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0. Introduction

Joint reductions and mixed multiplicities are relatively new concepts and there is
very little about them in the literature. We provide some background in the first two
sections. Some of the properties about joint reductions and mixed multiplicities which
we prove have not appeared elsewhere, but are probably folklore to the people who
have worked on mixed multiplicities or joint reductions. This makes it very difficult
to attribute them to their rightful discoverers.

The story of mixed multiplicities starts in 1957 with Bhattacharya’s paper [1],
where he described Hilbert polynomials for two ideals and their highest degree
coefficients. The name mixed multiplicities first appeared in Teissier’s paper [15],
published in 1973, in which he and Risler studied Hilbert polynomials and their
coefficients for any finite number of ideals by using superficial elements (of a then new
kind). The connection between mixed multiplicities and joint reductions was first
observed by Rees in 1983 during a research symposium associated with the Nordic
Summer School. This was also the first time that joint reductions were defined. Rees’
approach to mixed multiplicities, as displayed in his 1984 paper [11] and later in his
book [13], is different from Teissier’s; Rees studies mixed multiplicities via
multiplicities of certain ideals in ‘general’ extensions of the original ring. Other
authors have used Rees algebras and blow-ups for studying joint reductions and
mixed multiplicities (see for example [3, 17]).

A motivation for this work was Rees’ multiplicity theorem (cf. [11, Corollary 3.8])
which relates multiplicities to reductions in quasi-unmixed local rings. A similar
relation holds between mixed multiplicities and joint reductions, and that is the main
theorem of this paper (Theorem 3.7). I am indebted to Jugal Verma for suggesting this
problem and for supplying a proof in dimension 2 (see [16]). Rees’ original theorem
and Boger’s generalization of it [2, Corollary 3.9] both follow from Theorem 3.7. For
very different proofs of Rees’ multiplicity theorem see also Rees and Sharp [14], Katz
[3] and Kirby and Rees [4]. Kirby and Rees use Buchsbaum-Rim multiplicities and an
elaboration of Rees’ machinery from [12]. Kirby communicated to me that in a future
version of [4] there will be a generalization of Theorem 3.7 of this paper.

Section 1 gives the definition of joint reductions. The original concept of joint
reductions, given by Rees in [12], was defined for d m-primary ideals in a local ring
(R, m) of dimension d. O’Carroll’s and Verma’s definitions of joint reductions [8 and
18] are not as restrictive, and the definition of joint reductions in Section 1 here works
in even more general settings. Section 1 also gives the machinery which is necessary
for the main results. This machinery comes mostly from Teissier’s rich paper [15].
Section 2 proves a few lemmas about joint reductions and mixed multiplicities. Some
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of these were previously proved by Rees using the theory of general elements [13]. The
proofs given here do not use general elements. Section 3 contains the main results, in
particular Theorem 3.7. Some corollaries of this result are Rees’ and Boger’s
multiplicity theorems.

1. Definitions

DEFINITION 1.1 (cf. Northcott-Rees [7]). Let I and J be ideals in R, < J. Then
I is a reduction of J if there exists an integer / such that J* = IJ*™%.

Note that in this case J™** = I"J* foralm>1and all n > [/—1.

DEeFINITION 1.2. Let R be a Noetherian ring and g¢,,...,q, ideais in R. Let
a,eq,. Then the k-tuple (a,,...,a,) is called a joint reduction of (q,,...,q,) if
a,qy---q,+...+a,q,...q,, is a reduction of the ideal ¢, ... q,, that is if there exists
an integer / such that

(40 =aqi' G- Gt GG G G
If Misan R-module and (¢, ...¢,))M =a,¢1 ' ¢}...q. M +...+a,q,...q,_, ¢ M,
then we say that (a,,...,a,) is a joint reduction of (q,,...,q,) with respect to M.

ExampLE 1.3. Let R=k[X,Y]. Then (X,Y) is a joint reduction of
(X, Y™, (X™ Y)) foralln,m>1, as X(X™, Y)+ Y(X,Y") = (X, Y")(X™ Y).

REMARK 1.4. By writing out the ideal equalities it is easy to see that the k-tuple
(ay, ..., a,) is a joint reduction of (g, ..., q) (with respect to M) if and only if the ideal
(a,,...,a,) is a reduction of ¢ (with respect to M).

The context should make it clear when (a,, ..., a,) is to be thought of as a k-tuple
and when as an ideal.

DerFmviTION 1.5, If (R, m) is a Noetherian local ring and 7 is an m-primary ideal,
then e,(M) denotes the multiplicity of M with respect to 1. If M = R, then e,(R) is also
called the multiplicity of I. Sometimes we shall write e(/; M) instead of e,(M).

