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Secant varieties of P2 × Pn embedded by O(1, 2)

D. Cartwright, D. Erman and L. Oeding

Abstract

We describe the defining ideal of the rth secant variety of P2 × Pn embedded by O(1, 2), for
arbitrary n and r � 5. We also present the Schur module decomposition of the space of generators
of each such ideal. Our main results are based on a more general construction for producing
explicit matrix equations that vanish on secant varieties of products of projective spaces. This
extends previous work of Strassen and Ottaviani.

1. Introduction

Let U , V , and W be complex vector spaces of dimension m, n and k, respectively, and let
x be an element in the tensor product of their duals, U∗ ⊗ V ∗ ⊗W ∗. The border rank of
x is the minimal r such that the corresponding point [x] ∈ P(U∗ ⊗ V ∗ ⊗W ∗) lies in the rth
secant variety of the Segre variety of P(U∗) × P(V ∗) × P(W ∗). Similarly, for a symmetric tensor
x ∈ S3U∗ or a partially symmetric tensor x ∈ U∗ ⊗ S2V ∗, the symmetric border rank and the
partially symmetric border rank are the smallest r such that [x] is in the rth secant variety
of the Veronese or the Segre–Veronese variety, respectively. Developing effective techniques
for computing the border rank of tensors is an active area of research which spans classical
algebraic geometry and representation theory [12–16, 20].

In the partially symmetric case, the secant varieties of P1 × Pn−1 embedded by O(1, 2) are
closely related to standard results about pencils of symmetric matrices. Moreover, the non-
symmetric analog is P1 × Pn−1 × Pk−1 embedded by O(1, 1, 1), and the defining equations of
all of its secant varieties are known by the work of Landsberg and Weyman [16, Theorem 1.1].
We record the partially symmetric analog in Proposition 5.1.

Our main result is Theorem 5.2, which focuses on the next case: secant varieties of P2 × Pn−1

embedded by O(1, 2). We give two explicit matrices, and we prove that, when r � 5, their
minors and Pfaffians, respectively, generate the defining ideal for these secant varieties. To
illustrate, fix a basis {e1, e2, e3} of U∗. We may then express any point x ∈ P(U∗ ⊗ S2V ∗)
as x = e1 ⊗A1 + e2 ⊗A2 + e3 ⊗A3 where each Ai ∈ S2V ∗ can be represented by an n× n
symmetric matrix. With the ordered triplet of matrices (A1, A2, A3) serving as coordinates on
P(U∗ ⊗ S2V ∗), our main result is the following, which is a restatement of Theorem 5.2.

Theorem 1.1. Let Y be the image of P2 × Pn−1 in P3(n+1
2 )−1 ∼= P(U∗ ⊗ S2V ∗) embedded

by O(1, 2). For any r � 5 the rth secant variety of Y is defined by the prime ideal generated
by the (r + 1) × (r + 1) minors of the n× 3n block matrix(

A1 A2 A3

)
(1.1)
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and by the (2r + 2) × (2r + 2) principal Pfaffians of the 3n× 3n block matrix

⎛
⎝ 0 A3 −A2

−A3 0 A1

A2 −A1 0

⎞
⎠ . (1.2)

The matrices that appear in the statement of the above theorem are examples of what we
call the ‘exterior flattenings’ of a 3-tensor (see § 2), and the construction of these matrices
is motivated by the κ-invariant of a 3-tensor, as introduced in [7, § 1.1]. The minors of the
exterior flattenings of a 3-tensor impose necessary equations on a wide array of secant varieties
of Segre–Veronese embeddings of products of projective spaces. The minors of these exterior
flattenings simultaneously generalize both the minors obtained from flattenings of a 3-tensor
and the determinantal equations of Strassen [22, Lemma 4.4] and Ottaviani [20, Theorem 3.2].

Under the hypotheses of Theorem 1.1, the minors and Pfaffians of these exterior flattenings
are insufficient to generate the ideal of the rth secant variety for r � 7. In other words,
Theorem 1.1 would be false for r � 7, and we do not know if Theorem 1.1 holds when r = 6;
see Example 10 for more details. Note that by Abo and Brambilla [1, Corollary 1.4(ii)], these
secant varieties have the expected dimension except when n is odd and r = n+ (n+ 1)/2.

The proof of our main result uses a mix of representation theory and geometric techniques
for studying determinantal varieties. We first introduce the relevant determinantal ideals and
we use their equivariance properties to relate these ideals as the size of the tensor varies. Next,
we apply this relation in order to understand the defining ideals of certain auxiliary varieties
known as the subspace varieties Subm′,n′ (see Definition 6). We then prove our main result
in the special case where n = r, by relating the secant variety with the variety of commuting
symmetric n× n matrices. A similar idea has appeared in several instances previously [2, 7,
20, 22]. This step requires r � 5. Finally, we prove our main result by blending our results
about subspace varieties with our knowledge about the case n = r.

Partially symmetric 3-tensors are closely related to the study of vector spaces of quadrics,
which arise naturally in algebraic geometry. For instance, in the study of Hilbert schemes of
points, border rank is connected to the smoothability of zero-dimensional schemes [4, 7]. As
another example, [20, Proposition 6.3] relates the border rank of a partially symmetric tensor
x ∈ C3 ⊗ S2(Cn) with properties of the corresponding degree n determinantal curve in P2.

Questions about the border rank of partially symmetric tensors also arise in algebraic
statistics [9, § 7]. For instance, the situation of the Theorem 5.2 corresponds to a mixture
of random processes, each independently sampling from a distribution with three states and
sampling twice from a distribution with n states. The border rank of the observed distribution
corresponds to the number of processes in the mixture.

In signal processing, a partially symmetric tensor in U∗ ⊗ S2V ∗ can be constructed as the
second derivative of the cumulant-generating function taken at m points; see [26]. The matrix
equations in Theorem 5.2 can be used to study small border ranks of such tensors in the case
m = 3.

The defining ideal of the rth secant variety of P2 × Pn−1 was previously known in the case
when this secant variety is a hypersurface. This occurs when n � 4 is even, and r = (3n− 2)/2,
and this result follows from an analog to Strassen’s argument [22, § 4], as shown by Ottaviani
in the remark following [20, Theorem 4.1]. For historical interest, we note that the hypersurface
case n = 4 and r = 5 dates to Toeplitz [23].

Theorem 5.2 thus provides a new family of examples where we can effectively compute the
border rank of a partially symmetric tensor. Our main result also provides evidence for a
partially symmetric analog of Comon’s Conjecture, which posits that the symmetric rank of a
tensor equals the rank [5, § 5], as discussed in Remark 8.
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This paper is organized as follows. In § 2, we define a vector κ as an invariant of a 3-tensor.
We use this κ-invariant to produce explicit matrix equations that vanish on the secant varieties
of Segre–Veronese embeddings of projective spaces. To provide a more invariant perspective,
and to connect with the previous literature [12, 13, 16, 17], we also provide Schur module
decompositions for our matrix equations. In § 3, we restrict to the case of the κ-invariant of a
partially symmetric tensor. Here we also provide Schur module decompositions in the partially
symmetric case. In § 4, we show that the κ0 equations define subspace varieties. We prove our
main result; Theorem 5.2 in § 5.

Remark 1. Our results giving equations vanishing on the Segre and Segre–Veronese
varieties (Propositions 2.1 and 3.1) hold in arbitrary characteristic. However, our proof of
Theorem 5.2 does not extend to arbitrary characteristic because it relies on Lemmas 4.2 and 5.4
and [3, Theorem 3.1], all of which require characteristic 0.

2. The κ-invariant of a 3-tensor

From a tensor in U∗ ⊗ V ∗ ⊗W ∗, we construct a series of linear maps, whose ranks we define to
be the κ-invariants of the tensor. The κ-invariants give inequalities on the rank of the tensor,
and thus, determinantal equations that vanish on the secant variety.

There is a natural map U∗ ⊗ ∧j
U∗ → ∧j+1

U∗ defined by sending u⊗ u′ �→ u ∧ u′ for any
0 � j � m− 1. This induces an inclusion U∗ ⊆ ∧j

U ⊗ ∧j+1
U∗. By tensoring on both sides by

V ∗ ⊗W ∗, we get an inclusion U∗ ⊗ V ∗ ⊗W ∗ ⊆ (V ⊗ ∧j
U∗)∗ ⊗ (W ∗ ⊗ ∧j+1

U∗). An element
of the tensor product on the right-hand side may be interpreted as a linear homomorphism,
meaning that, for any x ∈ U∗ ⊗ V ∗ ⊗W ∗, we have a homomorphism

ψj,x : V ⊗ ∧j
U∗ →W ∗ ⊗ ∧j+1

U∗,

and ψj,x depends linearly on x. We call ψj,x an exterior flattening of x, as it generalizes the
flattening of a tensor, as discussed below.

Definition 1. Following [7, Definition 1.1], we define κj(x) to be the rank of ψj,x, and we
let κ(x) denote the vector of κ-invariants (κ0(x), . . . , κm−1(x)).

