
Journal of Topology 3 (2010) 759–785 C�2010 London Mathematical Society
doi:10.1112/jtopol/jtq020

Geometric limits of knot complements

Jessica S. Purcell and Juan Souto

Abstract

We prove that any complete hyperbolic 3-manifold with finitely generated fundamental group,
with a single topological end, and which embeds into S3 is the geometric limit of a sequence
of hyperbolic knot complements in S3. In particular, we derive the existence of hyperbolic
knot complements that contain balls of arbitrarily large radius. We also show that a complete
hyperbolic 3-manifold with two convex cocompact ends cannot be a geometric limit of knot
complements in S3.

1. Introduction

In this paper we study geometric properties of hyperbolic knot complements. Unless explicitly
stated, a knot complement is understood to be the complement of a nontrivial knot in the
3-sphere S3. A nontrivial knot K ⊂ S3 is hyperbolic if its complement MK admits a complete
hyperbolic metric. Many knots are hyperbolic; in fact, among the 1.701.936 prime knots with
16 or fewer crossings, all but 32 are hyperbolic [23]. In general, Thurston proved that every
knot K ⊂ S3 that is neither a torus knot nor a satellite knot is hyperbolic.

By the Mostow–Prasad theorem, the hyperbolic metric on a hyperbolic knot complement is
unique. In particular it follows from work of Gordon and Luecke [20] that the hyperbolic metric
on the complement of a hyperbolic knot in S3 is a complete invariant of the knot. However,
it remains a difficult problem to use geometric arguments in the classification of knots. One
central difficulty is in distinguishing hyperbolic knot complements from general finite volume
hyperbolic manifolds.

Question 1. Which properties of the hyperbolic metric distinguish knot complements
from other hyperbolic 3-manifolds?

There are some results suggesting that within the world of finite volume hyperbolic
3-manifolds, hyperbolic knot complements form a very special class. For instance, Reid [45]
proved that the complement of the figure-8 knot is the only hyperbolic arithmetic knot
complement. Similarly, every hyperbolic knot complement admits infinitely many nonisometric
finite-degree covers, but at most three of them are knot complements [19].

In this paper, we investigate the question above by studying geometric limits of hyperbolic
knot complements. We find that many manifolds arise as these geometric limits, which implies
that knot complements can admit metrics with unusual and perhaps unexpected geometric
properties. We also investigate manifolds that cannot arise in this manner.

Recall that a hyperbolic manifoldM is a geometric limit of a sequence of hyperbolic manifolds
{Mi} if there are basepoints p ∈M and pi ∈Mi such that larger and larger balls about p in
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M have, as i tends to ∞, better and better almost isometric embeddings into balls about pi in
Mi. Thus if a manifold is a geometric limit of knot complements, then there exist hyperbolic
knots whose geometric properties are very close to those of the limiting manifold.

Our first result asserts that surprisingly many hyperbolic 3-manifolds arise as geometric
limits of knot complements. Specifically, we prove the following theorem.

Theorem 1.1. Let N be a complete hyperbolic 3-manifold with finitely generated
fundamental group and a single topological end. If N is homeomorphic to a submanifold of S3,
then N is a geometric limit of a sequence of hyperbolic knot complements in S3.

Before moving on, observe that applying Theorem 1.1 to N = H3 we obtain the following
corollary.

Corollary 1.2. For every R > 0 there exists a hyperbolic knot complement MK and
x ∈MK with injectivity radius inj(x,MK) > R.

The statement of Theorem 1.1 is not optimal. Namely, we can construct many other
geometric limits of knot complements by observing that every hyperbolic 3-manifold that is
a geometric limit of manifolds satisfying the conditions in Theorem 1.1 is also a geometric
limit of hyperbolic knot complements. For example, this idea can be used to prove that every
hyperbolic manifold N homeomorphic to the trivial interval bundle over a closed surface which
has at least one degenerate end is also a limit of knot complements. Again the same reasoning
shows that there are hyperbolic 3-manifolds with finitely generated fundamental group and
arbitrarily many ends which are geometric limits of knot complements. We discuss these in
Section 7.

We then turn to the converse problem, and ask which hyperbolic 3-manifolds cannot be the
geometric limit of hyperbolic knot complements. Besides obvious topological obstructions, we
find that there are some less obvious geometric obstructions. In particular, we find the following
theorem.

Theorem 1.3. Let M be a hyperbolic 3-manifold. If the manifold M has at least two
convex cocompact ends, then M is not the geometric limit of any sequence of hyperbolic knot
complements in S3.

Recall that if M has two convex cocompact ends, then every regular neighborhood of the
convex core CC(M) in M has at least two compact boundary components, where CC(M) is
the smallest closed totally convex subset of M .

At this point we would like to observe that combining Theorem 1.1 and Theorem 1.3 we
obtain the following corollary.

Corollary 1.4. Let M be a hyperbolic 3-manifold with at least two convex cocompact
ends. Then M is not the geometric limit of any sequence of hyperbolic manifolds that embed
into the sphere, and have finitely generated fundamental group and a single topological end.

1.1. Organization and overview

The following gives a road map for this paper. In Section 2, we remind the reader of the basic
and not so basic facts on hyperbolic 3-manifolds and their deformation theory.
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The main result of Section 4, namely Proposition 4.1, is that any manifold satisfying the
hypotheses of Theorem 1.1 is the geometric limit of hyperbolic manifolds which, besides
satisfying the same hypotheses, have the property that their single topological end is
degenerate. We also prove Proposition 4.4: if M is a hyperbolic 3-manifold with a degenerate
end, and if {Mγi

} is any sequence of hyperbolic 3-manifolds homeomorphic to the interior of
M with parabolics γi converging to the ending lamination of M , then M is a geometric limit
of {Mγi

}.
Thus, at this step, it remains to show that there are geometric limits of knot complements

homeomorphic to M and where certain curves are parabolic. This is done in Proposition 5.5, in
Section 5. We start constructing the desired manifold as a limit of hyperbolic link complements.
In order to go from link complements to knot complements, we perform hyperbolic Dehn filling
on certain components. The links are chosen in such a way that the slopes of Dehn filling get
long. We derive from a version of Hodgson and Kerckhoff’s quantified Dehn filling theorem
that the filled manifolds have the same geometric limit.

Theorem 1.1 follows easily from Propositions 4.1, 4.4 and 5.5. For the convenience of the
reader, we invert the logical order, deriving Theorem 1.1 from these results in Section 3.

In Section 6 we prove Theorem 1.3. The proof is based on the fact that the closure of the
complement of the convex-hull of a subset of ∂∞H3 is a locally CAT(−1)-manifold. This fact
allows us to adapt an argument by Lackenby [31].

Finally, in Section 7 we discuss briefly Corollary 1.2 and some other consequences of
Theorems 1.1 and 1.3. We also propose some questions.

After the completion of this paper Richard P. Kent IV deduced a simpler proof of Proposition
5.5 using [25, 26].

2. Hyperbolic 3-manifolds and geometric limits

Throughout this note we only consider knot complements in S3.
We understand a hyperbolic 3-manifold to be a connected and orientable complete Rieman-

nian manifold M of constant curvature −1. Equivalently, M is isometric to H3/Γ, where Γ is
a discrete torsion-free subgroup of the group of orientation-preserving isometries of hyperbolic
3-space H3.

By Mostow–Prasad rigidity, any two homotopy equivalent, finite volume hyperbolic
3-manifolds are isometric. On the other hand, if the volume of M is infinite, then there
is a rich and well-developed deformation theory.

In this section, we review a few aspects of this deformation theory. We refer to [36] for details
of facts which are, by now, classical, and to [34] for more recent results.

2.1. Tameness

Given a hyperbolic 3-manifold M with finitely generated fundamental group, there is an
associated compact 3-manifold with boundary M , the manifold compactification of M , such
that M is homeomorphic to the interior of M . This is the result of the tameness theorem,
proved by Agol [1], and Calegari and Gabai [13]. It is well known that M is unique up to
homeomorphism, that every component of ∂M has at least genus 1, and that χ(∂M) = 0 if
and only if M has finite volume.

Recall that a nontrivial element γ ∈ π1(M) is parabolic if it is freely homotopic to curves in
M of arbitrarily short length. A subsurface P ⊂ ∂M is the parabolic locus of M provided it
satisfies the following conditions.

(1) The subsurface P consists of all toroidal components of ∂M and a collection of
homotopically essential disjoint nonparallel annuli.



762 JESSICA S. PURCELL AND JUAN SOUTO

(2) If γ is a homotopically nontrivial curve in P , then any element in π1(M) represented by
γ is parabolic.

(3) If γ ⊂M represents a parabolic element and γi is a sequence of curves freely homotopic
to γ and with �M (γi) → 0, then, for every regular neighborhood U of P in M , there is iU with
γi ⊂ U for all i � iU .
If M is the manifold compactification of the hyperbolic 3-manifold M , then any two
incompressible subsurfaces P1, P2 ⊂ ∂M satisfying conditions (1)–(3) are isotopic to each other
within ∂M .

In other words, given a hyperbolic 3-manifold M with finitely generated fundamental group,
(M,P ) is uniquely determined up to homeomorphism of pairs. In particular, given a hyperbolic
3-manifold M , we abuse terminology only slightly when we use the definite article in the
sentence: M is the manifold compactification of M and P ⊂ ∂M is the parabolic locus.

Definition. Let M be a hyperbolic 3-manifold with finitely generated fundamental group,
let M be its manifold compactification and P ⊂ ∂M be its parabolic locus. The components
of ∂M�P are the geometric ends of M .

Observe that whenever the parabolic locus of M is empty, then geometric and topological
ends coincide.

2.2. Convex core

Let M = H3/Γ be a hyperbolic 3-manifold and recall that we can identify the boundary at
infinity of H3 with the complex projective line ∂∞H3 = CP 1. Denote by ΛΓ the limit set of
Γ and let CH(ΛΓ) ⊂ H3 be its convex hull. The quotient CC(M) = CH(ΛΓ)/Γ is the convex
core of M . Equivalently, CC(M) is the smallest closed, totally convex subset of M , that is, the
smallest closed subset that contains all closed geodesics. The manifold M is convex cocompact
if its convex core is compact. Observe that if M is convex cocompact, then its parabolic locus
is empty.

