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0. Introduction

Joint reductions and mixed multiplicities are relatively new concepts and there is
very little about them in the literature. We provide some background in the first two
sections. Some of the properties about joint reductions and mixed multiplicities which
we prove have not appeared elsewhere, but are probably folklore to the people who
have worked on mixed multiplicities or joint reductions. This makes it very difficult
to attribute them to their rightful discoverers.

The story of mixed multiplicities starts in 1957 with Bhattacharya's paper [1],
where he described Hilbert polynomials for two ideals and their highest degree
coefficients. The name mixed multiplicities first appeared in Teissier's paper [15],
published in 1973, in which he and Risler studied Hilbert polynomials and their
coefficients for any finite number of ideals by using superficial elements (of a then new
kind). The connection between mixed multiplicities and joint reductions was first
observed by Rees in 1983 during a research symposium associated with the Nordic
Summer School. This was also the first time that joint reductions were denned. Rees'
approach to mixed multiplicities, as displayed in his 1984 paper [11] and later in his
book [13], is different from Teissier's; Rees studies mixed multiplicities via
multiplicities of certain ideals in 'general' extensions of the original ring. Other
authors have used Rees algebras and blow-ups for studying joint reductions and
mixed multiplicities (see for example [3, 17]).

A motivation for this work was Rees' multiplicity theorem (cf. [11, Corollary 3.8])
which relates multiplicities to reductions in quasi-unmixed local rings. A similar
relation holds between mixed multiplicities and joint reductions, and that is the main
theorem of this paper (Theorem 3.7). I am indebted to Jugal Verma for suggesting this
problem and for supplying a proof in dimension 2 (see [16]). Rees' original theorem
and Boger's generalization of it [2, Corollary 3.9] both follow from Theorem 3.7. For
very different proofs of Rees' multiplicity theorem see also Rees and Sharp [14], Katz
[3] and Kirby and Rees [4]. Kirby and Rees use Buchsbaum-Rim multiplicities and an
elaboration of Rees' machinery from [12]. Kirby communicated to me that in a future
version of [4] there will be a generalization of Theorem 3.7 of this paper.

Section 1 gives the definition of joint reductions. The original concept of joint
reductions, given by Rees in [12], was defined for d m-primary ideals in a local ring
(R,m) of dimension d. O'Carroll's and Verma's definitions of joint reductions [8 and
18] are not as restrictive, and the definition of joint reductions in Section 1 here works
in even more general settings. Section 1 also gives the machinery which is necessary
for the main results. This machinery comes mostly from Teissier's rich paper [15].
Section 2 proves a few lemmas about joint reductions and mixed multiplicities. Some
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of these were previously proved by Rees using the theory of general elements [13]. The
proofs given here do not use general elements. Section 3 contains the main results, in
particular Theorem 3.7. Some corollaries of this result are Rees' and Boger's
multiplicity theorems.

1. Definitions

DEFINITION 1.1 (cf. Northcott-Rees [7]). Let / and J be ideals in R, I c y. Then
I is a reduction of J if there exists an integer / such that / ' = IJ1'1.

Note that in this case Jm+n = ImJn for all m > 1 and all n ^ / - 1 .

DEFINITION 1.2. Let R be a Noetherian ring and qx,..,qk ideals in R. Let
a , e # , . T h e n t h e fc-tuple ( a l t . . . , a k ) is ca l l ed a joint reduction o f ( q l y . . . , g k ) if
a1q2...qk + ... + akq1... qk_x is a reduction of the ideal qt... ^fc, that is if there exists
an integer / such that

If M is an /^-module and {qx... qk)
lM = ax ^f1 <7J

2... q
l
k M + . . . + ak q[... ql

k_x q^M,
then we say that (alt..., ak) is a 70/nf reduction of (#15..., #fc) with respect to M.

EXAMPLE 1.3. Let i? = A;[̂ T, 7]. Then (X, Y) is a joint reduction of
((X, Yn), (Xm, Y)) for all n,m > 1, as X(Xm, Y)+ Y(X, Yn) = (X, Yn)(Xm, Y).

REMARK 1.4. By writing out the ideal equalities it is easy to see that the A>tuple
(alf..., ak) is a joint reduction of (q,..., q) (with respect to M) if and only if the ideal
(alt..., ak) is a reduction of q (with respect to M).