More concretely, by choosing bases for the vector spaces, we can represent ψj,x as a matrix.
If e1, . . . , em is a basis for U∗, then a basis for

∧j
U∗ is given by the set of all ei1 ∧ · · · ∧ eij

for 1 � i1 < · · · < ij � m, and analogously for
∧j+1

U∗. For a fixed u =
∑m

i=1 uiei in U∗, the
map

∧j
U∗ → ∧j+1

U∗ defined by u′ �→ u ∧ u′ will send ei1 ∧ · · · ∧ eij
to

∑
i uiei ∧ ei1 ∧ · · · ∧ eij

.
Thus, this map will be represented in the above bases by a matrix whose entries are either 0 or
±ui. The matrix for ψj,x is the block matrix formed by replacing the scalar ui with the matrix
Ai, where Ai are the matrices such that x =

∑m
i=1 ei ⊗Ai.

For example, if m = 4, then ψj,x are represented by the following matrices (in suitable
coordinates):

ψ0,x : V ⊗ ∧0
U∗

⎛
⎝ A1

A2
A3
A4

⎞
⎠

−−−−→W ∗ ⊗ ∧1
U∗,

ψ1,x : V ⊗ ∧1
U∗

⎛
⎜⎜⎜⎜⎝

0 A3 −A2 0
−A3 0 A1 0
A2 −A1 0 0
A4 0 0 −A1
0 A4 0 −A2
0 0 A4 −A3

⎞
⎟⎟⎟⎟⎠

−−−−−−−−−−−−−−−−→W ∗ ⊗ ∧2
U∗,
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ψ2,x : V ⊗ ∧2
U∗

⎛
⎝−A4 0 0 0 A3 −A2

0 −A4 0 −A3 0 A1
0 0 −A4 A2 −A1 0

A1 A2 A3 0 0 0

⎞
⎠

−−−−−−−−−−−−−−−−−−−−−−−→W ∗ ⊗ ∧3
U∗,

ψ3,x : V ⊗ ∧3
U∗ ( A1 A2 A3 A4 )−−−−−−−−−−→W ∗ ⊗ ∧4

U∗.

The entries of these matrices are linear forms on P(U∗ ⊗ V ∗ ⊗W ∗), and the minors of these
matrices ψj,x are the ‘explicit matrix equations’ alluded to in § 1.

Note that, for j = 0, the map ψ0 : V ⊗ ∧0
U∗ ∼= V →W ∗ ⊗ U∗ is the homomorphism

corresponding to x in the identification U∗ ⊗ V ∗ ⊗W ∗ ∼= Hom(V,U∗ ⊗W ∗). In the literature,
the matrix for ψ0 is referred to as a ‘flattening’ of x by grouping W ∗ and U∗. Similarly,
ψm−1,x : V ⊗ ∧m−1

U∗ →W ∗ is a twist of the flattening formed by grouping U∗ and V ∗, because∧m−1
U∗ ∼= U ⊗ det(U∗) as GL(U)-modules.

If [x] ∈ P(U∗ ⊗ V ∗ ⊗W ∗) is a tensor, then the rank of [x] is the number r in a minimal
expression x = u1 ⊗ v1 ⊗ w1 + . . .+ ur ⊗ vr ⊗ wr, where ui ∈ U , vi ∈ V and wi ∈W for 1 �
i � r. The set of rank-1 tensors is closed and equals the Segre variety Seg(PU∗ × PV ∗ × PW ∗).
More generally, the Zariski closure of the set of tensors [x] ∈ P(U∗ ⊗ V ∗ ⊗W ∗) having rank at
most r is the rth secant variety of the Segre product, denoted by σr(Seg(PU∗ × PV ∗ × PW ∗)).

Definition 2. The border rank of [x] ∈ P(U∗ ⊗ V ∗ ⊗W ∗) is the minimal r such that [x]
is in σr(Seg(PU∗ × PV ∗ × PW ∗)).

The following lemma generalizes the well-known fact that the ranks of the flattenings are
bounded above by the tensor rank, and extends a result of Ottaviani [20, Theorem 3.2(i)].

Lemma 2.1. If x ∈ U∗ ⊗ V ∗ ⊗W ∗ has border rank at most r, then κj(x) � r
(
m−1

j

)
.

Proof. Since κj is defined in terms of a matrix rank, an upper bound on κj is a closed
condition on the set of tensors. It thus suffices to prove the statement with border rank replaced
by rank. As observed above, ψj,x depends linearly on x, so it is sufficient to assume that x
is an indecomposable tensor, and then show that κj(x) �

(
m−1

j

)
. We can choose coordinates

such that x = e1 ⊗A, and A is a matrix with only one non-zero entry. The non-zero rows of
the matrix for ψj,x will correspond to those basis elements ei1 ∧ · · · ∧ eij

∈ ∧j
U∗ such that

2 � i1 < · · · < ij � m, each of which is sent to a multiple of e1 ∧ ei1 ∧ · · · ∧ eij
. Since there are(

m−1
j

)
such basis elements, the rank of ψj,x is equal to

(
m−1

j

)
.

The above lemma illustrates that the minors of the exterior flattenings provide equations
that vanish on the secant variety of a Segre triple product. We write S•(U ⊗ V ⊗W ) to denote
the polynomial ring on the affine space U∗ ⊗ V ∗ ⊗W ∗.

Definition 3. Let c = (c0, . . . , cm−1) be a vector of positive integers. We define Iκi�ci
to

be the ideal generated by the (ci + 1) × (ci + 1)-minors of ψj,x. Similarly, we use the notation
Iκ�c for the ideal generated by Iκi�ci

for all 0 � i � m− 1. Finally, we define Σκi�ci
and Σκ�c

to be the subschemes of P(U∗ ⊗ V ∗ ⊗W ∗) defined by the ideals Iκi�ci
and Iκ�c, respectively.

The following proposition is an immediate consequence of Lemma 2.1.
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Proposition 2.2. Fix r � 1. If c is the vector defined by cj = r
(
m−1

j

)
for 0 � j � m− 1,

then

σr(Seg(PU∗ × PV ∗ × PW ∗)) ⊆ Σκ�c.

Remark 2. Fundamental in the construction of the exterior flattening ψj,x was the
inclusion of U∗ into

∧j
U ⊗ ∧j+1

U∗. More generally, any natural inclusion of U∗ into the tensor
product of two representations would yield an analog of ψj,x as well as analogs of Lemma 2.1
and Proposition 2.2. For instance, from the inclusion U∗ ⊆ S(2,1)(U) ⊗ S(2,1,1)(U∗), we may
associate to a tensor x a homomorphism

V ⊗ S(2,1)(U∗) →W ∗ ⊗ S(2,1,1)(U∗),

whose rank is at most five times the border rank of x. We restrict our attention to the
κ-invariants because these seem to provide particularly useful inequalities in our cases of
interest. However, an example of this generalized construction was introduced and applied
in [21, Theorem 1.1] and has been further developed under the name of Young flattening in [14].

Example 1. If m = 2, then as stated above, κ0 and κ1 are the ranks of the flattenings
formed by grouping W ∗ with U∗ and V ∗ with U∗, respectively. The ideal of the rth secant
variety is Iκ�(r,r) (see [16, Theorem 1.1]).

Example 2. Let m = 3 and suppose that n = k is odd. Denote by X the Segre product
Seg(PU∗ × PV ∗ × PW ∗) in P(U∗ ⊗ V ∗ ⊗W ∗). Then Iκ1�3n−1 is a principal ideal generated by
the determinant of ψ1,x, which defines the secant variety σ(3n−1)/2(X) (see [22, Lemma 4.4;
see also 20, Remark 3.3]).

Example 3. The exterior flattening ψ1,x has also arisen in the study of totally symmetric
tensors. For instance, in the case n = 3, the secant variety σ3(ν3(P2)) ⊆ P9 is a hypersurface
defined by the Aronhold invariant. Ottaviani has shown that this hypersurface is defined by
any of the 8 × 8 Pfaffians of the matrix representing ψ1,x specialized to symmetric tensors
[21, Theorem 1.2].

However, the ideals Iκ�c do not equal the defining ideals of secant varieties even in relatively
simple cases.

Example 4. Let n = m = k = 3 and let Y be the image of P2 × P2 × P2 ⊆ P26 embedded
by O(1, 1, 1). By Proposition 2.2, we know that Iκ�(3,6,3) vanishes on σ3(Y ), but we claim
that it is not the defining ideal. Observe that the conditions κ0 � 3 and κ2 � 3 are trivial,
and hence Iκ�(3,6,3) = Iκ1�6. By definition, the ideal Iκ1�6 is generated by the 7 × 7 minors
of ψ1,x. However, [16, Theorem 1.3] produces degree 4 equations that vanish on σ3(Y ), and
since Iκ1�6 is generated in degree 7, we see that it does not equal the defining ideal of σ3(Y ).

