Exotic quasi-conformally homogeneous surfaces Petra Bonfert-Taylor, Richard D. Canary, Juan Souto and Edward C. Taylor ## Abstract We construct uniformly quasi-conformally homogeneous Riemann surfaces that are not quasi-conformal deformations of regular covers of closed orbifolds. #### 1. Introduction Recall that a hyperbolic manifold M is K- quasi-conformally homogeneous if for all $x, y \in M$, there is a K-quasi-conformal map $f: M \to M$ with f(x) = y. It is said to be uniformly quasi-conformally homogeneous if it is K-quasi-conformally homogeneous for some K. We consider only complete and oriented hyperbolic manifolds. In dimensions 3 and above, every uniformly quasi-conformally homogeneous hyperbolic manifold is isometric to the regular cover of a closed hyperbolic orbifold (see [1]). The situation is more complicated in dimension 2. It remains true that any hyperbolic surface that is a regular cover of a closed hyperbolic orbifold is uniformly quasi-conformally homogeneous. If S is a non-compact regular cover of a closed hyperbolic 2-orbifold, then any quasi-conformal deformation of S remains uniformly quasi-conformally homogeneous. However, typically a quasi-conformal deformation of S is not itself a regular cover of a closed hyperbolic 2-orbifold (see [1, Lemma 5.1].) It is thus natural to ask if every uniformly quasi-conformally homogeneous hyperbolic surface is a quasi-conformal deformation of a regular cover of a closed hyperbolic orbifold. The goal of this note is to answer this question in the negative. THEOREM 1.1. There are uniformly quasi-conformally homogeneous surfaces that are not quasi-conformal deformations of the regular cover of any closed hyperbolic 2-orbifold. In order to prove Theorem 1.1, we associate to every connected graph X with constant valence a hyperbolic surface S_X which is obtained by 'thickening' X. In particular, S_X is quasi-isometric to X. Each element $\varphi \in \operatorname{Aut}(X)$ gives rise to a quasi-conformal automorphism h_{φ} of S_X (with uniformly bounded dilatation). If $\operatorname{Aut}(X)$ acts transitively on the set of vertices of X, then the associated set of quasi-conformal automorphisms is coarsely transitive, that is, there exists D such that if $x, y \in S_X$, then there exists $\varphi \in \operatorname{Aut}(X)$ such that $d(h_{\varphi}(x), y) \leqslant D$. One may then use the work of Gehring and Palka [5] to show that S_X is uniformly quasi-conformally homogeneous. We choose X to be a Diestel-Leader graph DL(m,n) with $m \neq n$. These graphs have transitive groups of automorphisms, but Eskin, Fisher and Whyte [4] recently showed that they are not quasi-isometric to the Cayley graph of any group. The proof is completed by Received 25 September 2009; published online October 12, 2010. 2000 Mathematics Subject Classification 30C62. Bonfert-Taylor and Taylor were partially supported by the National Science Foundation grant DMS-0706754; Canary was partially supported by NSF grants DMS-0504791 and DMS-0554239; and Souto was partially supported by NSF grant DMS-0706878 and by the Alfred P. Sloan Foundation. the observation that any surface that is a quasi-conformal deformation of a regular cover of a closed orbifold is quasi-isometric to the Cayley graph of the deck transformation group. On the other hand, it is easy to construct hyperbolic surfaces that are quasi-isometric to graphs with transitive automorphism group, that are not uniformly quasi-conformally homogeneous (see Section 5). So, one is left to wonder if there is a simple geometric characterization of uniformly quasi-conformally homogeneous surfaces. ## 2. Turning graphs into surfaces For simplicity, let X be a connected countable graph such that every vertex has valence $d \ge 3$ and every edge has length 1. It will be convenient to assume that every edge of X has two distinct endpoints. In this section, we *thicken* X into a hyperbolic surface S_X quasi-isometric to X in such a way that whenever the group of automorphisms of X acts transitively on the set of vertices, then S_X is uniformly quasi-conformally homogeneous. We start by introducing some notation. Let \mathcal{V} and \mathcal{E} be the sets of vertices and edges of the graph X. For each vertex $v \in \mathcal{V}$, let \mathcal{E}_v be the set of edges of X that contain v. By assumption \mathcal{E}_v has d elements for each v. For each v, choose a bijection $$s_v: \mathcal{E}_v \longrightarrow \{1, \ldots, d\}.