More generally, a hyperbolic 3-manifold M with finitely generated fundamental group is
geometrically finite if its convex core has finite volume: vol(CC(M)) <∞. One important class
of geometrically finite manifolds are the maximal cusps. A hyperbolic 3-manifold M is said to
be a maximal cusp if (M,P ) is such that every component of ∂M�P is homeomorphic to a
3-punctured sphere. Note that if M is a maximal cusp, then its convex core CC(M) must have
a totally geodesic boundary, with each boundary component isometric to the unique hyperbolic
structure on a 3-punctured sphere.

2.3. Degenerate ends

Throughout the paper, we are mostly interested in hyperbolic 3-manifolds that have a single
geometric end. To avoid unnecessary notation and terminology, the following definition is
tailored to the particular situation of this paper.

Definition. Let M be a hyperbolic 3-manifold with finitely generated fundamental group
and a single geometric end. The geometric end of M is said to be degenerate if M does not
contain any proper totally convex subset, or equivalently, if M = CC(M).

Intuitively, manifolds with degenerate ends are more complicated than convex cocompact
manifolds. However, the former are much more rigid than the latter; this is going to be
crucial in this paper. We find the first manifestation of the rigidity of degenerate ends in
the following result, due to Thurston [48] and Canary [15], which we state in the situation we
are interested in.
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Covering theorem. Assume that M is a hyperbolic 3-manifold with finitely generated
fundamental group and with a unique geometric end. Assume that the geometric end of M is
degenerate and that π : M → N is a Riemannian cover, where N has infinite volume. Then
the cover π is finite-to-one.

Suppose now that M has a single geometric end which is degenerate. Then we have an
associated ending lamination λ, whose definition we recall.

We may identify M with a submanifold of M such that the complement M�M has a product
structure. Observe that any curve γ ⊂M�M corresponds to a unique homotopy class of curves
in ∂M . Now if the end of M is degenerate, then there is a sequence of closed geodesics γi with
bounded length, exiting the end, represented by simple closed curves in ∂M�P . A subsequence
of the curves γi converges in PML(∂M�P ) to a filling measured lamination whose support, λ,
does not depend on the sequence γi. The lamination λ is the ending lamination of M . See
Thurston [48], Bonahon [6], or Canary [14] for basic properties of the ending lamination.

The ending lamination theorem, due to Minsky [38] and Brock, Canary, and Minsky [10],
asserts that every hyperbolic 3-manifold is determined up to isometry by its topology and end
invariants. We state this theorem again in the particular case we are interested in.

Ending lamination theorem. Let M be a compact 3-manifold with boundary and P ⊂
∂M be a possibly empty subsurface with ∂M�P connected. Assume that M and M ′ are
hyperbolic 3-manifolds homeomorphic to the interior of M with parabolic locus P . Assume also
that the geometric ends of M and M ′ are degenerate and have the same ending lamination.
Then M and M ′ are isometric.

2.4. Doubly incompressible laminations

Before going any further, recall the following definition.

Definition. Let M be a compact 3-manifold whose interior admits a hyperbolic structure.
Let P ⊂ ∂M be a possibly empty subsurface consisting of all toroidal components of ∂M
and a collection of disjoint nonparallel homotopically essential annuli. We say that (M,P ) is
acylindrical if:

(1) every component of ∂M�P is incompressible in M ;
(2) every properly embedded annulus (A, ∂A) ⊂ (M,∂M�P ) is isotopic relative to the

boundary of an annulus contained in the boundary ∂M ;
(3) there is no properly embedded Möbius band with boundary in ∂M�P .

A generalization of this notion is due to Kim, Lecuire, and Ohshika [28], who defined a
measured lamination α ∈ PML(∂M�P ) to be doubly incompressible, if there is η > 0 such
that i(α, ∂E) > η for any essential annulus E, Möbius band or disk. Observe that if γ ⊂ ∂M�P
is doubly incompressible when considered as an element in PML(∂M�P ), then (M,N(γ) ∪ P )
is acylindrical; here N(γ) is a regular neighborhood of γ in ∂M .

The following result, which we state only in the setting we are interested in, asserts essentially
that ending laminations are doubly incompressible.

Theorem 2.1 (Canary). Assume that a hyperbolic 3-manifold M with finitely generated
fundamental group has a single geometric end and that this end is degenerate with ending
lamination λ. If α is any measured lamination with support λ, then α is doubly incompressible.

Moreover, if γi is any sequence of simple closed curves in ∂M�P converging in PML(∂M�P )
to α, then (M,N(γi) ∪ P ) is acylindrical for all sufficiently large i. Here, N(γi) is a regular
neighborhood of γi in ∂M .
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Remark. If ∂M�P is incompressible, then Theorem 2.1 follows from the work of Thurston
[48]. Canary proved the first claim of Theorem 2.1 if ∂M is compressible and the parabolic
locus is empty. In fact, in this case he showed that λ belongs to the so-called Masur domain,
a subset of the set of doubly incompressible laminations [14]. Since the Masur domain is open
[35, 42], the second claim follows. Canary’s argument goes through without any problems in
the presence of parabolics.

2.5. Pleated surfaces and nonrealized laminations

Assume that M is a hyperbolic 3-manifold with manifold compactification M and parabolic
locus P , and let S be a compact surface with interior S = S�∂S. A pleated surface is a map

φ : S −→M

such that there is a finite volume hyperbolic metric σ on S such that the following
properties hold.

(1) The image under φ of a boundary parallel curve in S represents a parabolic element in
π1(M).

(2) The map φ : (S, σ) →M preserves the lengths of paths.
(3) Every point in x is contained in the interior of an arc κ, geodesic with respect to σ, such

that the restriction of φ to κ is an isometric embedding. See, for instance, [17] for the basic
properties of pleated surfaces. If we fix a homotopy class of maps [S →M ], then we say that
a lamination λ ⊂ S is realized in M by a pleated surface φ : S →M in the correct homotopy
class if the following property holds.

(4) The restriction of φ to each leaf of λ is an isometric immersion.
The following is a very technical result which essentially asserts that if a filling lamination

is not realized, then it is the ending lamination.

Proposition 2.2 (nonrealized implies ending lamination). Assume that M is a compact
3-manifold and P ⊂ ∂M is a subsurface such that there is some hyperbolic manifold with
manifold compactification M and parabolic locus P . Assume, moreover, that S = ∂M�P is
connected.

Let N be a hyperbolic 3-manifold and f : M → N be a homotopy equivalence mapping each
curve in P to a parabolic element in π1(N). Assume that there is a filling doubly incompressible
lamination λ ⊂ S = ∂M�P which is not realized by any pleated surface homotopic to the
restriction of f to S. Then the following hold:

(1) M is the manifold compactification of N and P its parabolic locus; and
(2) the only geometric end of N is degenerate, and has ending lamination λ.

Proposition 2.2 is by Thurston [48] if π1(M) does not split as a free product. If π1(M) splits
as a free product but is not free, then Proposition 2.2 is by Kleineidam and Souto [30]. The
case that π1(M) is free has been treated by Namazi and Souto [41] and Ohshika.

Remark. Recall that the manifold compactification and the parabolic locus of a hyperbolic
3-manifold are only determined up to homeomorphism. Therefore, to be slightly more precise,
the statement of Proposition 2.2 should be that there is a homeomorphism F : N →M�∂M
that satisfies properties of the proposition.

2.6. Geometric limits

A sequence (Mi, pi) of pointed hyperbolic 3-manifolds converges geometrically, or equivalently,
converges in the pointed Gromov–Hausdorff topology, to a pointed manifold (M,p) if, for every
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ε > 0 and every compact set K ⊂M with p ∈ K, there exists iε,K such that, for all i � iε,K ,
there is a (1 + ε)-bi-Lipschitz embedding

fi : (K, p) ↪−→ (Mi, pi).

Observe that if (Mi, pi) converges geometrically to (M,p) and q ∈M is a second basepoint,
then there are points qi ∈Mi such that (Mi, qi) converges geometrically to (M, q). On the
other hand, it is not difficult to construct sequences of manifolds (Mi) and two sequences
of basepoints pi, qi ∈Mi such that the (Mi, pi) and (Mi, qi) converge geometrically to non-
homeomorphic limits. This last remark explains the undetermined article in the following
definition.

Definition. A (connected) hyperbolic 3-manifold M is a geometric limit of a sequence
of hyperbolic manifolds (Mi) if there are basepoints p ∈M and pi ∈Mi such that (Mi, pi)
converges geometrically to (M,p).

The following is an obvious but extremely useful lemma.

Lemma 2.3. Assume that a manifold M is a geometric limit of a sequence of hyperbolic
3-manifolds Mi and that each Mi is a geometric limit of a sequence of hyperbolic knot
complements. Then M is also a geometric limit of a sequence of hyperbolic knot complements.

2.7. Algebraic limits

We recall now a second concept of convergence.
Let M be a hyperbolic 3-manifold. Let AH(M) denote the space of conjugacy classes of

discrete faithful representations of π1(M) into PSL2 C. Give AH(M) the quotient topology
induced by the compact-open topology on the space of discrete faithful representations.
Convergence of representations in AH(M) is called algebraic convergence. If {ρn} converges
algebraically to ρ, then the manifold H3/ρ(π1(M)) is the algebraic limit of the 3-manifolds
H3/ρn(π1(M)). See, for example, [37] or [5] for a description of algebraic convergence from the
point of view of the involved hyperbolic manifolds.

Density theorem. Assume that Z2 � π1(M). Then the set of those ρ ∈ AH(M), such
that the associated manifold H3/ρ(π1(M)) is convex cocompact, is dense in AH(M).

The density theorem follows from the proof of the tameness conjecture by Agol, Calegari,
and Gabai, the proof of the ending lamination theorem by Brock, Canary, and Minsky, and the
work of Kim, Lecuire, and Ohshika. The final step needs the more general form of Proposition
2.2 above due to Namazi, Ohshika, and Souto. See [34] for the relation between all these results.

