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1. Introduction

Since the early part of this century, estimates for Weyl sums (or generalisations
thereof) have been central to the treatment of many problems in the additive theory
of numbers. For over forty years, the strongest such estimates have stemmed from a
method due to Vinogradov [8], the argument having been somewhat simplified
recently by the use of the large sieve (see [4, Lemma 5.4]). During this period,
improvements in estimates for generalisations of Weyl sums have arisen from
improved bounds on mean values of such sums, very recently with the arrival of
Vaughan's new iterative method (see [5, Theorems 1.5 and 1.8]). In contrast, this paper
will be devoted to improvements at the core of this circle of ideas, within
Vinogradov's method itself. Our ideas, which here we shall investigate in the context
of smooth Weyl sums, would seem to be applicable elsewhere, and this is a matter
which we intend to pursue in the future. We now describe our conclusions in some
detail.

Let k be a natural number, and P be a large real number. When 2 < R < P, we
define the set of /^-smooth numbers, s#(P, R), by

s/(P,R) = {ne[\,P] n Z:pprime,/?\n=>p ̂  R},

and for each real number a, we define the corresponding smooth Weyl sum, J[oc;P, R),
by

J{<x,P,R)= £ e(axk),

where here, and throughout, we write e(oc) = e2jtict. The precise form of our results is
to be found in Section 4, the following upper bound being a simple corollary.

THEOREM 1.1. Let m denote the set of real numbers a such that whenever aeZ,
qeM, (a,q) = 1 and |a — a/q\ ^ q^P1'", one has q > P. Then when r\ = n(e,k) is a
sufficiently small positive number, and 2 ^ R ^ Pn, we have

where, when k is large, p(k)~x = k (log k + 0 (log log k)).

For comparison, Vaughan [5, Theorem 1.8] obtains a similar result with the
exponent satisfying p{k)~x = (4 + o(l)) k log k, this having been improved, by means of
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superior mean value estimates, by Wooley [9, Theorem 1.4] to the extent that '4 ' can
be replaced by '2 ' in the latter conclusion. We note that when R = P, the exponential
sum J[a;P,R) represents a classical Weyl sum, for which the best estimate
corresponding to Theorem 1.1 currently has exponent satisfying pik)'1 =
(2+ o(l)) A:2 log A: (see [10, Corollary 1.1]). Thus, since card (rf(P, Pn)) >nP when n is
positive, for points in m, estimates for smooth Weyl sums are considerably sharper
than those for classical Weyl sums.

As far as applications of our new estimate in additive number theory are
concerned, we shall restrict ourselves to a cursory consideration of two basic
problems. First we improve localised estimates for the fractional parts of an*.

THEOREM 1.2. Let k e N, a e IR and e > 0. Then there is a real number N(e, k) such
that whenever N ^ N(e, k), we have

min || an

where, when k is large, r(k) satisfies T(fc)"1 = fc(log/: + 0(loglogfc)).

This may be compared with [11, Corollary to Theorem 1.2], where a similar result
is established with xfty1 = 2k(\ogk + \og\ogk + 2 + o(\)). Our improvements in
Waring's problem are, unfortunately, rather small. This is because improvements in
'minor arc' estimates for exponential sums tend to have a less significant impact,
within the circle method, than reduced upper bounds for mean values. As usual, we
define G(k) to be the smallest number s such that every sufficiently large natural
number is the sum of, at most, 5 Ath powers of natural numbers. The precise form of
our new estimate (see Corollary 1 to Theorem 4.2) leads to the following bounds for
G{k) when 10 ̂  k ^ 20.

THEOREM 1.3. We have G(10) < 62, G(12) < 78, G(13)<86, G(14) < 94,
G(15) < 102, G(16) < 110, G(17) < 118, G(18) ^ 127, G(19) ^ 135, G(20) < 144.

