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Exotic quasi-conformally homogeneous surfaces

Petra Bonfert-Taylor, Richard D. Canary, Juan Souto and Edward C. Taylor

Abstract

We construct uniformly quasi-conformally homogeneous Riemann surfaces that are not quasi-
conformal deformations of regular covers of closed orbifolds.

1. Introduction

Recall that a hyperbolic manifold M is K- quasi-conformally homogeneous if for all x, y ∈M ,
there is a K-quasi-conformal map f : M →M with f(x) = y. It is said to be uniformly quasi-
conformally homogeneous if it is K-quasi-conformally homogeneous for some K. We consider
only complete and oriented hyperbolic manifolds.

In dimensions 3 and above, every uniformly quasi-conformally homogeneous hyperbolic
manifold is isometric to the regular cover of a closed hyperbolic orbifold (see [1]). The situation
is more complicated in dimension 2. It remains true that any hyperbolic surface that is a
regular cover of a closed hyperbolic orbifold is uniformly quasi-conformally homogeneous. If S
is a non-compact regular cover of a closed hyperbolic 2-orbifold, then any quasi-conformal
deformation of S remains uniformly quasi-conformally homogeneous. However, typically a
quasi-conformal deformation of S is not itself a regular cover of a closed hyperbolic 2-orbifold
(see [1, Lemma 5.1].)

It is thus natural to ask if every uniformly quasi-conformally homogeneous hyperbolic surface
is a quasi-conformal deformation of a regular cover of a closed hyperbolic orbifold. The goal of
this note is to answer this question in the negative.

Theorem 1.1. There are uniformly quasi-conformally homogeneous surfaces that are not
quasi-conformal deformations of the regular cover of any closed hyperbolic 2-orbifold.

In order to prove Theorem 1.1, we associate to every connected graph X with constant
valence a hyperbolic surface SX which is obtained by ‘thickening’ X. In particular, SX is quasi-
isometric to X. Each element ϕ ∈ Aut(X) gives rise to a quasi-conformal automorphism hϕ of
SX (with uniformly bounded dilatation). If Aut(X) acts transitively on the set of vertices of X,
then the associated set of quasi-conformal automorphisms is coarsely transitive, that is, there
exists D such that if x, y ∈ SX , then there exists ϕ ∈ Aut(X) such that d(hϕ(x), y) � D. One
may then use the work of Gehring and Palka [5] to show that SX is uniformly quasi-conformally
homogeneous.

We choose X to be a Diestel–Leader graph DL(m,n) with m �= n. These graphs have
transitive groups of automorphisms, but Eskin, Fisher and Whyte [4] recently showed that
they are not quasi-isometric to the Cayley graph of any group. The proof is completed by
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the observation that any surface that is a quasi-conformal deformation of a regular cover of a
closed orbifold is quasi-isometric to the Cayley graph of the deck transformation group.

On the other hand, it is easy to construct hyperbolic surfaces that are quasi-isometric
to graphs with transitive automorphism group, that are not uniformly quasi-conformally
homogeneous (see Section 5). So, one is left to wonder if there is a simple geometric
characterization of uniformly quasi-conformally homogeneous surfaces.

2. Turning graphs into surfaces

For simplicity, let X be a connected countable graph such that every vertex has valence d � 3
and every edge has length 1. It will be convenient to assume that every edge of X has two
distinct endpoints. In this section, we thicken X into a hyperbolic surface SX quasi-isometric
to X in such a way that whenever the group of automorphisms of X acts transitively on the
set of vertices, then SX is uniformly quasi-conformally homogeneous.

We start by introducing some notation. Let V and E be the sets of vertices and edges of the
graph X. For each vertex v ∈ V, let Ev be the set of edges of X that contain v. By assumption
Ev has d elements for each v. For each v, choose a bijection

sv : Ev −→ {1, . . . , d}.
Observe that if ϕ is an automorphism of X, then ϕ induces a bijection (ϕ∗)v : Ev → Eϕ(v) for
all v ∈ V. Consider the permutation

sϕ
v = sϕ(v) ◦ (ϕ∗)v ◦ s−1

v : {1, . . . , d} −→ {1, . . . , d}.
The building blocks of our construction will be copies of a fixed hyperbolic surface F that is
homeomorphic to a sphere with d holes such that each boundary component of F is a geodesic of
length 1. Label the components of ∂F by γ1, . . . , γd. For each i, choose a base point pi ∈ γi and
observe that the choice of the base point together with the orientation of F determines uniquely
a parameterization S

1 → γi with constant velocity 1. We state the following observation as a
lemma for future reference.