Before moving on we state a very weak form of the continuity of Thurston’s length function
(see Brock [8] for an extensive discussion of the length function).

Proposition 2.4. Assume that M is a compact 3-manifold and P ⊂ ∂M is a subsurface
such that there is some hyperbolic manifold with manifold compactification M and parabolic
locus P . Assume, moreover, that S = ∂M�P is connected and let λ ⊂ S be a filling doubly
incompressible lamination.

Let {Mi} be a sequence of hyperbolic 3-manifolds in AH(M), such that every curve in P is
parabolic in Mi for all i, and assume that the sequence {Mi} converges algebraically to some
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manifold M in which λ is realized. Then we have

lim
i
lMi

(γi) = ∞
for every sequence of simple closed curves {γi} in S converging to λ in PML(S). Here lMi

(γi)
is the infimum of the lengths in Mi of all curves freely homotopic to γi.

2.8. Strong limits

Algebraic limits are not necessarily the same as geometric limits; see, for example,
[48, Chapter 9].

Definition. Suppose that {Mn} is a sequence of hyperbolic 3-manifolds that converges
algebraically and geometrically to the manifold M . Then we say that {Mn} converges strongly
to M .

In the course of the proof of Theorem 1.1 we will need to be able to deduce that some
algebraically convergent sequences also converge strongly. Our main tool is the following result
that follows easily from the Canary–Thurston covering theorem.

Proposition 2.5. Assume that a sequence {ρi} in AH(M) converges algebraically to
some ρ ∈ AH(M) and suppose that CC(H3/ρ(π1(M))) = H3/ρ(π1(M)). Then the sequence
{ρi} converges strongly to ρ.

See [2, 3, 29] for related, much more powerful results.
Proposition 2.5 does not apply if H3/ρ(π1(M)) is a maximal cusp. However, in this case, we

have the following weaker result, which follows directly from [4, Proposition 3.2].

Proposition 2.6. Assume that a sequence {ρi} in AH(M) converges algebraically to some
ρ ∈ AH(M) and suppose that H3/ρ(π1(M)) is a maximal cusp. Then, up to passing to a
subsequence, the hyperbolic manifolds H3/ρi(π1(M)) converge geometrically to some N such
that there is an isometric embedding CC(H3/ρ(π1(M))) ↪→ N .

Before going on to more interesting topics, we recall the following strong density theorem.

Strong density theorem. Assume that Z2 � π1(M). Then any ρ ∈ AH(M) is the strong
limit of a sequence {ρi} in AH(M) such that, for each i, the associated manifold H3/ρi(π1(M))
is convex cocompact.

The strong density theorem follows directly from the density theorem and work of Brock
and Souto [11, Theorem 1.4].

3. Proof of the main theorem

In this section we reduce the proof of Theorem 1.1 to various results obtained in the two
subsequent sections.

Proof of Theorem 1.1. Assume that N is as in the statement of Theorem 1.1 and let N be
its manifold compactification.
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First, we note that we need not consider trivial cases. If N has abelian fundamental group,
then using, for instance, Klein combination, one obtains a sequence {Ni} of, say genus 2,
handlebodies converging geometrically to N . By Lemma 2.3, it suffices to prove that each one
of the Ni is a geometric limit of hyperbolic knot complements. From now on we assume that
π1(N) is not abelian. Similarly, if ∂N is a torus, then the fact that N embeds into S3 implies
that N is itself a knot complement. Hence we may assume that ∂N is a connected surface of
genus at least 2. In other words, we may assume than N has infinite volume.

In Section 4, we will prove the following proposition.

Proposition 4.1. Let N be a complete, infinite volume, hyperbolic 3-manifold with non-
abelian, finitely generated fundamental group and a single topological end. Assume that N
is homeomorphic to a submanifold of S3. Then N is a geometric limit of a sequence {Ni} of
hyperbolic 3-manifolds such that, for all i, the following hold:

(1) Ni has finitely generated fundamental group, no parabolics and a single end;
(2) the end of Ni is degenerate; and
(3) Ni admits an embedding into S3.

Combining Proposition 4.1 and Lemma 2.3, we see that it suffices to prove Theorem 1.1
for those manifolds N which, besides satisfying the assumptions in the theorem, have empty
parabolic locus and degenerate end. Assume that we have such a manifold N and let λ ⊂ ∂N be
the ending lamination of its unique end. Denote also by λ some measured lamination supported
by λ and choose once and forever a sequence {γi} of simple closed curves in ∂N converging to
λ in PML(∂N). By Theorem 2.1, for all sufficiently large i, the pair (N,N(γi)) is acylindrical.
Here, N(γi) is a regular neighborhood of γi in ∂N . In Section 5 we will show the following
proposition.

Proposition 5.5. Let N be a compact irreducible and atoroidal submanifold of S3 with
connected boundary of genus at least 2, and let η ⊂ ∂N be a simple closed curve with
(∂N,N(η)) acylindrical and ∂N�η connected. Then there is a sequence of hyperbolic knot
complements {MKi

} converging geometrically to a hyperbolic manifold Nη homeomorphic to
the interior of N , such that η represents a parabolic element in Nη.

With γi as above and i sufficiently large, let Nγi
be the hyperbolic 3-manifold provided by

Proposition 5.5. The content of Proposition 4.4, proved in Section 4, is that the manifolds Nγi

converge geometrically to N .

Proposition 4.4. Suppose that M is a hyperbolic 3-manifold with empty parabolic locus
and a single end. Assume that the end of M is degenerate with ending lamination λ and
suppose that {γn} is a sequence of simple closed curves in ∂M converging in PML(∂M)
to a projective measured lamination supported by λ. If {Mn} is any sequence of hyperbolic
3-manifolds homeomorphic to M , such that γn is parabolic in Mn for all n, then M is a
geometric limit of the sequence {Mn}.

By Proposition 5.5, each of the Nγi
is a limit of hyperbolic knot complements and, by

Proposition 4.4, the Nγi
converge geometrically to N . Lemma 2.3 concludes the proof of

Theorem 1.1.
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4. Three facts on geometric limits

The main goals of this section are Propositions 4.1 and 4.4. We also prove a technical result
needed in the proof of Proposition 5.5 later on.

4.1. Approximating by manifolds with degenerate ends

The statement of Proposition 4.1 below is summarized by saying that every hyperbolic manifold
satisfying the assumptions of Theorem 1.1 can be approximated by a sequence of manifolds
which, besides satisfying the same assumptions, have the property that their unique end is
degenerate.

Proposition 4.1. Let N be a complete, infinite volume, hyperbolic 3-manifold with non-
abelian, finitely generated fundamental group and a single topological end. Assume that N
is homeomorphic to a submanifold of S3. Then N is a geometric limit of a sequence {Ni} of
hyperbolic 3-manifolds such that, for all i, the following hold:

(1) Ni has finitely generated fundamental group, no parabolics and a single end;
(2) the end of Ni is degenerate; and
(3) Ni admits an embedding into S3.

Proof of Proposition 4.1. Observe that it follows from the strong density theorem that the
manifold N can be approximated by homeomorphic convex cocompact manifolds. In other
words, we may assume that N is convex cocompact.

Below we use an argument of Brooks [12] to prove the following lemma.

Lemma 4.2. Let N be a complete, convex cocompact hyperbolic 3-manifold with finitely
generated fundamental group and a single topological end. Assume that N is homeomorphic
to a submanifold of S3. Then N is a geometric limit of the sequence of convex cores {CC(Ni)}
associated to a sequence of hyperbolic 3-manifolds Ni such that the following hold:

(1) Ni has finitely generated fundamental group and a single end;
(2) Ni admits an embedding into S3; and
(3) Ni is a maximal cusp.

Assuming Lemma 4.2 we conclude the proof of Proposition 4.1. Let Ni be one of the maximal
cusps provided by Lemma 4.2. By work of Canary, Culler, Hersonsky, and Shalen [16, Lemma
15.2], Ni is the algebraic limit of a sequence {N i

n}n of hyperbolic 3-manifolds homeomorphic
to M , without parabolics, and whose only end is degenerate. By Proposition 2.6, there is a
subsequence of {N i

n}n, say the whole sequence, converging geometrically to some manifold N i
∞

into which the convex core CC(Ni) of the maximal cusp Ni can be embedded. Since the convex
cores CC(Ni) converge geometrically to N , and each one of them is contained in a geometric
limit of the sequence {N i

n}, we deduce that there is a diagonal sequence {N i
ni
} converging

geometrically to N . This diagonal sequence satisfies the requirements of the proposition.

It remains to prove Lemma 4.2. Before launching the proof, we need to remind the reader of a
couple of definitions. Assume for the sake of concreteness that N = H3/Γ is convex cocompact.
Recall that the discontinuity domain ΩΓ = ∂∞H3�ΛΓ is the complement of the limit set ΛΓ

of Γ in the boundary at infinity ∂∞H3. Identifying ∂∞H3 = CP 1, we obtain that the surface
∂∞N = ΩΓ/Γ is not only a Riemann surface but also has a canonical projective structure.
A circle in ∂∞N is a topological circle that is actually round with respect to the canonical
projective structure. A circle packing is a collection of circles in ∂∞N bounding disjoint disks,
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such that every component of the complement of the union of all these disks are curvilinear
triangles. We shall derive Lemma 4.2 from the following fact due to Brooks [12].

Theorem 4.3 (Brooks). For all ε > 0 there is a convex cocompact hyperbolic 3-manifold
Nε homeomorphic to N such that the following holds: Nε is (1 + ε)-bi-Lipschitz to N , and
∂∞Nε admits a circle packing such that each disk has diameter at most ε with respect to the
canonical hyperbolic metric of ∂∞N .

This theorem is not stated exactly in this way in [12], but it follows easily from the arguments
used to prove Theorem 3 therein.