For comparison, the respective bounds G(10) ^ 63, G(12) ^ 79, G(13) ^ 87,
G(14) ^ 95, G(15) ^ 103, G(16) < 112, G(17) < 120, G(18) ^ 129, G(19) ^ 138,
G(20) ^ 146 were obtained in [9, Theorem 1.1]. When k = 11, our improvements are
not sufficiently large to lead to a visible reduction in G(k). For large k our methods
now lead to the following upper bound on G(k).

THEOREM 1.4. We have

G(k) ^ k flog k + log log k + 2 + O ({°f l 0f k)).

This conclusion may be compared with [11, Theorem 1.3], where a similar result
is given with '2 + log2' replacing '2 ' .

Our estimate for J[a;P, R) is based on an application of the large sieve inequality,
in essence, at least in the initial stages of the argument, following the treatment of
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Vaughan [5, Section 10]. We let M be a real number with P112 ^ M ^ P to be chosen
later. By Dirichlet's Theorem, we may find aeZ and qeN with (a,q)=l,
\q<x — a\^^MR)~k and q ^ 2(MR)k. Then, by a suitable combinatorial lemma
combined with Holder's inequality, when se N we are able to bound the smooth Weyl
sum f{<x; P, R) in the form

J{<x;P,R)2s <? M2s+E + (MR)2

M < V < MR

(1.1)

where 6y denotes the number of solutions of the diophantine equation

with utej2/(P/M,R) for 1 ^ / ^ s. We may classify the values of v into O(Pe) sets
Yl,...,i

/
L so that v1,v2eir

j and i>* = v\ (mod#) together imply that vx = v2 (modq).
Thus, provided that M is chosen suitably, there is a j satisfying

J{<x;P,R)2s<(MR)2 bye(<xvky)

When a lies in a set of type similar to the set m defined in the statement of Theorem
1.1, an analysis of the <xvk shows that they are spaced at least (Iq)'1 apart modulo 1.
Then by the large sieve inequality,

[(X; P, R)2s < (MR)2s-1+%q + s(P/M)k)

the last sum being bounded by using a suitable mean value estimate for smooth Weyl
sums. The strength of the ensuing bound for /(a ,P,R) now depends on the relative
magnitudes of M and q + (P/M)k, our estimate improving as the former parameter
grows and the latter expression decreases. Vaughan takes M = P1/2, which leads to
the bound q + (P/M)k <^ Pkl2. We take M = Px with X a parameter satisfying
\ < X < 1. As it stands, it is possible that q is as large as PkX, and this would lead to
weak bounds on/(a; P, R). However, by modifying an argument of Heath-Brown [2,
Section 5], it is possible to obtain a complementary bound onf[tx,P, R) which is useful
only when q is large. Thus we are able to discard those q with q > pk(l~x\ and thereby
achieve a suitable bound on q + (P/M)k.

The above argument is effective for the set of a satisfying the property that
whenever aeZ, qsN, (a,q) = \ and |a — a/q\ ^ q~1MP~k, one has q>M. In
Vaughan's analysis one is constrained to take M ^ P1'2, which limits the strength of
the ensuing bounds. The basic advantage of our new method is the relaxation of this
condition, and indeed for large k we may now take M = p1+0{1). We note that
Thanigasalam [3] has obtained a variant of Vinogradov's method which can be
applied to smooth exponential sums (see [5, Section 9]). The latter method permits
one to take M = p*^2*-1* = p\+°^i^^ s o that it is asymptotically of no greater strength
than that due to Vaughan.

In Section 2 we record some basic estimates for mean values of smooth Weyl
sums, and also provide a suitable combinatorial lemma for our later arguments.
Section 3 is devoted to the task of establishing an asymmetric estimate for/(a;P, R)
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of value for large moduli q, which in combination with a suitable estimate for small
moduli in Section 4, leads to the desired estimate for f{cn;P,R). In Sections 5 and 6
we then draw corollaries concerning Waring's problem and the fractional parts of
polynomials.

