Exotic quasi-conformally homogeneous surfaces

Petra Bonfert-Taylor, Richard D. Canary, Juan Souto and Edward C. Taylor

Abstract

We construct uniformly quasi-conformally homogeneous Riemann surfaces that are not quasi-conformal deformations of regular covers of closed orbifolds.

1. Introduction

Recall that a hyperbolic manifold M is K- quasi-conformally homogeneous if for all $x, y \in M$, there is a K-quasi-conformal map $f: M \to M$ with f(x) = y. It is said to be uniformly quasi-conformally homogeneous if it is K-quasi-conformally homogeneous for some K. We consider only complete and oriented hyperbolic manifolds.

In dimensions 3 and above, every uniformly quasi-conformally homogeneous hyperbolic manifold is isometric to the regular cover of a closed hyperbolic orbifold (see [1]). The situation is more complicated in dimension 2. It remains true that any hyperbolic surface that is a regular cover of a closed hyperbolic orbifold is uniformly quasi-conformally homogeneous. If S is a non-compact regular cover of a closed hyperbolic 2-orbifold, then any quasi-conformal deformation of S remains uniformly quasi-conformally homogeneous. However, typically a quasi-conformal deformation of S is not itself a regular cover of a closed hyperbolic 2-orbifold (see [1, Lemma 5.1].)

It is thus natural to ask if every uniformly quasi-conformally homogeneous hyperbolic surface is a quasi-conformal deformation of a regular cover of a closed hyperbolic orbifold. The goal of this note is to answer this question in the negative.

THEOREM 1.1. There are uniformly quasi-conformally homogeneous surfaces that are not quasi-conformal deformations of the regular cover of any closed hyperbolic 2-orbifold.

In order to prove Theorem 1.1, we associate to every connected graph X with constant valence a hyperbolic surface S_X which is obtained by 'thickening' X. In particular, S_X is quasi-isometric to X. Each element $\varphi \in \operatorname{Aut}(X)$ gives rise to a quasi-conformal automorphism h_{φ} of S_X (with uniformly bounded dilatation). If $\operatorname{Aut}(X)$ acts transitively on the set of vertices of X, then the associated set of quasi-conformal automorphisms is coarsely transitive, that is, there exists D such that if $x, y \in S_X$, then there exists $\varphi \in \operatorname{Aut}(X)$ such that $d(h_{\varphi}(x), y) \leqslant D$. One may then use the work of Gehring and Palka [5] to show that S_X is uniformly quasi-conformally homogeneous.

We choose X to be a Diestel-Leader graph DL(m,n) with $m \neq n$. These graphs have transitive groups of automorphisms, but Eskin, Fisher and Whyte [4] recently showed that they are not quasi-isometric to the Cayley graph of any group. The proof is completed by

Received 25 September 2009; published online October 12, 2010.

2000 Mathematics Subject Classification 30C62.

Bonfert-Taylor and Taylor were partially supported by the National Science Foundation grant DMS-0706754; Canary was partially supported by NSF grants DMS-0504791 and DMS-0554239; and Souto was partially supported by NSF grant DMS-0706878 and by the Alfred P. Sloan Foundation.

the observation that any surface that is a quasi-conformal deformation of a regular cover of a closed orbifold is quasi-isometric to the Cayley graph of the deck transformation group.

On the other hand, it is easy to construct hyperbolic surfaces that are quasi-isometric to graphs with transitive automorphism group, that are not uniformly quasi-conformally homogeneous (see Section 5). So, one is left to wonder if there is a simple geometric characterization of uniformly quasi-conformally homogeneous surfaces.

2. Turning graphs into surfaces

For simplicity, let X be a connected countable graph such that every vertex has valence $d \ge 3$ and every edge has length 1. It will be convenient to assume that every edge of X has two distinct endpoints. In this section, we *thicken* X into a hyperbolic surface S_X quasi-isometric to X in such a way that whenever the group of automorphisms of X acts transitively on the set of vertices, then S_X is uniformly quasi-conformally homogeneous.