Proof of Lemma 4.2. Let N be convex cocompact and let ∂∞N be its conformal boundary
with induced projective structure. Choose εi positive and tending to 0, and for all i let N1

i be
the manifold provided by Theorem 4.3; let Ci be the corresponding circle packing of ∂∞N1

i .
Observe that N is a geometric limit of the sequence N1

i .
Each of the circles in the circle packing Ci bounds a properly embedded totally geodesic plane

in N1
i . Paint such a plane black. Any two of these black planes either coincide or are disjoint.

Moreover, observe that if x, y, and z are the vertices of one of the (triangular) interstices
of the packing Ci, say bounded by the circles C1, C2, and C3, then the ideal triangle with
vertices x, y, z is perpendicular to the corresponding black planes P1, P2, P3. Paint carefully
the triangles red.

Since each of the circles has diameter at most εi → 0, for all d > 0 there is some id such that,
for i � id, none of the disks or triangles enters the radius d neighborhood of the convex core
CC(N1

i ) of N1
1 . Cut Ni open along all these planes and triangles and let N2

i be the closure of
the component containing CC(N1

i ).
The boundary of N2

i consists of totally geodesic pieces, some black and some red. Let N3
i be

the double of N2
i along the black boundary, which consists of subsets of the disks. Since the

red ideal triangles are perpendicular to the black planes of the boundary of N2
i , the manifold

N3
i has totally geodesic (red) boundary. Moreover, since N3

i is obtained by doubling N2
i , each

of the boundary components of N3
i is the double of one of the red triangles in the boundary of

N2
i . Thus every boundary component of N3

i is a 3-punctured sphere. Hence N3
i is the convex

core of a maximal cusp for all i.
Additionally, observe that the manifold compactification of N3

i is homeomorphic to two
copies of N to which we have attached 1-handles, one for each circle in the circle packing. In
particular, N3

i embeds in S3 and has a single end.
By construction, N is a geometric limit of the sequence N1

i . The condition that, for all d,
black disks and red triangles are eventually of distance greater than d from CC(N1

i ) implies
that N is also a geometric limit of the sequence N2

i . Each N2
i embeds into N3

i . Thus N is a
geometric limit of the manifolds N3

i as well.

Remark. Observe that in the proof of Lemma 4.2 we used the fact that the manifold N had
only a single end to conclude that the manifolds N3

i embed into S3. For manifolds with more
ends this argument fails. However, in some cases it should be possible to bypass this problem
by choosing the circle packings Ci with more care than we did. For instance, if N admits a
fixed-point free involution τ which preserves each boundary component, then we can consider
only τ -equivariant circle packings and glue each black tile with its image under τ . This shows,
for instance, that whenever Γ ⊂ PSL2 R is a torsion-free cocompact Fuchsian group, such that
the quotient surface H2/Γ admits an orientation-preserving fixed-point free involution, then
the hyperbolic 3-manifold H3/Γ is the geometric limit of a sequence of hyperbolic 3-manifolds
Ni, homeomorphic to submanifolds of S3, with two topological ends that are degenerate.
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4.2. Approximating by manifolds with prescribed cusps

We show now that given a manifold M with a single degenerate end, we may obtain M as a
limit of hyperbolic manifolds with few restrictions on their geometry.

Proposition 4.4. Suppose that M is a hyperbolic 3-manifold with empty parabolic locus
and a single end. Assume that the end of M is degenerate with ending lamination λ and
suppose that {γn} is a sequence of simple closed curves in ∂M converging in PML(∂M)
to a projective measured lamination supported by λ. If {Mn} is any sequence of hyperbolic
3-manifolds homeomorphic to M , such that γn is parabolic in Mn for all n, then M is a
geometric limit of the sequence {Mn}.

Proof. Observe that it suffices to show that every subsequence of the sequence {Mn}
contains a further subsequence that converges geometrically to M . In particular, we may pass
to subsequences as often as we wish.

By the abuse of notation, let λ also denote the measured lamination with support λ, which
is the limit of the γn. By Theorem 2.1, the measured lamination λ is doubly incompressible. In
particular, it follows from the work of Kim, Lecuire, and Ohshika [28, Theorem 2] that every
subsequence of {Mn} has a subsequence, say the whole sequence, which converges algebraically
to a hyperbolic 3-manifold MA homotopy equivalent to M .

If λ were realized in MA, then, by Proposition 2.4,

lim
n
lMn

(γn) = ∞.

On the other hand, since γn is parabolic in Mn, we have that

lMn
(γn) = 0

for all n. Hence λ cannot be realized. It now follows from Proposition 2.2 that MA is
homeomorphic to M , has no parabolics, and its end is degenerate with ending lamination λ. In
particular, Proposition 2.5 implies that the sequence Mn converges strongly to MA. Moreover,
since M and MA have the same ending lamination λ, the ending lamination theorem implies
that M and MA are isometric.

4.3. Geometric limits of gluings

We now study some of the geometric limits of sequences of hyperbolic manifolds obtained by
gluing two manifolds by higher and higher powers of a pseudo-Anosov map; cf. [46]. We prove
the following proposition.

Proposition 4.5. Assume that (N1, P1) and (N2, P2) are acylindrical, that S = ∂N1�P1

is connected, and that ∂N2�P2 has a component S′ homeomorphic to S, and fix a homeo-
morphism φ : S → S′. Fix also a pseudo-Anosov mapping class ψ : S → S and consider the
3-manifold

Nn = N1 ∪φ◦ψn N2

obtained by gluing N1 and N2. Assume finally that, for each n, there is a hyperbolic 3-manifold
Mn and a π1-injective embedding Nn ↪→Mn, with all curves in P1 ∪ P2 mapped to parabolics
in Mn.

Then some geometric limit MG of the sequence {Mn} is homeomorphic to the interior of
N1, has parabolic locus P1, and its only geometric end is degenerate.
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The proof of Proposition 4.5 is similar to the proof of Proposition 4.4. This result will play
a key role in the proof of Proposition 5.5.

Proof of Proposition 4.5. We are going to prove that every subsequence of the sequence
{Mn} has some further subsequence converging geometrically to a hyperbolic 3-manifold MG

homeomorphic to the interior of N1, with parabolic locus P1, and whose unique geometric
end is degenerate with ending lamination equal to the repelling lamination of ψ. The ending
lamination theorem implies then that any two of these geometric limits are isometric; this
shows that MG is a geometric limit of the whole sequence {Mn}. In particular, as in the proof
of Proposition 4.4, we may pass to subsequences as often as we wish.

Before going any further, observe that the assumption that ∂N1�P1 and ∂N2�P2 are
incompressible implies that π1(N1) injects into π1(Nn) and hence into π1(Mn). Similarly, if γ
and γ′ are essential curves in N1, freely homotopic in Mn, then the assumption that (N2, P2)
is acylindrical implies an annulus between γ and γ′, intersected with N2, can be isotoped to
lie in ∂N2, and hence in N1. This will give the following, which we state as a lemma for ease
of future reference.

Lemma 4.6. Let N1 and Mn be as in the statement of Proposition 4.5 and identify π1(N1)
with a subgroup of π1(Mn). If two elements γ, γ′ ∈ π1(N1) are conjugate in π1(Mn) for some
n, then they are conjugate in π1(N1). Equivalently, if two essential curves γ, γ′ ⊂ N1 are freely
homotopic within Mn, then they are freely homotopic within N1.

Consider now the coverings M1
n and M2

n of Mn corresponding to the subgroups π1(N1) and
π1(N2) of π1(Mn), respectively. Since (N1, P1) and (N2, P2) are acylindrical, it follows that
Thurston’s compactness theorem (see [24]) applies. Hence, passing to a subsequence we may
assume that the two sequences {M1

n} and {M2
n} converge algebraically. LetMG be the algebraic

limit of the sequence {M1
n}. Every curve in P1 represents a parabolic element in MG because

this is the case in M1
n for all n. On the other hand, fix a simple closed curve α ⊂ S′ ⊂ ∂N2�P2.

The compactness of the sequence {M2
n} implies that there is some L with lM2

n
(α) � L for all n.

After the identification φ ◦ ψn, the curve α becomes the curve ψ−n(φ−1(α)) ⊂ S ⊂ ∂N1�P1.
In particular, we have

lMn
1
(ψ−n(φ−1(α))) � L for all n.

Let λ be the repelling lamination of ψ and observe that

lim
n→∞ψ−n(φ−1(α)) = λ in PML(S).

A small variation of the argument used in the proof of Proposition 4.4 shows that λ is not
realized in MG. Again as in the proof of Proposition 4.4, we derive from Proposition 2.2 that
P1 is the parabolic locus of MG and that its unique geometric end is degenerate with ending
lamination λ. Also, as in the proof of Proposition 4.4, Proposition 2.5 shows that the sequence
{Mn} converges not only algebraically but also geometrically to MG.

We have proved that the sequence of covers M1
n of Mn has the desired geometric limit.

We claim that this is also the case for the original sequence {Mn}. Passing perhaps to a
further subsequence, we may assume that the manifolds {Mn} converge geometrically to some
manifold M ′

G covered by MG. Since the unique geometric end of MG is degenerate, we deduce
from the Thurston–Canary covering theorem that the cover MG →M ′

G is finite-to-one. We
claim that this cover is trivial. Otherwise, there are two elements γ, γ′ ∈ π1(MG) = π1(N1)
that are conjugate in π1(M ′

G) but not in π1(MG). In particular, we deduce from the geometric
convergence of the sequence {Mn} to M ′

G that, for all sufficiently large n, the elements γ, γ′ ∈
π1(N1) ⊂ π1(Mn) are also conjugate in π1(Mn). This contradicts Lemma 4.6. Thus the covering
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MG →M ′
G is trivial and hence M ′

G = MG. In other words, MG is a geometric limit of the
sequence {Mn}.

5. Constructing some limits of knot complements

The goal of this section is to prove Proposition 5.5. In order to do so, we start studying certain
multicurves in the boundary of a compression body. These multicurves are used to prove first
a version of Proposition 5.5 for links. The desired knots are then obtained from these links by
Dehn filling.