The context should make it clear when (alt ...,ak)is to be thought of as a fc-tuple
and when as an ideal.

DEFINITION 1.5. If (R, m) is a Noetherian local ring and / is an w-primary ideal,
then ex{M) denotes the multiplicity of M with respect to /. If M = R, then e^R) is also
called the multiplicity of /. Sometimes we shall write e{I; M) instead of eT(M).

Note that if / and / are ideals such that / s ann (M) and / + / is w-primary, then
X(M/InM) = X(M/(I+J)nM) for all n, so we may write e,(M) instead of er+J(M).

DEFINITION 1.6. A sufficiently general element of an ideal / means the following.
Let / be minimally generated by / elements, say xlf...t xt. Suppose that there exists a
non-empty Zariski-open subset U ofk1 such that whenever a = £ ytxt and the image
of (ylt...,yt) in Id lies in U, then a satisfies a given property. Then that property is
called sufficiently general and any such a is called a sufficiently general element of
/ (with respect to that property).

The advantage of sufficiently general properties is that whenever k is infinite, it is
possible to find an element satisfying finitely many sufficiently general properties, for
the intersection of finitely many non-empty Zariski-open subsets is still non-empty
and Zariski-open.

Teissier proved the following theorem.
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THEOREM 1.7 [15]. Let (R,m) be a Noetherian local ring. Suppose that qx,...,qk

are m-primary ideals and that M is a finitely generated R-module. Then there exists an
integer c^O such that

X(M/q^...qn
k
kM)

is a polynomial in nx,...,nk of degree dim (M) ifn^c for each i, 1 < / < fc.

The homogeneous polynomial of degree dim(M) in XiM/q^M) can be written as

[a[,dl] tfld*]' Ml M?1 ntk

where [q[dl1,...,ql
k
k];M] is a positive integer.

DEFINITION 1.8. The integer [q[dl\..., q[dki; M] is called the mixed multiplicity of
the module M of type (dx, ...,dk) with respect to the ideals qx,...,qk.

An important ingredient in Teissier's proof is the following lemma.

LEMMA 1.9. Let (R, m, k) be a Noetherian local ring and suppose that the residue
field k is infinite. Let qx,...,qk be ideals in R and M a finitely-generated R-module. Let
{Px, ...,PS} be a set of primes not containing qx. Then there exist a sufficiently general
element a in qx which does not lie in any Pit and an integer c0 ^ 0, such that for each
I > 1 ,

(q^M: Ma ')f |q\qp. . .qn
k*M = q^ql*...qk

kM for alln2,...,nk,

whenever c ^ c0 and nx^ c + i.

This lemma gives rise to the usual definition of superficial elements. However, in
the proof of the main theorem we need a more general definition.

DEFINITION 1.10. Let R be a Noetherian ring, not necessarily local. Let qx,...,qk

be ideals of R and let M be a finitely-generated /^-module. Let a be an element of
qx such that dim (M/aM) = dim (M) — 1 and such that

(q*M: Ma)f]q\qp...qn
k*M = q^qp...qn

k*M

for all sufficiently large nx and all n2,...,nk. Then a is called superficial for qx,...,qk

and M.

Teissier also showed the following.

THEOREM 1.11. If R has infinite residue field, and ax,...,ad are elements ofR, the
first dx of which are elements of qx,..., and the last dk of which are elements of qk, such
that ax is superficial for qx,...,qk and M, a2 is superficial for q2, qx,...,qk and M/ax M,
etc., then

[ql
x
l\..., qk

dki; M] = [q[dl~1], q2
d*\ •-, ql

k
k]', M/ax M]

which equals e(Oi aJiM)-1*1 otner words, [ql
x
l\..., ql

k
k]; M] equals the multiplicity of

any ideal generated by a superficial sequence composed of dx elements of qx, etc., and
dk elements of qk.

1-2
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It turns out that such a superficial sequence forms a joint reduction of the d-tuple
(q1,...,q1,...,qk,...,qk) with respect to M, where each qi appears di times. Thus we
also get the existence of joint reductions of d w-primary ideals with respect to M.