2. Preliminary observations

We start by recalling some of the salient features of the new iterative method in
Waring's problem. Throughout, s, t and u will denote positive integers, and e and n
will denote sufficiently small positive numbers. We take P to be a large positive real
number depending at most on k, s, t, u, e and n. We use <̂  and > to denote
Vinogradov's well-known notation, implicit constants depending at most on the latter
numbers. Also, we write [x] for the greatest integer not exceeding x, and write ||JC|| for
minyeZ\x—y\. In order to simplify our analysis, we adopt the following convention
concerning the numbers e and R. Whenever e or R appear in a statement, either
implicitly or explicitly, we assert that for each e > 0, there exists a positive number
rj0 = nQ(e, s, t, u, k) such that the statement holds whenever R = Pv, with 0 < n < rj0.
Note that the 'value' of e, and rj0, may change from statement to statement, and hence
also the dependency of implicit constants on e and rj.

We define SS(P, R) to be the number of solutions of the diophantine equation

with xit ytes/(P, R) for 1 ̂  ir ̂  s. Thus

We shall say that an exponent Ag = Ag_ k is permissible whenever the exponent has the
property that SS(P,R) ^ PA«.*+e, with Ask = 2s-k + As k. It follows easily that any
permissible exponent Ag k is non-negative, and moreover, without loss of generality,
that As k ^ k. The following lemma provides us with permissible exponents when k is
large.

LEMMA 2.1. Let k^4 and teN. For each ssN with 2 ^ s ^ t, define the real
number Ag = As k to be the unique positive solution of the equation Ase

di'lk = ke1'2''".
Then A8 k is permissible, and consequently the exponent Af k = ke1'2'1* is permissible.

Proof. This is the corollary to [11, Theorem 2.1], which simplifies [9, Lemma
3.2].

We shall require a result on the density of integers with a given square-free kernel.
Given an integer v with canonical prime factorisation fli-i/7?' w e denote by so(v) the
square-free kernel of v, that is, ni-iA- Furthermore, we define the set # 9 ( 0 by

%(Q) = {xeZO[l,Q]:so(x)\so(q)}.

LEMMA 2.2. Suppose that L is a positive real number and r is a positive integer with
logr < logL. Then for each e > 0, card(^r(^)) < Le.

Proof For each divisor d of r, it follows from [9, Lemma 2.1] that

card{l ^ y ^ L:so(y) = so(d)} « U.
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The lemma now follows by using standard estimates for the divisor function.

We conclude this section by providing a means of decomposing the smooth Weyl
sum/(a; P, R) into a form in which we can apply the arguments of Sections 3 and 4.
For this purpose we apply essentially the same argument as that used by Vaughan
[5, p. 67].

LEMMA 2.3. Let aelR and reN, and suppose that Q, M and R satisfy
2 ^ R < M < Q. Then

£ e(<xxk) ^RlogQ max sup Kr(a;Q,M,R;TI,6) + M,
xes/(Q, R) n^R 0e[0, 1)

(x, r ) - l n prime

where

Vr(<x;Q,M,R;n,6) =
,n, R)

e(a(uv)k

ues/(Q/M,n)

and

0&(M, n, R) = {v e N: M < v ̂  Mn, n\v, andpprime, p\v =>n ^p ^ R}.

Proof. On following the argument leading to equation (10.9) of Vaughan [5],
it is apparent that the conclusion remains valid with first summation in equation
(10.10) adjusted so that the condition M < v ̂  MR is replaced by v e@(M,p, R). The
lemma therefore follows immediately from [5, (10.4), (10.6), (10.9) and (10.10)].

3. Upper bounds for large moduli

When a is close to a rational a/q with q large, we use an asymmetric form of an
argument similar to one used by Heath-Brown [2, Section 5] in the estimation of the
fractional part of <xnk.

LEMMA 3.1. Suppose that X satisfies \ < k < 1, and write M = Pk. Let OLEU, and
suppose that there exist aeZ and qeP4 satisfying (a,q) = 1 and \oc — a/q\ ^ q~2. Then
when t, w e N, and At and Aw are permissible,

f[(X; P, R) < q* P1+e{M^(P/M)\q~l + M~k + (P/M)~k + qp-k)f'2tw + M.

