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It has been known since the last century that a single quadratic form in at least

five variables has a nontrivial zero in any p-adic field, but the analogous question for

systems of quadratic forms remains unanswered. It is plausible that the number of

variables required for solubility of a system of quadratic forms simply is proportional

to the number of forms; however, the best result to date, from an elementary

argument of Leep [6], is that the number of variables needed is at most a quadratic

function of the number of forms. The purpose of this paper is to show how these

elementary arguments can be used, in a certain class of fields including the p-adic

fields, to refine the upper bound for the number of variables needed to guarantee

solubility of systems of quadratic forms. This result partially addresses Problem 6 of

Lewis’ survey article [7] on Diophantine problems.

By a nontrivial zero of a system of forms f
"
,… , f

t
`F [x

"
,… ,x

n
], we mean a

nonzero element a of Fn such that f
j
(a)¯ 0 simultaneously for 1% j% t. We let u

F
(t)

denote the supremum of those positive integers n for which there exist t quadratic

forms over F in n variables with no nontrivial zero. In other words, assuming u
F
(t)

!¢, any set of t quadratic forms in F [x
"
,… ,x

n
], with n" u

F
(t), will have a

nontrivial zero (equivalently, a projective zero, since the forms are homogeneous),

while this property does not hold for n¯ u
F
(t). We may now state our main theorem.

T 1. Let F be a field, and suppose that for some positi�e integer m, we ha�e

u
F
(m)¯mu

F
(1). (1)

Then

u
F
(t)% "

#
(t(t®m­2)­τ(m®τ)) u

F
(1), (2)

where τ is the unique integer satisfying 1% τ%m and τ3 t (modm).

We remark that for any 1% r% t, we always have the lower bound

u
F
(t)& u

F
(r)­u

F
(t®r), (3)

for if f
i
(x

"
,… ,x

uF(r)
) (1% i% r) and g

j
(y

"
,… , y

uF(t−r)
) (1% j% t®r) are systems of

quadratic forms with no nontrivial zeros, then we can combine the two systems and

the two sets of variables to yield a system of t quadratic forms in u
F
(r)­u

F
(t®r)

variables with no nontrivial zeros. In particular, equation (3) readily implies that for

all t& 1, we have

u
F
(t)& tu

F
(1). (4)

Thus the hypothesis (1) of Theorem 1 is a natural one, representing the best-possible

situation for systems of m quadratic forms.
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In fact, if F is a local field (a finite extension either of Q
p

for some prime p, or of

k((T )) for some finite field k), Hasse [4] has shown that u
F
(1)¯ 4 (see Lam [5] for an

exposition), and Demjanov [3] has shown that u
F
(2)¯ 8 (a simpler proof has been

provided by Birch, Lewis and Murphy [2]). Thus the following corollary of Theorem

1 is immediate.

C 1.1. Let F be a local field. Then

u
F
(t)% (2t#­2,

2t#,

t odd,

t e�en.

It has also been shown by Birch and Lewis [1], with a correction and refinement

by Schuur [8], that whenever p& 11, we have uQ
p

(3)¯ 12. Therefore we can again

apply Theorem 1 to obtain the following corollary, which is superior to Corollary 1.1

for these primes.

C 1.2. Let p& 11 be prime. Then

uQ
p

(t)% (2t#®2t­4,

2t#®2t,

tJ 0 (mod3),

t3 0 (mod3).
(5)

The methods employed in this paper are a modest refinement of those of Leep [6],

who has shown that u
F
(t)% "

#
t(t­1) u

F
(1) for arbitrary fields F, and also that

uQ
p

(t)% 2t#­2t®4 (for t& 2) for every prime p. Because the argument is brief

and completely elementary, we may provide an essentially self-contained proof of

Theorem 1.

It is a pleasure to thank Trevor Wooley and Hugh Montgomery for their

suggestions on improving this paper and for their guidance in general. This material

is based upon work supported under a National Science Foundation Graduate

Research Fellowship.

1. Preliminary lemmas

Let u(d)

F
(t) denote the supremum of those positive integers n for which there exist

t quadratic forms over F in n variables whose set of solutions contains no (d­1)-

dimensional subspace of Fn. In other words, any set of t quadratic forms in F [x
"
,… ,

x
n
], with n" u(d)

F
(t), will have a (d­1)-dimensional subspace of simultaneous zeros

(or, equivalently, a d-dimensional subspace of projective zeros), while this property

does not hold for n¯ u(d)

F
(t). For instance, we have u(!)

F
(t)¯ u

F
(t).

The following two lemmas can be found in Leep [6] ; we provide proofs for the

sake of completeness.