5.1. Curves on a compression body

We prove now a topological fact used in the proof of Proposition 5.3. The setting is the
following. Let Σ be a closed surface and C be the compression body obtained by gluing Σ ×
[0, 1] and S1 × D2 along the disks D1 ⊂ Σ × {1} and D2 ⊂ ∂(S1 × D2). We denote by ∂eC the
compressible boundary component of C, by ∂iC the incompressible one, and by D the disk
D1 = D2 ⊂ C.

Fix a simple curve α ⊂ ∂eC disjoint from D, contained in the component of C�D
corresponding to S1 × D2, representing a generator of Z = π1(S1 × D2). We shall use repeatedly
the following fact, which is easily verified by considering the two components of C�D.

Lemma 5.1. The only embedded essential disks in C�D are isotopic to D or intersect α.

Let γ be any simple closed curve in ∂eC that intersects α exactly once, with i(γ, ∂D) > 0, and
such that, after isotoping γ so that it intersects ∂D minimally, γ ∩ (Σ × {1}�D1) contains at
least two nonisotopic properly embedded arcs. Here i(·, ·) is the geometric intersection number.
Finally, denote by β the boundary of a regular neighborhood of α ∪ γ. We prove the following
proposition.

Proposition 5.2. Let α and β be as above. Then there exists a nonseparating curve
η ⊂ ∂iC such that (C,N(α ∪ β ∪ η)) is acylindrical.

Proof. We first prove that the multicurve α ∪ β ⊂ ∂eC intersects every properly embedded
essential disk, Möbius band, and annulus (A, ∂A) ⊂ (C, ∂eC).

Claim 1. The multicurve α ∪ β intersects every properly embedded essential disk in C.

Proof of Claim 1. Let Δ be a properly embedded essential disk in C such that ∂Δ does not
meet α ∪ β.

If Δ ∩D = ∅, then Δ is an embedded essential disk in C�D, and hence by Lemma 5.1, Δ
is isotopic to D or meets α. By assumption it does not meet α; but i(β, ∂D) = 2i(γ, ∂D) > 0,
by choice of β (and γ), and hence Δ cannot be isotopic to D. Thus Δ ∩D 
= ∅.

Consider the intersections Δ ∩D. These consist of closed curves and arcs. Using the
irreducibility of C, along with an innermost disk argument, we may assume that no components
of Δ ∩D are closed curves (else they can be isotoped off). Thus we consider arcs of intersection.
There is an innermost arc of intersection on Δ, which bounds a disk E1 ⊂ Δ disjoint from D,
and some disk E2 ⊂ D. Together, these two disks form a disk E in C. By pushing E2 off D
slightly, we may assume that E is embedded in C�D.
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If E is not essential in C�D, then its boundary curve bounds a disk on the boundary of
C. The union of E and this disk bounds a ball in C. We may isotope E1 through this ball to
decrease the number of intersections of Δ and D.

Hence assume E is essential. Then by Lemma 5.1, E is isotopic to D or meets α. First, E
cannot meet α, for by assumption E1 does not meet α, and E2 is a subset of D, which does
not meet α. Thus E is isotopic to D; but then again we may isotope E1 through D, reducing
the number of intersections of Δ and D.

Repeating this argument a finite number of times, we find Δ ∩D must be empty, which is a
contradiction.

Claim 2. The multicurve α ∪ β intersects every properly embedded Möbius band in
(C, ∂eC).

Proof of Claim 2. Let (M,∂M) ⊂ (C, ∂eC) be a properly embedded Möbius band. Since C
is orientable, it follows that M has to be one-sided. In particular, the homology class [M ] ∈
H2(C, ∂eC; Z/2Z) is nontrivial; by duality, there is some class [c] in H1(C; Z/2Z) with [c] ∩
[M ] = 1 mod 2. The first homology of C is generated by H1(∂iC) and [α]. Since ∂iC ∩M = ∅,
we deduce that α has to intersect M .

Claim 3. The multicurve α ∪ β intersects every properly embedded essential annulus
(A, ∂A) ⊂ (C, ∂eC) that is disjoint of D.

Proof of Claim 3. Let (A, ∂A) be an essential annulus in (C, ∂eC), and assume ∂A ∩ (α ∪
β) = ∅ and A ∩D = ∅.

First, if A is contained in the component corresponding to S1 × D2, then, since ∂A ∩ α = ∅,
it follows that ∂A must be parallel to α or ∂D. In either case, A will be inessential. Thus A
will lie in the component of C�D corresponding to Σ × [0, 1]. In particular, the annulus A is
isotopic, relative to its boundary, to an annulus A′ contained in Σ × {1}. The assumption that
A is essential in C implies that D1 ⊂ A′ (recall D1 ⊂ Σ × {1} is the disk D1 = D in C).

Cut open the surface ∂eC along ∂A′ = ∂A and let X be the component containing ∂D.
Observe that Y = X ∩ (Σ × {1}�D1) is a pair of pants. By assumption, the curve β is disjoint
of ∂A and by construction intersects ∂D; in particular, β ⊂ X. This implies that the curve γ
is also contained in X. By assumption, γ ∩ (Σ × {1}�D1) contains at least two nonisotopic
properly embedded essential arcs. Hence γ ∩ Y contains at least two nonisotopic arcs. This
is impossible, since Y is a pair of pants and all the arcs in γ ∩ Y end in the same boundary
component. This contradiction concludes the proof of Claim 3.

Claim 4. The multicurve α ∪ β intersects every properly embedded essential annulus
(A, ∂A) ⊂ (C, ∂eC).

Proof of Claim 4. Let (A, ∂A) be an essential annulus in (C, ∂eC), and assume ∂A ∩ (α ∪
β) = ∅. By Claim 3, we may assume A ∩D 
= ∅. As in the proof of Claim 1, consider the arcs
and curves of intersection.

Because A is essential, and any curve of intersection bounds a disk in D, it must bound a
disk in A, and thus we may isotope A so that there are no closed curves of intersection with A.

Suppose that there is an arc τ of A ∩D such that both endpoints of τ lie on the same
component of ∂A. Then τ , along with a portion of ∂A, bounds a disk in A. The only components
of A ∩D that lie in that disk will also have endpoints on the same component of ∂A. Thus we
may assume that τ is an innermost arc of intersection, which, together with a portion of ∂A,
bounds a disk in A disjoint from D. The arc τ also bounds a disk on D. The union of these
two disks can be pushed off D slightly to give an embedded disk E in C�D.
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Now, if E is inessential, we can isotope A through D to reduce the number of intersections.
Hence assume that E is essential. Then, by Lemma 5.1, E is isotopic to D or meets α. Now E
cannot meet α, for neither A nor D meet α. Thus E is isotopic to D; but then again we may
isotope A through D and reduce the number of intersections A ∩D.

Hence we may assume no arcs of A ∩D have both endpoints on the same component of ∂A.
Thus assume each arc of intersection has endpoints on distinct components of ∂A. Let τ1 and

τ2 be consecutive arcs of intersection such that they bound a disk on A disjoint from D. Note
that τ1 and τ2 will also bound disjoint disks on D. Putting these disks together and pushing
off D slightly, again we have a disk E embedded in C�D.

If E is essential in C�D, then again Lemma 5.1 gives a contradiction: E cannot meet α
because A and D do not, and if E is isotopic to D, then we can isotope A through D, reducing
the number of intersections.

Thus E is inessential in C�D; but then we may isotope the portion of A between τ1 and τ2
to lie on the boundary ∂eC. This is true of any consecutive arcs τ1 and τ2 on A. Since A can
be cut into pieces, each of which is bounded by consecutive arcs, it follows that A is not an
essential annulus. This contradiction completes the proof of the claim.

We can now conclude the proof of Proposition 5.2. Let N(α ∪ β) be a regular neighborhood
of the multicurve α ∪ β. By Claim 1, ∂C�N(α ∪ β) is incompressible. Assume that (C,N(α ∪
β)) is not acylindrical. Then we can consider the JSJ-splitting of C relative to a regular
neighborhood of N(α ∪ β); let S be the union of the Seifert pieces. Since C is not itself Seifert
fibered, it follows that S is a proper subset of C. The closure of the interior part of the boundary
of S, that is, ∂S�∂C, consists of a collection of properly embedded essential annuli; it is easy to
see that this implies that the interior boundary ∂iC = Σ × {0} of C is not contained in S. On
the other hand, all the boundary annuli of S have at least one of their boundary components
in ∂iC. Let X be the boundary in ∂iC of ∂iC ∩ S. Any curve η that, together with X, fills
the surface ∂iC has the property of intersecting every properly embedded essential annulus
in (C,N(α ∪ β)). In particular, (C,N(α ∪ β ∪ η)) is acylindrical; this concludes the proof of
Proposition 5.2.

5.2. Limits of link complements

In this section we prove a version of Proposition 5.5 for links instead of knots. As mentioned
above, we obtain the desired knots needed to prove Proposition 5.5 using Dehn filling. In order
to be able to do so, we need to construct links satisfying certain conditions. One of those
conditions is that a certain slope has a long normalized length, as in [22].

Definition. Let M be a hyperbolic 3-manifold with a rank 2 cusp T , and let H be an
embedded horoball neighborhood of the cusp with boundary ∂H. Let s be a slope on the cusp,
that is, an isotopy class of simple closed curves on T . The normalized length of s is defined to
be the length of a geodesic representative of s on ∂H, divided by the square root of the area of
the torus ∂H. Note that this definition is independent of choice of horoball neighborhood H.

We prove now the following proposition.

Proposition 5.3. Let N be a compact irreducible and atoroidal submanifold of S3 with
connected boundary of genus at least 2, and let η ⊂ ∂N be a simple closed curve with
(∂N,N(η)) acylindrical and ∂N�η connected. Then there is a sequence of hyperbolic link
complements MLi

converging geometrically to a hyperbolic manifold Nη homeomorphic to the
interior of N and such that η represents a parabolic element in Nη.
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Moreover, the links Li have exactly four components, αi, βi, κi, and ηi. The normalized
length of the standard meridian on ηi is increasing in an unbounded manner, and αi and βi
bound disjoint disks in the complement of ηi, αi, and βi in S3.