Lemma 2.1. For each d � 3, there exists Kd > 1 such that if σ ∈ Sd is a permutation of
the set {1, . . . , d} then, there is a Kd-quasi-conformal map fσ : F → F which is an isometry
when restricted to a neighborhood of ∂F and such that fσ(γi) = γσ(i) and fσ(pi) = pσ(i).

Consider the hyperbolic surface F × V and set Fv = F × {v}. We construct SX by gluing the
components of F × V together. The gluing maps are determined by the edges of X as follows.
Given an edge e ∈ E , let v, v′ ∈ V be its two vertices, which we assume are always distinct. We
identify the curves γsv(e) × {v} ⊂ ∂Fv and γsv′ (e) × {v′} ⊂ ∂Fv′ . More precisely, let

ge : γsv(e) × {v} −→ γsv′ (e) × {v′}
be the unique orientation-reversing isometry which maps the marked point (psv(e), v) to
(psv′ (e), v

′). Let ∼ be the equivalence relation on F × V generated by the maps ge for all
e ∈ E . The equivalence classes of ∼ contain either one point in the interior of F × V or two
points in the boundary. In particular, the quotient space of ∼

SX = F × V/ ∼
is a surface. Moreover, since the gluing maps ge are isometries, the hyperbolic metric on F × V
descends to a hyperbolic metric on SX . By construction, this metric has injectivity radius
bounded from above and below. In particular, if we choose εF to be a lower bound for the
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length of any homotopically non-trivial closed curve on F and δF to be a lower bound for the
length of any properly embedded arc in F , which is not properly homotopic into the boundary
of F , then εd = min{εF /2, δF } is a lower bound for the injectivity radius of SX .

Associated to every edge e ∈ E , there is a simple closed geodesic ce in SX and ce is disjoint
from ce′ for every pair of distinct edges e, e′ ∈ E . Let C = {ce|e ∈ E} be the collection of all
such geodesics and note that SX \ C is isometric to the interior of F × V.

It follows that the graph X can be recovered from SX as the dual graph to the multicurve C.
Moreover, there is a projection πX : SX → X that maps every component of C to the midpoint
of its associated edge and maps every component of SX \ C to its associated vertex. The map
πX is then a (K,C)-quasi-isometry, whereK = C = 2diam(F ). We recall that a map g : Y → Z
between two metric spaces is a (K,C)-quasi-isometry if

1
K
dY (x, y) − C � dZ(g(x), g(y)) � KdY (x, y) + C

for all x, y ∈ Y and if for every z ∈ Z there exists y ∈ Y such that dZ(g(y), z) � C.
It also follows from the identification of X with the dual graph to C that every homeo-

morphism f : SX → SX that maps C to itself, meaning f(C) = C and f−1(C) = C, induces an
automorphism of the graph X.

Lemma 2.2. Every automorphism of the graph X is induced by a Kd-quasi-conformal
homeomorphism of SX which preserves C, where Kd is the constant provided by Lemma 2.1.

Proof. Given an automorphism ϕ : X → X, recall the definition of the permutation

sϕ
v : {1, . . . , d} −→ {1, . . . , d}

given above for each v ∈ V. Let fv : F → F be the Kd-quasi-conformal map associated by
Lemma 2.1 to the permutation sϕ

v and define

Hϕ : F × V −→ F × V, Hϕ(x, v) = (fv(x), ϕ(v)).

Observe that Hϕ is Kd-quasi-conformal. Moreover, if an edge e ∈ E contains v, then

Hϕ(γsv(e) × {v}) = γsϕ(v)(ϕ(e)) × ϕ(v).

Also, by construction Hϕ maps marked points to marked points. It follows that Hϕ descends
to a Kd-quasi-conformal homeomorphism

hϕ : SX −→ SX

with hϕ(ce) = cϕ(e) and h−1
ϕ (ce) = cϕ−1(e) for all e ∈ E . In other words, hϕ induces ϕ.

