is possible for the case where n #3 if G is isomorphic to a free group
with k generators and L(G) is a Cantor set. The case where n = 3 is equivalent to
the validity of 4-dimensional surgery [7].
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