$$ Observe that if φ is an automorphism of X, then φ induces a bijection $(\varphi_*)_v : \mathcal{E}_v \to \mathcal{E}_{\varphi(v)}$ for all $v \in \mathcal{V}$. Consider the permutation $$s_v^{\varphi} = s_{\varphi(v)} \circ (\varphi_*)_v \circ s_v^{-1} : \{1, \dots, d\} \longrightarrow \{1, \dots, d\}.$$ The building blocks of our construction will be copies of a fixed hyperbolic surface F that is homeomorphic to a sphere with d holes such that each boundary component of F is a geodesic of length 1. Label the components of ∂F by $\gamma_1, \ldots, \gamma_d$. For each i, choose a base point $p_i \in \gamma_i$ and observe that the choice of the base point together with the orientation of F determines uniquely a parameterization $\mathbb{S}^1 \to \gamma_i$ with constant velocity 1. We state the following observation as a lemma for future reference. LEMMA 2.1. For each $d \ge 3$, there exists $K_d > 1$ such that if $\sigma \in \mathfrak{S}_d$ is a permutation of the set $\{1, \ldots, d\}$ then, there is a K_d -quasi-conformal map $f_{\sigma} : F \to F$ which is an isometry when restricted to a neighborhood of ∂F and such that $f_{\sigma}(\gamma_i) = \gamma_{\sigma(i)}$ and $f_{\sigma}(p_i) = p_{\sigma(i)}$. Consider the hyperbolic surface $F \times \mathcal{V}$ and set $F_v = F \times \{v\}$. We construct S_X by gluing the components of $F \times \mathcal{V}$ together. The gluing maps are determined by the edges of X as follows. Given an edge $e \in \mathcal{E}$, let $v, v' \in \mathcal{V}$ be its two vertices, which we assume are always distinct. We identify the curves $\gamma_{s_v(e)} \times \{v\} \subset \partial F_v$ and $\gamma_{s_{v'}(e)} \times \{v'\} \subset \partial F_{v'}$. More precisely, let $$g_e: \gamma_{s_v(e)} \times \{v\} \longrightarrow \gamma_{s_{v'}(e)} \times \{v'\}$$ be the unique orientation-reversing isometry which maps the marked point $(p_{s_v(e)}, v)$ to $(p_{s_{v'}(e)}, v')$. Let \sim be the equivalence relation on $F \times \mathcal{V}$ generated by the maps g_e for all $e \in \mathcal{E}$. The equivalence classes of \sim contain either one point in the interior of $F \times \mathcal{V}$ or two points in the boundary. In particular, the quotient space of \sim $$S_X = F \times \mathcal{V} / \sim$$ is a surface. Moreover, since the gluing maps g_e are isometries, the hyperbolic metric on $F \times \mathcal{V}$ descends to a hyperbolic metric on S_X . By construction, this metric has injectivity radius bounded from above and below. In particular, if we choose ϵ_F to be a lower bound for the length of any homotopically non-trivial closed curve on F and δ_F to be a lower bound for the length of any properly embedded arc in F, which is not properly homotopic into the boundary of F, then $\epsilon_d = \min\{\epsilon_F/2, \delta_F\}$ is a lower bound for the injectivity radius of S_X . Associated to every edge $e \in \mathcal{E}$, there is a simple closed geodesic c_e in S_X and c_e is disjoint from $c_{e'}$ for every pair of distinct edges $e, e' \in \mathcal{E}$. Let $\mathcal{C} = \{c_e | e \in \mathcal{E}\}$ be the collection of all such geodesics and note that $S_X \setminus \mathcal{C}$ is isometric to the interior of $F \times \mathcal{V}$. It follows that the graph X can be recovered from S_X as the dual graph to the multicurve \mathcal{C} . Moreover, there is a projection $\pi_X: S_X \to X$ that maps every component of \mathcal{C} to the midpoint of its associated edge and maps every component of $S_X \setminus \mathcal{C}$ to its associated vertex. The map π_X is then a (K, \mathcal{C}) -quasi-isometry, where $K = \mathcal{C} = 2\text{diam}(F)$. We recall that a map $g: Y \to Z$ between two metric spaces is a (K, \mathcal{C}) -quasi-isometry if $$\frac{1}{K}d_Y(x,y) - C \leqslant d_Z(g(x),g(y)) \leqslant Kd_Y(x,y) + C$$ for all $x, y \in Y$ and if for every $z \in Z$ there exists $y \in Y$ such that $d_Z(g(y), z) \leqslant C$. It also follows from the identification of X with the dual graph to \mathcal{C} that every homeomorphism $f: S_X \to S_X$ that maps \mathcal{C} to itself, meaning $f(\mathcal{C}) = \mathcal{C}$ and $f^{-1}(\mathcal{C}) = \mathcal{C}$, induces an automorphism of the graph X. LEMMA 2.2. Every automorphism of the graph X is induced by a K_d -quasi-conformal homeomorphism of S_X which preserves C, where K_d is the constant provided by Lemma 2.1. *Proof.* Given an automorphism $\varphi: X \to X$, recall the definition of the permutation $$s_n^{\varphi}: \{1,\ldots,d\} \longrightarrow \{1,\ldots,d\}$$ given above for each $v \in \mathcal{V}$. Let $f_v : F \to F$ be the K_d -quasi-conformal map associated by Lemma 2.1 to the permutation s_v^φ and define $$H_{\varphi}: F \times \mathcal{V} \longrightarrow F \times \mathcal{V}, \quad H_{\varphi}(x, v) = (f_v(x), \varphi(v)).$$ Observe that H_{ω} is K_d -quasi-conformal. Moreover, if an edge $e \in \mathcal{E}$ contains v, then $$H_{\varphi}(\gamma_{s_v(e)} \times \{v\}) = \gamma_{s_{\varphi(v)}(\varphi(e))} \times \varphi(v).$$ Also, by construction H_{φ} maps marked points to marked points. It follows that H_{φ} descends to a K_d -quasi-conformal homeomorphism $$h_{\circ \circ}: S_X \longrightarrow S_X$$ with $h_{\varphi}(c_e) = c_{\varphi(e)}$ and $h_{\varphi}^{-1}(c_e) = c_{\varphi^{-1}(e)}$ for all $e \in \mathcal{E}$. In other words, h_{φ} induces φ . REMARK. It is not possible to construct the quasi-conformal automorphisms in Lemma 2.1 so that one obtains an action of Σ_d on F. Therefore, we do not in general obtain an action of $\operatorname{Aut}(X)$ on S_X . We now combine Lemma 2.2 with a technique of Gehring and Palka [5] to show that if X is a graph with transitive automorphism group, then S_X is uniformly quasi-conformally homogeneous. LEMMA 2.3. Given $d \ge 3$, there exists $L_d > 1$ such that if X is a connected graph, such that every vertex has valence $d \ge 3$, every edge has length 1 and $\operatorname{Aut}(X)$ acts transitively on the vertices of X, then there is a L_d -quasi-conformally homogeneous hyperbolic surface S_X quasi-isometric to X. *Proof.* Let x and y be any two points on S_X . By Lemma 2.2 there exists a K_d -quasi-conformal automorphism $h: S_X \to S_X$ such that h(x) and y both lie in (the image of) F_v for some vertex v of X. Therefore, $d(x, h(y)) \leq \operatorname{diam}(F)$. Let $\epsilon_d > 0$ be a lower bound for the injectivity radius of S_X . (Note that ϵ_d depends only on d and the choice of surface F above.) Lemma 2.6 in [1] (which is derived from [5, Lemma 3.2]) implies that there exists a K'_d -quasi-conformal map $\psi: S_X \to S_X$ such that $\psi(h(x)) = y$ where $$K'_d = (e^{\epsilon_d/2} + 1)^{4\operatorname{diam}(F)/\epsilon_d + 2}.$$ Then $\psi \circ h$ is a $K_dK'_d$ -quasi-conformal map taking x to y. Therefore S_X is L_d -quasi-conformally homogeneous, where $L_d = K_dK'_d$. #### 3. Diestel-Leader graphs Diestel and Leader [3] constructed a family of graphs whose automorphism groups act transitively on their vertices and conjectured that these graphs are not quasi-isometric to the Cayley graph of any finitely generated group. Eskin, Fisher and Whyte [4] recently established this conjecture. In this section, we give a brief description of the Diestel-Leader graphs (see Diestel and Leader [3] or Woess [8] for more detailed descriptions). Given $m, n \ge 2$, consider two trees T_m and T_n of valence m+1 and n+1, respectively, and such that every edge has length 1. Choose points $\theta_m \in \partial_\infty T_m$ and $\theta_n \in \partial_\infty T_n$ in the corresponding Gromov boundaries and vertices $0_m \in T_m$ and $0_n \in T_n$. Finally, consider \mathbb{R} as a graph with vertices of valence 2 at every integer $k \in \mathbb{Z}$. Observe that the Busemann function $$\beta_m: T_m \longrightarrow \mathbb{R}$$ centered at θ_m and normalized at 0_m is a simplicial map between both graphs. Note that, for any two vertices $v, w \in T_m$, there exists an automorphism φ of T_m such that $\varphi(v) = w$ and $$\beta_m(\varphi(x)) - \beta_m(x) = \beta_m(w) - \beta_m(v)$$ for all $x \in T_m$. Clearly, the same is true for the corresponding Busemann function $$\beta_n:T_n\longrightarrow\mathbb{R}.