Proof. By applying Lemma 2.3 with r = 1, we deduce that there exists a prime
n with n < R, and 0e[0,1) such that

(3.1)

where h(tx;v,ff)= ^ue^(p/M,n)e(<x(.uv)k + ^u)- Define the complex numbers of unit
modulus, e(v, 6), by

v,0y. (3.2)

Also, let rc denote the number of solutions of the diophantine equation

(3.3)
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with ut e stf(P/M, n), in which each solution u is counted with weight e(0(u1 +... + ut)).
Thus h(<x;v,0y = YJi^c^up/M)krce(<xcv'c)> arK* hence an application of Holder's
inequality, together with (3.2), yields

ves/(MR,R) I ves4(MR,R)

= (MR)t-1 E rc L e(v,6)e((xcvk).
k ves/(MR,R)

Next we note that |rc| ̂  nc, where nc denotes the number of solutions of the equation
(3.3) with uies/(P/M,n). A further application of Holder's inequality therefore
shows that

2tw

E \K*w,0)\
vejsf(MR,R)

where

Jw(<x)= YJ \g(u-\c->6)\2w-> (3-4)
1 < e^ t(P/M)k

and

ves/(MR,R)

But by considering the underlying diophantine equations, we have Yjcnc^ (P/M)1

a n d Ec"c < St(P/M,R), and hence

) 2tw

^ (PRr™(P/M)-2t(MR)-2™Jw(<x) St (P/M, R). (3.5)

Let nd denote the number of solutions of the equation E^iyf~E<2^+iyf = d,
with vi e stf(MR, R) for 1 ^ / < 2w, each solution v counted with weight
Y[Y-ie(vi,6)£(vw+i>6)- Then by considering the underlying diophantine equation,

Therefore, on making a trivial estimate, |nd| ^ n0 ̂  SW(MR, R), since \e(v, 6)\ = 1. On
recalling equation (3.4), we have

E nde{(xcd)^Sw(MR,R)
k

E e(occd)
\d\ < w(MR)k

<Sw(MR,R)Y(q), (3.6)

where

Y(q)= £ min{(P/M)k,\\<xd\n.
\d\ H w(MR)k

But by using [4, Lemma 2.2] we obtain

Y(q)
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Therefore, by (3.5), (3.6), and recalling the discussion of SS(P, R) in Section 2, we
deduce that

E \K*;v,0)\-

<g q*P1+X{P/M)At M^iq-1 + (P/Myk+M-k + qP-k)yi2tw.

The lemma now follows immediately from (3.1).

4. Upper bounds for small moduli

When a is close to a rational a/q with q small, we are able to adapt a variant of
Vinogradov's method given by Vaughan [5, Section 10] to provide an upper bound
for/(a;P, R). Our proof will differ in detail from that of Vaughan, since we are able
to provide some technical simplifications which lead to a more precise result.

LEMMA 4.1. Suppose that \ < X < 1, and write M = Px. Let cceU, and suppose that
asZ and qeN satisfy (a,q)=\, \qa-a\ ^ ^MRyk, q^2(MR)k and either
\qoi — a\ > MP~k or q > MR. Then if s is a natural number with 2s ̂  k+ 1, and As is
permissible,

f{<x;P,R) <g M1+e + P1+e(M-\P/M)Ail+q(P/M)-k)y/2s.

Proof. Observe that

A*;P,R)= E e(axk)= E E eWxdY).
xejJ(P,R) de<ga(P)ns/(P,R) xes/(P/d,R)

Thus, on applying Lemma 2.2,

E e(<x(xd)k)
deVJP/M)

•4, P6 max

+ E
xesi(P/d,R)

(x,q)-l d>P/M

E e(a(xdf)
xej*(P/d,R)

(x,q)=l

Next, by Lemma 2.3, it follows that for some de^q(P/M), 0e[0,1), and prime
n ^ R, we have

A*;P,R) < M1+e + PeRg((x;d,n,e), (4.1)

where

g(a;d,n,0)= E
ve&(M/d,n,R)

e(a(uvd)k+0u)

Notice here that M/d ^ M2/P - P2X~*, so that M/d is at least as large as some
positive power of P.

