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A finiteness theorem for hyperbolic 3-manifolds

Ian Biringer and Juan Souto

Abstract

We prove that there are only finitely many closed hyperbolic 3-manifolds with injectivity radius
and first eigenvalue of the Laplacian bounded below the fundamental groups of which can be
generated by a given number of elements. Our techniques also have particular application to
arithmetic manifolds.

1. Introduction

A common pursuit in differential geometry is to bound the number of closed n-manifolds
that admit a Riemannian metric with controlled geometry: for instance, one might specify
constraints on diameter, curvature, volume or injectivity radius [14, 15]. If one only considers
locally symmetric metrics, these finiteness theorems combine with Mostow’s rigidity theorem
to yield much stronger conclusions. As an example, Wang’s finiteness theorem [24] asserts that
for n � 4 and V > 0, there are finitely many isometry classes of hyperbolic n-manifolds M with
volume at most V . Wang’s theorem still holds when n = 3 if in addition to the volume bound,
one only considers manifolds M with injectivity radius inj(M) � ε > 0 [3, Theorem E.2.4].

Our goal is to provide a finiteness result for hyperbolic 3-manifolds with constrained
injectivity radius, first eigenvalue of the Laplacian and rank of the fundamental group. Here,
the rank of a group is the minimal number of elements needed to generate it. We prove the
following.

Theorem 1.1. For every ε, δ, k > 0, there are only finitely many isometry classes of closed
hyperbolic 3-manifolds M with injectivity radius inj(M) � ε, first eigenvalue of the Laplacian
λ1(M) � δ and rank(π1(M)) � k.

It is not hard to see that Theorem 1.1 fails if any of the three constraints are dropped. First,
any closed hyperbolic 3-manifold given by a fibration Σg → M → S

1 has an infinite sequence of
cyclic covers with inj(Mi) � inj(M) and rank(π1Mi) � 2g + 1. Second, the congruence covers of
any closed arithmetic hyperbolic 3-manifold have injectivity radius bounded below and λ1 � 3

4 ,
by Burger–Sarnak [6]. Finally, applying Thurston’s Dehn filling theorem [3] to any noncompact
finite volume hyperbolic 3-manifold N gives an infinite sequence (Mi) of closed hyperbolic
3-manifolds with rank(π1Mi) � rank(π1N) and λ1(Mi) � δ > 0. To obtain the bound on
λ1(Mi), one uses Thurston’s theorem to arrange that Mi → N in the Gromov–Hausdorff topol-
ogy; since Gromov–Hausdorff convergence of hyperbolic 3-manifolds is C∞ [3, Remark E.1.19],
it follows that λ1(Mi) → λ1(N) > 0.

The proof of Theorem 1.1 goes as follows. Assume that we have a sequence (Mi) of pairwise-
distinct, closed hyperbolic 3-manifolds with inj(Mi) � ε, and suppose that each π1(Mi) can be
generated by k elements. We will show in Theorem 6.1 that after passing to a subsequence,
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there are base points pi ∈ Mi such that the sequence of pointed manifolds (Mi, pi) converges
in the Gromov–Hausdorff topology to a pointed manifold (M∞, p∞) which has a degenerate
end. It follows from Proposition 4.2 that λ1(Mi) → 0. Specifically, one shows that the Cheeger
constants h(Mi) → 0 and then applies a result of Buser [7] to say the same for λ1(Mi).

Surprisingly, although our techniques are very geometric they have particular application to
arithmetic manifolds. In the last section, we prove the following result and several corollaries.

Theorem 1.2. For all ε, k > 0, there are only finitely many commensurability classes of
closed arithmetic hyperbolic 3-manifolds M with inj(M) � ε and rank(π1(M)) � k.

Our work is structured as follows. After the introduction, we begin with a discussion of the
eigenvalues of the Laplace–Beltrami operator and prove a weak version of Buser’s inequality
[7] for hyperbolic 3-orbifolds. Section 3 recalls well-known facts about Gromov–Hausdorff
convergence and Section 4 discusses degenerate ends and their relation to λ1. We introduce
carrier graphs, the main technical tool of this note, in Section 5 and in the next section use
them to produce degenerate ends in Gromov–Hausdorff limits of manifolds with bounded rank
and injectivity radius. Finally, we show how our techniques are particularly effective when
applied to arithmetic manifolds. The arithmetic applications require a variant of Thurston’s
covering theorem, which is proved in the Appendix.

2. Eigenvalues of the Laplacian

Let M be a closed hyperbolic 3-manifold. The Laplacian Δf of a smooth function f : M → R

is defined as
Δf = −div∇f.

The Laplacian extends to a self-adjoint linear operator ΔM on the Sobolev space H1(M). It
is well known that the spectrum of this operator is a discrete subset of [0,∞); furthermore, 0
is an eigenvalue with (1-dimensional) eigenspace the set of constant functions on M , and each
other eigenspace is finite dimensional. Let

0 = λ0(M) < λ1(M) � λ2(M) � . . .

be the eigenvalues of ΔM in increasing order, listed so that repetitions indicate multiplicity.
By work of Buser [7] and Cheeger [13], the first nontrivial eigenvalue λ1(M) is strongly tied

to the Cheeger constant of M ; this is defined as

h(M) = inf
U⊂M

area(∂U)
min{vol(U), vol(M \ U)} ,

where the infimum is taken over smooth 3-dimensional submanifolds with boundary inside M .
Their work gives the following explicit relationship:

1
4
h(M)2 � λ1(M) � 4h(M)2 + 10h(M). (2.1)

Here, the first inequality is due to Cheeger and the second one is due to Buser. For us, the
relevant implication of (2.1) is that when M is a closed hyperbolic 3-manifold then λ1(M) ≈ 0
if and only if h(M) ≈ 0.

Our work here requires only a very weak version of Buser’s inequality. Since this is easy to
prove, we make our exposition self-contained by recording it below. Another reason to do this
is that we shall need some version of Buser’s result for orbifolds, and this has not yet been
written down.