The construction given in the proof of Proposition 5.3 is quite involved. There are simpler
ways to build Nη as the geometric limit of link complements. However, our choice of link
complements and of Nη needs extra care so that we may turn these links into knots to prove
Proposition 5.5 in the following section.

Before launching the proof of Proposition 5.3, let Σ be a closed surface homeomorphic to ∂N ,
C be the compression body considered in the previous section, and α, β ⊂ ∂eC and η′ ⊂ ∂iC
be the curves provided by Proposition 5.2. Let also φ : ∂N → ∂iC be any homeomorphism
with φ(η) = η′. Denote by Xφ the manifold obtained by gluing N and C via φ and removing
a regular neighborhood of the curve η = η′. For the sake of bookkeeping we denote by αφ and
βφ the curves in ∂Xφ corresponding to α and β. Observe that the pair (Xφ,N(αφ ∪ βφ)) is
acylindrical.

Lemma 5.4. The embedding ι : N ↪→ S3 extends to an embedding ι′ : Xφ ↪→ S3 with the
property that the curves ι′(αφ) and ι′(βφ) bound properly embedded disjoint disks in the
closure of S3�ι′(Xφ).

Proof. Using the embedding C ↪→ Xφ, identify the disk D with a disk in Xφ, and let Yφ be
the component of Xφ�D containing N .

The manifold Yφ is homeomorphic to the complement in N of the regular neighborhood
of some curve contained in the interior of N and isotopic to η. In particular, the embedding
ι : N ↪→ S3 extends to an embedding ι̂ : Yφ ↪→ S3.

The other component, say U , of Xφ�D containing α is homeomorphic to S1 × D2. In
particular, we can embed U in S3�ι̂(Yφ) in such a way that the image of the curve α bounds
a properly embedded disk Δ in the complement of U and ι̂(Yφ).

In order to extend these two embeddings to an embedding ι′ : Xφ ↪→ S3, we map the 1-handle
joining Yφ and U to a 1-handle in S3�(ι̂(Yφ) ∪ U) whose core is disjoint from Δ.

Thus far, we have an embedding ι′ : Xφ ↪→ S3 with the property that ι′(αφ) bounds an
embedded disk Δ in the complement of the image of ι′. Recall that the curve β is obtained as
the boundary of the regular neighborhood of α ∪ γ, where γ intersects α once. The boundary of
a regular neighborhood in S3�ι′(Xφ) of ι′(γ) ∪ Δ is a properly embedded disk with boundary
β, which is disjoint of Δ.

Remark. Neither the constructed embedding ι′, nor the image of the curve αφ depends
on φ. However, the curve ι′(βφ) is very sensitive to φ.

We are now ready to prove Proposition 5.3.

Proof of Proposition 5.3. Choose a homeomorphism φ as above once and forever. Choose
a mapping class ψ : ∂iC → ∂iC with ψ(η′) = η′ and whose restriction to ∂iC�η′ is pseudo-
Anosov. Consider the sequence of manifolds Xψn◦φ.

For all n, choose once and forever a knot κn ⊂ S3�ι′(Xψn◦φ) that intersects every properly
embedded essential disk, annulus, and Möbius band therein; see [40] for the existence of such
a knot. Consider the link

Ln = η ∪ ι′(αψn◦φ) ∪ ι′(βψn◦φ) ∪ κn.
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By choice of κn, the complement MLn
= S3�Ln of this link is irreducible and atoroidal. In

particular, by Thurston’s hyperbolization theorem (see [24, 43, 44]), MLn
admits a complete

hyperbolic metric.
Observe that by construction, N (minus a small regular neighborhood of the boundary) is a

π1-injective submanifold of MLn
. Moreover, it follows from the construction that the sequences

of manifolds MLn
and submanifolds N ⊂MLn

satisfy the conditions of Proposition 4.5.
It follows that the sequence S3�Ln has a geometric limit Nη with the following property:

(*) Nη is homeomorphic to the interior of N , η is parabolic in Nη, and the only geometric
end of Nη is degenerate.

It remains only to show that the normalized length of the standard meridian of the link
component corresponding to η tends to infinity. This is due to the fact that these manifolds
approach Nη, whose end is degenerate, and hence in the geometric limit, the link components
tending to η tend to a rank 1 cusp, which is an infinite annulus. This rank 1 cusp has fixed
translation length, but unbounded length in another direction.

We claim that the unbounded direction corresponds to the limit of standard meridians of η
in MLn

; that is, note that a standard meridian of η in MLn
intersects ∂N twice in ι′(Xψn◦φ).

The geometric limit Nη is homeomorphic to the interior of N , and hence a curve meeting DN
twice must have unbounded length.

Because the translation length of the rank 1 cusp is fixed, lengths of curves meeting the
meridian once have bounded length for large n in MLn

. Hence the normalized length of the
meridian must become arbitrarily long.

5.3. Proof of Proposition 5.5

The goal of this section should be clear from the title.

Proposition 5.5. Let N be a compact irreducible and atoroidal submanifold of S3 with
connected boundary of genus at least 2, and let η ⊂ ∂N be a simple closed curve with
(∂N,N(η)) acylindrical and ∂N�η connected. Then there is a sequence of hyperbolic knot
complements {MKi

} converging geometrically to a hyperbolic manifold Nη homeomorphic to
the interior of N and such that η represents a parabolic element in Nη.

Proof. By Proposition 5.3, we may assume that there is a sequence of hyperbolic link
complements {MLi

} converging geometrically to Nη homeomorphic to the interior of N and
such that η represents a parabolic element in Nη. Moreover, we know that the link Li has
four components αi, βi, κi, and ηi, that the normalized length of the standard meridian of ηi
grows unbounded, and that αi and βi bound disjoint disks in the complement of αi, βi, and
ηi in S3. To prove the proposition, we perform hyperbolic Dehn filling on the link components
corresponding to αi, βi, and ηi. We use the following version, whose proof is written carefully
in Aaron Magid’s thesis [33, Theorem 4.3], of Hodgson and Kerckhoff’s quantified Dehn filling
theorem [22]. See also Brock and Bromberg [9].

Theorem 5.6. Let J > 1 and ε be positive and smaller than the Margulis constant. Then
there is some L > 16π2 + 2π/ε such that if M is a finite volume hyperbolic 3-manifold, and
s ⊂ ∂M is a slope with normalized length at least L, then:

(1) the interior Ms of the Dehn filled manifold M(s) obtained from M by surgery along s
is hyperbolic;

(2) the geodesic γs ⊂Ms isotopic to the core of the attached solid torus has length at most
(2π)/(L− 16π2) < ε;
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(3) there is a J-bi-Lipschitz embedding φ : M�Ts,ε ↪→Ms of the complement in M of the
component in M<ε corresponding to the filled cusp into the Dehn filled manifold Ms.

Let Mαi∪βi∪κi
be the manifold obtained from MLi

by performing surgery on MLi
along the

standard meridian of ηi. Since the normalized length of this meridian grows unbounded, we
deduce from Theorem 5.6 that, for all sufficiently large i, the manifold Mαi∪βi∪κi

is hyperbolic
and that Nη is also a geometric limit of the sequence {Mαi∪βi∪κi

}.
Now fixing i, consider the manifold Mαi∪βi

obtained by filling the standard meridian of
the knot κi. In other words, Mαi∪βi

= S3�(αi ∪ βi). Since the two link components αi and
βi bound disjoint embedded disks, we see that the manifold Mαi∪βi

is homeomorphic to the
interior connected sum (D2 × S1)#(D2 × S1) of two solid tori. In particular, there are infinitely
many ways in which one can Dehn fill each of the two ends of Mαi∪βi

so that we obtain the
3-sphere S3. Each one of these fillings yields a new embedding of Mαi∪βi

into S3; observe
that the knot κi ⊂Mαi∪βi

is mapped under these new embeddings to a knot that may not be
isotopic to the original κi.

Hence, for each, i the hyperbolic manifold Mαi∪βi∪κi
admits infinitely many Dehn fillings

of the cusps associated to αi and βi so that the obtained manifold is homeomorphic to the
complement of a knot in S3. Choosing a sequence of more and more complicated Dehn fillings
in each of the cusps αi and βi, we obtain a sequence {MKi,j

}j of knot complements. We deduce
from Theorem 5.6, or even from the classical version of Thurston’s Dehn filling theorem [48],
that, for each fixed i, the following hold.

(1) For all sufficiently large j, say for all j, the knot complement MKi,j
is hyperbolic.

(2) The sequence of knot complements {MKi,j
} converges geometrically to Mαi∪βi∪κi

.
Since by construction the sequence {Mαi∪βi∪κi

} converges to Nη, the claim of Proposition 5.5
follows now from Lemma 2.3.

6. Convex submanifolds and the proof of Theorem 1.3

In this section we prove Theorem 1.3. However, before doing so, we have to establish a
(perhaps well known or possibly of independent interest) property of certain convex subsets in
3-dimensional hyperbolic space. Essentially we prove that the completion of the complement
of the convex hull of any subset of ∂∞H3 is a locally CAT(−1) space. This fact allows us to
adapt an argument due to Lackenby to prove Theorem 1.3. We end this section with a few
unrelated observations on the complements of convex submanifolds of hyperbolic 3-manifolds.

6.1. Convex hulls

Let X ⊂ ∂∞H3 be a closed subset in the boundary at infinity of H3 and assume that X contains
at least three points. Let U be a connected component of the complement H3�CH(X) of the
convex hull CH(X) of X in H3. We consider U with the induced interior metric and let U be
its metric completion.

Remark. Recall that the completion of a subspace of a metric space may be different from
its closure. Think of the open interval (0, 1) in the circle R/Z.

We prove the following proposition.

Proposition 6.1. Let X ⊂ ∂∞H3 be a closed set in the boundary at infinity of H3

containing at least three points, and let U be a connected component of the complement
H3�CH(X) of the convex hull CH(X) of X in H3. The metric completion U of U is a locally



778 JESSICA S. PURCELL AND JUAN SOUTO

CAT(−1) manifold with totally geodesic boundary ∂U = U�U , under the path metric inherited
from H3.