Let J(q, d, h) denote the number of solutions of the congruence (xd)k = h (mod q)
with 1 ^ x ̂  q. Then when {h,q)\dk, a simple estimate gives J(q,d,h) <̂  qedk. Hence
there is an L <̂  qedk such that the v with M/d < v ̂  MR/d and (v, q) = 1 can be
divided into L classes ir

1,...,i
/~L such that for any two distinct elements vx, v2 in a given
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class -f], we have (vx d)k = (y2 d)k (mod q) if and only if v1 = v2 (mod q). On writing cy

for the number of solutions of the diophantine equation uk + . . . + uk = y with
u, G srf(P/M, n), we may apply Holder's inequality to obtain

g(a; </, 7i, 6fs < WiMR/d)2'-1 max
tiefj

(4.2)

where |6J < cy.
Now recall that \q<x — a\^ \(MR)~k. Thus, if vx, v2ei/~jand yj ^ v2 (mod^), then we

have (v1d)k ^ (y2^)* (mod^), and hence

a
- ( ( M ) -(v2d)k)W-hg-1 ^Iq'1. (4.3)
q IIWe divide into cases.

(i) Suppose that q > MR/d. Then the elements of Yi are distinct modulo q, and
hence it follows from (4.3) that for vei^, the a(vd)k are spaced at least \q~l apart
modulo 1.

(ii) Suppose that q < MR/d. Then since q < Mi?, by hypothesis we have
\qct-a\ > MP~k. Given any two distinct elements vv v2 of f^ with i^ ^ i>2 (mod^), we
may conclude, as in Case (i), that a ^ d ) * and <x(v2d)k are spaced at least \q~x apart
modulo 1. Thus we are left to consider the situation in which vx = v2 (mod q), but

v2. Then

= \\{7.-a/q){{v1d)k-{v2df)\\=\0i-a/q\-\{vldY-{v2dY\.

Since vx — v2 is a non-zero multiple of q, and vxd> M and v2d> M, we have

Therefore, in this case, for ve Yi the a(vd)k are spaced at least | minf^"1, (P/M)~k}
apart modulo 1.

Then in either case, by the large sieve inequality (see, for example, [4, Lemma 5.3])
we have

2

bve(a(vd)ky) \by\

<(q + (P/M)k)Ss(P/M,R).

Then since 2s^ k+\, it follows from (4.1) and (4.2) that

f[a;P,R) < M1+e + (Pe(MR)2s-l(P/Mys-k+*iq + (P/M)k))ms.

The lemma now follows immediately.

THEOREM 4.2. Suppose that \< X < 1. Let <xeU, and suppose that whenever aeZ
and qeN satisfy (a,q) = 1 and \cn-a/q\ ^ 0"1/*"*, then one has q > PXR. Then if
s, t, we N satisfy 2s ̂  k+ 1, and \ , At and A^ are permissible exponents,

f{<x ;P,R)< F{PX + P1-"™ + p*-^),
where

H{k) = (k(\-A)-AAW-(1 -/I)At)/2rw awe/ v(it) = (X-(l-X)As)/2s.
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Proof. Write M = Pk. By Dirichlet's Theorem, there exist aeZ and qeN with
(a,q)=\, q^ 2{MRf and \qa-a\ ^ ^MR)~k. If q > (P/Mf, then we may apply
Lemma 3.1 to obtain the bound

f[a ;P,R)<^ pi+np^w+d-bAt/p-*d-A) _|_ p-kx\y/2tw _|_ pk

^ pA+e i pl-(t(k)+e

Thus we may assume that q ^ {P/M)k. In this second case we apply Lemma 4.1 to
establish the estimate

/TOC' P R) <̂  P*+e-I- pl+e(p-l+(l-X)b,\l/28 <& pA+e , pl-v(k)+e

This completes the proof of the theorem.