Recall that a hyperbolic 3-orbifold is a metric quotient O = H
3/Γ, where Γ < Isom(H3) is

some discrete group of isometries of hyperbolic 3-space. One can define a Laplacian operator
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ΔO by letting

H1(O) := {f : O −→ R | f lifts to f̃ ∈ H1
loc(H

3)}
and ΔO be the operator on H1(O) given by applying the Laplacian ΔH3 to the (Γ-invariant)
lift f̃ and descending the Γ-invariant result to a map O → R. As before, ΔO is self-adjoint with
discrete, real spectrum

0 = λ0(O) < λ1(O) � λ2(O) � . . .

If Γ is torsion free, so that O is a hyperbolic 3-manifold, then this definition of ΔO agrees with
that given before.

Proposition 2.1. Assume that O is a closed hyperbolic 3-orbifold and U ⊂ O is an open
set such that

(1) the frontier Fr(U) of U can be partitioned into n subsets, each with diameter at most
D,

(2) both U and O \ U have volume at least V .

Then if VD+1 is the volume of a ball of radius D + 1 in H
3, we have

λ1(O) � nVD+1

V − nVD+1
.

Consequently, λ1(O) is small when O can be divided into two large volume pieces using
a small number of sets that have small diameter.

Proof. The eigenspace of 0 is the space of constant functions on H
3. To compute λ1(M),

one can then take an infimum of Rayleigh quotients of functions in H1(O) orthogonal to the
constant functions [12, p. 16]:

λ1(O) = inf
{∫ ||∇f ||2∫

f2
| f ∈ H1(O) with

∫
f = 0

}
.

Let N be the 1-neighborhood of Fr(U) in O. Then we can define f : O → R by

f(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 x /∈ N,x ∈ U,

dist(x,Fr(U)) x ∈ N,x ∈ U,

−dist(x,Fr(U)) x ∈ N,x /∈ U,

−1 x /∈ N,x /∈ U.

The function f is 1-Lipschitz, so it lies in H1(O) and is differentiable almost everywhere. Its
gradient vanishes outside N , and ||∇f || � 1 everywhere within N that it is defined. Therefore,∫

||∇f ||2 � vol(N)

� nVD+1.

Furthermore, we have both ∫
O\U

f2,

∫
U

f2 � V − nVD+1.

In particular, the Rayleigh quotient of f (more than) satisfies the inequality given in the
statement of the Proposition.
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We are not quite finished, though, since f might not integrate to 0. So, assume without loss
of generality that

∫
O\U

f2 <
∫

U
f2. Then we can create a new function f ′ : O → R by letting

f ′|U =

(∫
O\U

f2

∫
U

f2

)
f |U and f ′|O\U = f |O\U .

Then f ′ will have zero integral, and one easily checks that its Rayleigh quotient is less than or
equal to the upper bound desired for λ1(O).

3. Geometric convergence

To understand the geometry of a particular family of closed hyperbolic 3-manifolds, it is often
useful to study (noncompact) hyperbolic 3-manifolds that arise as limits of sequences in that
family. We recall here some tools from the theory of geometric limits that will find application
later; unless otherwise stated, the material in this section can be found in [3, Section E.1]
or [20, Chapter 7].

Recall that hyperbolic 3-manifolds are metric quotients of H
3 by discrete, torsion-free groups

of isometries; we first discuss convergence for subgroups of Isom(H3). A sequence of closed
subgroups Γi ⊂ Isom(H3) converges in the Chabauty topology to Γ∞ ⊂ Isom(H3) if:

(1) Γ contains all accumulation points of sequences (γi), γi ∈ Γi,
(2) every γ ∈ Γ∞ is the limit of some sequence (γi), with γi ∈ Γi.

When Γi → Γ∞, it is easy to see that Γ∞ is a closed subgroup of Isom(H3). In fact, the space
of closed subgroups of Isom(H3) is compact with respect to the Chabauty topology. We are
primarily interested in limits of discrete (and often torsion-free) subgroups, however. While
these do not form a closed subspace, the following well-known fact constrains how sequences
of such groups can degenerate.

Fact 3.1. (See Proposition 7.2, [20]) Assume that Γi ⊂ Isom(H3) is a sequence of discrete
(and torsion-free) subgroups that converges in the Chabauty topology to some closed subgroup
Γ∞ ⊂ Isom(H3). Then either

(1) there exists a sequence γi ∈ Γi with γi → id and Γ∞ is virtually abelian, or
(2) there is no such sequence and Γ∞ is discrete (and torsion-free).

The Chabauty topology on the space of discrete subgroups Γ ⊂ Isom(H3) is related to the
Gromov–Hausdorff topology on the space of quotient orbifolds OΓ = H

3/Γ. To see this, fix a
point p ∈ H

3. Then each OΓi
is naturally a pointed hyperbolic 3-orbifold: the projection of p

gives a preferred basepoint pΓ ∈ OΓ.

Definition 1. A sequence of pointed hyperbolic 3-orbifolds (Oi, pi) converges in the
pointed Gromov–Hausdorff topology to (O∞, p∞) if for every compact K ⊂ O∞ containing
p∞, there is a sequence of λi-bi-Lipschitz maps

φi : (K, p∞) −→ (Oi, pi) (3.1)

with 1 � λi � ∞ and λi → 1 as i → ∞. We will call (φi) a sequence of almost isometric maps
coming from Gromov–Hausdorff convergence.

We then have the following:

Theorem 3.2. If a sequence of discrete subgroups Γi ⊂ Isom(H3) converges to a discrete
subgroup Γ ⊂ Isom(H3), then the pointed 3-orbifolds (OΓi

, pΓi
) converge in the Gromov–

Hausdorff topology to (OΓ, pΓ).
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Conversely, if a sequence of pointed hyperbolic 3-orbifolds (Oi, pi) converges to (O∞, p∞),
there are discrete subgroups Γi < Isom H

3 with (Oi, pi) ∼= (OΓi
, pΓi

) and Γi → Γ∞ in the
Chabauty topology.

The following useful result comes from translating Fact 3.1(2) into the language of orbifolds
and Gromov–Hausdorff convergence.