Note that if  and J are ideals such that J < ann (M) and /+J is m-primary, then
AM/I"M) = A(M/(I+J)*M) for all n, so we may write e, (M) instead of e,, ,(M).

-DEFINITION 1.6. A sufficiently general element of an ideal ] means the following.
Let I be minimally generated by / elements, say x,,...,x,. Suppose that there exists a
non-empty Zariski-open subset U of k* such that whenever a = ) y, x, and the image
of (y,,...,¥,) in k* lies in U, then a satisfies a given property. Then that property is
called sufficiently general and any such a is called a sufficiently general element of
I (with respect to that property).

The advantage of sufficiently general properties is that whenever k is infinite, it is
possible to find an element satisfying finitely many sufficiently general properties, for
the intersection of finitely many non-empty Zariski-open subsets is still non-empty
and Zariski-open.

Teissier proved the following theorem.
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THEOREM 1.7 [15]. Let (R, m) be a Noetherian local ring. Suppose that q,,...,q,
are m-primary ideals and that M is a finitely generated R-module. Then there exists an
integer ¢ = 0 such that

AM/qy:...qxM)
is a polynomial in n,, ...,n, of degree dim (M) if n, > ¢ for each i,1 <i< k.
The homogeneous polynomzal of degree dim (M) in A(M/q"M) can be written as

z d_|—d‘ [45%,.... g M]nf..

dy+. . . +dy=dim (M)

where [gi™), ..., qi%; M) is a positive integer.

DeriniTion 1.8, The lnteger [gi), ..., ql8); M) is called the mixed multiplicity of
the module M of type (d,,...,d,) with respect to the ideals ¢,,...,q,.

An important ingredient in Teissier’s proof is the following lemma.

LeMMA 1.9. Let (R,m,k) be a Noetherian local ring and suppose that the residue
field k is infinite. Let q,,...,q, be ideals in R and M a finitely-generated R-module. Let
{P,..., P} be a set of primes not containing q,. Then there exist a sufficiently general
element a in q, which does not lie in any P, and an integer ¢, = 0, such that for each
i > 13

@M: )i q5 ... qxM = g1*q5e ... qpeM for all ny, ...\,
whenever ¢ = ¢, and n, = c+1.

This lemma gives rise to the usual definition of superficial elements. However, in
the proof of the main theorem we need a more general definition.

DEerFINITION 1.10.  Let R be a Noetherian ring, not necessarily local. Let q,, ..., ¢,
be ideals of R and let M be a finitely-generated R-module. Let a be an element of
¢, such that dim (M/aM) = dim(M)—1 and such that

(@*M: @) 45952 ... G M = g37qs ... qpeM

for all sufficiently large n, and all n,,...,n,. Then a is called superficial for q,, ..., q,
and M.

Teissier also showed the following.

THEOREM 1.11. If R has infinite residue field, and a,, ..., a, are elements of R, the
first d, of which are elements of q,, ..., and the last d,. of which are elements of q,, such
that a, is superficial for q,, ...,q, and M, a, is superficial for q,,q,,...,q, and M/a, M.
etc., then

[4i™,.... g% M] = [¢"7V, ¢5%%, ..., ¢ M/ a, M)
= MM/(ay,...,a;) M)— A0 "M@y, ..., 85 M ay),

which equals e, | .. ,,(M). In other words, [¢\", ..., i’¥'; M equals the multiplicity of
any ideal generated by a superficial sequence composed of d, elements of q,, etc., and
d, elements of q,.
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It turns out that such a superficial sequence forms a joint reduction of the d-tuple
(9155915594 - - -, 9;) With respect to M, where each g, appears d, times. Thus we
also get the existence of joint reductions of d m-primary ideals with respect to M.

Northcott and Rees proved in [7] that e,(R) = e,(R) if I is a reduction of J. The
analogous statement for mixed multiplicities and joint reductions was proved by
Rees. Namely, Rees proved in [12, Theorem 2.4] that the number e((a,, ...,a,); M) is
the same for every joint reduction (a,, ...,a,) of (¢,,...,4;, -..,q,) With respect to M,
where each g, appears d, times. Since superficial sequences generate a joint reduction,
it follows that [¢\%),...,q¢\™); M) =e((a,,...,a,); M) for every joint reduction
(ay,...,a) of (gy,-.-,41,---,4,) With respect to M. Thus

[d,] [dy]. . ) 1 (1] [1].
[qll""’qkk ’M]—[qllls--.’q[ll""!qk ,---,qk],M],

A ,
d, times dy, times

so it is only necessary to analyze mixed multiplicities of type (1,...,1). Rees
introduced the following notation for such mixed multiplicities:

&Gy -1 94 M) = g1, ..., 45" M].
Thus without loss of generality we may use only mixed multiplicities of type

1,...,1).
2. Properties of joint reductions and mixed multiplicities

In this section we prove several lemmas and propositions about joint reductions
and mixed multiplicities which are needed for the proof of the main theorem.