By simply choosing k optimally in Theorem 4.2, we obtain the following
conclusion.

COROLLARY 1. Let s, t, w be natural numbers satisfying 2s ̂  k + 1, and suppose
that An for n = s,t,w are permissible exponents. Define

Suppose that \ < X(k) < 1 — o{k). Then when a satisfies the hypotheses of Theorem 4.2,

We now explore the consequences of our new estimate when k is large.

COROLLARY 2. Let mx denote the set of <xeR such that whenever asZ, qeN,
(a,q) = 1 and \<x — a/q\ ^ ^~1PA"*, then q > PXR. Then there is a natural number ko(e)
with the following property. When k ^ ko(e), there are real numbers X = X{k) and a(k)
with

and

and such that

Proof. We put

s = %k log k], t = p 1 ^ 1 ^ ^ ] , w = [k(\og log k - log log log k)).

Then on solving the equation f e* = e1 2tlh, we find from Lemma 2.1 that the exponent
Ae is permissible, where AJk = \ — t/k + O(t2/k2). Hence

k-\ = k
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Similarly, the exponents Aw and Aa are permissible, where by the concluding remark
of Lemma 2.1,

Aw = ke1-2u"k<k(lOf{°fk)2 and A, < ke1'2"' < 1.

We now note that, in the notation of Corollary 1 to Theorem 4.2,

Thus
fcloglogfc. (4.4)

Furthermore, again in the notation of Corollary 1 to Theorem 4.2,

Thus
loglogfc loglogfc
—- -.— <?!-/<? —: :—,

log k log k

and so, in particular, when k is sufficiently large we have \ < X < 1 — a{k), and so the
hypotheses of Corollary 1 to Theorem 4.2 are satisfied. Therefore, in view of (4.4), the
corollary follows immediately from Corollary 1 to Theorem 4.2.

We note that Theorem 1.1 is merely a simplification of Corollary 2 to Theorem
4.2.

5. The estimation of G(k)

The estimation of G(k) is now relatively routine. It should be noted that our
'minor' arcs will be slightly different from those used in previous analyses (see, in
particular, [6, Section 9]). Thus we shall take this opportunity to record the new
results stemming from our analysis in the form of the following theorem.

THEOREM 5.1. Let X(k) and a{k) be the real numbers defined in Corollary 1 to
Theorem 4.2. Under the same hypotheses as in that corollary, for each integer v with
v ^ k — 1, and each permissible exponent Av, we have

G(k)^max\2v + 3 + \-^\,4k\.

Proof Let n be a large positive number, and write P = [n1/k]. Let y,we^ satisfy
v^ k—l, and write s = 2v + w. We consider the number of representations, R(n), of
« in the form n = xk + xk.+yk + ...+y*, with x15;c2eZ n [1,P] and y^j^iP,^ for
1 < / ^ s. On writing g(<x) = YJl<x^Pe(axk), we therefore have
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Let m denote the set of real numbers ae[0,1) with the property that, whenever aeZ,
qeN, (a,q)= 1 and |a — a/q\ ^ ^~1/>1"fc, one has q> P. Then by Corollary 1 to
Theorem 4.2, together with the remark at the end of [9, Section 3], it follows that

[ g(a)2f{a • P, R)*"» e( - an) da « (sup \J{a; P, R)\f f |g(a)2/(a; P, * )21 da
J m Vaem / JO

Thus, provided that wa(k) > Av+1, then

g(a)2f{a; P, R)2v+W e( - an) da
J m

for some positive number S. The major arcs SCR = [0, l) \m may be dealt with by means
of the same pruning argument as was used in [5, Section 5], owing to the presence of
the factor g(a)2 (consisting of exponential sums over complete intervals). Thereby,
one may obtain

«; P, Rfv+W < ~ ««) da > Ps+2~k,
an

and the desired conclusion follows immediately.