$$ We orient the tree T_m or T_n in such a way that every positively oriented edge points toward θ_m or θ_n , respectively. Let $T_m \times T_n$ be the product of the two trees T_m and T_n in the category of graphs. In other words, the set of vertices of $T_m \times T_n$ is the product of the set of vertices of T_m and T_n , and an edge in $T_m \times T_n$ with vertices (v, v') and (w, w') is a pair (e, e'), where e is an edge in T_m with vertices v and w, and e' is an edge in T_n with vertices v' and v'. See [6] for a more precise description of the product. The automorphism groups of the two oriented trees T_m and T_n act transitively on the set of vertices and every pair $(\varphi, \psi) \in \operatorname{Aut}(T_m) \times \operatorname{Aut}(T_n)$ of automorphisms induces an automorphism of $T_m \times T_n$. It follows that $\operatorname{Aut}(T_m) \times \operatorname{Aut}(T_n)$ acts transitively on the set of vertices of $T_m \times T_n$. Consider the simplicial map $$f: T_m \times T_n \longrightarrow \mathbb{R}, \quad (x, y) \longmapsto \beta_m(x) - \beta_n(y).$$ The pre-image $DL(m, n) = f^{-1}(0)$ of 0 is a connected graph and it is clear from the discussion above that the subgroup of $Aut(T_m) \times Aut(T_n)$ which preserves $f^{-1}(0)$ acts transitively on the vertices of DL(m, n). The following result of Eskin, Fisher and Whyte [4] is the key fact needed to prove our main theorem. THEOREM 3.1 (Eskin, Fisher, Whyte). If $m \neq n$, then DL(m, n) is not quasi-isometric to the Cayley graph of any finitely generated group. # 4. The proof of the main theorem We are now ready to give the proof of our main theorem. We first observe that a quasi-conformal deformation of a regular cover of a closed orbifold is quasi-isometric to the Cayley graph of a finitely generated group. LEMMA 4.1. Suppose that a surface Σ is a quasi-conformal deformation of a surface S which normally covers a closed orbifold \mathcal{O} , then Σ is quasi-isometric to the Cayley graph of the (finitely generated) group of deck transformations of the covering map $S \to \mathcal{O}$. Proof. Since any K-quasi-conformal map is a $(K, K \log 4)$ -quasi-isometry (see [7, Theorem 11.2]), Σ is quasi-isometric to S. Let G be the necessarily finitely generated group of deck transformations of the covering $S \to \mathcal{O}$. Since G acts on S co-compactly and discretely, the Svarc-Milnor lemma (for example, see [2, Proposition 8.19]) implies that S is quasi-isometric to the Cayley graph of G. We are now ready to prove Theorem 1.1. Proof of Theorem 1.1. Let $X = \mathrm{DL}(2,3)$ be the (2,3)-Diestel-Leader graph and let S_X be the Riemann surface associated to X in the previous section. Since $\mathrm{Aut}(X)$ acts transitively on the vertices of X, it follows from Lemma 2.3 that S_X is uniformly quasi-conformally homogeneous. Suppose, for the sake of contradiction, that S_X is a quasi-conformal deformation of a Riemann surface S which is a regular cover $S \to \mathcal{O}$ of a compact orbifold \mathcal{O} . By Lemma 4.1, the surface S_X is quasi-isometric to the Cayley graph of a finitely generated group. Since S_X is quasi-isometric to X, the same is true for $X = \mathrm{DL}(2,3)$. This contradicts Eskin, Fisher and Whyte's Theorem 3.1. # 5. Surfaces quasi-isometric to Cayley graphs need not be uniformly quasi-conformally homogeneous It is easy to check that every hyperbolic surface S is quasi-isometric to a graph X with unit-length edges and bounded