Northcott and Rees proved in [7] that et(R) = ej(R) if / is a reduction of J. The
analogous statement for mixed multiplicities and joint reductions was proved by
Rees. Namely, Rees proved in [12, Theorem 2.4] that the number e((av ...,ad);M)is
the same for every joint reduction (av..., ad) of (qlt ...,qv • ••>qk) with respect to M,
where each qt appears di times. Since superficial sequences generate a joint reduction,
it follows that [q[d*\...,q[d*];M] = e({a1,...,ad);M) for every joint reduction
(ax,...,ad) of (qx,...,qx,...,qk) with respect to M. Thus

[<ff>\...,<g*;M] = fe™ . . . , q ™ , . . . , fi\...,q™;M],
dj times dk times

so it is only necessary to analyze mixed multiplicities of type (1,...,1). Rees
introduced the following notation for such mixed multiplicities:

e(qv...,qd;M) = [q™,...,qd»;M].

Thus without loss of generality we may use only mixed multiplicities of type
(1.....1).

2. Properties of joint reductions and mixed multiplicities

In this section we prove several lemmas and propositions about joint reductions
and mixed multiplicities which are needed for the proof of the main theorem.

LEMMA 2.1. Let R be a Noetherian ring (not necessarily local), qlt..., qk ideals of
R and aieqifor i= l,...,k. Then the following statements are equivalent:

(i) (alt -..,ak) is a joint reduction of (qlt ...,qk);
(ii) for all positive integers llt..., lk, (a

1?,..., al
k*) is a joint reduction of(qlf,..., ql

k
k);

(iii) for some positive integers llt...,lk,{qlf,...,al
k
k) is a joint reduction of

Proof Assume that (alt..., ak) is a joint reduction of (qx,..., qk). In order to
prove the second condition, it suffices to show that for any positive integer n,
(a", a2,..., ak) is a joint reduction of (q", q2,..., qk). We use induction on n. If n = 1,
there is nothing to show. So assume that n> 1. By the inductive hypothesis there
exists a positive integer / such that

Then

n-\n n \l _ nn-ln(n-\)(l-l)nl
i a2• • Qk) — ai Q\ Q2

"(M V,

S a\

... + akq?q2...qk_1qk-
1

\lq\... q\_x ql
k\
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Conversely, if (a1^,...,al
k
k) is a joint reduction of (q[i,...,ql

k
k) for some positive

integers / l 5 . . . , lk, then there exists a positive integer / such that

But the latter ideal is contained in

which says that (a15..., aA) is a joint reduction of (qlt..., qk).

LEMMA 2.2. Let R be a Noetherian ring, q^,.-,qk ideals and a^q^ Then there
exist ideals pt £ qt such that atept and such that (av...,ak) is a joint reduction of

(j>ls...,pk).

Moreover, if{a^, ...,ak) and each qt is primary to the same maximal ideal of R, we
may choose the p{ to be primary to the same maximal ideal.

Proof. For each i = 1,.. . , k, define p{ = (a^ 0 q{ +... 4- (ak) n q{. So /?, £ qt. We
shall show that

Pi •••Pk^ a\Pi •••/>* + •• • + <*kPi • • •/>*-!>

which will finish the proof of the first part. The second part follows by the
construction of the pv

If k = \,pv = (tfi), so clearly (a^) is a joint reduction of pv Now assume that
k > 1. For / = 1,.. . , k, choose bt ept, so bi = Ĵ *_x ri} a}, where each ri} a} e (ay) n qt S pt.
Then bx... bk is the sum of the terms of the form

If all the j \ are distinct, then T is contained in ( ^ . . . a j ^axp^...pk, so we are
done. But if the j \ are not distinct, then one of the ax does not appear, say ak. Let
Pi = (ai) C\qt + '" + («fc-i) 0 q{ for each /. Since for / < k,

U % . + (fl^x) 0 q t = p't,
then by induction

T = ( ^ ai) • • • ( r * - i ,**_! % . ) e ^ i / ' a • • P'k-i + '•- + a

... + ak_1p1.. .pk_2.

Hence
T = n ^ flj e (fl^a •. .^ . i +... + at-!/?!.. .pk-<dpk.

LEMMA 2.3. Lef (/?, /w) be a Noetherian local ring. Set S = R[X]mR[X], where X is
an indeterminate over R. Let M be a finitely generated R-module of dimension d and let
qx,...,qd be m-primary ideals. Then

e(q1} ...,qd;M) = e(qx, S,...,qdS; MS).