We now study our matrix equations from the perspective of representation theory, which con-
nects them to previous work on secant varieties of Segre–Veronese varieties. The representation
theory of our ideals Iκi�ci

will also be necessary in the proof of Lemma 4.2.
Since the ideals Iκi�ci

are invariant under the natural action of GL(U) × GL(V ) × GL(W ),
their generators can be decomposed as direct sums of irreducible representations of that group.
Each polynomial representation of GL(U) × GL(V ) × GL(W ) is of the form SμU ⊗ SνV ⊗
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SωW , where SμU , SνV and SωW are the Schur modules indexed by partitions μ, ν and ω
with at most m, n and k parts, respectively, where if π = (π1, . . . , πs) is a partition with
π1 � π2 � · · · � πs > 0, then we say that s is the number of parts of π. For the summands of
the degree d part of Iκi�ci

⊂ Sd(U ⊗ V ⊗W ), the partitions will always be partitions of d. For
general background on Schur modules, see [8].

Lemma 2.3. For each j and cj , there is a GL(U) × GL(V ) × GL(W )-equivariant map

Φj :
∧cj+1

(
V ⊗ ∧j

U∗
)
⊗ ∧cj+1

(
W ⊗ ∧j+1

U
)
→ Scj+1 (U ⊗ V ⊗W ) ,

whose image equals the vector space of generators of Iκj�cj
. In particular, every irreducible

representation arising in the Schur module decomposition of the generators of Iκj�cj
must be

a submodule of both the source and target of Φj .

Proof. Consider the map

ψj,x : V ⊗ ∧j
U∗ →W ∗ ⊗ ∧j+1

U∗.

After choosing bases of U , V and W , we may think of ψj,x as a matrix of linear forms in
S•(U ⊗ V ⊗W ). Taking the (cj + 1) × (cj + 1)-minors of ψj,x then determines the map Φj .
More concretely, our choice of bases for U , V and W determines a natural basis for the source
of Φj consisting of indecomposable tensors; we define the map Φj by sending a basis element
to the corresponding minor of the matrix ψj,x. Since the ideal Iκj�cj

is defined as the ideal
generated by the image of Φj , the lemma follows from Schur’s Lemma.

When j = 0, it is straightforward to compute the Schur module decomposition of Iκ0�c0 , as
illustrated by the following example.

Example 5. The map

ψ0,x : V ⊗ ∧0
U∗ −→W ∗ ⊗ ∧1

U∗

is a flattening of the tensor x by grouping U∗ and W ∗. As representations, the minors of ψ0,x

decompose into irreducibles using the skew Cauchy formula [8, p. 80]

∧c0+1
V ⊗ ∧c0+1(W ⊗ U) =

∧c0+1
V ⊗

⎛
⎝ ⊕

|λ|=c0+1

SλW ⊗ Sλ′U

⎞
⎠ ,

where λ ranges over all partitions of c0 + 1 and λ′ is the conjugate partition.
For instance, let n = m = k = 3 and consider the generators of Iκ0�2. This is a vector space

of cubic polynomials, and by Lemma 2.3, it must be the module∧3
V ⊗ ((S3W ⊗ S1,1,1U) ⊕ (S2,1W ⊗ S2,1U) ⊕ (S1,1,1 ⊗ S3U)).

After distributing, each irreducible module is the tensor product of three Schur functors applied
to U , V and W , respectively, and we can thus drop the vector spaces and the tensor products
from our notation, replacing SμU ⊗ SνV ⊗ SωW with SμSνSω without any ambiguity. Thus,
we rewrite this module as

S1,1,1S1,1,1S3 ⊕ S2,1S1,1,1S2,1 ⊕ S3S1,1,1S1,1,1.

The dimension of this space is 10 + 64 + 10 = 84, which equals the number of maximal minors
of the 3 × 9 matrix ψ0,x.
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When j > 0, the existence of the dual vector space U∗ in the source of ψj,x makes finding
the Schur module decomposition of Iκi�ci

more subtle. In Proposition 2.4, we provide an upper
bound for the Schur module decomposition of Iκ1�c1 in the case where dimU = 3. To state
the formula precisely, we first recall some notation.

For any vector space A, the Littlewood–Richardson formula is

SλA⊗ SμA =
⊕

|π|=|λ|+|μ|
SπA

⊕cπ
λ,μ , (2.1)

where the multiplicities cπλ,μ are the Littlewood–Richardson numbers. For two vector spaces A
and B, we use the outer plethysm formula

Sπ(A⊗B) =
⊕

|λ|+|μ|=|π|
(SλA⊗ SμB)⊕Kπ,λ,μ (2.2)

to define the Kronecker coefficients Kπ,λ,μ.

Remark 3. In Propositions 2.4, 3.2 and 3.4, we use the fact that as GL(U) modules,
SπU

∗ ⊗ (
∧m

U)l ∼= Slm−πU , where lm denotes the partition (l, . . . , l). We caution that the
entries in lm − π = (l − πm, . . . , l − π1) are reversed.

Proposition 2.4. Let dim(U) = 3. For any Schur module SπU ⊗ SλV ⊗ SμW, let λ′

and μ′ denote the conjugate partitions of λ and μ, respectively, and let (3)c0+1 − π be the
difference as in Remark 3. If SπU ⊗ SλV ⊗ SμW occurs in the decomposition of (Iκ1�c1)c1+1

from Definition 3, then π, λ′ and μ′ have at most three parts, and the multiplicity of

SπU ⊗ SλV ⊗ SμW is at most the minimum of c
(3)c0+1−π
λ′,μ′ and Kπ,λ,μ.

Computations with the software package LiE [18] suggest that the decomposition of
(Iκ1�c1)c1+1 may equal the upper bound of Proposition 2.4, as is the case in Example 6.

Proof of Proposition 2.4. Using Lemma 2.3, the (c1 + 1) × (c1 + 1)-minors of ψ1,x belong to
the common submodules of the polynomials Sc1+1(U ⊗ V ⊗W ) and the domain of Φj , which
we can rewrite using the Cauchy skew formula:⎛

⎝ ⊕
|λ|=c1+1

SλV ⊗ Sλ′U∗

⎞
⎠ ⊗

⎛
⎝ ⊕

|μ|=c1+1

SμW ⊗ Sμ′(
∧2
U)

⎞
⎠ . (2.3)

Here we note that λ′ and μ′ must have no more than three parts or else the summand is zero.
We focus on the U factor and compute

Sλ′U∗ ⊗ Sμ′(
∧2
U) ∼= Sλ′U∗ ⊗ Sμ′(U∗) ⊗ (

∧3
U)c0+1 because dimU = 3

∼=
⊕

|ν|=2(c0+1)

(SνU
∗)⊕cν

λ′,μ′ ⊗ (
∧3
U)c0+1 by (2.1)

∼=
⊕

|ν|=2(c0+1)

(S(c0+1)3−νU)⊕cν
λ′,μ′ by Remark 3

∼=
⊕

|π|=c0+1

(SπU)⊕c
(c0+1)3−π

λ′,μ′ by taking π = (c0 + 1)3 − ν.

Therefore, expression (2.3) becomes⊕
|λ|=|μ|=|π|=c0+1

SπU ⊗ SλV ⊗ SμW
⊕c

(c0+1)3−π

λ′,μ′ .



128 D. CARTWRIGHT, D. ERMAN AND L. OEDING

Now we must decide which irreducible modules occur as a submodule of Sc1+1(U ⊗ V ⊗W ).
For this, we decompose the space of polynomials using the Cauchy formula and the outer
plethysm formula (2.2):

Sc1+1(U ⊗ V ⊗W ) ∼=
⊕

|π|=c1+1

SπU ⊗ Sπ(V ⊗W )

∼=
⊕

|π|=|λ|=|μ|=c0+1

(SπU ⊗ SλV ⊗ SμW )⊕Kπ,λ,μ .

The proposition statement follows by Lemma 2.3.

Example 6. Let n = m = k = 3. Using LiE [18], we computed every decomposition of
(Iκ1�c1)c1+1 using Proposition 2.4. These decompositions appear below. To save space, we
omit the notation of vector spaces and tensor products, as in Example 5. Further, we use
the notation Ss to indicate the direct sum over the (non-redundant) permutations of the
subsequent s Schur modules.