LeEmMMA 2.1.  Let R be a Noetherian ring (not necessarily local), q,,...,q, ideals of
R and a,eq, for i=1,...,k. Then the following statements are equivalent:
) (ay,-..,a,) is a joint reduction of (qy,-..,4:);
(ii) for all positive integers l,,...,1,,(ay,...,ak¥) is a joint reduction of (g3, ...,q¥);

(iii) for some positive integers 1,,...,1,,(q4,...,a) is a joint reduction of
s 9)-

Proof. Assume that (a,,...,q,) is a joint reduction of (g,,...,q,). In order to
prove the second condition, it suffices to show that for any positive integer n,
(a},ay, ..., a,) is a joint reduction of (7, g,, -..,q,). We use induction on n. If n = 1,
there is nothing to show. So assume that n > 1. By the inductive hypothesis there
exists a positive integer / such that

(49 = 4Gz Gt F GG D O
4779z 90)' = @7 q Vg, gt e g TV G e 9
Then

@7 9;---9) = 11(477'9; .. ¢,)’
=qa 7 Vg gt gV G 4
=ai7g" g gt 4 g i g
a7 P a7 Gt 0 G i)

+o g G g

n(l-1) nl 1

cal gt Vg Gt +a, gV G g
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Conversely, if (a%,...,a¥) is a joint reduction of (g%,...,qk) for some positive
integers /,, ..., 1, then there exists a positive integer / such that

(2. = apqr gz’ g+ Fagrt . g g
But the latter ideal is contained in
g g e gt g

which says that (a,,...,a,) is a joint reduction of (q,,...,4,)-

LeEMMA 2.2. Let R be a Noetherian ring, q,,...,q, ideals and a,eq,. Then there
exist ideals p, < q, such that a,ep, and such that (a,,...,a,) is a joint reduction of
(Pss - D).

Moreover, if (a,,...,a,) and each q, is primary to the same maximal ideal of R, we
may choose the p, to be primary to the same maximal ideal.

Proof. Foreachi=1,...,k, define p, = (a,) N g,+...+(a,) N g,. So p, = g, We
shall show that
Pr--Pr S @Dy Ppt...tGrPy.. Dy

which will finish the proof of the first part. The second part follows by the
construction of the p,.

If k=1, p, =(a,), so clearly (a,) is a joint reduction of p,. Now assume that
k>1.Fori=1,...,k,choose b,ep,sob,= ) ¥ r,a,whereeachr,a,e(a)ng, < p,
Then b, ... b, is the sum of the terms of the form

T= (rul a,l) . (rm a,k).

If all the j, are distinct, then T is contained in (a,...a,) S a,p,...p,, SO We are
done. But if the j; are not distinct, then one of the g, does not appear, say a,. Let
p.=(a)Nngq+...+(a,,) ng, for each i. Since for i <k,

rg, a4, €@)Ng+...+(a,_ ) Ng, = p;
then by induction

’ ’ 7 ’ ’
= (ru, ajl) .- (rk—l,jk_l ajk_l) € pPy...Pyrat.. .+ 1Py Die

Sa,py... Dyt +A_ 1Py Prs
Hence

T= T,(rkjk ajk) €(@py. Dyt + 1Dy Dy_g) Py

LeMMA 2.3, Let (R, m) be a Noetherian local ring. Set S = R[X],, p.x, Where X is
an indeterminate over R. Let M be a finitely generated R-module of dimension d and let
45 ---,q, be m-primary ideals. Then

e(qy ..., 9. M) = e(q,, S, ...,9,S; MS).

Proof. 1Tt is easy to see that mS is the maximal ideal of § and that ¢, S is
mS-primary. So MS/q®MS has finite length whenever some n, is positive.
But A(MS/q*MS) = A(M/q*M), so the two polynomials describing these quantities
for sufficiently large n are equal.
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LeMMA 2.4 [13, p. 184]). Let (R, m) be a Noetherian local ring, and M a finitely
generated R-module of dimension d. Let p, < q, be m-primary ideals for i =1,...,d.
Then e(py,...,ps; M) > e(q,,...,q,; M).

Proof. Iltis easy to see that it is enough to prove the statement for the case when
P1=G1>Pa1 =gy a0d p; S g,

If d =1, then A(M/p; M) > A(M/q} M), so necessarily e(p,; M) > e(q,; M).