Proof It is easy to see that mS is the maximal ideal of S and that qxS is
mS-primary. So MS/q^MS has finite length whenever some n{ is positive.
But As(MS/q-MS) = XR(M/q-M), so the two polynomials describing these quantities
for sufficiently large n are equal.
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LEMMA 2.4 [13, p. 184]. Let (R,m) be a Noetherian local ring, and M a finitely
generated R-module of dimension d. Let pi c qi be m-primary ideals for i= l,...,d.
Then e{px,...,pd;M)^ e{qx,...,qd;M).

Proof It is easy to see that it is enough to prove the statement for the case when
px = qx,...,pd.x = qd.x andpd c qd.

If d = 1, then X(M/pn
xM) ^ X{M/q\M), so necessarily e{px,M) > e(qx;M).

Now let d> 1. By Lemma 2.3 we may assume that R has an infinite residue
field. Then by Theorem 1.11 there exists an element aep1 = q1 such that
dim(M/aAf) = dim(Af)— 1 and

e(Pi> ...,pd;M) = e(p2, ...,pd; M/aM),

e{qx, ...,qd;M) = e(q2, ...,qd; M/aM).

So by induction on d we are done.

LEMMA 2.5. If (R,m) is a local ring, M a finitely generated R-module and q an
m-primary ideal, then eq{M) = e(q,... ,q;M).

Proof. By Lemma 2.3 we may assume that R has an infinite residue field. With
this the proof follows easily: since the residue field of R is infinite, by Theorem 1.11
there exists a superficial sequence ax,..., ad in q (of type (d)) such that by Theorem
1.11,

e({ax, ...,ad);M) = e(q, ...,q;M).

But the tf-tuple (av..., ad) is a joint reduction of (q,..., q), so the ideal (a15..., ad) is
a reduction of q, hence eq(M) = e((a15...,ad);M).

LEMMA 2.6. Let M be a finitely generated R-module of dimension d,qx,...,qd

m-primary ideals and lx , ld positive integers. Then

Proof Just look at the coefficients of the polynomial ^

PROPOSITION 2.7 (Associativity formula for mixed multiplicities). Let (R, m) be a
Noetherian local ring, qx,...,qd m-primary ideals and M a finitely generated R-module
of dimension d. Then

e(qx,...,qd;M)= £ X(Mp)e(qx,...,qd;R/p),
peA

where A = {p e Spec (R): ann(M) ^p and dim R/p = dimM}.

Proof. Let d = dim M and A = {px,...,/?,}. We may choose a sufficiently general
element axeqi (if di > 0) as in Theorem 1.7 which will work for the ^-dimensional
modules R/px,...,R/pt and M. We then pass to the (d— l)-dimensional modules
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R/(px + (aj),..., R/{pl + (ax)) and M/ax M to choose a2, etc. In this way we obtain
ax,...,ad for which

e(qlt ...,qd\M) = e{ax, ...,ad)\M) and e(qY, ...,qd\ R/pt) = e{{ax, . . . , a d ) \ R/pt)

for i = 1,...,/. Hence

v) «((«!, • • •, fl J + ann (M);
i-i

by the usual associativity formula. But also

t ;R/pi) = ix(Mp)e((a1,...,ad);R/pi)
<i

For a more general version and a very different proof, see [13, Theorem 12.2.7].

LEMMA 2.8. Let (R, m) be a local ring and M a finitely generated R-module of
dimension d. Let qx,...,qd be m-primary andateqt such that (alt...,ad) + ann(M) is
m-primary. Then

e{yaXi...,ad)\M) ^ e(qx,...,qd;M).

Proof. By Lemma 2.2, there exist m-primary ideals pt ^ qi such that aiepi and
(alt ...,ad) is a joint reduction of px,...,pd with respect to R/axm(M), that is with
respect to M. So e((als...,ad);M) = e{px,...,pd\M). But by Lemma 2.4 this
multiplicity is greater than or equal to e(qx,...,qd',M).

The following is a well-known fact about multiplicities.

LEMMA 2.9. The inequality et(M) ^ e^M/aM) holds for any element ael and any
finitely generated R-module M whenever dim (M/aM) < dim(M).

Proof The exactness of

InM\Ma M a M M
0 • ^ j - ^ 2 • , _ _ • ^ • ^ ; - ; > 0

gives
M

InM,

By the assumption on a, each side is a polynomial in n of degree d— 1 for large n. The
leading coefficient on the left is ex(M) and the leading coefficient ofA(M/(InM+aM))
is ej(M/aM).