Corollary 3.3. Fix ε > 0. The set of closed, pointed hyperbolic 3-manifolds (M,p) such
that inj(M,p) � ε is compact in the pointed Gromov–Hausdorff topology.

4. Degenerate ends and the Laplacian

The next three sections require some basic facts from the theory of hyperbolic 3-manifolds,
namely the definition of the convex core and the geometric classification of ends.

Definition 2. The convex core of a hyperbolic 3-manifold M is the smallest convex
submanifold CC(M), the inclusion into M of which is a homotopy equivalence. Equivalently, if
M = H

3/Γ then CC(M) is the projection to M of the convex hull of the limit set Λ(Γ) ⊂ ∂∞S
2
∞.

Note that the limit set associated with a closed hyperbolic manifold is all of S
2
∞, so any such

manifold is its own convex core.
The ends of noncompact hyperbolic 3-manifolds fall into two geometric categories, depending

on their relationships with the convex core. Specifically, let M be a complete, infinite volume
hyperbolic 3-manifold with finitely generated fundamental group and no cusps. An end E of
M is called convex cocompact if it has a neighborhood, the intersection with the convex core
of M of which is bounded, and degenerate otherwise.

The geometry of each of these types of ends is well understood. First, the Tameness Theorem
of Agol [2] and Calegari–Gabai [8] implies that every end E of M has a neighborhood E that
is homeomorphic to Σ × (0,∞) for some closed surface Σ. It is well known that if E is convex
cocompact, then E is bi-Lipschitz to a warped product on Σ × (0,∞) in which the metric on
Σ × {t} is scaled by a factor exponential in t.

On the other hand, we have the following well-known consequence of Canary’s Filling
Theorem [10], Bonahon’s Bounded Diameter Lemma [5] and work of Freedman–Hass–Scott
[see 11, Theorem 2.5].

Fact 4.1. Every degenerate end of M has a neighborhood E homeomorphic to Σ × (0,∞)
in which every point lies within unit distance of a level surface with area at most 2πχ(Σ).
Here, a level surface is any embedded surface homotopic to a fiber Σ × {t}.

If inj(M) � ε, then E can be chosen so that each of its points lies within unit distance of a
level surface with diameter bounded above by some constant C depending only on ε and χ(Σ).

In both cases, there is a sequence (Si) of such surfaces that exits E , meaning that every
neighborhood of E contains Si for large enough i.

It follows that inside a degenerate end there are submanifolds with arbitrarily large volume
that are bounded by surfaces with small area. Therefore, if one can find large pieces of a
degenerate end inside of a closed hyperbolic 3-manifold, then the Cheeger constant of that
manifold will be small. Buser’s inequality (2.1) will imply the same about the first eigenvalue
of its Laplacian.
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One way to formalize this is with the following Proposition.

Proposition 4.2. Assume that (Mi, xi) is a sequence of pointed, closed hyperbolic
3-manifolds that converges in the pointed Gromov–Hausdorff topology to a pointed hyperbolic
3-manifold (M∞, x∞) that has a degenerate end. Then λ1(Mi) → 0 as i → ∞.

Proof. The manifold M∞ has a degenerate end, so for each η > 0 there is a compact
submanifold U ⊂ M∞ with (area(∂U)/ vol(U)) < η. Choose a compact subset K ⊂ M∞
containing both x∞ and U , and let φi : K → Mi be a sequence of bi-Lipschitz maps as in
(3.1). We have then

lim
i→∞

area(∂(φi(U)))
vol(φi(U))

=
area(∂U)
vol(U)

< η.

Taking into account that the volume of Mi \ φi(U) grows without bound, we deduce that

lim sup
i→∞

h(Mi) � η.

Buser’s inequality (2.1) implies that

lim sup
i→∞

λ1(Mi) � 4η2 + 10η.

Since η > 0 was arbitrary we conclude that limi→∞ λ1(Mi) = 0.

All our applications of this result will be to sequences satisfying inj(Mi) � ε. In those cases,
one may appeal to Proposition 2.1 instead of Buser’s inequality to extend the conclusions above
to orbifolds, as in the following technical proposition.

Proposition 4.3. Let (Oi) be a sequence of pairwise-distinct compact hyperbolic
3-orbifolds that are covered by closed hyperbolic 3-manifolds (Mi). Assume that there are
base points xi ∈ Mi such that (Mi, xi) converges in the pointed Gromov–Hausdorff topology
to a pointed hyperbolic 3-manifold (M∞, x∞) that has a degenerate end and has inj(M∞) > 0.
Then λ1(Oi) → 0 as i → ∞.

Proof. By Theorem 3.2, we can assume that Mi
∼= H

3/Γi and Γi → Γ∞ in the Chabauty
topology. The orbifolds Oi are then isomorphic to H

3/Oi for some discrete subgroups Oi ⊂
Isom(H3) with Γi ⊂ Oi. Passing to a subsequence, we can assume that (Oi) converges in the
Chabauty topology to some closed subgroup O∞ ⊃ Γ∞. Since Γ∞ is not virtually abelian,
neither is O∞; so, Fact 3.1 implies that O∞ is discrete. Therefore, (Oi) converges in the
Gromov–Hausdorff topology to an orbifold O∞ = H

3/O∞ covered by M∞.
Since the orbifolds (Oi) are distinct, O∞ cannot be compact; the Thurston–Canary Covering

Theorem [10] then states that the given degenerate end of M∞ has a neighborhood E on which
the orbifold covering map π : M∞ → O∞ is finite to one. Since inj(M∞) > 0, Fact 4.1 gives
a sequence of embedded level surfaces exiting E that have uniformly bounded diameters. In
particular, there are two embedded surfaces S1, S2 ⊂ E that have diameter less than some fixed
K > 0 and that bound a submanifold U ⊂ M∞ with volume bigger than any given V > 0.

The projection π(U) ⊂ O∞ has volume at least (V/m), where m is an upper bound for the
degree of π|E . The frontier of π(U) is contained in the union of π(S1) and π(S2); it therefore
splits into two subsets, each with a diameter at most K.