Before launching the proof of Proposition 6.1, we would like to remark that this is an almost
exclusively 3-dimensional phenomenon. For instance, it was pointed out to us by Larry Guth
that if X is any finite set in ∂∞H4, then the complement of CH(X) is not aspherical and hence
cannot be a locally CAT(−1) manifold. It would be interesting to determine for which subsets
of ∂∞Hn, with n � 4, Proposition 6.1 remains valid.

Proof of Proposition 6.1. The assumption that X has at least three points implies that
CH(X) is either a totally geodesic surface (if X is contained in a round circle in ∂∞H3) or a
convex set with nonempty interior.

Assume that we are in the first case, or equivalently that CH(X) ⊂ H2. If CH(X) = H2, then
each component of H3�CH(X) is an open halfspace, its closure is a closed halfspace, and we
have nothing to prove. If CH(X) is a proper subset of H2, then U = H3�CH(X) is connected
and its metric completion U is homeomorphic to the complement of a regular neighborhood of
CH(X) in H3. In particular, U�U is the double of CH(X). In fact, the map U → H3 induces
the ‘folding the double’ map U�U → CH(X). The double DU of U is a hyperbolic cone-
manifold with empty boundary and all cone angles equal to 4π. This implies local uniqueness
of geodesics, and hence DU is CAT(−1) (compare with [21]). The local uniqueness of geodesics
in DU implies that U is totally convex and ∂U totally geodesic under the path metric on U
inherited from the hyperbolic metric. Since totally convex subsets of locally CAT(−1) spaces
are locally CAT(−1), the claim follows in this case.

In some sense, the case that CH(X) has nonempty interior is less confusing. In this case the
metric completion U of a component U of H3�CH(X) is equal to its closure in H3. Moreover,
a theorem of Thurston (see, for example, [18]) asserts that ∂U = U�U = ∂CH(X) is, with
respect to its intrinsic distance, a complete hyperbolic surface.

Now choose a nested collection of finite subsets Xi of X with dense union. In other words,

X1 ⊂ X2 ⊂ X3 ⊂ . . . and X =
∞⋃
i=1

Xi. (6.1)

We may assume, without loss of generality, that none of the sets Xi is contained in a
round circle, since X is not. For each i, the set Ui = H3�CH(Xi) is connected and contains
H3�CH(X). When i tends to ∞, the closures U i of Ui converge in the pointed Hausdorff
topology to the closure H3�CH(X) of H3�CH(X). Moreover, for every p ∈ H3�CH(X), there
is ε > 0 such that, for all i sufficiently large, Bp(ε,H3) ∩ U i and Bp(ε,H3) ∩ (H3�CH(X)) are
simply connected. In other words, the sequence of universal covers of U i converge in the pointed
Hausdorff topology to the universal cover of H3�CH(X). It follows now from [7, II, Theorem
3.9] that it suffices to show that each of the U i is locally CAT(−1).

In other words, in order to conclude the proof of Proposition 6.1, it remains to prove it for
finite sets X ⊂ ∂∞H3 that are not contained in a round circle. Under this assumption, CH(X)
is a convex ideal polyhedron with nonempty interior. In particular CH(X) has finitely many
totally geodesic faces, finitely many geodesic edges and no vertices (other than the ideal vertices
at infinity). Convexity of CH(X) implies that every interior dihedral angle of the polyhedron
is less than π. The closure U of the complement U of CH(X) in H3 is just the complement
in H3 of the interior of the polyhedron CH(X). Doubling U we obtain a hyperbolic cone-
manifold DU with empty boundary and cone angles greater than 2π. As above, the doubled
DU is CAT(−1) under the induced path metric and, again as above, we deduce that U itself is
CAT(−1) with totally geodesic boundary under the induced path metric. This concludes the
proof of Proposition 6.1.
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We conclude with the following slightly more general version of Proposition 6.1.

Corollary 6.2. Let {Xi} be a sequence of closed subsets of ∂∞H3 and assume that,
for every x ∈ H3, there is some εx > 0 such that the ball BH3(x, εx) intersects at most one
of the convex hulls CH(Xi). Let U be a connected component of H3�

⋃
i CH(Xi) and Ũ be

its universal cover. Then Ũ , the completion of Ũ with respect to the lifted path metric, is a
CAT(−1) space.

Proof. The assumption that each point in x ∈ H3 is the center of some ball, which only
intersects one of the convex hulls CH(Xi), implies that each point in x ∈ Ũ has a small
neighborhood isometric to the completion of the universal cover of the complement of CH(Xi).
If Xi consists of only two points, then it follows from Soma [47] that x has a small CAT(−1)
neighborhood in Ũ . If Xi has at least three points, then we obtain the same consequence
from Proposition 6.1. Using this local description of the completion of the universal cover, it
is easy to see that every curve in Ũ can be homotoped to a curve in Ũ and hence that Ũ is
simply connected. In other words, Ũ is a simply connected locally CAT(−1) space and hence
is CAT(−1) by the Hadamard–Cartan theorem.

6.2. Proof of Theorem 1.3

We now prove Theorem 1.3.

Proof of Theorem 1.3. Let M be as in the statement of the theorem and assume that
there is a sequence of hyperbolic knot complements {MKi

} converging geometrically to M .
Let N(CC(M)) be a regular neighborhood of CC(M) with smooth strictly convex boundary
and let Σ1 and Σ2 be two compact components of ∂N(CC(M)). Fix now a compact, connected
3-dimensional submanifold W of M whose boundary contains both Σ1 and Σ2. For some d to
be determined below, let Wd = {x ∈M |dM (x,W ) � d}. By geometric convergence, for large i
we have better and better almost isometric embeddings

fi : Wd −→MKi
.

We may assume, passing to a subsequence, that, for all i, the surfaces fi(Σ1) and fi(Σ2) are
locally convex.

The two surfaces fi(Σ1) and fi(Σ2) are closed and disjoint. Since the complement of a knot
in S3 does not contain nonseparating closed surfaces, we obtain that fi(Σ1) and fi(Σ2) separate
the knot complement MKi

into three pieces. Let V 0
i be the component containing fi(W ). If

MKi
�V 0

i has an unbounded component, let V 1
i be this unbounded component; otherwise,

choose V 1
i to be either remaining component. Set Vi = V 0

i ∪ V 1
i and observe that it is convex,

and that its boundary is one of the two surfaces fi(Σ1) and fi(Σ2). Up to relabeling and passing
to a subsequence, we may assume ∂Vi = fi(Σ1) for all i.

It follows from the convexity of Vi that its fundamental group π1(Vi) injects into π1(MKi
).

Let MVi
be the associated cover of MKi

and lift the inclusion Vi ↪→MKi
to the inclusion

Vi ↪→MVi
. The convexity of Vi implies that the convex core CC(MVi

) of MVi
is contained in

Vi. In particular, the restriction of the covering MVi
→MKi

to CC(MVi
) is injective. Before

moving on, we observe the following.
(1) The submanifolds CC(MVi

) and Vi of MKi
are isotopic.

(2) The boundary of CC(MVi
) is a closed connected surface Si. The surfaces Si are

uniformly bi-Lipschitz equivalent to Σ1. In particular, there is some uniform δ with inj(Si) � δ
for all i.
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(3) The surface ∂CC(MVi
) has, for large i, a collar of width at least d in MKi

�CC(MVi
),

since recall fi is an almost isometric embedding of Wd, containing W . In particular, any
essential arc (κ, ∂κ) ⊂ (MKi

�CC(MVi
), ∂CC(MVi

)) has, for all sufficiently large i, length at
least 2d.

Now let U ′
i = MKi

�Vi and Ui = MKi
�CC(MVi

) be the complements of Vi and CC(MVi
) in

MKi
, respectively. It follows from (1) that Ui and U ′

i are isotopic and from the construction
that U ′

i ⊂ Ui. Let U i = Ui ∪ Si be the closure of Ui in MKi
. Now U i is the completion of the

complement of a convex set CC(MVi
) in the hyperbolic manifold MKi

. We lift to the universal
cover H3 of MKi

. Lifts of CC(MVi
) are convex hulls of sets Xj in ∂H3. By Corollary 6.2, the

completion of the universal cover of a component of H3� ∪j CH(Xj) is a CAT(−1) space with
geodesic boundary. This is the universal cover of U i. Hence with respect to the path metric
induced from the interior metric, U i is a locally CAT(−1) manifold with totally geodesic
boundary.

It is a well-known fact that a compact 3-manifold that admits a hyperbolic metric
with respect to which the boundary is totally geodesic is irreducible, atoroidal, and has
incompressible and acylindrical boundary. The argument applies verbatim to locally CAT(−1)
metrics with again totally geodesic boundary. Hence we deduce that U i is irreducible, atoroidal,
and has incompressible and acylindrical boundary.

Via the embedding MKi
↪→ S3, we consider U i as a submanifold of the 3-sphere and let

Hi = S3�U i be its complement. Since a component of ∂Hi has genus at least 2, we deduce
that Hi cannot be simply connected. In particular, the homomorphism

π1(Hi) −→ π1(U i ∪Hi) = π1(S3) = 1

cannot be injective. We deduce as in [31, Section 2] that the acylindrical manifold U i contains
an immersed incompressible, boundary incompressible planar surface

(Xi, ∂Xi) ⊂ (U i, ∂U i)

with negative Euler characteristic χ(Xi) = 2 − ki; here ki is the number of boundary
components of Xi.

We proceed now as, for example, in [47] to obtain a CAT(−1) metric with geodesic boundary
on Xi. Start with a triangulation of Xi with a single vertex at each boundary component and
no vertices in the interior. We homotope the map Xi → U i so that the boundary curves go to
geodesics in ∂U i. Then, keeping the boundary fixed, we homotope the remaining edges of the
1-skeleton of Xi to geodesic arcs. Finally we homotope each of the faces of the triangulation
to a ruled surface.