We start by introducing some notation. Let \mathcal{V} and \mathcal{E} be the sets of vertices and edges of the graph X. For each vertex $v \in \mathcal{V}$, let \mathcal{E}_v be the set of edges of X that contain v. By assumption \mathcal{E}_v has d elements for each v. For each v, choose a bijection

$$s_v: \mathcal{E}_v \longrightarrow \{1, \ldots, d\}.$$

Observe that if φ is an automorphism of X, then φ induces a bijection $(\varphi_*)_v : \mathcal{E}_v \to \mathcal{E}_{\varphi(v)}$ for all $v \in \mathcal{V}$. Consider the permutation

$$s_v^{\varphi} = s_{\varphi(v)} \circ (\varphi_*)_v \circ s_v^{-1} : \{1, \dots, d\} \longrightarrow \{1, \dots, d\}.$$

The building blocks of our construction will be copies of a fixed hyperbolic surface F that is homeomorphic to a sphere with d holes such that each boundary component of F is a geodesic of length 1. Label the components of ∂F by $\gamma_1, \ldots, \gamma_d$. For each i, choose a base point $p_i \in \gamma_i$ and observe that the choice of the base point together with the orientation of F determines uniquely a parameterization $\mathbb{S}^1 \to \gamma_i$ with constant velocity 1. We state the following observation as a lemma for future reference.

LEMMA 2.1. For each $d \ge 3$, there exists $K_d > 1$ such that if $\sigma \in \mathfrak{S}_d$ is a permutation of the set $\{1, \ldots, d\}$ then, there is a K_d -quasi-conformal map $f_{\sigma} : F \to F$ which is an isometry when restricted to a neighborhood of ∂F and such that $f_{\sigma}(\gamma_i) = \gamma_{\sigma(i)}$ and $f_{\sigma}(p_i) = p_{\sigma(i)}$.

Consider the hyperbolic surface $F \times \mathcal{V}$ and set $F_v = F \times \{v\}$. We construct S_X by gluing the components of $F \times \mathcal{V}$ together. The gluing maps are determined by the edges of X as follows. Given an edge $e \in \mathcal{E}$, let $v, v' \in \mathcal{V}$ be its two vertices, which we assume are always distinct. We identify the curves $\gamma_{s_v(e)} \times \{v\} \subset \partial F_v$ and $\gamma_{s_{v'}(e)} \times \{v'\} \subset \partial F_{v'}$. More precisely, let

$$g_e: \gamma_{s_v(e)} \times \{v\} \longrightarrow \gamma_{s_{v'}(e)} \times \{v'\}$$

be the unique orientation-reversing isometry which maps the marked point $(p_{s_v(e)}, v)$ to $(p_{s_{v'}(e)}, v')$. Let \sim be the equivalence relation on $F \times \mathcal{V}$ generated by the maps g_e for all $e \in \mathcal{E}$. The equivalence classes of \sim contain either one point in the interior of $F \times \mathcal{V}$ or two points in the boundary. In particular, the quotient space of \sim

$$S_X = F \times \mathcal{V} / \sim$$

is a surface. Moreover, since the gluing maps g_e are isometries, the hyperbolic metric on $F \times \mathcal{V}$ descends to a hyperbolic metric on S_X . By construction, this metric has injectivity radius bounded from above and below. In particular, if we choose ϵ_F to be a lower bound for the

length of any homotopically non-trivial closed curve on F and δ_F to be a lower bound for the length of any properly embedded arc in F, which is not properly homotopic into the boundary of F, then $\epsilon_d = \min\{\epsilon_F/2, \delta_F\}$ is a lower bound for the injectivity radius of S_X .

Associated to every edge $e \in \mathcal{E}$, there is a simple closed geodesic c_e in S_X and c_e is disjoint from $c_{e'}$ for every pair of distinct edges $e, e' \in \mathcal{E}$. Let $\mathcal{C} = \{c_e | e \in \mathcal{E}\}$ be the collection of all such geodesics and note that $S_X \setminus \mathcal{C}$ is isometric to the interior of $F \times \mathcal{V}$.

It follows that the graph X can be recovered from S_X as the dual graph to the multicurve \mathcal{C} . Moreover, there is a projection $\pi_X: S_X \to X$ that maps every component of \mathcal{C} to the midpoint of its associated edge and maps every component of $S_X \setminus \mathcal{C}$ to its associated vertex. The map π_X is then a (K, \mathcal{C}) -quasi-isometry, where $K = \mathcal{C} = 2\text{diam}(F)$. We recall that a map $g: Y \to Z$ between two metric spaces is a (K, \mathcal{C}) -quasi-isometry if

$$\frac{1}{K}d_Y(x,y) - C \leqslant d_Z(g(x),g(y)) \leqslant Kd_Y(x,y) + C$$

for all $x, y \in Y$ and if for every $z \in Z$ there exists $y \in Y$ such that $d_Z(g(y), z) \leqslant C$.