In order to prove Theorem 1.4, we have merely to apply Theorem 5.1 with
v = [|A:(log A: + log log A: + 1)]. From the concluding remark of Lemma 2.1, the
exponent Av+1 is permissible, where Av+l ^ kex~2(v+1)llc < 1/logA:. Meanwhile, from
Theorem 1.1 we have a{k)'1 = k log k + O(k log log k). Thus, in Theorem 5.1 we
deduce that

G(k) ^ k(\ogk + \og\ogk+l) + k + o ( } . ) .

For Theorem 1.3 we must work a little harder. We calculate a{k) by applying
Corollary 1 to Theorem 4.2, using the values of As, A, and A^ listed in the table in the
Appendix. The latter values of An may be shown, after some calculations, to be
permissible by using the methods of [9] (we should point out that superior estimates
should arise, albeit after much greater effort, from the methods of [7]). Having
checked that the corresponding value of X(k), which is also listed in the table, satisfies
the necessary hypotheses, we then apply Theorem 5.1 using the value off indicated
in the Appendix. The estimates for G{k) detailed in Theorem 1.3 then follow
immediately.

6. Localised estimates for fractional parts of polynomials

We can dispose of the proof of Theorem 1.2 swiftly with a standard appeal to
[1, Lemma 5]. We take A = X{k) and a{k) to be as defined in the statement of
Corollary 2 to Theorem 4.2. We let <f> be any real number with e < 0 < a(k). Let P
be a large positive number, and put H = P0™-*. Define T(a) by

T(a)= £ \f{ha-P,R)\.
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Then provided that we can establish the bound T(<x) = o(P), by [1, Lemma 5], as in
[11, Section 5], it follows that min1 < f , < p

|OOT* < P*~
Suppose first that there is a triple h, a, q with 1 ̂  h

\qh(x-a\ ^ Px~k and q^PxR. Then

^ \(qhfa-a(qhf-l\ < (HPxRf~lPx

Then in this case minl
sSns£P

\omk\\ < \\<x(qh)k\\ < p+-«*\

H, aeZ, qs N, (a, q) = 1,

In the alternative case, for each triple h, a, q with 1 ^ h ^ H, a e Z, q e N, (a, q) = 1
and \qhoL — a\ ^ Px~k, we have q > PXR. Then by Corollary 2 to Theorem 4.2,

Consequently, T{u) 4,
again.

max \j{h<x;P,R)\ ^/»-«<*>+«.
< h < H

ow+e = o{P), and the desired conclusion follows once

Appendix. Numerical values for parameters

In this Appendix we display in tabular form the numerical values of the
parameters arising in the method discussed in Section 5. The displayed figures were
calculated to 12 significant figures on a computer, and then the values of the
permissible exponents An and o(k)~l were rounded up in the last displayed figure.

k

10
11
12
13
14
15
16
17
18
19
20

s

22
25
28
31
35
38
41
44
47
51
54

w

13
15
16
18
20
21
22
24
26
27
29

/

7
8
9
9
10
11
12
12
13
14
14

A,

0.22849
0.22308
0.22111
0.22065
0.19066
0.19444
0.19883
0.20344
0.20843
0.19133
0.19729

K
1.46021
1.44899
1.70161
1.69429
1.69881
1.93796
2.18309
2.18066
2.18618
2.42272
2.42874

\

4.06022
4.32206
4.59367
5.45150
5.71309
5.97304
6.23839
7.09136
7.35059
7.60987
8.46768

a{k)-'

97.962
110.137
122.577
134.996
147.591
160.133
172.870
185.636
198.499
211.371
224.370

m
0.55161
0.55358
0.55521
0.55702
0.55847
0.56014
0.56153
0.56296
0.56436
0.56567
0.56682

V

25
29
32
35
39
43
46
50
54
57
61

0.09524
0.08311
0.09005
0.09680
0.08897
0.08311
0.08993
0.08538
0.08188
0.08837
0.08546
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