Let φi : π(U) → Oi be a sequence of almost isometric maps coming from the Gromov–
Hausdorff convergence Oi → O∞. For large i, the volume of φi ◦ π(U) is at least, say, (V/2m)
and its frontier partitions into two components of diameter less than 2K. Also, vol(Oi) → ∞,
so for large i

vol(Oi \ φi ◦ π(U)) >
V

2M
.
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Proposition 2.1 then gives for large i

λ1(Oi) � 2V2K

(V/2m) − 2V2K
,

where V2K is the volume of a ball in H
3 of radius 2K. However, V can be chosen arbitrarily

large at the expense of increasing i, so λ1(Oi) → 0 as i → ∞.

5. Short graphs in manifolds with bounded rank

This section concerns carrier graphs: technical tools that facilitates a geometric understanding
of rank(π1M). We first define them and record a few key properties, and then use them to
study sequences of hyperbolic 3-manifolds with bounded rank and injectivity radius. Carrier
graphs were first introduced by White in [25]; variations of the techniques used here have been
earlier exploited in [4, 21].

Let M be a closed hyperbolic 3-manifold. A carrier graph consists of a metric graph X and
a 1-Lipschitz map

f : X −→ M (5.1)

such that the induced homomorphism f∗ : π1(X) → π1(M) is surjective. The length of a
subgraph Y ⊂ X is defined to be the sum of the lengths of the edges it contains.

Using the Arzela–Ascoli theorem, it is not hard to see that the set of carrier graphs with
bounded total length in a given closed hyperbolic 3-manifold is compact. In particular, there
is one in each such 3-manifold which has minimal length. In [25], White observed that these
graphs have controlled geometry; for instance, they are trivalent with geodesic edges. He used
this to prove that if f : X → M is a minimal length carrier graph then X has a circuit, the
edge-length sum of which is bounded by some function of rank(π1X).

In [4], the first author extended White’s result as follows:

Proposition 5.1. (Chains of bounded length) Let M be a closed hyperbolic 3-manifold
and f : X → M a minimal length carrier graph. Then, we have a sequence of possibly
disconnected subgraphs

∅ = Y0 ⊂ Y1 ⊂ . . . ⊂ Yn = X

such that the length of any edge in Yi+1 \ Yi is bounded from above by some constant depending
only on inj(M), rank(π1X), length(Yi) and the diameters of the convex cores of the covers of M
corresponding to f∗(π1(Y

j
i )), where Y 1

i , . . . , Y ni
i are the connected components of Yi. Moreover,

the number n of subgraphs in the chain is bounded above by 3(rank(π1X) − 1).

Suppose now that a closed hyperbolic 3-manifold M has rank π1M � k and inj(M) � ε. Then
Proposition 5.1 shows that there is an upper bound C(ε, k) for the length of a minimal length
carrier graph X → M , unless one of the subgraphs Yi is associated to a large convex core. This
simple idea, plus some bookkeeping, gives the following useful lemma.

Lemma 5.2. Assume that (Mi) is a sequence of pairwise distinct closed hyperbolic
3-manifolds with inj(Mi) � ε and rank(π1(Mi)) � k. Then there are a constant L and a
sequence (Yi) of metric graphs with 1-Lipschitz maps (fi : Yi → Mi) such that

(1) rank(π1(Yi)) � k,
(2) length(Yi) � L, and
(3) limi→∞ diam(CC(H3/(fi)∗(π1Yi))) = ∞.

Here CC(H3/(fi)∗(π1Yi)) is the convex core of the cover of Mi corresponding to the image of
the homomorphism (fi)∗ : π1Yi → π1Mi.
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Proof of Lemma 5.2. To begin with fix ε, k and a sequence of hyperbolic 3-manifolds (Mi)
as in the statement of the lemma. Choose for each i a minimal length carrier graph

fi : Xi −→ Mi

with rank(π1(Xi)) = rank(π1(Mi)) = k.
Assume for the moment that the sequence (length(Xi)) is bounded from above by some

positive number L. In other words, the graphs Xi themselves satisfy (1) and (2). On the other
hand, we have by definition that (fi)∗(π1(Xi)) = π1(Mi) and hence

CC(H3/(fi)∗(π1(Xi))) = Mi.

Since the sequence (Mi) consists of pairwise distinct manifolds with inj(Mi) � ε we obtain,
for example, from Wang’s finiteness theorem that vol(Mi) → ∞. The injectivity radius bound
then implies that diam(Mi) → ∞ as well. This means that the carrier graphs fi : Xi → Mi

themselves satisfy also (3). This concludes the proof if the sequence (length(Xi)) is bounded.
We treat now the general case. In the light of the above, we may assume without loss of

generality that length(Xi) → ∞. Consider for each i the chain

∅ = Y i
0 ⊂ Y i

1 ⊂ . . . ⊂ Y i
ni

= Xi (5.2)

provided by Proposition 5.1. Since length(Y i
0 ) = 0, length(Xi) → ∞ and the length ni of each

chain is bounded independently of i, we can choose a sequence (mi) with
(a) 0 � mi � ni − 1,
(b) lim supi→∞ length(Y i

mi
) < ∞, and

(c) limi→∞ length(Y i
mi+1) = ∞.

Observe that by condition (b), any of the connected components Zi
1, . . . , Z

i
ri

of Y i
mi

satisfies
(1) and (2) for any L < ∞ with

lim sup
i→∞

length(Y i
mi

) < L.

By Proposition 5.1, length(Y i
mi+1) is bounded in terms of k, L and

max
j=1,...,ri

{
diam

(
CC

(
H

3

(fi)∗(π1(Zi
j))

))}
.

Since length (Y i
mi+1) tends to ∞ by condition (c), we obtain that there is a sequence of

component of Y i
mi

, say Zi
1, with

lim
i

diam
(

CC
(

H
3

(fi)∗(π1(Zi
1))

))
= ∞.

In other words, the sequence of maps fi|Zi
1

: Zi
1 → Mi satisfies (3). This concludes the proof of

Lemma 5.2.