valence. Any quasi-conformal automorphism of S induces a quasi-isometry of X (which is only coarsely well defined), and the quasi-isometry constants may be uniformly bounded by the dilatation of the quasi-conformal map. One may then readily show that if S is uniformly quasi-conformally homogeneous, then S is quasi-isometric to a graph X such that there exists C, L > 0 such that the set of (L, C)-quasi-isometries of X acts transitively on X. One might hope this construction, which is a sort of quasi-inverse to the construction in Section 2, could be used to construct a characterization of uniformly quasi-conformally homogeneous surfaces. However, uniform quasi-conformal homogeneity is not a quasi-isometry invariant. For example, if we let X be the 'ladder' graph made by joining equal integer points on two copies of the real line, then S_X is quasi-isometric to the real line as is any finite area hyperbolic surface S homeomorphic to a twice-punctured torus. The thickened ladder S_X is uniformly quasi-conformally homogeneous, by Lemma 2.3, but S is not, as it has no lower bound on its injectivity radius (see [1, Theorem 1.1]). One may further construct hyperbolic surfaces with bounded geometry (that is, having upper and lower bounds on their injectivity radius) that are quasi-isometric to graphs with transitive automorphism group that are not uniformly quasi-conformally homogeneous. EXAMPLE 5.1. A bounded geometry surface S' that is quasi-isometric to the Cayley graph of the free group F_2 on 2-generators, but is not uniformly quasi-conformally homogeneous. Construction of Example 5.1. Let T be the infinite 4-valent tree and let S_T be the uniformly quasi-conformally homogeneous surface constructed by Lemma 2.3. One may form a new surface S' by removing a disk D from S_T and replacing it by a surface F that is homeomorphic to a torus with a disk removed. We place a hyperbolic structure on S' such that there is an isometry from $S_T - U$ to S' - V, where U is a bounded neighborhood of D and V is a bounded neighborhood of F. One may further assume that the boundary ∂F of F is totally geodesic in the resulting hyperbolic structure. It follows that S' is also quasi-isometric to T, which is the Cayley graph of F_2 . Every non-separating closed geodesic on S' must intersect F. One may then readily check, using the fact that a K-quasi-conformal automorphism is a $(K, K \log 4)$ -quasi-isometry, that given a non-separating closed geodesic α in F and any K > 1, there exists R_K such that if $g: S \to S'$ is K-quasi-conformal, then $g(\alpha)$ lies in the neighborhood of radius R_K about F. It immediately follows that S' cannot be uniformly quasi-conformally homogeneous. Acknowledgements. The authors are grateful to Yair Minsky and Kevin Whyte for very interesting conversations. #### References - P. Bonfert-Taylor, D. Canary, G. Martin and E. C. Taylor, 'Quasiconformal homogeneity of hyperbolic manifolds', Math. Ann. 331 (2005) 281–295. - 2. M. Bridson and A. Haefliger, Metric spaces of non-positive curvature (Springer, Berlin, 1999). - 3. R. Diestel and I. Leader, 'A conjecture concerning a limit of non-Cayley graphs', J. Algebraic Combin. 14 (2001) 17–25. - A. ESKIN, D. FISHER and K. WHYTE, 'Coarse differentiation of quasi-isometries I: spaces not quasi-isometric to Cayley graphs', Preprint, 2007, http://arXiv.org/abs/math/0607207. - 5. F. W. Gehring and B. Palka, 'Quasiconformally homogeneous domains', J. Anal. Math. 30 (1976) 172-199. - 6. J. Stallings, 'Topology of finite graphs', Invent. Math. 71 (1983) 551-565. - M. Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics 1319 (Springer, Berlin, 1988). - 8. W. Woess, 'Lamplighters, Diestel-Leader graphs, random walks, and harmonic functions', Combin. Probab. Comput. 14 (2005) 415-433. Petra Bonfert-Taylor and Edward C. Taylor Wesleyan University Middletown, CT 06459 USA pbonfert@wesleyan.edu ectaylor@umich.edu Richard D. Canary and Juan Souto University of Michigan Ann Arbor, MI 48109 USA canary@umich.edu jsouto@umich.edu