Pulling back the CAT(−1) metric of U i, we obtain a CAT(−1) metric on Xi with geodesic
boundary. The Gauß–Bonnet theorem implies then that

vol(Xi) � 2π(ki − 2) < 2πki. (6.2)

Assume that (κ, ∂κ) ⊂ (Xi, ∂Xi) is an essential arc. Since the surface Xi is boundary
incompressible, we deduce from (3) that the image of κ has length at least 2d. On the other
hand, the map Xi → U i is 1-Lipschitz. Hence each of the boundary components of Xi has an
embedded collar of width d and all these collars are disjoint. At the same time, each one of
the boundary components is an essential curve in Si = ∂U

′
i and hence has length at least δ by

(2). We deduce that each one of the k collars has volume at least dδ and that all these collars
are disjoint. Thus

vol(Xi) � kidδ.

In particular, if d is sufficiently large, we obtain a contradiction to the area bound (6.2). This
concludes the proof of Theorem 1.3.
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At this point we would like to add a few observations on the geometry of complements of
convex submanifolds in hyperbolic 3-manifolds. For example, we remark that during the proof
of Theorem 1.3 we have essentially obtained the following result.

Proposition 6.3. Let M = H3/Γ be a hyperbolic 3-manifold and V ⊂M be a
3-dimensional submanifold with locally convex, compact boundary, and non-abelian funda-
mental group π1(V ). Consider U = M�V and let U = U ∪ ∂V be its metric completion. The
embedding U ↪→M is isotopic (but perhaps not ambient isotopic) to a second embedding
φ : U ↪→M with the following properties.

(1) The set U is contained in φ(U), and, moreover, if ∂V is smooth and none of its
components are totally geodesic, then φ(U)�U is homeomorphic to ∂U × R.

(2) The embedding φ extends continuously to a locally injective φ̄ : U →M . Moreover,
unless some component of V is a regular neighborhood of a nonseparating totally geodesic
surface, the map φ̄ is injective when restricted to each connected component of U .

(3) If we endow U with the unique interior distance such that the map φ̄ preserves the
lengths of curves, then U is a CAT(−1) space with totally geodesic boundary.

As a consequence of Proposition 6.3 and Soma [47] we have the following corollary.

Corollary 6.4. LetM = H3/Γ be a hyperbolic 3-manifold and V ⊂M be a 3-dimensional
submanifold with locally convex compact boundary. Assume that no component of V is simply
connected and let U be the metric completion of U = M�V . Then U is irreducible, atoroidal,
and has incompressible and acylindrical boundary.

7. Various

In this section we discuss some of the examples mentioned in Section 1, we make some more
or less interesting remarks and we ask a few questions.

We start constructing hyperbolic knots whose complements have very big injectivity radius
at some point. In order to do so, it suffices to remark that H3 is a complete hyperbolic
3-manifold with trivial, and hence finitely generated fundamental group, which is homeomor-
phic to a ball and hence has a single end and embeds into S3. In other words, it satisfies the
conditions of Theorem 1.1 and hence H3 is a geometric limit of some sequence of hyperbolic
knot complements {MKi

}. Recall that this means that there are p ∈ H3 and pi ∈MKi
such

that, for all r and ε and all sufficiently large i, the ball Bp(r) ⊂ H3 with center p and radius
r can be (1 + ε) isometrically embedded into MKi

by a map that maps p to pi. This implies
that, for all sufficiently large i, the set of points in MKi

which is at distance at most, say, R/2
from pi is simply connected. In other words, for all large i we have inj(pi,MKi

) � R/2. Since
R was arbitrary, we obtain Corollary 1.2.

The proof of Corollary 1.2 is somehow disappointing because the involved knots are produced
in a very indirect way. We ask the following question.

Question 2. Can one give an explicit construction of knots as in Corollary 1.2?

The same strategy used to prove Corollary 1.2 can be used to show that there exist
hyperbolic knots whose complement has arbitrarily large Heegaard genus, arbitrarily large
volume, arbitrarily many arbitrarily small eigenvalues of the Laplacian, arbitrarily many
arbitrarily short geodesics, contains surfaces with arbitrarily small principal curvatures, and
so on. It should be said that knots with most of these properties were either known to exist
(see, for instance, [32]) or no one bothered to try to construct them before.
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We now show how to prove that some other hyperbolic 3-manifolds, not covered by
Theorem 1.1, are also geometric limits of knot complements.

Let M be a hyperbolic 3-manifold homeomorphic to the trivial interval bundle Σg × R over
a closed surface of genus g, which has at least one degenerate end. It is now well known that
M is the geometric limit of a sequence of hyperbolic 3-manifolds {Mi}, where each Mi is
homeomorphic to the interior of a handlebody of genus g (cf., for instance, [5, Section 3]).
Each one of the manifolds Mi satisfies the assumption of Theorem 1.1 and hence is a geometric
limit of knot complements. Therefore Lemma 2.3 now implies the following corollary.

Corollary 7.1. Every hyperbolic 3-manifold M homeomorphic to Σg × R which has at
least one degenerate end is the geometric limit of a sequence of hyperbolic knot complements.

More generally, if M is homeomorphic to the interior of a compression body with exterior
boundary of genus g and such that each of the interior ends is degenerate, then M is the
geometric limit of a sequence {Mi}, where each of the Mi is homeomorphic to a genus g
handlebody (compare again with [5, Section 3]). Paying the price of having a large exterior
boundary, we have compression bodies with as many interior boundary components as we wish.
In particular we deduce the following corollary.

Corollary 7.2. For every n and g there is a hyperbolic 3-manifold M with at least n
ends, which have neighborhoods homeomorphic to Σg × R+ and which arise as geometric limits
of knot complements.

The statements of Corollaries 7.1 and 7.2 become more interesting when compared with
Theorem 1.3, since the latter shows that, for instance, not every hyperbolic manifold
homeomorphic to Σg × R is a geometric limit of knot complements.

Question 3. Assume that M has finitely generated fundamental group, embeds into the
sphere, and has more than one end. What are the possible hyperbolic metrics on M that
make M a geometric limit of knot complements? Are there restrictions on the possible ending
laminations of the degenerate ends?

Question 4. Is there an irreducible and atoroidal 3-manifold with finitely generated
fundamental group, which embeds into S3 and is not homeomorphic to any geometric limit
of knot complements?

In relation to these two last questions, we would like to observe that in the course of the
proof of Theorem 1.1 we proved something slightly stronger than what we state. In fact, if
M is as in the statement of the theorem and we fix an embedding M ↪→ S3 of the manifold
compactification of M into the sphere, then we can find knots Ki in the complement of M
in S3 such that M is a geometric limit of the MKi

. In other words, if we identify M with
a standard compact core of M , then the initial embedding of M into S3 and the embedding
obtained by composing the homeomorphism M ↪→M with the almost isometric embedding
M ↪→MKi

provided by geometric convergence, followed by the standard embedding MKi
↪→

S3, are isotopic.
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It seems that whenever M has at least two ends the situation dramatically changes. In
particular, Questions 3 and 4 may actually turn to be questions on the possible reembeddings
of submanifolds of the sphere.

Remark. Between the completion of the present paper and its acceptance for publication,
Richard Kent and the second author [27] have constructed examples of irreducible and atoroidal
3-manifolds with finitely generated fundamental group, which embed into S3 and are not
homeomorphic to any geometric limit of knot complements. This gives a positive answer to
Question 4. Question 3 remains wide open.

Also related to Questions 3 and 4 but in a little different spirit we ask the following question.

Question 5. Is there a geometric limit of knot complements M with finitely gener-
ated π1(M), which has two geometrically finite geometric ends contained in two different
topological ends?

We now discuss which hyperbolic 3-manifolds of the form H3/Γ, with Γ ⊂ PSL2 R a torsion-
free Fuchsian group, arise as geometric limits of knot complements. If the surface H2/Γ
is compact, then H3/Γ has two convex cocompact ends and hence is not a limit of knot
complements by Theorem 1.3. On the other hand, if the surface H2/Γ is not compact, then
let S1 ⊂ S2 ⊂ . . . be a nested sequence of compact connected π1-injective subsurfaces of H2/Γ
with H2/Γ = ∪Si. Let Γ1 ⊂ Γ2 ⊂ . . . be the associated sequence of subgroups Γi = π1(Si) of
Γ. Then the hyperbolic manifold H3/Γ is the geometric limit of the sequence {H3/Γi}. On
the other hand, each of the manifolds H3/Γi is homeomorphic to a handlebody and hence is a
geometric limit of knot complements by Theorem 1.1. Combining these two observations, we
obtain the following corollary.

Corollary 7.3. Let Γ ⊂ PSL2 R be a torsion-free, but possibly infinitely generated,
Fuchsian group. Then the hyperbolic manifold H3/Γ is a geometric limit of knot complements
if and only if the surface H2/Γ is open.

At this point we would like to mention that the argument used to prove Theorem 1.1 together
with the remark after the proof of Proposition 4.1 imply that if H2/Γ is a closed hyperbolic
surface that admits an orientation-preserving involution without fixed points, then H3/Γ is the
geometric limit of a sequence of link complements, where each link has two components.

During the discussion of Corollary 7.3, we observed that Theorem 1.1 can also be used
to prove that some hyperbolic 3-manifolds with infinitely generated fundamental group are
geometric limits of knot complements. It may be that every one-ended hyperbolic 3-manifold
that embeds into the sphere is a geometric limit of still one-ended hyperbolic 3-manifolds,
which embed into the sphere and have finitely generated fundamental group. Hence we ask the
following question.

Question 6. Is it true that every one-ended hyperbolic 3-manifold that embeds into S3

is a limit of knot complements? In other words, does Theorem 1.1 hold for manifolds with
infinitely generated π1?
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On the other hand, it could be that some hyperbolic 3-manifold M , which does not embed
into the sphere, is a geometric limit of hyperbolic 3-manifolds that embed into the sphere. This
prompts the following question.

Question 7. Is it true that every geometric limit of hyperbolic knot complements embeds
into S3?

The answer to Question 7 is most likely negative.
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