6. Limits of thick manifolds with bounded rank

The main result of this section is that any sequence of pairwise distinct hyperbolic 3-manifolds
with injectivity radius bounded from below and the fundamental group of which has rank
bounded from above has a Gromov–Hausdorff limit with a degenerate end. Even better,

Proposition 6.1. Assume that (Mi) is a sequence of pairwise distinct hyperbolic
3-manifolds with inj(Mi) � ε and rank(π1(Mi)) � k. Then there are points xi ∈ Mi such that,
up to passing to a subsequence, the pointed manifolds (Mi, xi) converge in the pointed Gromov–
Hausdorff topology to a pointed hyperbolic 3-manifold (M∞, x∞) homeomorphic to Σ × R that
has two degenerate ends. Here, Σ is a closed, orientable surface with genus at most k.
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Before beginning its proof, we deduce from it Theorem 1.1:

Theorem 6.1. For every ε, δ, k > 0, there are only finitely many isometry types of closed
hyperbolic 3-manifolds M with rank(π1(M)) � k, inj(M) � ε and λ1(M) � δ.

Proof. Seeking a contradiction, suppose that there is a sequence of pairwise distinct
hyperbolic 3-manifolds (Mi) satisfying the assumptions of the theorem. By Proposition 6.1,
we can find points xi ∈ Mi such that, up to passing to a subsequence, the pointed manifolds
(Mi, xi) converge in the pointed Gromov–Hausdorff topology to a manifold (M∞, x∞) with a
degenerate end. By Proposition 4.2, we have λ1(Mi) → 0. This is a contradiction.

It remains to prove Proposition 6.1.

Proof of Proposition 6.1. For each i, let fi : Yi → Mi be a sequence of graphs as provided by
Lemma 5.2. Choose base points yi ∈ Yi and set xi = fi(yi) ∈ Mi. Then since each inj(Mi) � ε,
by Corollary 3.3 we can pass to a subsequence so that (Mi, xi) converges in the Gromov–
Hausdorff topology to some pointed hyperbolic 3-manifold (M∞, x∞).

The assumption that the manifolds Mi are pairwise distinct implies that M∞ is not compact.
In particular, in order to show that it has a degenerate end, it suffices by Canary’s extension
of Thurston’s covering theorem [10] to find a manifold M̃∞ which has a degenerate end and
covers M∞. This is our goal.

Passing to a subsequence, we may assume that each π1(Yi, yi) is isomorphic to the free group
Fm for some m � k. There are then homomorphisms

Fm

∼= �� π1(Yi, yi)
(fi)∗ �� π1(Mi, xi) �� Isom(H3),

but the first and last arrows are not canonically defined. However, since each length (Yi) � L,
we may choose the first identification so that each element of the standard basis for Fm is
represented by a loop based at yi of length at most 2L. For the last map, by Theorem 3.2
there is a convergent sequence of groups Γi → Γ∞ with Mi

∼= H
3Γi such that a fixed basepoint

xH3 ∈ H
3 projects to each xi, for i = 1, . . . ,∞. We choose the last map φ : πi(Mi, xi) → Γi

so that a loop representing γ ∈ π1(Mi, xi) lifts to a path in H
3 joining xH3 to [φ(γ)](xH3).

Composing yields a representation

ρi : Fm −→ Isom(H3), ρi(Fm) = Γi and
H

3

Γi

∼= Mi

such that if ej ∈ Fm is an element of the standard basis, then for all i we have

dH3((ρi(ej))(xH3), xH3) � 2L.

This implies that, up to passing to a further subsequence, the sequence of representations (ρi)
converges pointwise to a representation ρ∞ : Fm → Isom(H3). Since ρi(Fm) = Γi and Γi → Γ∞
in the Chabauty topology, it follows immediately from the definition given in Section 3 that
ρ∞(Fm) ⊂ Γ∞. In particular, ρ∞(Fm) is discrete and the manifold M̃∞ = H

3/ρ∞(Fm) covers
M∞. Observe that inj(M̃∞) � ε and hence ρ∞(Fm) does not contain parabolic elements.

We claim that M̃∞ has a degenerate end. To begin with, its fundamental group is isomorphic
to ρ∞(Fm) and is therefore finitely generated. The Tameness Theorem of Agol [1] and Calegari–
Gabai [8] then implies that M̃∞ is homeomorphic to the interior of a compact 3-manifold.
It then follows from Canary [9] that either M̃∞ has a degenerate end or its convex core
CC(M̃∞) is compact. Assuming the latter, Marden’s stability theorem [19] implies then that
there are bi-Lipschitz maps (defined for large enough i)

φ̃i :
H

3

ρ∞(Fm)
−→ H

3

ρi(Fm)
,
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the bi-Lipschitz constants of which tends to 1. This implies that

lim
i→∞

diam
(

CC
(

H
3

ρi(Fm)

))
= diam

(
CC

(
H

3

ρ∞(Fm)

))
< ∞

contradicting that by Lemma 5.2 we have

lim
i→∞

diam
(

CC
(

H
3

ρi(Fm)

))
= lim

i→∞
diam

(
CC

(
H

3

(fi)∗(π1(Yi))

))
= ∞.

We have shown that the algebraic limit M̃∞ has a degenerate end E . One can bound the
topology of E in terms of k as follows. First, note that E has a neighborhood homeomorphic
to Σ × (0,∞), where Σ is a boundary component of some compact 3-manifold M with interior
M̃∞. The genus of a component of ∂M is at most half the abelian rank (number of Z-summands)
of H1(∂M). The ‘half lives, half dies’ philosophy (for example, [16, Lemma 3.5]) shows then
that g(Σ) is at most the abelian rank of H1(M), which is at most rank(π1M) � k.

Canary’s generalization of Thurston’s covering theorem [10] implies that some neighborhood
of E finitely covers a neighborhood of a degenerate end E ′ of the geometric limit M∞.
Furthermore, this end E ′ has a neighborhood homeomorphic to Σ′ × (0,∞) for some surface
Σ′ covered by Σ. In particular, g(Σ′) � k.