It also follows from the identification of X with the dual graph to \mathcal{C} that every homeomorphism $f: S_X \to S_X$ that maps \mathcal{C} to itself, meaning $f(\mathcal{C}) = \mathcal{C}$ and $f^{-1}(\mathcal{C}) = \mathcal{C}$, induces an automorphism of the graph X.

LEMMA 2.2. Every automorphism of the graph X is induced by a K_d -quasi-conformal homeomorphism of S_X which preserves C, where K_d is the constant provided by Lemma 2.1.

Proof. Given an automorphism $\varphi: X \to X$, recall the definition of the permutation

$$s_n^{\varphi}: \{1,\ldots,d\} \longrightarrow \{1,\ldots,d\}$$

given above for each $v \in \mathcal{V}$. Let $f_v : F \to F$ be the K_d -quasi-conformal map associated by Lemma 2.1 to the permutation s_v^φ and define

$$H_{\varphi}: F \times \mathcal{V} \longrightarrow F \times \mathcal{V}, \quad H_{\varphi}(x, v) = (f_v(x), \varphi(v)).$$

Observe that H_{ω} is K_d -quasi-conformal. Moreover, if an edge $e \in \mathcal{E}$ contains v, then

$$H_{\varphi}(\gamma_{s_v(e)} \times \{v\}) = \gamma_{s_{\varphi(v)}(\varphi(e))} \times \varphi(v).$$

Also, by construction H_{φ} maps marked points to marked points. It follows that H_{φ} descends to a K_d -quasi-conformal homeomorphism

$$h_{\circ \circ}: S_X \longrightarrow S_X$$

with $h_{\varphi}(c_e) = c_{\varphi(e)}$ and $h_{\varphi}^{-1}(c_e) = c_{\varphi^{-1}(e)}$ for all $e \in \mathcal{E}$. In other words, h_{φ} induces φ .

REMARK. It is not possible to construct the quasi-conformal automorphisms in Lemma 2.1 so that one obtains an action of Σ_d on F. Therefore, we do not in general obtain an action of $\operatorname{Aut}(X)$ on S_X .

We now combine Lemma 2.2 with a technique of Gehring and Palka [5] to show that if X is a graph with transitive automorphism group, then S_X is uniformly quasi-conformally homogeneous.

LEMMA 2.3. Given $d \ge 3$, there exists $L_d > 1$ such that if X is a connected graph, such that every vertex has valence $d \ge 3$, every edge has length 1 and $\operatorname{Aut}(X)$ acts transitively on the vertices of X, then there is a L_d -quasi-conformally homogeneous hyperbolic surface S_X quasi-isometric to X.

Proof. Let x and y be any two points on S_X . By Lemma 2.2 there exists a K_d -quasi-conformal automorphism $h: S_X \to S_X$ such that h(x) and y both lie in (the image of) F_v for some vertex v of X. Therefore, $d(x, h(y)) \leq \operatorname{diam}(F)$.

Let $\epsilon_d > 0$ be a lower bound for the injectivity radius of S_X . (Note that ϵ_d depends only on d and the choice of surface F above.) Lemma 2.6 in [1] (which is derived from [5, Lemma 3.2]) implies that there exists a K'_d -quasi-conformal map $\psi: S_X \to S_X$ such that $\psi(h(x)) = y$ where

$$K'_d = (e^{\epsilon_d/2} + 1)^{4\operatorname{diam}(F)/\epsilon_d + 2}.$$

Then $\psi \circ h$ is a $K_dK'_d$ -quasi-conformal map taking x to y. Therefore S_X is L_d -quasi-conformally homogeneous, where $L_d = K_dK'_d$.

3. Diestel-Leader graphs

Diestel and Leader [3] constructed a family of graphs whose automorphism groups act transitively on their vertices and conjectured that these graphs are not quasi-isometric to the Cayley graph of any finitely generated group. Eskin, Fisher and Whyte [4] recently established this conjecture. In this section, we give a brief description of the Diestel-Leader graphs (see Diestel and Leader [3] or Woess [8] for more detailed descriptions).