(Iκ1�1)2 = (S3 · S1,1S1,1S2) ⊕ S2S2S2,

(Iκ1�2)3 = (S3 · S1,1,1S2,1S2,1) ⊕ S2,1S2,1S2,1 ⊕ (S3 · S2,1S2,1S3) ⊕ S3S1,1,1S1,1,1,

(Iκ1�3)4 = S2,2S2,2S2,2 ⊕ (S3 · S2,2S2,1,1S2,1,1) ⊕ (S3 · S2,2S2,1,1S3,1) ⊕ (S3 · S2,2S3,1S3,1)
⊕ S2,1,1S2,1,1S2,1,1 ⊕ (S3 ·S2,1,1S3,1S3,1) ⊕ S3,1S2,1,1S2,1,1 ⊕ S4S2,2S2,2

⊕ S4S2,1,1S2,1,1,

(Iκ1�4)5 = S2,2,1S2,2,1S2,2,1 ⊕ (S3 · S2,2,1S2,2,1S3,1,1) ⊕ (S3 · S2,2,1S3,2S3,2)
⊕ (S3 · S2,2,1S3,2S3,1,1)
⊕ (S3 · S3,2S3,2S3,1,1) ⊕ S3,2S2,2,1S2,2,1 ⊕ S3,2S3,1,1S3,1,1 ⊕ S3,1,1(S2 · S2,2,1S3,1,1)
⊕ S3,1,1S3,1,1S3,1,1 ⊕ S4,1S2,2,1S2,2,1 ⊕ S4,1(S2 · S2,2,1S3,2) ⊕ S4,1(S2 · S2,2,1S3,1,1)
⊕ S5S2,2,1S2,2,1,

(Iκ1�5)6 = S2,2,2S3,3S3,3 ⊕ (S3 · S2,2,2S3,2,1S3,2,1) ⊕ (S3 · S3,3S3,2,1S3,2,1)

⊕ (S3,2,1S3,2,1S3,2,1)⊕2

⊕ S4,2S2,2,2S2,2,2 ⊕ S4,2(S2 · S2,2,2S3,2,1) ⊕ S4,2S3,2,1S3,2,1 ⊕ S4,1,1(S2 · S2,2,2S3,3)
⊕ S4,1,1(S2 · S2,2,2S3,2,1) ⊕ S4,1,1S3,2,1S3,2,1 ⊕ S5,1(S2 · S2,2,2S3,2,1)
⊕ S6S2,2,2S2,2,2,

(Iκ1�6)7 = S3,3,1S3,3,1S3,3,1 ⊕ (S3 · S3,3,1S3,2,2S3,2,2) ⊕ S3,2,2S3,3,1S3,3,1

⊕ S4,2,1(S2 · S3,3,1S3,2,2) ⊕ S4,2,1S3,2,2S3,2,2 ⊕ S5,1,1S3,2,2S3,2,2,

(Iκ1�7)8 = S3,3,2S3,3,2S3,3,2 ⊕ S4,2,2S3,3,2S3,3,2,

(Iκ1�8)9 = S3,3,3S3,3,3S3,3,3.

In the following table, we record the dimension of each module of equations.

c1 1 2 3 4 5 6 7 8

dim(Iκ1�c1)c1+1 378 2634 8910 12 420 7011 1296 81 1

Since these dimensions match the dimensions of the space of minors of ψ1,x, as computed in
Macaulay 2 (see [10]), all of the modules must be in the space of minors.

For c1 = 6, we have dim (Iκ1�6)7 = 1296 =
(
9
7

)2
, and hence we see that all 7 × 7-minors of

ψ1,x are linearly independent. By contrast, if c1 = 5, then the fact that dimC(Iκ1�5)6 = 7011 <
7056 =

(
9
6

)2
tells us that the 6 × 6 minors of ψ1,x are not all linearly independent. For example,
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the upper right and lower left 6 × 6 minors of

ψ1,x =

⎛
⎝ 0 A3 −A2

−A3 0 A1

A2 −A1 0

⎞
⎠

are both equal to det(A1) · det(A3).

In the next section, we impose partial symmetry on our 3-tensors. We remark that we could
impose other types of symmetry and this would lead to different investigations. For instance,
we could restrict attention to 3-tensors in any of the following cases: S3(U∗), U∗ ⊗ ∧2

V ∗,∧3
V ∗, or S2,1U

∗. In these cases, it would be straightforward to prove analogs of Lemma 2.1
and Proposition 2.2. However, if we hope to produce the ideal defining the appropriate secant
varieties, then it is less obvious how to generalize Definition 3. It might be interesting to
investigate the secant varieties of these other special types of 3-tensors.

3. The κ-invariant for partially symmetric 3-tensors

For the rest of the paper, we take W = V and focus on partially symmetric 3-tensors x ∈
U∗ ⊗ S2V ∗ ⊂ U∗ ⊗ V ∗ ⊗ V ∗. By this latter inclusion, we may extend the definition of κj(x)
to partially symmetric tensors. Not only does the κ-invariant provide a bound for the rank
of x, but also for the partially symmetric rank, which is defined as the minimal r such that
x =

∑r
i=1 ui ⊗ vi ⊗ vi, for some ui ∈ U∗ and vi ∈ V ∗. The set of rank-1 partially symmetric

tensors is known as the Segre–Veronese variety of PU∗ × PV ∗ embedded by O(1, 2). Therefore,
the Zariski closure of the set of partially symmetric tensors of rank at most r is the rth secant
variety of the Segre–Veronese variety. We have the following analog of Definition 2.

Definition 4. The partially symmetric border rank of [x] ∈ P(U∗ ⊗ S2V ∗) is the minimal
r such that [x] is in σr(Seg(PU∗ × v2(PV ∗))).

Providing an analog of the equations from Definition 3 is a bit more subtle in the case of
partially symmetric 3-tensors. In fact, it is necessary to refine the equations if we hope to
produce ideals that are radical. To see this, consider the case where x is a partially symmetric
3 × n× n tensor. For such an x, the matrix representing ψ1,x has the form

ψ1,x =

⎛
⎝ 0 A3 −A2

−A3 0 A1

A2 −A1 0

⎞
⎠ ,

where the Ai are symmetric n× n-matrices. Since ψ1,x is a skew-symmetric matrix, all of the
principal minors in Iκ1�c1 are squares.

More generally, if m = 4j + 3, then ψ2j+1,x : V ⊗ ∧2j+1
U∗ → V ∗ ⊗ ∧2j+2

U∗ is represented
by a skew-symmetric matrix in appropriate coordinates. Thus, the condition that ψ2j+1,x

has rank at most an even integer c2j+1 is defined algebraically by the principal (c2j+1 + 2) ×
(c2j+1 + 2)-Pfaffians of ψ2j+1,x. These Pfaffians have degree c2j+1/2 + 1, whereas the
(c2j+1 + 1) × (c2j+1 + 1)-minors have degree c2j+1 + 1.

To encode this skew-symmetry into our matrix equations in the case of partially symmetric
tensors, we introduce the following analog of Definition 3.

Definition 5. Let Iκj�cj
in S•(U ⊗ S2V ) denote the ideal generated by the (cj + 2) ×

(cj + 2)-Pfaffians of ψj,x, if j = (m− 1)/2, j is an odd integer, and cj is even. Otherwise,
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Iκj�cj
denotes the specialization of the ideal in Definition 3. As in Definition 3, for a vector c,

Iκ�c is defined to be the ideal generated by the Iκj�cj
for all j, and Σκi�ci

and Σκ�c are the
subschemes of P(U∗ ⊗ S2V ∗) defined by Iκi�ci

and Iκ�c, respectively.

Note that, for partially symmetric tensors x, we have κj(x) = κm−1−j(x) and likewise
Iκj(x)�cj

= Iκm−1−j�cj
for all j. With notation in Definition 5, we also obtain the following

analog of Proposition 2.2.

Proposition 3.1. Fix r � 1. Let X be the Segre–Veronese variety of P(U∗) × P(V ∗) in
P(U∗ ⊗ S2V ∗) and let c be the vector defined by cj = r

(
m−1

j

)
for 0 � j � m− 1. Then σr(X) ⊆

Σκ�c.

Remark 4. The rest of the paper concerns partially symmetric 3 × n× n tensors, and we
note that the equations given in Definition 5 would be insufficient to generate the ideal of the
secant varieties for m � 4. For example, consider the case of partially symmetric 4 × n× n
tensors. If x is such a tensor, then the matrix representing ψ2,x has the form

ψ2,x =

⎛
⎜⎜⎝
−A4 0 0 0 A3 −A2

0 −A4 0 −A3 0 A1

0 0 −A4 A2 −A1 0
A1 A2 A3 0 0 0

⎞
⎟⎟⎠ ,

where each Ai is an n× n symmetric matrix. If x has border rank at most r, then ψ1,x will have
rank at most 3r by Proposition 3.1. However, the bold submatrix in the upper right will have
rank at most 2r. Moreover, since the bold submatrix is skew-symmetric, the condition that
it has rank at most 2r is given by the vanishing of its (2r + 2) × (2r + 2)-principal Pfaffians.
Thus, the defining ideal of the rth secant variety must contain these Pfaffians, as well as three
other sets of Pfaffians that arise by symmetry. Since the Pfaffians have degree r + 1, they
cannot be in the ideal of the (3r + 1) × (3r + 1)-minors.

In effect, these Pfaffians amount to the generators of Iκ1�2r applied to a 3 × n× n subtensor.
In the literature on tensors, this process for producing equations on larger tensors by applying
known equations to all subtensors is known as inheritance. See [13, § 2.1] for a precise definition
in the language of representation theory. The above analysis shows how the inheritance of
κ-equations can produce new equations beyond the κ-equations themselves.