Now let d> 1. By Lemma 2.3 we may assume that R has an infinite residue
field. Then by Theorem 1.11 there exists an element aep, =g, such that
dim(M/aM) = dim(M)—1 and

e(py,---sPa; M) =e(p,,...,ps; M/aM),
&gy -, 945 M) = e(qy, ..., 94 M/aM).

So by induction on d we are done.

LemMaA 2.5. If (R,m) is a local ring, M a finitely generated R-module and q an
m-primary ideal, then e (M) = e(q, ...,q; M).

Proof. By Lemma 2.3 we may assume that R has an infinite residue field. With
this the proof follows easily: since the residue field of R is infinite, by Theorem 1.11
there exists a superficial sequence a,,...,a, in g (of type (d)) such that by Theorem
1.11,

e((ay,...,a.); M) = e(g, ..., q; M).

But the d-tuple (q,,...,4,) is a joint reduction of (g, ...,9), so the ideal (a,,...,q,) is

a reduction of g, hence e (M) = e((a,, ..., a,); M).

LEMMA 2.6. Let M be a finitely generated R-module of dimension d,q,,...,q,
m-primary ideals and .. ..., 1, positive integers. Then

e(gy,....qp; M) =19 le(q,,...,q,; M).
Proof. Just look at the coefficients of the polynomial A(M/¢2M).

PROPOSITION 2.7 (Associativity formula for mixed multiplicities). Let (R, m) be a
Noetherian local ring, q,, ..., q, m-primary ideals and M a finitely generated R-module
of dimension d. Then

&gy, .- qas M) = Y, MM, )e(q,, .., 4.5 R/D),

peA

where A = {peSpec(R): ann(M) < p and dim R/p = dim M}.

Proof. Letd=dimM and A = {p,,...,p,}. We may choose a sufficiently general
element a,eq, (if d, > 0) as in Theorem 1.7 which will work for the d-dimensional
modules R/p,,...,R/p, and M. We then pass to the (d— 1)-dimensional modules
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R/(p,+(a)),...,R/(p,+(a,)) and M/a, M to choose a,, etc. In this way we obtain
a,,...,a, for which

e(qls""qd;M) = e(av'"’ad);M) and e(ql""’qd;R/pc) = e((al’--',ad);R/P()
fori=1,...,1. Hence

e(gys---» 94 M) = e((ay, ..., a,); M) = e((a,, ..., a,) + ann (M); M)
= ¥ A(M,) (@, .., a;) +ann (M); R/p)),

=1
by the usual associativity formula. But also

Y MM, ) e((@, .. a)+ann(M); R/p) = ¥ MM, ) e(@s, ... a); R/p)

{=1 f=1

=Y AM,)e(g, ..., 455 R/P).

{=1
For a more general version and a very different proof, see [13, Theorem 12.2.7].

Lemma 2.8. Let (R,m) be a local ring and M a finitely generated R-module of
dimension d. Let q,, ...,q, be m-primary and a,€ q, such that (a,,...,a,)+ann (M) is

-prii . Th
m-primary. Then e((ay,...,a,); M) > e(qy, ..., 945 M).

Proof. By Lemma 2.2, there exist m-primary ideals p, < ¢, such that g,ep, and
(ay,...,a,) is a joint reduction of p,,...,p, with respect to R/ann (M), that is with
respect to M. So e((ay,...,a,); M) =e(p,,...,Ps; M). But by Lemma 2.4 this
multiplicity is greater than or equal to e(q,,...,q,; M).

The following is a well-known fact about multiplicities.

LEMMA 2.9. The inequality e, (M) < e, (M/aM) holds for any element a€ I and any
finitely generated R-module M whenever dim (M/aM) < dim (M).

Proof. The exactness of
I"M:a M a M M

G VY A L= VY S [}y S T v oy Al

M M\ _ M\ . (I"M:a
A (I"M) -4 (I”“M) =4 (I"M+ aM) ’1( "M )

By the assumption on a, each side is a polynomial in n of degree d—1 for large n. The
leading coefficient on the left is e,(M) and the leading coefficient of A(M/(I*"M + aM))
is e,(M/aM).