Remark. It is not possible to construct the quasi-conformal automorphisms in Lemma 2.1
so that one obtains an action of Σd on F . Therefore, we do not in general obtain an action of
Aut(X) on SX .

We now combine Lemma 2.2 with a technique of Gehring and Palka [5] to show that if
X is a graph with transitive automorphism group, then SX is uniformly quasi-conformally
homogeneous.

Lemma 2.3. Given d � 3, there exists Ld > 1 such that if X is a connected graph, such
that every vertex has valence d � 3, every edge has length 1 and Aut(X) acts transitively on
the vertices of X, then there is a Ld-quasi-conformally homogeneous hyperbolic surface SX

quasi-isometric to X.
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Proof. Let x and y be any two points on SX . By Lemma 2.2 there exists a
Kd-quasi-conformal automorphism h : SX → SX such that h(x) and y both lie in (the image
of) Fv for some vertex v of X. Therefore, d(x, h(y)) � diam(F ).

Let εd > 0 be a lower bound for the injectivity radius of SX . (Note that εd depends only on
d and the choice of surface F above.) Lemma 2.6 in [1] (which is derived from [5, Lemma 3.2])
implies that there exists a K ′

d-quasi-conformal map ψ : SX → SX such that ψ(h(x)) = y where

K ′
d = (eεd/2 + 1)4diam(F )/εd+2.

Then ψ ◦ h is aKdK
′
d-quasi-conformal map taking x to y. Therefore SX is Ld-quasi-conformally

homogeneous, where Ld = KdK
′
d.

3. Diestel–Leader graphs

Diestel and Leader [3] constructed a family of graphs whose automorphism groups act
transitively on their vertices and conjectured that these graphs are not quasi-isometric to the
Cayley graph of any finitely generated group. Eskin, Fisher and Whyte [4] recently established
this conjecture. In this section, we give a brief description of the Diestel–Leader graphs (see
Diestel and Leader [3] or Woess [8] for more detailed descriptions).

Given m,n � 2, consider two trees Tm and Tn of valence m+ 1 and n+ 1, respectively,
and such that every edge has length 1. Choose points θm ∈ ∂∞Tm and θn ∈ ∂∞Tn in the
corresponding Gromov boundaries and vertices 0m ∈ Tm and 0n ∈ Tn. Finally, consider R as a
graph with vertices of valence 2 at every integer k ∈ Z. Observe that the Busemann function

βm : Tm −→ R

centered at θm and normalized at 0m is a simplicial map between both graphs. Note that, for
any two vertices v, w ∈ Tm, there exists an automorphism ϕ of Tm such that ϕ(v) = w and

βm(ϕ(x)) − βm(x) = βm(w) − βm(v)

for all x ∈ Tm. Clearly, the same is true for the corresponding Busemann function

βn : Tn −→ R.

We orient the tree Tm or Tn in such a way that every positively oriented edge points toward
θm or θn, respectively.

Let Tm × Tn be the product of the two trees Tm and Tn in the category of graphs. In other
words, the set of vertices of Tm × Tn is the product of the set of vertices of Tm and Tn, and an
edge in Tm × Tn with vertices (v, v′) and (w,w′) is a pair (e, e′), where e is an edge in Tm with
vertices v and w, and e′ is an edge in Tn with vertices v′ and w′. See [6] for a more precise
description of the product.

The automorphism groups of the two oriented trees Tm and Tn act transitively on the
set of vertices and every pair (ϕ,ψ) ∈ Aut(Tm) × Aut(Tn) of automorphisms induces an
automorphism of Tm × Tn. It follows that Aut(Tm) × Aut(Tn) acts transitively on the set
of vertices of Tm × Tn.

Consider the simplicial map

f : Tm × Tn −→ R, (x, y) �−→ βm(x) − βn(y).

The pre-image DL(m,n) = f−1(0) of 0 is a connected graph and it is clear from the discussion
above that the subgroup of Aut(Tm) × Aut(Tn) which preserves f−1(0) acts transitively on
the vertices of DL(m,n). The following result of Eskin, Fisher and Whyte [4] is the key fact
needed to prove our main theorem.
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Theorem 3.1 (Eskin, Fisher, Whyte). If m �= n, then DL(m,n) is not quasi-isometric to
the Cayley graph of any finitely generated group.

