CORRECTIONS:

GENERALIZED RAMSEY THEORY FOR GRAPHS V

FRANK HARARY and PAVOL HELL

At the end of our paper [2] we presented two tables of Ramsey numbers for small digraphs. These contain several errors which we correct here. We follow the notation of [2].
J. C. Bermond [1] independently studied the Ramsey number of a digraph and informed us privately of the following required corrections:

$$
r\left(P_{3}, D_{2}\right)=r\left(S_{2}, D_{2}\right)=r\left(S_{2}^{\prime}, D_{2}\right)=5 .
$$

Furthermore, the following values also need to be corrected:

$$
r\left(S_{2}, D K_{3}\right)=r\left(S_{2}^{\prime}, D K_{3}\right)=7 \quad \text { and } r\left(E_{7}\right)=8 .
$$

The two tables in [2] should be replaced by the following values of Ramsey numbers for small digraphs; corrected values are in bold type.

						D)						
	$P_{2} \quad P_{3}$			D	DK	C_{3}	D_{1}	$D_{1}{ }^{\prime}$	D_{3}	D_{4}		
P_{2}	23	3	3	2	3	3	3	33	3	3	3	3
P_{3}	3	3	5	3	5	5	4	45	5	5	5	5
S_{2}		4	5	4	7	5		45	5	5	5	5
$S_{2}{ }^{\prime}$				4	7	5	4	45	5	5	5	5
T_{3}				4	9	6	5	7	7	6	6	7
D	P_{2}	P_{3}	S_{2}	T_{3}	P_{4}	E_{1}	E_{2}	E_{3}	S_{3}	E_{4}	E	
$r(D)$	2	3	4	6	5	5	5	5	6	6	6	
D	E_{6}	E_{7}	E_{8}	E_{9}	E_{10}	E_{11}	E_{12}	E_{13}	E_{14}	T_{4}		
$r(D)$) 6	8	7	7	7	10	10	10	10	18		

Note that given a graph G, its acyclic orientations $D_{1}, D_{2}, \ldots, D_{k}$ need not have Ramsey numbers which are consecutive integers. In fact, the acyclic orientations of the quadrilateral graph are E_{5}, E_{6}, E_{7} and their Ramsey numbers are 6,6 and 8 .

The proofs of these results are too long to be presented here. A pamphlet containing all the verifications can be obtained from the authors; it also contains a short proof of the claim made in [2] that

$$
r\left(T_{3}, D K_{4}\right)<18 .
$$

References

1. J. C. Bermond, "Some Ramsey numbers for directed graphs", Discrete Math., 9 (1974), 313-321.
2. F. Harary and P. Hell, "Generalized Ramsey theory for graphs V. The Ramsey number of a digraph ", Bull. London Math. Soc., 6 (1974), 175-182.

University of Michigan,
Ann Arbor, U.S.A.