0

gives

3. Extension of Rees’ theorem to mixed multiplicities

Rees proved in [11] that if (R, m) is a quasi-unmixed local ring, that is its m-adic
completion is equidimensional, and 7 < J are m-primary ideals with e,(R) = e,(R),
then 7 is a reduction of J. In this section we prove an extension of this to joint
reductions and mixed multiplicities. The main theorem is Theorem 3.7, and essential
Lemmas are 3.1 and 3.6.
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LemMa 3.1 (Boger [2]). Let q,,...,q, be ideals in a Noetherian local ring (R, m)
with infinite residue field such that q, < v/(q,...q,). Let a,eq,. Then there exist
integers c, and [° and a sufficiently general element be q, such that for all 1 > I° and all
sufficiently large n,, ..., n, (depending on 1),

RIYIN (@) +b'Y)R[Y] = (a}+b'Y) g]17'q3r ... qpR[Y] 1)
(RIY]: gy @ +D'Y) N giogye ... qpeR[Y] = g1 ~'q52 ... qpR[Y). )]

Moreover, if q, does not lie in some given finite set of primes of R, then there exists such
an element b not contained in any of those primes of R.

and

Proof. Choose an integer c, and a sufficiently general element be g, as in Lemma
1.9 with the additional assumption that b does not lie in any associated prime of (0)
which does not contain g,.

Let (0) = ()i, m, be a primary decomposition of (0). Assume that ¢, < +/m, for
i=1,...,tand that ¢, € vm, for i = t+1,...,s. Then there exists an integer /° such
that for all /> 1% ¢, =m,n ... nm,

Let xe0: . So xb' =0em,,, N ... N m,, so by the choice of b, xem,,,1 n...nm,
Hence x4} is contained in all ideals m,, so xgt = 0. Thus 0: * =0: ¢} for all I > /°.

CrLamm.  For all sufficiently large n,,...,n,, ¢%: b' € 0: b'+g}1'q32 ... qp+.
Proof of the claim. By an easy generalization of the Artin-Rees lemma there
exists a k-tuple m > 0 such that for all n > m,
b(g*: b") = " n (b)) < b'g* ™.
Hence ¢*:b'<0:b'+¢*™ and, in fact, ¢%:b'<0:b'+(¢"2n(g%:5"). But
4, € V(q,-..q), so if n, is sufficiently large, gii"™ % < g7'+... g™, and so
b c0: b +(g* 2N (g% bY)
< 0: b +(giogp:... qpx N (g2: BY)
=0: ¢ +(g5g3: .- g2 N (g%: b))
Therefore for n sufficiently large, by Lemma 1.9, ¢%: b' < 0: ¢; +477'g3 ... g3*.

To show equality in (l) let F=(ai+b'Y)(}Y:,¢c,Y’) be in g2R[Y). Then

be eq— and c,eq*: b'<=0:q,+q77'q52... g7 So ¢, =d+e, where de0:q; and
eeqiiigh ... qt. Hence F = (d +b'Y) (Z,_l ¢ Y’+eY‘) So it suffices to show that
(a‘1+b‘Y)(Zc, Y’),
J=1

an element of g2R[Y], belongs to (a;+5'Y) g1 'q7*... g3 R[Y]. To show this, just
repeat the argument. This proves equality in (1).
If, moreover, each ¢, lies in g{°g3:. .. gi*, the same argument shows equality in (2).

COROLLARY 3.2. Let (R,m) be a Noetherian local ring with infinite residue field,
and let q,,...,q, be ideals. Let a,eq, for i=1,...,k. Assume that (a,,...,a,) has the
same radical as all the q, and that the common height of these ideals is k. If p is a prime,
minimal over (a,, ...,a,), such that e((a,,...,a,) R,;R,)) = e(q, R, ...,q, R,; R,), then
there exists a sufficiently general element beq, such that for all sufficiently large
integers |,

e((ay,...,a,) R;R)= (1/De((a}+b'Y,a,,...,a,) R[Y]pB[Y];R[Y]pR[Y])‘
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Proof by induction on k. 1If k = 1, we may choose b sufficiently general in g, as
in Lemma 3.1 which is not contained in any minimal prime of R. Then for all / > [°,
ay+b'Y is a superficial element for g} R[Y], 5y, and the module R[Y] . Hence

e((@y+b'Y); R[Y ] pryy) = e(qy R(Y L pryys RIYparyy)  (by Theorem 1.11)

=e(q1 R,; R,) (since A(R/q1), = AR/ Y] pnryr))
= le(q, R,; R;) (by Lemma 2.6),
which finishes the proof for the case k = 1.