Given $m, n \ge 2$, consider two trees T_m and T_n of valence m+1 and n+1, respectively, and such that every edge has length 1. Choose points $\theta_m \in \partial_\infty T_m$ and $\theta_n \in \partial_\infty T_n$ in the corresponding Gromov boundaries and vertices $0_m \in T_m$ and $0_n \in T_n$. Finally, consider \mathbb{R} as a graph with vertices of valence 2 at every integer $k \in \mathbb{Z}$. Observe that the Busemann function

$$\beta_m: T_m \longrightarrow \mathbb{R}$$

centered at θ_m and normalized at 0_m is a simplicial map between both graphs. Note that, for any two vertices $v, w \in T_m$, there exists an automorphism φ of T_m such that $\varphi(v) = w$ and

$$\beta_m(\varphi(x)) - \beta_m(x) = \beta_m(w) - \beta_m(v)$$

for all $x \in T_m$. Clearly, the same is true for the corresponding Busemann function

$$\beta_n:T_n\longrightarrow\mathbb{R}.$$

We orient the tree T_m or T_n in such a way that every positively oriented edge points toward θ_m or θ_n , respectively.

Let $T_m \times T_n$ be the product of the two trees T_m and T_n in the category of graphs. In other words, the set of vertices of $T_m \times T_n$ is the product of the set of vertices of T_m and T_n , and an edge in $T_m \times T_n$ with vertices (v, v') and (w, w') is a pair (e, e'), where e is an edge in T_m with vertices v and w, and e' is an edge in T_n with vertices v' and v'. See [6] for a more precise description of the product.

The automorphism groups of the two oriented trees T_m and T_n act transitively on the set of vertices and every pair $(\varphi, \psi) \in \operatorname{Aut}(T_m) \times \operatorname{Aut}(T_n)$ of automorphisms induces an automorphism of $T_m \times T_n$. It follows that $\operatorname{Aut}(T_m) \times \operatorname{Aut}(T_n)$ acts transitively on the set of vertices of $T_m \times T_n$.

Consider the simplicial map

$$f: T_m \times T_n \longrightarrow \mathbb{R}, \quad (x, y) \longmapsto \beta_m(x) - \beta_n(y).$$

The pre-image $DL(m, n) = f^{-1}(0)$ of 0 is a connected graph and it is clear from the discussion above that the subgroup of $Aut(T_m) \times Aut(T_n)$ which preserves $f^{-1}(0)$ acts transitively on the vertices of DL(m, n). The following result of Eskin, Fisher and Whyte [4] is the key fact needed to prove our main theorem.

THEOREM 3.1 (Eskin, Fisher, Whyte). If $m \neq n$, then DL(m, n) is not quasi-isometric to the Cayley graph of any finitely generated group.

4. The proof of the main theorem

We are now ready to give the proof of our main theorem. We first observe that a quasi-conformal deformation of a regular cover of a closed orbifold is quasi-isometric to the Cayley graph of a finitely generated group.

LEMMA 4.1. Suppose that a surface Σ is a quasi-conformal deformation of a surface S which normally covers a closed orbifold \mathcal{O} , then Σ is quasi-isometric to the Cayley graph of the (finitely generated) group of deck transformations of the covering map $S \to \mathcal{O}$.

Proof. Since any K-quasi-conformal map is a $(K, K \log 4)$ -quasi-isometry (see [7, Theorem 11.2]), Σ is quasi-isometric to S. Let G be the necessarily finitely generated group of deck transformations of the covering $S \to \mathcal{O}$. Since G acts on S co-compactly and discretely, the Svarc-Milnor lemma (for example, see [2, Proposition 8.19]) implies that S is quasi-isometric to the Cayley graph of G.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let $X = \mathrm{DL}(2,3)$ be the (2,3)-Diestel-Leader graph and let S_X be the Riemann surface associated to X in the previous section. Since $\mathrm{Aut}(X)$ acts transitively on the vertices of X, it follows from Lemma 2.3 that S_X is uniformly quasi-conformally homogeneous. Suppose, for the sake of contradiction, that S_X is a quasi-conformal deformation of a Riemann surface S which is a regular cover $S \to \mathcal{O}$ of a compact orbifold \mathcal{O} . By Lemma 4.1, the surface S_X is quasi-isometric to the Cayley graph of a finitely generated group. Since S_X is quasi-isometric to X, the same is true for $X = \mathrm{DL}(2,3)$. This contradicts Eskin, Fisher and Whyte's Theorem 3.1.