Proposition 3.2. As a Schur module, we have the following decomposition of the
generators Iκ0�r into irreducible representations of GL(U) × GL(V ) :

(Iκ0�r)r+1 =
⊕

|π|=r+1

SπU ⊗ Sπ′+1r+1V,

where π′ is the conjugate partition to π, and 1r+1 = (1, . . . , 1) is the partition with r + 1 parts.

In the proof, we need the following observation.

Lemma 3.3. Suppose that π is a partition of d and that A is a vector space. If SλA is a
module occurring in the decomposition of Sπ(S2A), then λ has at most d parts.
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Proof. Since π is a partition of d, we have an inclusion Sπ(S2A) ⊂ (S2A)⊗d. The claim
follows by induction and applying the Pieri formula to (S2A)⊗d = (S2A)⊗d−1 ⊗ S2A.

Proof of Proposition 3.2. After choosing bases of U and V , we may view the map ψ0,x

as a matrix of linear forms in S•(U ⊗ S2V ). By Lemma 2.3, (Iκ0�r)r+1 is the image of the
GL(U) × GL(V )-equivariant morphism

Φ0 :
∧r+1

V ⊗ ∧r+1(U ⊗ V ) → Sr+1(U ⊗ S2(V )),

which sends an indecomposable basis element in the source to the corresponding minor in the
polynomial ring. The first step of our proof is to show that only those representations of the
form SπU ⊗ Sπ′+1r+1V appear in both the source and target of Φ0. By Schur’s Lemma, this will
provide a necessary condition on the representations which can appear in the decomposition
of (Iκ0�r)r+1. The second step of our proof is to show that each such representation actually
arises; for this, we produce an explicit non-zero minor of ψ0,x that is in the image of Φ0

restricted to SπU ⊗ Sπ′+1r+1V , so that Φ0 restricted to SπU ⊗ Sπ′+1r+1V is non-zero.
For the first step, suppose that SπU ⊗ SλV is a module in Sr+1(U ⊗ S2V ). If we apply the

Cauchy decomposition formula to Sd(U ⊗ S2V ), and consider the resulting modules as GL(U)-
representations, then we must have SπU ⊗ SλV contained in the summand SπU ⊗ Sπ(S2V ).
In particular, we must have SλV ⊂ Sπ(S2V ). Therefore, by Lemma 3.3, λ has at most r + 1
parts.

On the other hand, we can use the skew Cauchy formula to decompose∧r+1
V ⊗ ∧r+1(U ⊗ V ) =

∧r+1
V ⊗

⊕
|π|=r+1

SπU ⊗ Sπ′V.

Applying the Pieri rule to
∧r+1

V ⊗ Sπ′V , we see that all of the summands have more than
r + 1 parts except for Sπ′+1r+1V . Therefore, the decomposition of Iκ0�r must consist only of
the modules SπU ⊗ Sπ′+1r+1V , where π is a partition of r + 1, and these modules must have
multiplicity at most 1.

For the second step, fix π a partition of r + 1. Suppose that u1, . . . , um is our ordered basis
of U and v1, . . . , vn is our ordered basis of V . Consider the indecomposable basis element

zπ = (v1 ∧ · · · ∧ vr+1) ⊗
(
(u1 ⊗ v1) ∧ · · · ∧ (u1 ⊗ vπ1) ∧ (u2 ⊗ v1) ∧ · · · ∧ (u2 ⊗ vπ2)

∧ · · · ∧ (um ⊗ v1) ∧ · · · ∧ (um ⊗ vπm
)
)

in
∧r+1

V ⊗ ∧r+1(U ⊗ V ). We claim that zπ is in SπU ⊗ Sπ′+1r+1V , and, in fact is a non-zero
highest weight vector in that representation. The vector zπ is non-zero because zπ is the tensor
product of two tensors, each constructed as an exterior product of linearly independent tensors
and hence non-zero. It is clear that zπ has weights π and π′ + 1r+1 in U and V , respectively,
with respect to our chosen bases. Moreover, replacing vi by vj or ui by uj , with j < i in either
case, would result in a repeated term in the exterior product, and thus any raising operator
would send zπ to zero, so zπ is a highest weight vector.

Let Mπ be the submatrix of the block matrix ψT
0,x = (A1 · · · Am) defined by selecting

the first r + 1 rows and the first πi columns of the ith block for each i � n. Then the map Φ0

sends zπ to the determinant of Mπ. For appropriate choices for Ai, we can make Mπ equal the
identity matrix, and therefore Φ(zπ) = det(Mπ) is non-zero.

In the case dim(U) = 3, we similarly produce a formula for the decomposition of the modules
generating Iκ1�2r in Proposition 3.4.

Remark 5. Taken together, Propositions 3.2 and 5.1 provide a complete Schur module
description of the generators of the ideal of any secant variety of the P1 × Pn−1 embedded
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by O(1, 2). Similarly, Propositions 3.2 and 3.4, together with Theorem 5.2, provide a complete
Schur module description of the generators of the ideal of the rth secant variety of P2 × Pn−1

embedded by O(1, 2) for r at most 5.

Proposition 3.4. Suppose that dim(U) is 3. As a Schur module, we have the following
decomposition of the generators Iκ1�2r into irreducible representations of GL(U) × GL(V )

(Iκ1�2r)r+1 =
⊕

|π|=r+1

SπU ⊗ S(3)r+1−π′V,

where π′ is the conjugate partition to π. In order for the summand to be non-zero, π must
have at most three parts, and π3 must be at least r + 1 − n (if the latter is positive).

Proof. We consider the Pfaffians of a matrix representing the map ψ1,x : V ⊗ U∗ → V ∗ ⊗∧2
U∗. In order to view ψ1,x as a skew-symmetric transformation, we identify

∧2
U∗ in the target

with U ⊗ ∧3
U∗. Then, we can view ψ1,x as a skew-symmetric form on V ⊗ U∗, taking values

in
∧3
U∗. Equivalently, a choice of a non-zero element in

∧3
U gives a C-valued skew-symmetric

form.
The remainder of our proof essentially follows the same two steps as the proof of

Proposition 3.2. The space of (2r + 2) × (2r + 2)-Pfaffians of a skew-symmetric form on V ⊗ U∗

is isomorphic to
∧2r+2(V ⊗ U∗). Therefore, similar to Lemma 2.3, (Iκ1�2r)r+1 is the image of

the map

Φ1 :
∧2r+2(V ⊗ U∗) ⊗ (

∧3
U)r+1 → Sr+1(U ⊗ S2(V )),

which sends an indecomposable basis element to the corresponding Pfaffian. Note that the
power of r + 1 in (

∧3
U)r+1 is because the Pfaffian has degree r + 1. First, we show that only

modules of the form SπU ⊗ S(3)r+1−π′V can arise as a representation in both the source and
target of Φ1. Second, we consider Φ1 restricted to SπU ⊗ S(3)r+1−π′V and we produce a Pfaffian
in the image and explicitly show that it is non-zero. By Schur’s Lemma, this will show that
every such representation actually arises in the decomposition of (Iκ1�2r)r+1.

For the first step, we use the skew Cauchy formula to decompose the source of Φ1 as∧2r+2(U∗ ⊗ V ) ⊗ (
∧3
U)r+1 =

⊕
|λ|=2r+2

SλU
∗ ⊗ Sλ′V ⊗ (

∧3
U)r+1

=
⊕

|λ|=2r+2

S(r+1)3−λU ⊗ Sλ′V,

where we have used the duality formula from Remark 3 for the second equality. Every module
in the source of Φ1 is thus of the form S(r+1)3−λU ⊗ Sλ′V , where λ is a partition of 2r + 2.
We make the substitution λ = (r + 1)3 − π to arrive at the expression in the statement of the
proposition.

For the second step, we explicitly produce a non-zero Pfaffian of ψ1,x in the image
of Φ1 restricted to Sπ′U ⊗ S(r+1)3−πV , and thus confirm that every module of the form
Sπ′U ⊗ S(r+1)3−πV (for appropriate π) occurs in the decomposition of (Iκ1�2r)r+1. Suppose
that u1, u2, u3 is our ordered basis for U and v1, . . . , vn is our ordered basis for V . Let π =
(π1, π2, π3) be a partition of r + 1 with no more than three parts, and let λ = (r + 1)3 − π =
(r + 1 − π3, r + 1 − π2, r + 1 − π1), as before. Consider the element

zπ = ((u∗1 ⊗ v1) ∧ . . . ∧ (u∗1 ⊗ vλ3) ∧ (u∗2 ⊗ v1) ∧ . . . ∧ (u∗2 ⊗ vλ2) ∧ (u∗3 ⊗ v1) ∧ . . . ∧ (u∗3 ⊗ vλ1))

⊗ (u1 ∧ u2 ∧ u3)⊗r+1
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in
∧2r+2(U∗ ⊗ V ) ⊗ (

∧3
U)r+1, where the u∗i form the dual basis to the ui. Note that zπ is non-

zero since the vectors in each exterior product are linearly independent. Now, we will show
that zπ is a highest weight vector in SπU ⊗ Sλ′V .

