SOLUBILITY OF SYSTEMS OF QUADRATIC FORMS

GREG MARTIN

It has been known since the last century that a single quadratic form in at least five variables has a nontrivial zero in any p-adic field, but the analogous question for systems of quadratic forms remains unanswered. It is plausible that the number of variables required for solubility of a system of quadratic forms simply is proportional to the number of forms; however, the best result to date, from an elementary argument of Leep [6], is that the number of variables needed is at most a quadratic function of the number of forms. The purpose of this paper is to show how these elementary arguments can be used, in a certain class of fields including the p-adic fields, to refine the upper bound for the number of variables needed to guarantee solubility of systems of quadratic forms. This result partially addresses Problem 6 of Lewis' survey article [7] on Diophantine problems.

By a nontrivial zero of a system of forms $f_{1}, \ldots, f_{t} \in F\left[x_{1}, \ldots, x_{n}\right]$, we mean a nonzero element a of F^{n} such that $f_{j}(\mathbf{a})=0$ simultaneously for $1 \leqslant j \leqslant t$. We let $u_{F}(t)$ denote the supremum of those positive integers n for which there exist t quadratic forms over F in n variables with no nontrivial zero. In other words, assuming $u_{F}(t)$ $<\infty$, any set of t quadratic forms in $F\left[x_{1}, \ldots, x_{n}\right]$, with $n>u_{F}(t)$, will have a nontrivial zero (equivalently, a projective zero, since the forms are homogeneous), while this property does not hold for $n=u_{F}(t)$. We may now state our main theorem.

Theorem 1. Let F be a field, and suppose that for some positive integer m, we have

$$
\begin{equation*}
u_{F}(m)=m u_{F}(1) \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
u_{F}(t) \leqslant \frac{1}{2}(t(t-m+2)+\tau(m-\tau)) u_{F}(1) \tag{2}
\end{equation*}
$$

where τ is the unique integer satisfying $1 \leqslant \tau \leqslant m$ and $\tau \equiv t(\bmod m)$.
We remark that for any $1 \leqslant r \leqslant t$, we always have the lower bound

$$
\begin{equation*}
u_{F}(t) \geqslant u_{F}(r)+u_{F}(t-r), \tag{3}
\end{equation*}
$$

for if $f_{i}\left(x_{1}, \ldots, x_{\left.u_{F^{(r)}}\right)}\right)(1 \leqslant i \leqslant r)$ and $g_{j}\left(y_{1}, \ldots, y_{u_{F^{(t-r)}}}\right)(1 \leqslant j \leqslant t-r)$ are systems of quadratic forms with no nontrivial zeros, then we can combine the two systems and the two sets of variables to yield a system of t quadratic forms in $u_{F}(r)+u_{F}(t-r)$ variables with no nontrivial zeros. In particular, equation (3) readily implies that for all $t \geqslant 1$, we have

$$
\begin{equation*}
u_{F}(t) \geqslant t u_{F}(1) . \tag{4}
\end{equation*}
$$

Thus the hypothesis (1) of Theorem 1 is a natural one, representing the best-possible situation for systems of m quadratic forms.

Received 23 April 1996.
1991 Mathematics Subject Classification 11D72.

In fact, if F is a local field (a finite extension either of \mathbf{Q}_{p} for some prime p, or of $k((T))$ for some finite field k), Hasse [4] has shown that $u_{F}(1)=4$ (see Lam [5] for an exposition), and Demjanov [3] has shown that $u_{F}(2)=8$ (a simpler proof has been provided by Birch, Lewis and Murphy [2]). Thus the following corollary of Theorem 1 is immediate.

Corollary 1.1. Let F be a local field. Then

$$
u_{F}(t) \leqslant \begin{cases}2 t^{2}+2, & t \text { odd } \\ 2 t^{2}, & t \text { even }\end{cases}
$$

It has also been shown by Birch and Lewis [1], with a correction and refinement by Schuur [8], that whenever $p \geqslant 11$, we have $u_{\mathbf{Q}_{p}}(3)=12$. Therefore we can again apply Theorem 1 to obtain the following corollary, which is superior to Corollary 1.1 for these primes.