We have now all but proved Proposition 6.1: our Gromov–Hausdorff limit M∞ has a
degenerate end with topology bounded by k, but it may not be homeomorphic to a product.
However, combining Lemma 6.2 with a diagonal argument remedies the situation and completes
the proof of Proposition 6.1.

The following lemma is certainly well known to experts, but it is not necessarily well written.
So, we include a full proof here.

Lemma 6.2. Assume that M is a hyperbolic 3-manifold with inj(M) > 0 that has a
degenerate end E with a neighborhood E ∼= Σ × R. Then, if a sequence of points (pi) exits
a degenerate end of M, any pointed Gromov–Hausdorff limit of any subsequence of (M,pi) is
homeomorphic to Σ × R and has two degenerate ends.

Proof. Assume that (M,pi) converges to some pointed hyperbolic 3-manifold (M∞, p∞).
We first show that M∞ ∼= Σ × R by constructing a nested sequence of submanifolds U1 ⊂
U2 ⊂ . . . with

⋃
k Uk = M∞, each Uk

∼= Σ × [0, 1] and each inclusion Uk ↪→ Uk+1 a homotopy
equivalence. By Waldhausen’s Cobordism Theorem [23, Lemma 5.1], each component of Uk+1 \
int(Uk) will be homeomorphic to Σ × [0, 1], so a gluing argument will then show M∞ ∼= Σ × R.

Assume that E ∼= Σ × R is a neighborhood of E as given by Fact 4.1, so that within unit
distance from each point of E there is a level surface with diameter less than some constant
C(ε). Choose D > C(ε) + 1. We will construct a submanifold U1 as above with

BD(p∞) ⊂ U1 ⊂ B8D(p∞).

To do this, choose i large enough so that there is a 2-bi-Lipshitz embedding

φ : B8D(p∞) −→ M

sending p∞ to pi. Increasing i as necessary, we may also assume that pi ∈ E and dist
(pi, ∂E)> 4D.

By Fact 4.1, there is an embedded surface S ⊂ E with dist(pi, S) � 1 and diam(S) � C(ε).
Then S separates M , and there are points a1 and a2 on the opposite sides of S with

dist(a1, pi) = dist(a2, pi) = 3D.
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Then both a1, a2 ∈ E, so that there are level surfaces X1 and X2 in E with dist(ak,Xk) � 1
and diameters less than C(ε).

The surfaces X1,X2 and S are all disjoint. By Waldhausen’s Cobordism Theorem [23,
Lemma 5.1], X1 and X2 bound a submanifold V ⊂ M homeomorphic to Σ × [0, 1]. Since S
separates X1 and X2, we must have S ⊂ V . Moreover, this implies that B2D(pi) (which contains
S) intersects the interior of V , but not ∂V . We conclude that B2D(pi) ⊂ V ⊂ B4D(pi); setting
U1 = φ−1(V ) gives a submanifold U1

∼= Σ × [0, 1] with

BD(p∞) ⊂ U1 ⊂ B8D(p∞).

Multiplying D repeatedly by 8 and performing the same argument each time gives a sequence

U1 ⊂ U2 ⊂ U3 ⊂ . . .

with Uk
∼= Σ × [0, 1] and

⋃
k Uk = M∞ as desired.

We only have to check that the inclusions Uk ↪→ Uk+1 are homotopy equivalences. However,
in each submanifold Uk there is an embedded surface Sk with

• dist(p∞, Sk) � 2,
• diam(Sk) � 2C(ε),
• Sk ↪→ Uk a homotopy equivalence.

In the notation that we used earlier, Sk is φ−1(S). The diameter condition and proximity to
p∞ imply that each Sk is contained in every U1, U2, . . .. In particular, Sk+1 is an incompressible
embedded surface in Uk

∼= Σ × [0, 1], so the inclusion Sk+1 ↪→ Uk is a homotopy equivalence.
There, the same is true for Uk ↪→ Uk+1.

We know now that M∞ ∼= Σ × R. To see that both ends are degenerate, one can simply
observe from Gromov–Hausdorff convergence and Fact 4.1 that there is some K > 0 (K � 3C(ε)
will do) such that through every point x ∈ M∞ there is an essential loop with length less than
K. This implies that both ends are degenerate [20].

7. Corollaries for arithmetic manifolds

In this final section, we prove some additional results concerning arithmetic hyperbolic
3-manifolds. Although one can consult [18] for a beautiful and detailed theory of such
manifolds, we will need here only the following fact.

Theorem 7.1. Every closed arithmetic hyperbolic 3-manifold M covers some hyperbolic
orbifold O with λ1(O) � 3

4 .

This is a corollary of a deep result of Burger–Sarnak [6, Corollary 1.3], generalizing work
of Vigneras [22] in dimension 2. The statement given follows from theirs using a lemma of
Long–Maclachlan–Reid [17, Lemma 4.2]. A more detailed version of the history of this result
is given by Agol in [2, Lemmas 5.1, 5.2].

Assume now that Mi is a sequence of closed arithmetic hyperbolic 3-manifolds with
inj(Mi) � ε and rank(π1(Mi)) � k. Passing to a subsequence and choosing suitable basepoints,
we can assume by Proposition 6.1 that (Mi) converges in the Gromov–Hausdorff topology to
a manifold M∞ with a degenerate end. Theorem 7.1 implies that each Mi covers an orbifold
Oi with λ1(Oi) � 3

4 . Since M∞ has a degenerate end and λ(Oi) � 0, Proposition 4.3 implies
that the orbifolds Oi cannot be pairwise distinct. In particular, the manifolds (Mi) cannot be
pairwise incommensurable.

This proves the following theorem.

Theorem 7.2. For all ε and k positive, there are only finitely many commensurability
classes of closed arithmetic hyperbolic 3-manifolds M with inj(M) � ε and rank(π1(M)) � k.
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Using the same techniques more carefully, we can also show the following:

Theorem 7.3. For all ε and k positive, there are only finitely many closed, arithmetic
hyperbolic 3-manifolds M with rank π1(M) = k and inj(M) � ε that do not fiber over either

(1) (k odd) S1, with fibers of genus 1
2 (k − 1), or

(2) (k even) S1/(z �→ z̄), with regular fibers of genus k − 2.