First, we claim that zπ has weight (π, λ′). By counting the occurrences of vi in zπ, it is clear
that the weight in the V -factor is λ′. For the U factor, we note that the weight of u∗i is the
negative of that of ui, so that zπ has weight (r + 1 − λ3, r + 1 − λ2, r + 1 − λ1), which is equal
to π.

Second, we must show that any raising operator will send zπ to zero, which will imply that
zπ is a highest weight vector. In the V factor, sending vi to vj with j < i would force a repeated
vector in the exterior product. Likewise, a raising operator applied to the U factor would send
u∗i to u∗j with j > i, which would, again, create a repeated factor in the exterior product.

Finally, we check that Φ1(zπ) �= 0. Let Mπ be the principal submatrix obtained from ψ1,x by
selecting the rows and columns with indices {1, . . . , λ3, n+ 1, . . . , n+ λ2, 2n+ 1, . . . , 2n+ λ1}.
Then Φ1(zπ) equals the Pfaffian of Mπ. To check that the Pfaffian of Mπ is non-zero, it suffices
to produce a specialization of Mπ which has full rank. Note that if Bi is the appropriate
submatrix from the upper-left corner of Ai, then Mπ has the following shape:

Mπ =

⎛
⎝

λ3 λ2 λ1

λ3 0 B3 −B2

λ2 −Bt
3 0 B1

λ1 Bt
2 −Bt

1 0

⎞
⎠.

We have λ1 = π1 + π2, λ2 = π1 + π3, λ3 = π2 + π3. If we specialize the Ai such that the Bi are
as follows

B1 =
(π2 π1

π1 0 Idπ1

π3 0 0

)
, B2 =

( π2 π1

π3 0 0
π2 −Idπ2 0

)
, and B3 =

(π1 π3

π3 0 Idπ3

π2 0 0

)
,

then the specialization of Mπ has full rank, since it is the standard block skew-symmetric
matrix.

Example 7. Consider the case n = 4 and c1 = 10. Since ψ1,x is a skew-symmetric 12 × 12
matrix, we expect the ideal Iκ1�10 to be a principal ideal, generated by a polynomial
in S6(U ⊗ S2(V )). Applying Proposition 3.4, we must have a sum over partitions π of 6
such that (3)6 − π′ has at most four parts. This forces π′ to equal (3, 3), and thus π =
(2, 2, 2). The generators of Iκ1�10 are therefore equal to the 1-dimensional representation
S2,2,2(U) ⊗ S3,3,3,3(V ), corresponding to the Pfaffian of ψ1,x.

Example 8. Consider the case n = 4 and c = (3, 6, 3), which we revisit in Example 9.
Propositions 3.2 and 3.4 give us the decompositions

(Iκ0�3)4 = S2,2S3,3,1,1 ⊕ S2,1,1S4,2,1,1 ⊕ S3,1S3,2,2,1 ⊕ S4S2,2,2,2,

(Iκ1�6)4 = S2,2S3,3,1,1 ⊕ S2,1,1S3,3,2 ⊕ S3,1S3,2,2,1 ⊕ S4S2,2,2,2.

Both modules are 495-dimensional and consist of quartic polynomials. The ideal Iκ�(3,6,3),
which equals Iκ6�6 + Iκ0�3 by definition, is generated by the 630-dimensional space of quartics
obtained by taking the sum of the above decompositions. Note that, due to the highlighted
modules in the above decompositions, neither Iκ0�3 nor Iκ1�6 contains the other. In particular,
the 4 × 4-minor formed by taking columns 1, 2, 5 and 9 from the flattening ψ0,x, which is the
transpose of (1.1), is not in the ideal of Pfaffians. On the other hand, the Pfaffian formed by
taking the rows and columns of (1.2) with indices 1, 2, 5, 6, 7, 9, 10 and 11 is not contained in
the ideal of the minors.
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Note that the formulas in Propositions 3.2 and 3.4 are multiplicity free, unlike, for example,
the ideal generators computed in Example 6.

4. Subspace varieties of partially symmetric tensors

We next give a geometric interpretation for the varieties Σκ0�r. These are the partially
symmetric analogs of the subspace varieties defined in [16, Definition 1]; Proposition 4.1 forms
an analog to [16, Theorem 3.1].

Definition 6. The subspace variety Subm′,n′ is the variety of tensors x ∈ (U∗ ⊗ S2V ∗)
such that there exist vector spaces Ũ∗ ⊂ U∗ and Ṽ ∗ ⊂ V ∗ of dimensionsm′ and n′, respectively,
with x ∈ (Ũ∗ ⊗ S2Ṽ ∗) ⊂ (U∗ ⊗ S2V ∗).

Remark 6. The variety Subm′,n′ has a nice desingularization, analogous to that used to
prove the results in [16, § 3]. Consider the product of Grassmannians Gr(m′, U∗) × Gr(n′, V ∗),
and let E be the total space of the vector bundle RU ⊗ S2RV , where RU and RV are the
tautological subbundles over Gr(m′, U∗) and Gr(n′, V ∗), respectively. Then there is a natural
map π : E → Subm′,n′ , which desingularizes Subm′,n′ . Moreover, one can verify that Weyman’s
geometric technique can be applied in this situation [25, § 5]. In fact, a straightforward
adaptation of the argument in [16, Theorem 3.1] implies that Subm′,n′ is normal with rational
singularities.

We next directly calculate the generators of the ideal of the subspace variety when m′ = m,
which is the case we need.

Proposition 4.1. The defining ideal of Subm,n′ equals Iκ0�n′ .

The following lemma plays a crucial technical role in the proof of both Proposition 4.1 and
Theorem 5.2, as it provides a criterion for determining the reducedness of some of the ideals
that we are studying.

Lemma 4.2. Let Z be a GL(U) × GL(V )-invariant reduced subscheme of the desingular-
ization E from Remark 6. Suppose that I is an invariant ideal in S•(U ⊗ S2V ), which contains
the ideal of Subm′,n′ , and whose pullback to E defines Z. Then I is the ideal of π(Z). In
particular, I is a radical ideal.

Proof. Let J ⊆ S•(U ⊗ S2V ) be the defining ideal of π(Z). Recall that q : E → Gr(m′, U∗ ×
Gr(n′, V ∗) is the total space of a vector bundle, as defined in Remark 6. Our setup is the
following commutative diagram:

Z
� � ��

��

E

π

��
π(Z) � � �� Subm′,n′ �

� �� (U∗ ⊗ S2V ∗).

The hypothesis that the pullback of I defines Z in E guarantees I ⊆ J . We thus need to show
the reverse inclusion.
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A point P ∈ Gr(m′, U∗) × Gr(n′, V ∗) corresponds to vector subspaces Ũ∗ ⊂ U∗ and Ṽ ∗ ⊂
V ∗, and this induces a surjection of rings φP : S•(U ⊗ S2V ) → S•(Ũ ⊗ S2Ṽ ). The fiber
q−1(P ) ⊆ E is isomorphic to the affine space (Ũ∗ ⊗ S2Ṽ ∗), and we define Z̃P := Z ∩ q−1(P ).

We claim that a polynomial f ∈ S•(U ⊗ S2V ) belongs to J if and only if φP (f) vanishes
on π(Z̃P ) for every choice of P . The ‘only if’ direction of the claim is straightforward. For the
‘if’ direction, we first note that, since Z is assumed to be reduced, the condition that f ∈ J
is equivalent to the condition that the pullback of f vanishes on every point y ∈ π(Z). This
is in turn equivalent to the condition f vanishes on each point of Z, which is implied by the
hypothesis that φP (f) vanishes on π(Z̃P ) for each P .

In fact, since GL(U) × GL(V ) acts transitively on Gr(m′, U∗) × Gr(n′, V ∗), we conclude
that f vanishes on π(Z) if and only if φP (g · f) vanishes on π(Z̃) for any fixed choice of P
and all g ∈ GL(U) × GL(V ). Therefore, J is the sum of all irreducible Schur submodules M of
S•(U ⊗ S2V ) such that φP (M) vanishes on Z̃P . For the rest of the proof we fix Ũ∗ and Ṽ ∗,
and denote the induced map φP by φ and Z̃P by Z̃.