Corollary 1.2. Let $p \geqslant 11$ be prime. Then

$$
u_{\mathbf{Q}_{p}}(t) \leqslant \begin{cases}2 t^{2}-2 t+4, & t \not \equiv 0(\bmod 3) \tag{5}\\ 2 t^{2}-2 t, & t \equiv 0(\bmod 3)\end{cases}
$$

The methods employed in this paper are a modest refinement of those of Leep [6], who has shown that $u_{F}(t) \leqslant \frac{1}{2} t(t+1) u_{F}(1)$ for arbitrary fields F, and also that $u_{\mathbf{Q}_{p}}(t) \leqslant 2 t^{2}+2 t-4$ (for $t \geqslant 2$) for every prime p. Because the argument is brief and completely elementary, we may provide an essentially self-contained proof of Theorem 1.

It is a pleasure to thank Trevor Wooley and Hugh Montgomery for their suggestions on improving this paper and for their guidance in general. This material is based upon work supported under a National Science Foundation Graduate Research Fellowship.

1. Preliminary lemmas

Let $u_{F}^{(d)}(t)$ denote the supremum of those positive integers n for which there exist t quadratic forms over F in n variables whose set of solutions contains no $(d+1)$ dimensional subspace of F^{n}. In other words, any set of t quadratic forms in $F\left[x_{1}, \ldots\right.$, x_{n}], with $n>u_{F}^{(d)}(t)$, will have a $(d+1)$-dimensional subspace of simultaneous zeros (or, equivalently, a d-dimensional subspace of projective zeros), while this property does not hold for $n=u_{F}^{(d)}(t)$. For instance, we have $u_{F}^{(0)}(t)=u_{F}(t)$.

The following two lemmas can be found in Leep [6]; we provide proofs for the sake of completeness.

Lemma 2. For any field F, and for all positive integers $k<t$, we have

$$
u_{F}(t) \leqslant u_{F}^{\left(u_{F^{(k)}}\right)}(t-k) .
$$

Proof. Let $n>u_{F}^{\left(u_{F^{(k)}}\right.}(t-k)$, and let f_{1}, \ldots, f_{t} be quadratic forms over F in n variables. To establish the lemma, it suffices to show that these forms have a nontrivial zero in F^{n}. By the definition of $u_{F}^{\left(u_{F}(k)\right)}(t-k)$, the system f_{1}, \ldots, f_{t-k} of $t-k$ quadratic forms has a $\left(u_{F}(k)+1\right)$-dimensional subspace S of zeros. By parametrizing
S with variables $y_{1}, \ldots, y_{u_{F}(k)+1}$, we may consider the restrictions of the forms f_{t-k+1}, \ldots, f_{t} to S as quadratic forms in $u_{F}(k)+1$ variables. Now by the definition of $u_{F}(k)$, these forms have a nontrivial zero in S, and so the forms f_{1}, \ldots, f_{t} have a nontrivial zero in F^{n}.

Lemma 3. For any field F, and for all positive integers t and d, we have

$$
u_{F}^{(d)}(t) \leqslant u_{F}^{(d-1)}(t)+t+1 .
$$

Proof. Let $n>u_{F}^{(d-1)}(t)+t+1$, and let f_{1}, \ldots, f_{t} be quadratic forms over F in n variables. To establish the lemma, it suffices to show that F^{n} contains a $(d+1)$ dimensional subspace of zeros for these forms. Since $n>u_{F}^{(d-1)}(t) \geqslant u_{F}(t)$, we can certainly find a nontrivial zero for the forms f_{1}, \ldots, f_{t}, which generates a 1 -dimensional subspace T of zeros of these forms. By making a linear change of variables, we may assume that T is spanned by the vector $(0, \ldots, 0,1)$. For each $1 \leqslant j \leqslant t$, we may write