3. Extension of Rees' theorem to mixed multiplicities

Rees proved in [11] that if (R,m) is a quasi-unmixed local ring, that is its m-adic
completion is equidimensional, and / £ / are m-primary ideals with et{R) = ea{R),
then / is a reduction of J. In this section we prove an extension of this to joint
reductions and mixed multiplicities. The main theorem is Theorem 3.7, and essential
Lemmas are 3.1 and 3.6.
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LEMMA 3.1 (Boger [2]). Let qx,...,qk be ideals in a Noetherian local ring (R,m)
with infinite residue field such that qx c= ^/(q2...qk). Let axeqx. Then there exist
integers c0 and 1° and a sufficiently general element beqx such that for all 1^1° and all
sufficiently large nx,...,nk (depending on I),

and

Moreover, ifqx does not lie in some given finite set of primes ofR, then there exists such
an element b not contained in any of those primes of R.

Proof. Choose an integer c0 and a sufficiently general element b e qx as in Lemma
1.9 with the additional assumption that b does not lie in any associated prime of (0)
which does not contain qx.

Let (0) = n<-iw< be a primary decomposition of (0). Assume that qx £ y/mi for
/ = 1,..., t and that qx £ y/mi for / = t +1,..., s. Then there exists an integer /° such
that for all / ^ 1°, q[ £ mx n ... n mt.

Let xeO: bl. So xbl — 0emt+x n ... 0 ms, so by the choice of b,xemt+x n ... 0 ms.
Hence xql

x is contained in all ideals mt, so xq[ = 0. Thus 0: bl = 0: q[ for all / ^ /°.

CLAIM. For all sufficiently large nx,...,nk, q-\ bl cO: bl + qll~lqll...ql*.

Proof of the claim. By an easy generalization of the Artin-Rees lemma there
exists a &-tuple m ̂  0 such that for all n^m,

Hence f : i ' c O : i ' + p and, in fact, q*: bl c 0: ft'+(f2n (q-:b1)). But
qx ^ V(^2• • • <lk\ s o ^ n \ is sufficiently large, q^-™^0* ^qf*...q%*, and so

Therefore for n sufficiently large, by Lemma 1.9, q-\ bl £ 0: ̂ l + ̂ J1"'^1..-^*.

To show equality in (1), let F=(a[ + blY){YJU
cJi) b e i n ^ [ ^ 1 - Then

blcseqR and cseq-: bl ^0: q[ + q^~lqp...q2d. So cs = d+e, where deO: q\ and
p-lqp...q2*. Hence F= (a{ + blY)(£ii-ici Y} + eY"). So it suffices to show that

an element of q*R[Y], belongs to (a[ + blY)q^-lq^...q^R[Y]. To show this, just
repeat the argument. This proves equality in (1).

If, moreover, each c} lies in q{°qp • • • qlk, the same argument shows equality in (2).

COROLLARY 3.2. Let (R,m) be a Noetherian local ring with infinite residue field,
and let q1,...,qk be ideals. Let ateqi for i= \,...,k. Assume that (aly ...,ak) has the
same radical as all the qi and that the common height of these ideals is k. Ifp is a prime,
minimal over (ax,...,ak), such that e((ax,...,ak)Rp;Rp) = e(qxRp,...,qkRp;Rp), then
there exists a sufficiently general element beqx such that for all sufficiently large
integers I,

(a[ + blY,a2,...,ak)R[Y]pR[Y],R[Y]pRlY}).
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Proof by induction on k. If k = 1, we may choose b sufficiently general in q1 as
in Lemma 3.1 which is not contained in any minimal prime of R. Then for all / ^ /°,
a[ + blY is a superficial element for q[R[Y]pR[y] and the module R[Y]pR[Yy Hence

e((a[ + blYy,R[Y]pR[Y]) = e(q[R[Y]pR[y];R[Y]pR[YJ (by Theorem 1.11)

= e(q[Rp;Rp) (since }{R/q*)9 = A((tf/<tf[7])pH[y]))