5. Surfaces quasi-isometric to Cayley graphs need not be uniformly quasi-conformally homogeneous

It is easy to check that every hyperbolic surface S is quasi-isometric to a graph X with unit-length edges and bounded valence. Any quasi-conformal automorphism of S induces a quasi-isometry of X (which is only coarsely well defined), and the quasi-isometry constants may be uniformly bounded by the dilatation of the quasi-conformal map. One may then readily show that if S is uniformly quasi-conformally homogeneous, then S is quasi-isometric to a graph X such that there exists C, L > 0 such that the set of (L, C)-quasi-isometries of X acts transitively on X.

One might hope this construction, which is a sort of quasi-inverse to the construction in Section 2, could be used to construct a characterization of uniformly quasi-conformally homogeneous surfaces. However, uniform quasi-conformal homogeneity is not a quasi-isometry invariant. For example, if we let X be the 'ladder' graph made by joining equal integer points on two copies of the real line, then S_X is quasi-isometric to the real line as is any finite area hyperbolic surface S homeomorphic to a twice-punctured torus. The thickened ladder S_X is uniformly quasi-conformally homogeneous, by Lemma 2.3, but S is not, as it has no lower bound on its injectivity radius (see [1, Theorem 1.1]).

One may further construct hyperbolic surfaces with bounded geometry (that is, having upper and lower bounds on their injectivity radius) that are quasi-isometric to graphs with transitive automorphism group that are not uniformly quasi-conformally homogeneous.

EXAMPLE 5.1. A bounded geometry surface S' that is quasi-isometric to the Cayley graph of the free group F_2 on 2-generators, but is not uniformly quasi-conformally homogeneous.

Construction of Example 5.1. Let T be the infinite 4-valent tree and let S_T be the uniformly quasi-conformally homogeneous surface constructed by Lemma 2.3. One may form a new surface S' by removing a disk D from S_T and replacing it by a surface F that is homeomorphic to a torus with a disk removed. We place a hyperbolic structure on S' such that there is an isometry from $S_T - U$ to S' - V, where U is a bounded neighborhood of D and V is a bounded neighborhood of F. One may further assume that the boundary ∂F of F is totally geodesic in the resulting hyperbolic structure. It follows that S' is also quasi-isometric to T, which is the Cayley graph of F_2 .

Every non-separating closed geodesic on S' must intersect F. One may then readily check, using the fact that a K-quasi-conformal automorphism is a $(K, K \log 4)$ -quasi-isometry, that given a non-separating closed geodesic α in F and any K > 1, there exists R_K such that if $g: S \to S'$ is K-quasi-conformal, then $g(\alpha)$ lies in the neighborhood of radius R_K about F. It immediately follows that S' cannot be uniformly quasi-conformally homogeneous.

Acknowledgements. The authors are grateful to Yair Minsky and Kevin Whyte for very interesting conversations.

References

- P. Bonfert-Taylor, D. Canary, G. Martin and E. C. Taylor, 'Quasiconformal homogeneity of hyperbolic manifolds', Math. Ann. 331 (2005) 281–295.
- 2. M. Bridson and A. Haefliger, Metric spaces of non-positive curvature (Springer, Berlin, 1999).
- 3. R. Diestel and I. Leader, 'A conjecture concerning a limit of non-Cayley graphs', J. Algebraic Combin. 14 (2001) 17–25.
- A. ESKIN, D. FISHER and K. WHYTE, 'Coarse differentiation of quasi-isometries I: spaces not quasi-isometric to Cayley graphs', Preprint, 2007, http://arXiv.org/abs/math/0607207.
- 5. F. W. Gehring and B. Palka, 'Quasiconformally homogeneous domains', J. Anal. Math. 30 (1976) 172-199.
- 6. J. Stallings, 'Topology of finite graphs', Invent. Math. 71 (1983) 551-565.
- M. Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics 1319 (Springer, Berlin, 1988).
- 8. W. Woess, 'Lamplighters, Diestel-Leader graphs, random walks, and harmonic functions', Combin. Probab. Comput. 14 (2005) 415-433.

Petra Bonfert-Taylor and Edward C. Taylor Wesleyan University Middletown, CT 06459 USA

pbonfert@wesleyan.edu ectaylor@umich.edu Richard D. Canary and Juan Souto University of Michigan Ann Arbor, MI 48109 USA

canary@umich.edu jsouto@umich.edu