4. The proof of the main theorem

We are now ready to give the proof of our main theorem. We first observe that a quasi-conformal
deformation of a regular cover of a closed orbifold is quasi-isometric to the Cayley graph of a
finitely generated group.

Lemma 4.1. Suppose that a surface Σ is a quasi-conformal deformation of a surface S
which normally covers a closed orbifold O, then Σ is quasi-isometric to the Cayley graph of
the (finitely generated) group of deck transformations of the covering map S → O.

Proof. Since any K-quasi-conformal map is a (K,K log 4)-quasi-isometry (see [7, Theorem
11.2]), Σ is quasi-isometric to S. Let G be the necessarily finitely generated group of deck
transformations of the covering S → O. Since G acts on S co-compactly and discretely, the
Svarc–Milnor lemma (for example, see [2, Proposition 8.19]) implies that S is quasi-isometric
to the Cayley graph of G.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let X = DL(2, 3) be the (2, 3)-Diestel–Leader graph and let SX be
the Riemann surface associated to X in the previous section. Since Aut(X) acts transitively
on the vertices of X, it follows from Lemma 2.3 that SX is uniformly quasi-conformally
homogeneous. Suppose, for the sake of contradiction, that SX is a quasi-conformal deformation
of a Riemann surface S which is a regular cover S → O of a compact orbifold O. By Lemma 4.1,
the surface SX is quasi-isometric to the Cayley graph of a finitely generated group. Since SX

is quasi-isometric to X, the same is true for X = DL(2, 3). This contradicts Eskin, Fisher and
Whyte’s Theorem 3.1.

5. Surfaces quasi-isometric to Cayley graphs need not be uniformly quasi-conformally
homogeneous

It is easy to check that every hyperbolic surface S is quasi-isometric to a graph X with unit-
length edges and bounded valence. Any quasi-conformal automorphism of S induces a quasi-
isometry of X (which is only coarsely well defined), and the quasi-isometry constants may
be uniformly bounded by the dilatation of the quasi-conformal map. One may then readily
show that if S is uniformly quasi-conformally homogeneous, then S is quasi-isometric to a
graph X such that there exists C,L > 0 such that the set of (L,C)-quasi-isometries of X acts
transitively on X.

One might hope this construction, which is a sort of quasi-inverse to the construction
in Section 2, could be used to construct a characterization of uniformly quasi-conformally
homogeneous surfaces. However, uniform quasi-conformal homogeneity is not a quasi-isometry
invariant. For example, if we let X be the ‘ladder’ graph made by joining equal integer points
on two copies of the real line, then SX is quasi-isometric to the real line as is any finite area
hyperbolic surface S homeomorphic to a twice-punctured torus. The thickened ladder SX is
uniformly quasi-conformally homogeneous, by Lemma 2.3, but S is not, as it has no lower
bound on its injectivity radius (see [1, Theorem 1.1]).
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One may further construct hyperbolic surfaces with bounded geometry (that is, having upper
and lower bounds on their injectivity radius) that are quasi-isometric to graphs with transitive
automorphism group that are not uniformly quasi-conformally homogeneous.

Example 5.1. A bounded geometry surface S′ that is quasi-isometric to the Cayley graph
of the free group F2 on 2-generators, but is not uniformly quasi-conformally homogeneous.

Construction of Example 5.1. Let T be the infinite 4-valent tree and let ST be the uniformly
quasi-conformally homogeneous surface constructed by Lemma 2.3. One may form a new
surface S′ by removing a disk D from ST and replacing it by a surface F that is homeomorphic
to a torus with a disk removed. We place a hyperbolic structure on S′ such that there is an
isometry from ST − U to S′ − V , where U is a bounded neighborhood of D and V is a bounded
neighborhood of F . One may further assume that the boundary ∂F of F is totally geodesic in
the resulting hyperbolic structure. It follows that S′ is also quasi-isometric to T , which is the
Cayley graph of F2.

Every non-separating closed geodesic on S′ must intersect F . One may then readily check,
using the fact that a K-quasi-conformal automorphism is a (K,K log 4)-quasi-isometry, that
given a non-separating closed geodesic α in F and any K > 1, there exists RK such that if
g : S → S′ is K-quasi-conformal, then g(α) lies in the neighborhood of radius RK about F . It
immediately follows that S′ cannot be uniformly quasi-conformally homogeneous.
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