= fefo i*p; j y (by Lemma 2.6),

which finishes the proof for the case k = 1.
Now suppose that k ^ 2 and that the corollary is true for k— 1. First suppose that

the corollary is known for domains. Let A be the set of all minimal primes Q of R
lying inside p such that dim(i?p) = dim((R/Q)p). By the associativity formulas for
usual and mixed multiplicities and by Lemma 2.8, the assumptions are still true in
R/Q for every QeA. Fix QeA and let SQ = {R[Y]/QR[Y])myy Since the result is
true for domains, there exists a sufficiently general element b in q1 + Q/Q such that

for all sufficiently large integers /. By lifting b to R we get a sufficiently general element
of qx for which the above equation is true. Then since A is finite, we get a sufficiently
general element beqx such that the above equation holds for all sufficiently large
integers / and all QeA. Then by using associativity formulas again we get

e((ai,...,ak)Rp;Rp)=Yu X(RQ)e{{ax,...,ak)Rp,(R/Q)p)
QeA

= E
QeA

= E )
QeA '

= (\/l)e((a[ + blY,a2,...,ak)R[Y)m;R[Y]pR[Y]),
as desired. So we have only to show the existence of such sufficiently general elements
for domains. In this case ak is not a zero divisor on R.

CLAIM. e ( ( a l s . . . , ak.x) R p ; (R/(ak))p) = e(q1 R p , . . . , qk_x R p ; (R/(ak))p).

Proof. Let S = R[Y]pRlY] which has an infinite residue field. Then

e(q1 Rp,...,qkRp; Rp) = e((a1} ...,ak)Rp; Rp)
= e((a1,...,ak_1)Rp;(R/(ak))p) (by [5, Theorem 14.11])
> e(q1Rp,...,qk_1Rp;(R/(ak))p)

(by Lemma 2.8 since a^q^
= e(q1S,...,qk_1S;S/(ak))
= e((b1,...,bk_1)S;S/(ak))

(by Theorems 1.9 and 1.11 for some bi e qt S)
= e((Z>l5..., bk_lt ak) S; S) (by [5, Theorem 14.11])
^ e{qxS,...,qkS;S) (by Lemma 2.8 since bteqiS,akeqk)
= e(q1Rp,...,qkRp',Rp),

so we have equality throughout, which proves the claim.
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Then by induction there exists a sufficiently general element b e qx R/{ak) such that

Since qjmqx -> (qx + (ak))/(mq1 + (ak)) is surjective, b is also a sufficiently general
element of qx R. Moreover,

e((a1,...,ak)Rp;Rp) = e((a1,...,ak_1)Rp;(R/(ak))p)

(a[ + blY,a2,...,ak.1);(R[Y]/(ak))pR[Y])

(a[ + blY,a2,...,ak);R[Y]pR[Y])

by [5, Theorem 14.11], which finishes the corollary.

REMARK 3.3. If the hypotheses of Corollary 3.2 are satisfied for every prime ideal
p minimal over (av...,ak), then since there are only finitely many such ideals we get
a sufficiently general element b eqx such that the conclusion of the corollary is true for
all such primes p and all sufficiently large integers /.

Now we need a definition and a few remarks.

DEFINITION 3.4. A ring R satisfies the first chain condition if dim(iJ) =
dim (R/I) + ht(/) for each ideal / in R.

REMARK 3.5. If R is quasi-unmixed, then R satisfies the first chain condition and
is equidimensional [6, 34.5]. Every localization of a polynomial ring over R is still
quasi-unmixed [9, Theorem 3.6]. Also, if a is part of a system of parameters of R, then
R/{a) is quasi-unmixed and the integral closure of (a) has no embedded primes [10,
Theorem 2.12].

One can prove Theorem 3.7 by using an argument similar to Boger's, namely by
reducing the problem to a zero-dimensional ring. It is not necessary to make such a
(rf-dimensional) leap, though. It suffices to just drop the dimension by one, which
seems more instructive in that it is not as far removed from the original problem. We
shall use induction on the number of ideals. For this we need a way to reduce
dimension, which is provided by the following lemma.

LEMMA 3.6. Let (R,m) be a quasi-unmixed Noetherian local ring with infinite
residue field, and let qx,...,qk be ideals. Let ai^qi for i= \,...,k. Assume that
(alt ...,ak) and the qi have the same radical and that their common height is k. Let A
be the set of all minimal primes over (a1}...,ak). Assume that for each peA,

e((ax, ...,ak)Rp; Rp) = e(q1 Rp,...,qkRp; Rp).