Proof. Assume that there is an infinite sequence of counterexamples, that is, a sequence
(Mi = H

3/Γi) of closed arithmetic 3-manifolds with inj(Mi) � ε and rank(π1(Mi)) = k that
do not fiber as above. First, by the argument above we can pass to a subsequence in
which every Mi covers some fixed orbifold O = H

3/ΓO. Passing to another subsequence
and using Proposition 6.1, we can assume that (Mi) converges in the (based) Gromov–
Hausdorff topology to a manifold M∞ = H

3/Γ∞ that is homeomorphic to Σ × R and has two
degenerate ends.

There is a small technical point we must address before proceeding. Observe that after
conjugation, we can arrange that each Γi ⊂ ΓO. With separate conjugations, we may assume
that Γi → Γ∞ in the Chabauty topology (Theorem 3.2). In fact, these properties can be
arranged simultaneously: after conjugating (Γi) into ΓO, we must make sure to only conjugate
(Γi) by elements of ΓO when ensuring its convergence to a group Γ∞ with doubly degenerate
quotient M∞ ∼= Σ × R. But since ΓO\PSL2 C is compact, any sequence (γi) in PSL2 C has the
form γi = oici, where oi ∈ ΓO and (ci) is pre-compact in PSL2 C. Passing to a subsequence
where ci → c∞ ∈ PSL2 C, we have that if γ−1

i Γiγi → Γ∞, then o−1
i Γioi → c∞Γ∞c−1

∞ .
As Γi ⊂ ΓO for i = 1, 2, . . ., it follows that Γ∞ ⊂ ΓO as well. But ΓO is discrete, so the

convergence Γi → Γ∞ and the finite generation of Γ∞ imply Γ∞ ⊂ Γi for all large i. This gives
coverings φi : M∞ → Mi; moreover, for any compact subset K ⊂ M∞ the convergence implies
that φi|K is injective for large i. As M∞ ∼= Σ × R has two degenerate ends, it follows that
all but finitely many Mi fiber over S

1 or S
1/(z �→ z̄) with regular fibers homeomorphic to Σ.

This is stated in the Appendix as Lemma 8.5, a sister to Thurston’s covering theorem.
By Theorems 1.1 and 5.2 of [4], the only way to have infinitely many Mi with rank(π1Mi) = k

that fiber with regular fibers Σ is if
(1) k is odd, Σ has genus 1

2 (k − 1) and all but finitely many Mi fiber over S
1, or

(2) k is even, Σ has genus k − 2 and all but finitely many Mi fiber over S
1/(z �→ z̄).

In either case, the initial assumption that no Mi fibers as above is clearly violated. This
completes the proof of Theorem 7.3, except for establishing Lemma 8.5 in the Appendix.

The following are immediate consequences of Theorem 7.3.

Corollary 7.4. For ε, k > 0, there are only finitely many closed arithmetic hyperbolic
3-manifolds M with inj(M) � ε and rank(π1(M)) � k that have the same Z/2Z-homology
as S

3.

Corollary 7.5. There are only finitely many closed arithmetic hyperbolic 3-manifolds
M with inj(M) � ε and rank(π1(M)) � 3.

This last result was first proved by Agol for rankπ1(M) = 2.
The geometric version of Lehmer’s conjecture [18, Section 12.3] states that the injectivity

radius of a closed, arithmetic hyperbolic 3-manifold is bounded from below by some universal
constant. A positive resolution of this conjecture would then remove all assumptions on
injectivity radius from the theorems above.
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8. Appendix

In this Appendix, we prove a lemma used in the proof of Theorem 7.3. It is a variant of
Thurston’s covering theorem (see [10]), a consequence of which is that if a closed hyperbolic
3-manifold N is covered by a doubly degenerate hyperbolic 3-manifold M homeomorphic to
Σ × R, then N has a finite cover that fibers over the circle. We show that if the covering
is injective on a large subset of M , then N itself fibers over the circle or over the orbifold
S

1/(z �→ z̄). The proof will require some familiarity with simplicial hyperbolic surfaces. We
refer the reader to Canary’s paper [10] for a good introduction to the subject, but it will be
convenient to record some of their basic properties here.

Definition 3. Let S be a surface with a metric d that is hyperbolic except at a finite
number of cone points, each with angle at least 2π. A simplicial hyperbolic surface is a map
f : (S, d) → M into a hyperbolic 3-manifold that restricts to an isometry on the faces of some
triangulation of S, the vertices of which contain the cone points of d.

The reason for the assumption on cone angles is that then (S, d) behaves like a negatively
curved surface. For instance, Bonahon [5] noticed that these surfaces satisfy a bounded diameter
lemma.

Lemma 8.1. If (S, d) is a hyperbolic surface that has finitely many cone points with angles
at least 2π, then diam(S, d) � (2|χ(S)|/inj(S, d)2).

A simplicial hyperbolic surface f : S → M is useful if the associated triangulation on S has
only one vertex and one of its edges is sent to a closed geodesic in M . The simple closed curve
on S formed by identifying the endpoints of that edge is said to be realized by f .

Lemma 8.2 Existence of useful surfaces [10]. Let M be a hyperbolic 3-manifold without
cusps. Then if γ is a simple closed curve on S, any incompressible map f : S → M is homotopic
to a useful simplicial hyperbolic surface realizing γ. Also, if E is a neighborhood of a degenerate
end of M , then there is a sequence of useful simplicial hyperbolic surfaces fi : S → E, the images
of which leave every compact subset of M .

Canary [10] showed that one can interpolate between useful simplicial hyperbolic surfaces.
This is known as his filling theorem; we state the following variant for incompressible maps.

