CORRECTIONS:

GENERALIZED RAMSEY THEORY FOR GRAPHS V

FRANK HARARY AND PAVOL HELL

At the end of our paper [2] we presented two tables of Ramsey numbers for small digraphs. These contain several errors which we correct here. We follow the notation of [2].

J. C. Bermond [1] independently studied the Ramsey number of a digraph and informed us privately of the following required corrections:

$$r(P_3, D_2) = r(S_2, D_2) = r(S_2', D_2) = 5.$$

Furthermore, the following values also need to be corrected:

$$r(S_2, DK_3) = r(S_2', DK_3) = 7$$
 and $r(E_7) = 8$.

The two tables in [2] should be replaced by the following values of Ramsey numbers for small digraphs; corrected values are in bold type.

$r(D_1, D_2)$

	P_2	P_3	S_2	S ₂ ' 7	7 ₃ DF	K ₂ DK	$C_3 C_3$	D_1	D_1' D	$_2 D_3$	D_4	D_4'	D_5
P_2 P_3 S_2 S_2' T_3	2	33	3 3 4	3 3 3 5 4 5 4 5 6	2 3 4 4 4	3 5 7 7 9	3 5 5 5 6	3 4 4 4 5	3 3 4 5 4 5 4 5 5 7	3 5 5 5 7	3 5 5 5 6	3 5 5 5 6	3 5 5 5 7
	D	P_2	<i>P</i> ₃	S_2	T_3	P ₄	E ₁	E_2	<i>E</i> ₃	S ₃	E_4	E_5	
r	(D)	2	3	4	6	5	5	5	5	6	6	6	
	D	E_6	Ε _γ	E ₈	<i>E</i> 9	<i>E</i> ₁₀	<i>E</i> ₁₁	<i>E</i> ₁₂	<i>E</i> ₁₃	<i>E</i> ₁₄	T_4		
r	(D)	6	8	7	7	7	10	10	10	10	18		

Note that given a graph G, its acyclic orientations $D_1, D_2, ..., D_k$ need not have Ramsey numbers which are consecutive integers. In fact, the acyclic orientations of the quadrilateral graph are E_5 , E_6 , E_7 and their Ramsey numbers are 6, 6 and 8.

The proofs of these results are too long to be presented here. A pamphlet containing all the verifications can be obtained from the authors; it also contains a short proof of the claim made in [2] that

 $r(T_3, DK_4) < 18.$

Received 8 October 1974

[[]BULL. LONDON MATH. Soc., 7 (1975), 87-88]

CORRECTIONS: GENERALIZED RAMSEY THEORY FOR GRAPHS V

References

- 1. J. C. Bermond, "Some Ramsey numbers for directed graphs", Discrete Math., 9 (1974), 313-321.
- 2. F. Harary and P. Hell, "Generalized Ramsey theory for graphs V. The Ramsey number of a digraph", Bull. London Math. Soc., 6 (1974), 175-182.

University of Michigan, Ann Arbor, U.S.A.