Let b be a sufficiently general element of qx as in Remark 3.3 with the additional
restriction that b does not lie in any prime of R minimal over (a2, ...,ak). Then for all
sufficiently large integers I, the set primes of R[Y]{m+(Y))R[Y] minimal over the ideal
(al

1 + blY,a2,...,ak)R[Y](m+(Y))R[Y] is {pR[Y](mHY))RlY]:peA}.
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Proof. Let S = R[Y]imHy))RlYy By the choice of b, the height of

(a[ + blY,a2,...,ak)S

equals k. Clearly elements of A extend to primes of S minimal over

(a[+blY,a2,...,ak)S.

Suppose that there exists a prime Q, minimal over (a[ + blY,a2,...,ak)S, which is
not an extension of any p in A. We have ht(Q) ^ k and

dim(S/Q) < dim(S/(a[ + blY,a2,...,ak)S) = di

Since S satisfies the first chain condition then

dim (S) = dim (S/Q) + ht (Q) ^ dim (R) +1 - k + k = dim (R) +1 = dim (S),

so necessarily dim(S/Q) = dim(R)-k+\. Similarly, dim(S/pS) = dim(R)-k+\
for allpeA. By the associativity formula then

for all n^ 1. So

l l l l l r c 1 ^r » , , i/An n n T T ^ 1

1 v (s\">(
+ n^L "* pi,\ C \PS) \((fli + & Y.

= e(S/Q)e((a[ + blY,a2,...,ak)SQ;

+ Zde(S/pS)e((al
1 + blY,a2,...,

peA

> ^ e(S/pS)e((a[ + blY,a2,...,ak
peA

..,a:)V
SpS

)n,an
2,...,al)l

sQ)
ak) SpS J SpS)

) SpS', Sps)-

)

(by Lech's formula)

By Lemma 2.9 and the fact that ((m + (Y))nS: Y) = (m + (Y))n-1S for each n,
e(S/pS) = e(R/p). So by the choice of b (see Corollary 3.2),

li L / ) E <S/pS)e((a[ + blY,a2,...,ak)SpS;SpS)

peA

peA
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However, by Lemma 2.9,

S

— a

x + blYT,an
2,...,a

n
k, Y)S,

R

for all n. Since R satisfies the first chain condition,

dim (R/p) = dim (R) - ht (p) = dim (R)-k = dim (R/(ax,..., ak))

for every pe A. By the associativity formula then

i > « 2 » • • • > ak

so by Lech's formula,

contradicting equation (3).

Corollary 3.2 and Lemma 3.6 provide a method of going modulo superficial
elements and lifting the result back to the original ring. This is used in the following
main theorem of this paper.

THEOREM 3.7. Let (R,m) be a quasi-unmixedNoetherian local ring, let q1,...,qk

be ideals andat an element ofq{,for i= \,...,k. Suppose that the radicalof{ax,...,ak)
is the same as the radical of all the q0 and that their common height is k. If

e((al5..., ak) Rp; Rp) = e(qx Rp,...,qkRp; Rp)

for each prime ideal p minimal over (alt..., ak), then (ax, ...,ak) is a joint reduction of

Proof by induction on k. If k = 0, there is nothing to prove.
Let A be the set of all primes minimal over (ax,..., ak). Let S = R[X]mRlX] which

has an infinite residue field; S is still a quasi-unmixed local ring. Since

KRJIRP) = l(SpS/ISpS)

for any pe A and any ideal /such that/? is minimal over /, it is easy to see that all the
hypotheses are still satisfied on S. Also, by faithful flatness of S over R the conclusion
is true in R if and only if it is true in S, so without loss of generality assume that the
residue field of R is infinite.

By the associativity formulas and by Lemma 2.8 we get that

e((ai, ...,ak)Rp; RJQRp) = e{qx Rp,...,qkRp; Rp/QRp)

for every minimal prime Q of R and for every pe A. Notice that each R/Q is a quasi-
unmixed domain. Set / = axq2...qk + ... + akq1...qk_1. If the theorem is true for
domains, then we get that / is a reduction of qx... qk modulo each minimal prime of
R. Hence by [11, Lemma 1.2], /is a reduction of qx ...qkR, which finishes the theorem.
So it is enough to prove the theorem for domains.
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If k = 1, by assumption e{{a^Rp;Rp) = e(q1Rp;Rp) for every peA,so

p/fi Rp) ~ KRJqVRp) = efai * P i *P) (for « sufficiently large)
= e((ai)Rp;Rp)

= X(Rp/{a^) Rp) (since ax is not a zero divisor)

= XiRJa, q^Rp) - X{{ax) RJa, q^RJ

So X(Rp/q
n

x Rp) = X(Rp/ai qT^), and since a, q\~x ̂  q\, necessarily ax q
n
l-

1Rp = qn
x Rp.