To show that J ⊆ I, let M be an irreducible Schur submodule of the ideal J ; we want
to show that M is contained in our given ideal I. If M is isomorphic to SμU ⊗ SνV , then
the construction of Schur modules implies that φ(M) is isomorphic as a GL(Ũ) × GL(Ṽ )-
representation to SμŨ ⊗ Sν Ṽ , which is either trivial or an irreducible representation. We
know that φ(M) vanishes on Z̃ and thus, since I pulls back to the defining ideal of Z, it
follows that φ(M) is contained in φ(I). There is thus an irreducible Schur submodule N ⊂ I
such that φ(N) = φ(M), and hence N is isomorphic to SμU ⊗ SνV . If N equals M , then we
are done. Otherwise, φ sends the submodule N +M , spanned by two copies of SμU ⊗ SνV , to
the submodule φ(M), which is a single copy of SμŨ ⊗ Sν Ṽ . Thus, some subrepresentation L
of N +M is sent to zero by φ. Since L is a representation in the kernel of φ, L belongs to the
ideal of Subm′,n′ , which is contained in I by assumption. It follows that I contains the span of
N and L, and hence I contains M . We conclude that I = J , as desired.

Proof of Proposition 4.1. First, we prove the claim set-theoretically. The (n′ + 1) × (n′ + 1)
minors of ψ0,x vanish if and only if the map has rank at most n′. By linear algebra, this is
equivalent to the existence of a change of basis in which ψ0,x uses only the first n′ rows, which
is the definition of Subm,n′ .

Second, we show that Iκ0�n′ is radical in the case when n′ = n− 1. Note that Subm,n−1 has
dimension m

(
n
2

)
+ n, and thus Subm,n−1 and Σκ0�n−1 have codimension mn− n+ 1. This is

the same as the codimension of the maximal minors of a generic n×mn matrix, so Iκ0�n−1 is
Cohen–Macaulay by Eisenbud [6, Theorem 18.18], and it suffices to show that the affine cone
over Σκ0�n−1 is reduced at some point. Consider a neighborhood of the point u1 ⊗ v2

1 + . . .+
u1 ⊗ v2

n−1. In coordinates around this point, Iκ0�n−1 consists of the maximal minors of the
n×mn matrix:⎡

⎢⎢⎢⎢⎣
1 + x1,1,1 · · · x1,1,n−1 x1,1,n x2,1,1 · · · x2,1,n · · · xm,1,n

...
. . .

...
...

...
... · · · ...

x1,1,n−1 · · · 1 + x1,n−1,n−1 x1,n−1,n

...
... · · · ...

x1,1,n · · · x1,n−1,n x1,n,n x2,1,n · · · x2,n,n · · · xm,n,n

⎤
⎥⎥⎥⎥⎦ .

The mn− n+ 1 minors that use the first n− 1 columns form part of a regular sequence, and
thus the affine cone over Σκ0�n−1 is reduced in a neighborhood of this point. Since Iκ0�n−1 is
a Cohen–Macaulay ideal, it follows that Σκ0�n−1 is everywhere reduced.

Third, we show that Iκ0�n′ defines Subm,n′ for arbitrary n′. By reverse induction on n′, we
assume that Iκ0�n′ equals the ideal of Subm,n′ , and we seek to show equality for n′ − 1. We
will apply Lemma 4.2, where E is the vector bundle over Gr(m,U∗) × Gr(n′, V ∗) = Gr(n′, V ∗)
desingularizing Subm,n′ as in Remark 6. Note that, by cofactor expansion, Iκ0�n′−1 contains
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Iκ0�n′ , which is the ideal of Subm,n′ by the inductive hypothesis. We describe Z, which is
defined by the pullback of Iκ0�n′−1, on a local trivialization (U∗ ⊗ S2Ṽ ∗) × Y of the vector
bundle E, where Ṽ is n′-dimensional and Y is an open subset of Gr(n′, V ∗). The pullbacks
of the (n′ − 1) × (n′ − 1) minors of ψ0,x do not involve the base Y , and are the κ0 � n′ − 1
equations applied to U∗ ⊗ S2Ṽ ∗. These are maximal minors of the matrix ψ0,x for U∗ ⊗ S2Ṽ ∗,
and hence they define a reduced subscheme of U∗ ⊗ S2Ṽ ∗ by the previous paragraph. In the
local trivialization, their scheme is the product of this reduced scheme with Y , so the preimage
of Σκ0�n′ in E is reduced. We may thus apply Lemma 4.2 and conclude that Iκ0�n′−1 is
reduced.

Remark 7. When m′ < m, the ideal of Subm′,n′ is similarly generated by the sum of Iκ0�n′

and the irreducible modules in
∧m′+1

U ⊗ ∧m′+1(S2V ). A decomposition of the latter space, in
somewhat different notation, can be found at [19, p. 47].

5. Secant varieties of P2 × Pn−1 embedded by O(1, 2)

In this section, we prove the main result of our paper, which is to show that the equations given
in Definition 3 generate the defining ideal of the rth secant variety of P2 × Pn−1 embedded by
O(1, 2) when r � 5.

We first consider a simpler case: the secant varieties of P1 × Pn−1 embedded by O(1, 2). All
such secant varieties are defined by κ-equations, which, in this case, are simply the minors
of flattenings. The analogous statement for non-symmetric matrices appears as Theorem 1.1
in [16]. However, we know of no proof in the literature for the case of partially symmetric
tensors, so we provide one below.

Definition 7. For a variety X ⊆ PN we denote the affine cone of X in AN+1 by X̂.

Proposition 5.1. Suppose m = 2, and let Y ⊆ P(U∗ ⊗ S2V ∗) be the image of P(U∗) ×
P(V ∗) under the embedding by O(1, 2). For any r > 1 and any n, the secant variety σr(Y ) is
defined ideal-theoretically by the ideal Iκ0�r.

Proof. We have σ̂r(Y ) ⊆ Σ̂κ0�r = Sub2,r, where the inclusion follows from Proposition 3.1
and the equality follows from Proposition 4.1. Since Sub2,r is integral, it suffices to prove that
σ̂r(Y ) and Sub2,r have the same dimension. By Abo and Brambilla [1, Corollary 1.4(i)], the
former has the expected dimension rn+ r. From the definition of Sub2,r, we can compute its
dimension to be r(n− r) + 2

(
r+1
2

)
= rn+ r.

For the remainder of this section, we restrict to the case when dimU∗ = 3, which is the
next partially symmetric case. We let dimV ∗ = n, and we consider partially symmetric tensors
x ∈ U∗ ⊗ S2V ∗. We fix PN := P(U∗ ⊗ S2(V ∗)) and we let X ⊂ PN denote the embedding of
P(U∗) × P(V ∗) by O(1, 2). Let S := S•(U ⊗ S2(V )) be the homogeneous coordinate ring of PN ,
which contains the ideals Iκj�cj

and Iκ�c as in Definition 5.

Theorem 5.2. For r � 5 the defining ideal of the variety σr(X) is Iκ�(r,2r,r).

Our method of proof is as follows. When n equals r, we relate the ideal Iκ1�2r to the
ideal of commuting symmetric matrices. This is a variant of an idea that has appeared in
several instances previously [2, 7, 20, 22]. This relation only holds away from a certain closed
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subvariety of PN , and in order to extend to all of PN , we need a bound on the dimension of
this variety. Such a bound is given in [7, § 5], and only holds for r � 5. Finally, we reduce the
general case to the case of n = r, using Lemma 4.2.

Before the proof, we examine the secant varieties of P2 × P3 in more detail.

Example 9. Let X ⊆ P29 be the image of P2 × P3 embedded by O(1, 2). The defining
ideal of σ5(X) was previously known. The secant variety σ5(X) is deficient, and is in fact a
hypersurface in P29. This hypersurface is defined by the Pfaffian of ψ1,x (see [20, Theorem 4.1]).

In the non-symmetric case, [16, Theorem 1.1] illustrates that the defining ideal for the
second secant variety is generated by the 3 × 3 minors of the various flattenings. This suggests
that a similar result holds in the partially symmetric case, although we know of no explicit
reference for such a result. Nevertheless, in the situation of this example, a direct computation
with [10] confirms that the defining ideal of σ2(X) is indeed generated by the 3 × 3 minors of
the flattening ψ0,x and by the 3 × 3 minors of the other flattening of x, that is, by considering
x in Hom(U, S2V ∗). Theorem 5.2 provides an alternate description, illustrating that the 3 × 3
minors of ψ0,x and the 6 × 6 principal Pfaffians of ψ1,x also generate the ideal of σ2(X).

As far we are aware, the defining ideals for σ3(X) and σ4(X) were not previously known. In
the case of σ4(X), the defining ideal is given by Iκ�(4,8,4). Since the ideals Iκ0�4 and Iκ2�4 are
trivial, this equals the ideal Iκ1�8. Thus, σ4(X) is defined by the 10 × 10 principal Pfaffians of
ψ1,x.

The case of σ3(X) is perhaps the most interesting, since this case requires minors from both
ψ0,x and ψ1,x (and, unlike the case of σ2(X), the Pfaffians from ψ1,x do not arise from an
alternative flattening). Here, σ3(X) is defined by the maximal minors of ψ0,x, as well as the
8 × 8 principal Pfaffians of ψ1,x. By Example 8, we see that neither Iκ0�3 nor Iκ1�6 is sufficient
to generate the ideal of σ3(X).