Now suppose that k > 2 and that the corollary is true for k— 1. First suppose that
the corollary is known for domains. Let A be the set of all minimal primes Q of R
lying inside p such that dim(R,) = dim((R/Q),). By the associativity formulas for
usual and mixed multiplicities and by Lemma 2.8, the assumptions are still true in

R/Q for every QeA. Fix QeA and let Sy = (R[Y]/QR[Y]),zy; Since the result is
true for domains, there exists a sufficiently general element b in ¢, + Q/Q such that
e((ay; ..., ) Sq; Sg) = (1/D) e((@y +b'Y, ay, ..., a,) Sg; Sg)

for all sufficiently large integers /. By lifting b to R we get a sufficiently general element
of ¢, for which the above equation is true. Then since A is finite, we get a sufficiently
general element begq, such that the above equation holds for all sufficiently large
integers / and all Qe A. Then by using associativity formulas again we get

e((a, .-, a) Ry R) = 3 MR e(ay; ..., a) Ry; (R/Q),)

QeA

= ¥ MR e((@,---,,) Sq; So)

QeA

1
= T AR)e((@+b'Y.ay,...,a,) o S)

QeA
=(1/De((a;+b'Y,a,,...,a,) R[Y]pR[Y]; R[Y]pR[Y]))

as desired. So we have only to show the existence of such sufficiently general elements
for domains. In this case a, is not a zero divisor on R.

CaM. e((ay,...,a,) R,;(R/(ay),) = e(@1 Ry, ..., 4,y R, (R/(a))),)-

Proof. Let S = R[Y], z, which has an infinite residue field. Then
e(q;R,,...,q,R,;R) = e((a,,...,a,)R,;R)
=e((ay,...,a,_)) R,;(R/(a,)),) (by[S, Theorem 14.11])
> e(q, R, ....q 1 Ry; (R/(ak))p)
(by Lemma 2.8 since a,€q,)

=e(q,S,..-, 4.1 5;5/(ar))
= e((bl’ sy bk—l) S; S/(ak))

(by Theorems 1.9 and 1.11 for some b,e g, S)
=e((by,...,b4_1,a,)S;S) (by {5, Theorem 14.11])
>eq,S,...,9,5;S) (by Lemma 2.8 since b,eq,S,a,€q,)
= e(q, R, .. sq . R,; Rp)’

so we have equality throughout, which proves the claim.
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Then by induction there exists a sufficiently general element b€ g, R/(a,) such that

@y ) Ry (RI@),) = 1o+ Y, 0y, 0,); (RUVY (@ )

Since gq,/mq, — (¢, +(a,))/(mq,+(a,)) is surjective, b is also a sufficiently general
element of ¢, R. Moreover,

e((ay,...,a) R,;R) = e((ay, ..., a,1) R, (R/(a),)
=({/De((@+b'Y,a,,...,a,,); (R[Y1/ (@) priyy)
= (1/D)e((a; +b'Y, a,, ""ak);R[Y]pR[Y])

by [5, Theorem 14.11], which finishes the corollary.

ReMARK 3.3.  If the hypotheses of Corollary 3.2 are satisfied for every prime ideal
p minimal over (a,,...,a,), then since there are only finitely many such ideals we get
a sufficiently general element b € ¢, such that the conclusion of the corollary is true for
all such primes p and all sufficiently large integers /.

Now we need a definition and a few remarks.

DeFINITION 3.4. A ring R satisfies the first chain condition if dim(R) =
dim (R/I)+ht(J) for each ideal 7 in R.

ReMARK 3.5. If Ris quasi-unmixed, then R satisfies the first chain condition and
is equidimensional [6, 34.5). Every localization of a polynomial ring over R is still
quasi-unmixed [9, Theorem 3.6). Also, if a is part of a system of parameters of R, then
R/(a) is quasi-unmixed and the integral closure of (a) has no embedded primes [10,
Theorem 2.12).

One can prove Theorem 3.7 by using an argument similar to Béger’s, namely by
reducing the problem to a zero-dimensional ring. It is not necessary to make such a
(d-dimensional) leap, though. It suffices to just drop the dimension by one, which
seems more instructive in that it is not as far removed from the original problem. We
shall use induction on the number of ideals. For this we need a way to reduce
dimension, which is provided by the following lemma.

LemMMA 3.6. Let (R,m) be a quasi-unmixed Noetherian local ring with infinite
residue field, and let q,,...,q, be ideals. Let a,eq, for i=1,...,k. Assume that
(ay,...,a,) and the q, have the same radical and that their common height is k. Let A
be the set of all minimal primes over (a,,...,a,). Assume that for each pe A,

e((ay...,a)R,;R) =e(q, R,,...,q R,; R).

Let b be a sufficiently general element of q, as in Remark 3.3 with the additional
restriction that b does not lie in any prime of R minimal over (a,,...,a,). Then for all
sufficiently large integers I, the set primes of R[Y] .,y gy, Minimal over the ideal
(@ +b'Y,a,...,8) R(Y]imsiry rivy 38 {PRIY L mscyy mivy: PEAS.
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Proof. Let S = R[Y] vy ry)- BY the choice of b, the height of
(@i +b'Y,a,...,a,)S
equals k. Clearly elements of A extend to primes of S minimal over
(@ +b'Y,a,...,a,)S.