L 2. For any field F, and for all positi�e integers k! t, we ha�e

u
F
(t)% u(uF(k))

F
(t®k).

Proof. Let n" u(uF(k))

F
(t®k), and let f

"
,… , f

t
be quadratic forms over F in n

variables. To establish the lemma, it suffices to show that these forms have a

nontrivial zero in Fn. By the definition of u(uF(k))

F
(t®k), the system f

"
,… , f

t−k
of t®k

quadratic forms has a (u
F
(k)­1)-dimensional subspace S of zeros. By parametrizing
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S with variables y
"
,… , y

uF(k)+"
, we may consider the restrictions of the forms f

t−k+"
,

… , f
t
to S as quadratic forms in u

F
(k)­1 variables. Now by the definition of u

F
(k),

these forms have a nontrivial zero in S, and so the forms f
"
,… , f

t
have a nontrivial

zero in Fn.

L 3. For any field F, and for all positi�e integers t and d, we ha�e

u(d)

F
(t)% u(d−")

F
(t)­t­1.

Proof. Let n" u(d−")

F
(t)­t­1, and let f

"
,… , f

t
be quadratic forms over F in n

variables. To establish the lemma, it suffices to show that Fn contains a (d­1)-

dimensional subspace of zeros for these forms. Since n" u(d−")

F
(t)& u

F
(t), we can

certainly find a nontrivial zero for the forms f
"
,… , f

t
, which generates a 1-dimensional

subspace T of zeros of these forms. By making a linear change of variables, we may

assume that T is spanned by the vector (0,…, 0, 1). For each 1% j% t, we may write

f
j
(x

"
,… ,x

n
)¯x#

n
f
j
(0,… , 0, 1)­x

n
L

j
(x

"
,… ,x

n−"
)­Q

j
(x

"
,… ,x

n−"
), (6)

where the L
j
and Q

j
are linear and quadratic forms, respectively, in n®1 variables

(here we are identifying Tv with Fn−"). But we are working under the assumption that

each f
j
(0,…, 0, 1) equals 0, and elementary linear algebra allows us to find a subspace

S of Fn−" of codimension t on which the t linear forms L
"
,… ,L

t
all vanish identically.

Again we parametrize S by variables y
"
,… , y

n−t−"
and consider the restrictions of the

forms Q
"
,… ,Q

t
to S as quadratic forms in n®t®1" u(d−")

F
(t) variables. By the

definition of u(d−")

F
(t), we may find a d-dimensional subspace U of S consisting of zeros

of the forms Q
"
,… ,Q

t
. We now see from (6) that UGT is a (d­1)-dimensional

subspace of zeros of the original forms f
"
,… , f

t
.

2. Proof of Theorem 1

We begin by making some remarks that hold in any field F, without the hypothesis

(1) of Theorem 1. Using Lemma 2 together with several applications of Lemma 3, we

see that
u
F
(t)% u(uF(k))

F
(t®k)% u

F
(t®k)­(t®k­1) u

F
(k).

Therefore, for any positive integer r such that rk! t, we have

u
F
(t)% u

F
(t®rk)­3

r

i="

(t®ik­1) u
F
(k). (7)

Thus we have established a bound for u
F
(t) in terms of u

F
( j ) for small values of j. In

fact, this is precisely the approach in Leep [6], with the choices k¯ 1 and r¯ t®1,

so that the final bound is in terms of u
F
(1) alone. One can also choose r¯ t®2 and

obtain a bound for u
F
(t) in terms of u

F
(1) and u

F
(2), which will be better if the value

of u
F
(2) is known to be small.

However, for fields F that satisfy the hypothesis (1) for some positive integer m,

it turns out to be more beneficial to take k¯m in the bound (7). We choose r to make

t®rk as small as possible while still positive: if we let τ be the integer satisfying

1% τ%m and τ3 t (modm), then r¯ (t®τ)}m. With these choices, equation (7)

becomes

u
F
(t)% u

F
(τ)­

t®τ

2m
(t®m­τ­2) u

F
(m). (8)
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We claim that u
F
(m)¯mu

F
(1) forces u

F
(τ)¯ τu

F
(1) as well, since by the lower bounds

(3) and (4), we have

τu
F
(1)% u

F
(τ)% u

F
(m)®u

F
(m®τ)

%mu
F
(1)®(m®τ) u

F
(1)¯ τu

F
(1).

Substituting these expressions in the bound (8) gives us

u
F
(t)% τu

F
(1)­

t®τ

2m
(t®m­τ­2)mu

F
(1),

which is the same as the bound (2). This establishes the theorem.
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