In fact, neither Iκ0�3 nor Iκ1�6 is sufficient to define σ3(X) even set-theoretically. For Iκ0�3,
this follows from the fact that a generic element y ∈ Σκ0�3 has κ1(y) = 8. On the other hand,
one may check that if

x :=
3∑

i=1

ui ⊗ (v1 ⊗ vi+1 + vi+1 ⊗ v1) ∈ U∗ ⊗ S2V ∗,

then κ(x) = (4, 6, 4), and hence [x] belongs to Σκ1�6, but not to σ3(X).

Remark 8. Let x ∈ U∗ ⊗ S2V ∗ and let r � 5. Theorem 5.2 implies that the border rank
of x, considered as an element of U∗ ⊗ V ∗ ⊗ V ∗, equals the partially symmetric border rank
of x. This is because the ideal Iκ�(r,2r,r) is (up to radical) the restriction to P(U∗ ⊗ S2V ∗) of an
ideal on P(U∗ ⊗ V ∗ ⊗ V ∗) which vanishes on the rth secant variety of P(U∗) × P(V ∗) × P(V ∗)
(see Proposition 2.2 and Definition 5). This can thus be viewed as evidence for a partially
symmetric analog of Comon’s Conjecture [5, § 5].

Definition 8. If we write x = e1 ⊗A1 + e2 ⊗A2 + e3 ⊗A3 for e1, e2, e3 a basis of U and
the Ai symmetric matrices, then det(t1A1 + t2A2 + t3A3) is a polynomial in t1, t2 and t3. We
define P ⊂ AN+1 to be the subset of those x such that this polynomial vanishes identically.

Remark 9. Note that AN+1 − P is exactly the GL(U∗) × GL(V ∗)-orbit of the set {e1 ⊗
Id + e2 ⊗B + e3 ⊗ C | B,C ∈ S2V ∗}. This set was also studied by Wall [24] who described it
as the unstable locus for the SL(U) × SL(V )-action.
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Lemma 5.3. Let n = r. Then Σ̂κ�(r,2r,r) − P is an irreducible locus of codimension at least(
r
2

)
on AN+1 − P .

In fact, the codimension is exactly
(
r
2

)
, as will be shown in the proof of Lemma 5.5. See

[20, Theorem 7.2] for a related result in a more general context.

Proof. Since n = r, and κ0 = κ2 are always at most n, we have that Σκ1�r = Σκ�(r,2r,r).
For convenience, we denote this scheme by Σ, and we seek to show that Σ̂ − P is irreducible
and of codimension

(
r
2

)
.

We let W ⊆ AN+1 be the set {e1 ⊗ Id + e2 ⊗B + e3 ⊗ C | B,C ∈ S2V ∗} as in Remark 9, and
we identify points in W with pairs of symmetric matrices (B,C). Let Z ⊆ W be the subscheme
defined by the equations [B,C] = 0. By Brennan, Pinto and Vasconcelos [3, Theorem 3.1], Z,
known as the variety of commuting symmetric matrices, is an integral subscheme of codimension(
r
2

)
in W.

We claim that Σ̂ − P is irreducible. To see this, we note the following equivalence of matrices
under elementary row and column operations:⎡

⎣ 0 Id −B
−Id 0 C
B −C 0

⎤
⎦ ∼

⎡
⎣ 0 Id 0
−Id 0 0
0 0 BC − CB

⎤
⎦ .

Therefore, the scheme-theoretic intersection of Σ̂ with W is exactly Z, the variety of commuting
symmetric matrices. By Remark 9 and the fact that κ1 is GL(U∗) × GL(V ∗)-invariant, we see
that Σ̂ − P is exactly the GL(U∗) × GL(V ∗) orbit of the irreducible variety Z, and therefore
irreducible.

Finally, since Z = W ∩ Σ̂, the codimension of Σ̂ − P in AN+1 is at least the codimension of
Z in W, which is

(
r
2

)
.

The following result is contained in [7, Proof of Corollary 5.6].

Lemma 5.4. If n � 5, then the codimension of P in AN+1 is strictly greater than
(
n
2

)
.

Lemma 5.5. Let n = r � 5. Then σr(X) is defined scheme-theoretically by Iκ1�2r =
Iκ�(r,2r,r). Moreover, the ring S/Iκ1�2r is Gorenstein, that is, σr(X) is arithmetically
Gorenstein.

Proof. The ideal of the principal (2r + 2) × (2r + 2)-Pfaffians of a generic skew-symmetric
matrix is a Gorenstein ideal of codimension

(
r
2

)
(see [11, Theorem 17]). Our ideal Iκ1�2r is a

linear specialization of this ideal, and by Lemmas 5.3 and 5.4, it must be irreducible and have
the same codimension. Therefore, the linear specialization is defined by a regular sequence, so
Σκ1�2r is also arithmetically Gorenstein and irreducible.

Hence, Σ̂κ1�2r is either reduced or everywhere non-reduced. As in the proof of Lemma 5.3,
let W ⊆ AN+1 be the linear space defined by A1 = Id, and consider the scheme-theoretic
intersection Σ̂κ1�2r ∩W. Again, the codimension of Σ̂(r,2r,r) ∩ Λ in W is

(
r
2

)
, so the generators

of the ideal of Λ form a regular sequence on the local ring of any point of Σ̂(r,2r,r) contained
in W. The intersection is isomorphic to the variety of commuting symmetric matrices from the
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proof of Lemma 5.3, which is reduced. This implies that Σ̂κ�(r,2r,r) is reduced as well, and thus
that Σκ�(r,2r,r) is reduced.

Proof of Theorem 5.2. Lemma 5.5 proves the theorem in the case when n = r, and so we
just need to extend this result to the cases when n �= r. We let N ′ = 3

(
r
2

) − 1, so that PN ′
is

the projective space of partially symmetric 3 × r × r tensors. We write X ′ ⊂ PN ′
for the image

of P2 × Pr−1 embedded by O(1, 2).
First, suppose that n < r. We pick an inclusion of V ∗ into Cr, and also a projection from

Cr back to V ∗. These define an inclusion PN → PN ′
and a rational map π : PN ′ → PN ,

respectively. Because the projection is linear, it commutes with taking secant varieties, so
σr(X) = π(σr(X ′)). Applying Lemma 5.5, we get the first equality of

π(σr(X ′)) = π(Σκ1�2r) ⊃ π(Σκ1�2r ∩ PN ) = Σκ1�2r ∩ PN ⊃ σr(X) = π(σr(X ′)).

Note that the middle equality follows from the fact that π is the identity on PN . We conclude
that σr(X) is defined by Iκ1�2r, which is the statement of the theorem, since the conditions
on κ0 and κ2 are trivial when n < r.

Second, we want to prove the theorem when n > r, for which we use Lemma 4.2. We
consider the subspace variety Sub3,r ⊂ AN+1 and its desingularization π : E → Sub3,r. By
Proposition 4.1, Sub3,r is the affine cone over Σκ0�r, which contains Σ̂κ�(r,2r,r). We set
Z := π−1(Σ̂κ�(r,2r,r)). Note that, along any fiber U∗ ⊗ S2Ṽ ∗ of q : E → Gr(r, V ∗), we have
that Z ∩ (U∗ ⊗ S2Ṽ ∗) is defined by the κ1 � 2r equations applied to U∗ ⊗ S2Ṽ ∗. It follows that
Z ⊆ E is defined by the pullback of Iκ�(r,2r,r). Since Ṽ ∗ is r-dimensional, Lemma 5.5 implies
that Z ∩ (U ⊗ S2Ṽ ∗) is the cone over the rth secant variety of P(U∗) × P(Ṽ ∗) in U∗ ⊗ S2Ṽ ∗.
In particular, Z is reduced. We thus have the inclusions

π(Z) ⊂ σ̂r(X) ⊂ Σ̂κ�(r,2r,r) = π(Z).

The first inclusion is clear, the second is by Proposition 3.1, and the equality follows from
Lemma 4.2. Therefore, these schemes must be equal, which is the desired statement.

We conclude by observing that Theorem 5.2 is false for r = 7. (We do not know whether or
not it holds for r = 6.)

Example 10. Set n = dimV ∗ = 6, in which case Σκ�(7,14,7) = Σκ1�14. LetX be the Segre–
Veronese variety of P2 × P5 embedded by O(1, 2) in P62. We use a simple dimension count to
show that the secant σ7(X) is properly contained in Σκ1�14.

The secant variety σ7(X) is not defective [1, Corollary 1.4(ii)], so it has the expected
dimension, namely, dimσ7(X) = 7 · dimX + 6 = 55. On the other hand, since Iκ1�14 is a
Pfaffian ideal, its codimension is at most

(
4
2

)
. We thus have

dim Σκ1�14 � dim P62 −
(

4
2

)
= 62 − 6 = 56.

Since 56 > 55, it follows that σ7(X) � Σκ1�14.
Note that dimV ∗ = 6 is the smallest dimension such that the seventh secant variety is

properly contained within PN .
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