Suppose that there exists a prime Q, minimal over (a! + 'Y, a,, ...,a,) S, which is
not an extension of any p in A. We have ht(Q) < k and

dim (S/Q) < dim (S/(d + 'Y, a,,...,a,) S) = dim(R)+ 1 —k.
Since S satisfies the first chain condition then
dim(S) = dim(S/Q)+ht(Q) < dim(R)+1—k+k = dim(R)+1 = dim(S),

so necessarily dim(S/Q) = dim(R)—k+1. Similarly, dim(S/pS) = dim(R)—k+1
for all pe A. By the associativity formula then

e(((a’1+b‘ Y)":ga;', ) S) g e(%)l(((a‘l +b' Y)":q;é‘, L) Sg)

S S
+ ) e|l— A( 23 )
Pgl\ S) ((all+bly)”’ ag’ -“:a:) SpS

foralln>1. So

lim —l-e( § )
nae M \(@+b'Y)a3,...,a5) S
1 (S S
> lim —el— Q
>m e(Q) 4 («a; THYY.ay,aD SQ)

1 s S,s
+lim oz ) e s)’l(((a;+b'y)",a;,...,a;;) s,,s)

n—o peA
=e(S/Q)e((a+b'Y,a,,...,a,) Sg; So)
+ Y e(S/pS)e((d+b'Y,a,,...,a,)S,s;S,s) (by Lech’s formula)

peA

> Y e(S/pS)e((ai+b'Y,a,,...,a,) S5 S,0)-

peA

By Lemma 2.9 and the fact that ((m+(Y))*S: Y) = (m+(Y))*'S for each n,
e(S/pS) = e(R/p). So by the choice of b (see Corollary 3.2),

.1 S L .
lim Zze (((a; TEYY 4 S) > LS A@+bY, ... 4) Spsi 5y
= L e(R/p) (@ --,0) S,53 5,
y 23
= ¥ e(R/p)le((@y, ..., 3) Ry Ry). €)

peA
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However, by Lemma 2.9,

S S
<
e(«a;+b' Yy, a,....d7) s) e(«ai+bl Yy.ay,...a5 Y) S)

“(eza)

for all n. Since R satisfies the first chain condition,
dim(R/p) = dim(R)—ht (p) = dim (R)—k = dim(R/(a;, ..., a,))

for every pe A. By the associativity formula then

R R
Y TR e(R/p)A ,
((al ", ag, .. )) pze;/\ (R/p) ((a1 "az,...,az) Rp)
so by Lech’s formula,
im % ( > < Y e(R/p)le((ay,..,a,) R, R,)
I E\ @y ) S L RP W R k)

contradicting equation (3).

Corollary 3.2 and Lemma 3.6 provide a method of going modulo superficial
clements and lifting the result back to the original ring. This is used in the following
main theorem of this paper.

THEOREM 3.7. Let (R,m) be a quasi-unmixed Noetherian local ring, let q,,...,q,
be ideals and a, an element of q,, for i = 1,..., k. Suppose that the radical of (a,...,a,)
is the same as the radical of all the q,, and that their common height is k. If

e((ay,...,a,)R,;R) =e(q, R,,...,q R, R)
for each prime ideal p minimal over (a,,...,a,), then (a,,...,a,) is a joint reduction of
(91 ---»q0)-

Proof by induction on k. If k = 0, there is nothing to prove.
Let A be the set of all primes minimal over (a,,...,a,). Let § = R[X],, px; Which
has an infinite residue field; S is still a quasi-unmixed local ring. Since

A(R,/IR,) = A(S,s/1S,s)

for any pe A and any ideal I such that p is minimal over 7, it is easy to see that all the
hypotheses are still satisfied on S. Also, by faithful flatness of S over R the conclusion
is true in R if and only if it is true in S, so without loss of generality assume that the
residue field of R is infinite.