Theorem 8.3 Canary’s filling theorem [10]. Let f, g : S → M be two homotopic,
incompressible, useful simplicial hyperbolic surfaces in a hyperbolic 3-manifold M without
cusps. Then there is a homotopy

F : S × [0, 1] −→ M, F (x, 0) = f(x) and F (x, 1) = g(x)

such that each F (·, t) is a simplicial hyperbolic surface.

The past three results combine to give the following useful lemma.

Lemma 8.4. Let M be a doubly degenerate hyperbolic 3-manifold homeomorphic to Σ × R

with inj(M) � ε. Then given p ∈ M, there is a simplicial hyperbolic surface passing through p.
Moreover, there is a useful simplicial hyperbolic surface f : S → M with

dist(p, f(S)) � cosh−1(4|χ(S)|/ε2)
ε

+
2|χ(S)|

ε2
.
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Proof. Lemma 8.2 allows us to find two useful simplicial hyperbolic surfaces deep in the
two degenerate ends of M . The homotopy between them given by the filling theorem must pass
through p, so there is a simplicial hyperbolic surface f : (S, d) → M passing through p. There
is a simple closed curve on S with length L � 2 diam(S, d), which is bounded above by Lemma
8.1. The closed geodesic freely homotopic to f(γ) lies at most cosh−1(L/ε) away from it, and
there is a useful simplicial hyperbolic surface passing through this by Lemma 8.2.

We are now ready for the main result of this Appendix.

Lemma 8.5. Given a closed, orientable surface Σ and some ε > 0, there is a constant
D = D(Σ, ε) with the following property. Let M be a hyperbolic 3-manifold homeomorphic to
Σ × R with two degenerate ends and inj(M) � ε. If φ : M → N is a Riemannian covering onto
a closed 3-manifold N that restricts to an embedding on some ball of radius D in M, then N
fibers over either S

1 or the orbifold S
1/(z �→ z̄) with regular fibers homeomorphic to Σ.

Proof. By Lemmas 8.4 and 8.1 and work of Freedman–Hass–Scott [11, Theorem 2.5], within
unit distance of any point of M there is a level surface with diameter at most (2|χ(Σ)|/ε2) + 2.
Choose D = D(Σ, ε) large enough so that there are level surfaces inside the ball on which φ is
injective that are separated by a distance at least

4
[
cosh−1(4|χ(S)|/ε2)

ε
+

2|χ(S)|
ε2

]
+ 2.

Waldhausen’s Cobordism Theorem [23, Lemma 5.1] implies that these surfaces bound a
submanifold U ∼= Σ × [0, 1]; this must also lie in the ball, so φ|U is an embedding.

Lemma 8.4 implies that there is a useful simplicial hyperbolic surface f : (Σ, d) → U that
is a homotopy equivalence. Lemma 8.2 then gives a sequence of homotopic useful simplicial
hyperbolic surfaces

fi : (Σ, di) −→ M, i = 1, 2, . . . ,

the images of which leave every compact subset of M .
Since inj(M) � ε and (fi) are incompressible, inj(Σ, di) � ε as well. Proposition 2.1 from

[4] and Mahler’s compactness theorem then imply that there is a smooth hyperbolic metric
(Σ, dhyp) and a sequence of homeomorphisms ri : (Σ, dhyp) → (Σ, di) that are uniformly
Lipschitz. In particular, the sequence of compositions

(Σ, dhyp)
ri �� Σ

fi �� M
φ �� N

is uniformly Lipschitz with images in a compact set, so Arzela–Ascoli’s Theorem implies that
it uniformly converges. This shows that there are φ ◦ fj ◦ rj : Σ → N and φ ◦ fk ◦ rk : Σ → N
that are homotopic by a homotopy with tracks of length less than 1. Moreover, for later use
let us arrange that rk ◦ r−1

j : Σ → Σ is not homotopic to the identity. Fixing some curve γ on
Σ, the geodesic representative of fi ◦ ri(γ) lies at a uniformly bounded distance from fi(Σ);
therefore, if the indices j, k are far enough apart then fj ◦ rj(γ) and fk ◦ rk(γ) cannot possibly
be homotopic, implying that rk ◦ r−1

j is not homotopic to the identity.
We now build a homotopy F : Σ × [0, 1] → M between the maps

φ ◦ f : Σ −→ M and φ ◦ f ◦ rk ◦ r−1
j : Σ −→ M

through surfaces of diameter less than (2|χ(S)|/ε2) + 2. It is constructed as a concatenation
of three homotopies.

1. The composition with φ of a homotopy through simplicial hyperbolic surfaces from f to
fj , as given by Canary’s filling theorem.

2. A homotopy with tracks of length less than 1 from φ ◦ fj to φ ◦ fk ◦ rk ◦ r−1
j .
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3. The composition with φ of a homotopy through simplicial hyperbolic surfaces from
fk ◦ rk ◦ r−1

j to f ◦ rk ◦ r−1
j .

Because this is a homotopy through surfaces with diameter less than the distance between the
components of ∂φ(U), the only way it can cross φ(U) is through surfaces contained in φ(U).

Pick a homeomorphism φ(U) ∼= Σ × [0, 1] and form a quotient space M̄ of M by identifying
two points of φ(U) if they have the same projection to Σ. Then M̄ ∼= M and φ(U) projects to
a surface S ⊂ M̄ homeomorphic to Σ. The homotopy F descends to a homotopy

F̄ : Σ × [0, 1] −→ M̄

such that no surface F̄ (Σ, t) intersects both sides of a small regular neighborhood of S. This
implies that F̄ is a concatenation of homotopies that lift to the manifold M̄ |S obtained by
cutting M̄ along S.

As rk ◦ r−1
j is not homotopic to the identity, one of these lifts is a homotopy between

components of ∂(M̄ |S) that is not homotopic into ∂(M̄ |S). Waldhausen’s Cobordism Theorem
[23] implies that M̄ |S is homeomorphic to Σ × [0, 1] or a trivial interval bundle over a
nonorientable surface that is covered by Σ with degree 2. So, M̄ ∼= M fibers over S

1 or
S

1/(z �→ z̄) with regular fibers homeomorphic to Σ.
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