This means that the integral closure Jja^j of (aj is the same as q~[ after localization
at every peA. Then by Remark 3.5, since (o j has no embedded primes, JaJ = ~q\.
Hence (ax) is a (joint) reduction of qv

Now assume that k ^ 2. By Corollary 3.2 there exists a sufficiently general element
beq1 such that for all sufficiently large integers /,

and

e(q[ Rp, q2Rp,..., qk Rp; Rp) = e(q2 Rp,...,qkRp; (R[ Y]/a[ + bl Y))pR[Y])

for every/? in A. (For the last equality, Theorem 1.11 is also needed.)
Set S = (R[Y]/(a[ + blY))(m+(y))R[Yy Then S is quasi-unmixed by Remark 3.5 and

e((a2,...,ak)SpS;SpS) = e((a[ + blY,a2,...,ak)R[Y]pR[Y];R[Y]pR[Y])

= le({ax, ...,ak)Rp; Rp) = le{qx Rp,...,qkRp; Rp)

= e(q[ Rp, q2Rp,..., qk Rp I Rp) = e(q2 SpS, ...,qkSpS; SpS)

for every pe A. By Lemma 3.6 and by induction then (a2,..., ak) is a joint reduction
of (q2S,...,qkS). Set J = a2q3...qk + ... + akq2... qk_v Then the above means that JS
is a reduction of q2.. .qk S, that is (q2... <7fc)

niS £ J(q2... q^^S for all sufficiently large
integers n. This means that

(q2...qk)
nT£ J(q2...qk)

n-1T+ (a[ + blY)0(q2...qk)
nT,

where T = R[Y]{+{Y))R[Yr By the choice of b as in Lemma 3.1 then, for possibly larger
n,

[ + bl Y) q^Xq, • • • qk)
nT.

So there exists s in R[Y], not contained in (m + (Y))R[Y], such that

[ + blY)qr\q2...qk)
nR[Y].

Since s contains a term u which is a unit in R, by reading off the degree zero
monomials we have that

<= Jqx{qx... q,)"-1 + a, qT\q2.. • ^fc)
n,

so that (ax,..., ak) is a joint reduction of (<715..., qk).

COROLLARY 3.8 (Rees [11]). Let (R,m) be a quasi-unmixed local ring and /<=
m-primary ideals. If et{R) = ej(R), then I is a reduction of J.
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Proof. As in the proof of Theorem 3.7 assume that \R/m\ = oo. Let d = dim (R).
Then by a result of Northcott and Rees [7] there exist elements ax,...,adelsuch that
(alf...,ad) is a reduction of /. So e((a15...,ad),R) = e7(^) = ej(R). By Lemma 2.5,
£,(/?) equals e(J, ...,J;R), so by the previous theorem (alt ...,ad)isa. joint reduction
of (/ , . . . , J). This means that the ideal (alt..., ad) is a reduction of / , so a fortiori I
is a reduction of / .

COROLLARY 3.9 (Boger [2]). Let / £ / c ^/l be ideals in a quasi-unmixed local
ring. Assume that the analytic spread of I equals the height of I. Then I is a reduction
of J if e(IRp; Rp) = e(JRp; Rp) for all primes p minimal over I.

Proof. Again we may assume that the residue field is infinite, so that there exists
a reduction (a l s . . . , ak) of /, where k is the analytic spread of /. For each prime p
minimal over /, e((a1,...,ak)Rp;Rp) = e(IRp;Rp) = e(JRp;Rp), so by Theorem 3.7,
(al 5 . . . , ak) is a joint reduction of (/ , . . . , J). This means that (av..., ak) is a reduction
of / , and a fortiori I is a reduction of J.

Acknowledgement. I thank Craig Huneke for many conversations regarding this
paper.
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