By the associativity formulas and by Lemma 2.8 we get that

e((a,,...,a)R,;R,/OR) = e(q, R,,...,q, R,; R, /OR))

for every minimal prime Q of R and for every pe A. Notice that each R/Q is a quasi-
unmixed domain. Set I=a,q,...q,+...+a,q,...q,_,. If the theorem is true for
domains, then we get that 7 is a reduction of g, ... ¢, modulo each minimal prime of
R. Hence by [11, Lemma 1.2], I is a reduction of g, ... ¢, R, which finishes the theorem.
So it is enough to prove the theorem for domains.
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If k = 1, by assumption e((a,) R,; R,) = e(q, R,; R,) for every peA, so
MR,/qt R)—AMR,/q?'R,) = e(q, R,; R,) (for n sufficiently large)
= e((al) Rp’ Rp)
= AM(R,/(a))R,) (since a, is not a zero divisor)
= A‘(Rp/al q;‘_lRp) - j‘((al) Rp/al q;.—lRp)
=MR,/a,47'R,)—MR,/qi7'R,).
So A(R,/qt R,) = A(R,/a,q7'R,), and since a, g7~ < ¢F, necessarilya, g} 'R, = ¢} R,,.
This means that the integral closure (a,) of (@,) is the same as g; after localization
at every peA. Then by Remark 3.5, since (a,) has no embedded primes, (a,) = 7;.
Hence (a,) is a (joint) reduction of g,.

Now assume that k > 2. By Corollary 3.2 there exists a sufficiently general element
be g, such that for all sufficiently large integers /,

e((ala seey ak) Rp ’ Rp) = (1/1) e((all + bl Y9 (12, veey ak) R[Y]pR[Y] 9 R[ Y]pR[Y]))
and

e R, g R,,...,q, R R) =e(q, R, ..., q. R,;(RIY)/ @, +b'Y)) prv)

for every p in A. (For the last equality, Theorem 1.11 is also needed.)
Set S = (R[Y]/(a} +b'Y))insvy rev: Then S is quasi-unmixed by Remark 3.5 and

e((ay, ..., a,) SpS; Sps) = e((ai+b'Y,a,,...,a,) R Y]pR[Y]; R Y]pR[Y])
=le((ay,...,a)R,;R,)) = le(q, R,,...,q,R,;R))
= e(qll Rp! q2 Rp’ AR qlc Rps Rp) = e(q2 SpS’ AR ] qk Sps; Sps)
for every pe A. By Lemma 3.6 and by induction then (a,, ..., a,) is a joint reduction
of (¢,S,...,4,.S).SetJ=a,q;...q,+...+a,4,...q,_,- Then the above means that JS
is a reduction of g,.... ¢, S, thatis (g, ... ¢,)"S < J(q, ... g,)" 'S for all sufficiently large
integers n. This means that
@5 9)*"TEJ(qy---q)" ' T+ (@ +6'Y)N (g, .- q)" T,

where T = R[Y],y) rys- BY the choice of b as in Lemma 3.1 then, for possibly larger
n’
@1 90"T S Jgy(qs--- 4" T+ (@1 +6' 1) g17(gz - 4" T.

So there exists s in R[Y], not contained in (m+ (Y)) R[Y], such that
5(qy.--q)"RIY] = Jqy(q, ... q)" 'R[Y]+(a; +0'Y) q17'(q; ... q)"R[Y].

Since s contains a term u which is a unit in R, by reading off the degree zero
monomials we have that
(@---90" =u(gy---q.)"
SJq(4,--- 90" + 21477 (G, - 90"
cJa(q---9)" " +a, 417Gz 9",
so that (a,,...,a,) is a joint reduction of (gq,,...,q,)-

CoroLLARY 3.8 (Rees [11]). Let (R, m) be a quasi-unmixed local ring and [ = J
m-primary ideals. If e,(R) = e (R), then I is a reduction of J.
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Proof. Asin the proof of Theorem 3.7 assume that |[R/m| = . Let d = dim (R).
Then by a result of Northcott and Rees [7] there exist elements a,, ..., a, €I such that
(ay,...,ay) is a reduction of 1. So e((a,,...,a,), R) = e,(R) = e,(R). By Lemma 2.5,
e,(R) equals e(J, ..., J; R), so by the previous theorem (a,, ..., a,) is a joint reduction
of (J,...,J). This means that the ideal (a,,...,a,) is a reduction of J, so a fortiori I
is a reduction of J.

COROLLARY 3.9 (Boger [2]). Let I< J < +/I be ideals in a quasi-unmixed local
ring. Assume that the analytic spread of I equals the height of I. Then I is a reduction
of J if e(IR,; R,) = e(JR,,; R,) for all primes p minimal over I.

Proof. Again we may assume that the residue field is infinite, so that there exists
a reduction (a,,...,a,) of I, where k is the analytic spread of /. For each prime p
minimal over 7, e((a,,...,a,) R,; R,) = e(IR; R)) = e(JR,; R,), so by Theorem 3.7,
(ay,...,a,) is a joint reduction of (J,...,J). This means that (a,, ..., a,) is a reduction
of J, and a fortiori I is a reduction of J.

Acknowledgement. 1 thank Craig Huneke for many conversations regarding this
paper.
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