$$
\begin{equation*}
f_{j}\left(x_{1}, \ldots, x_{n}\right)=x_{n}^{2} f_{j}(0, \ldots, 0,1)+x_{n} L_{j}\left(x_{1}, \ldots, x_{n-1}\right)+Q_{j}\left(x_{1}, \ldots, x_{n-1}\right), \tag{6}
\end{equation*}
$$

where the L_{j} and Q_{j} are linear and quadratic forms, respectively, in $n-1$ variables (here we are identifying T^{\perp} with F^{n-1}). But we are working under the assumption that each $f_{j}(0, \ldots, 0,1)$ equals 0 , and elementary linear algebra allows us to find a subspace S of F^{n-1} of codimension t on which the t linear forms L_{1}, \ldots, L_{t} all vanish identically. Again we parametrize S by variables y_{1}, \ldots, y_{n-t-1} and consider the restrictions of the forms Q_{1}, \ldots, Q_{t} to S as quadratic forms in $n-t-1>u_{F}^{(d-1)}(t)$ variables. By the definition of $u_{F}^{(d-1)}(t)$, we may find a d-dimensional subspace U of S consisting of zeros of the forms Q_{1}, \ldots, Q_{t}. We now see from (6) that $U \oplus T$ is a $(d+1)$-dimensional subspace of zeros of the original forms f_{1}, \ldots, f_{t}.

2. Proof of Theorem 1

We begin by making some remarks that hold in any field F, without the hypothesis (1) of Theorem 1. Using Lemma 2 together with several applications of Lemma 3, we see that

$$
u_{F}(t) \leqslant u_{F}^{\left(u_{F}(k)\right)}(t-k) \leqslant u_{F}(t-k)+(t-k+1) u_{F}(k) .
$$

Therefore, for any positive integer r such that $r k<t$, we have

$$
\begin{equation*}
u_{F}(t) \leqslant u_{F}(t-r k)+\sum_{i=1}^{r}(t-i k+1) u_{F}(k) . \tag{7}
\end{equation*}
$$

Thus we have established a bound for $u_{F}(t)$ in terms of $u_{F}(j)$ for small values of j. In fact, this is precisely the approach in Leep [6], with the choices $k=1$ and $r=t-1$, so that the final bound is in terms of $u_{F}(1)$ alone. One can also choose $r=t-2$ and obtain a bound for $u_{F}(t)$ in terms of $u_{F}(1)$ and $u_{F}(2)$, which will be better if the value of $u_{F}(2)$ is known to be small.

However, for fields F that satisfy the hypothesis (1) for some positive integer m, it turns out to be more beneficial to take $k=m$ in the bound (7). We choose r to make $t-r k$ as small as possible while still positive: if we let τ be the integer satisfying $1 \leqslant \tau \leqslant m$ and $\tau \equiv t(\bmod m)$, then $r=(t-\tau) / m$. With these choices, equation (7) becomes

$$
\begin{equation*}
u_{F}(t) \leqslant u_{F}(\tau)+\frac{t-\tau}{2 m}(t-m+\tau+2) u_{F}(m) . \tag{8}
\end{equation*}
$$

We claim that $u_{F}(m)=m u_{F}(1)$ forces $u_{F}(\tau)=\tau u_{F}(1)$ as well, since by the lower bounds (3) and (4), we have

$$
\begin{aligned}
\tau u_{F}(1) \leqslant u_{F}(\tau) & \leqslant u_{F}(m)-u_{F}(m-\tau) \\
& \leqslant m u_{F}(1)-(m-\tau) u_{F}(1)=\tau u_{F}(1)
\end{aligned}
$$

Substituting these expressions in the bound (8) gives us

$$
u_{F}(t) \leqslant \tau u_{F}(1)+\frac{t-\tau}{2 m}(t-m+\tau+2) m u_{F}(1)
$$

which is the same as the bound (2). This establishes the theorem.

References

1. B. J. Birch and D. J. Lewis, 'Systems of three quadratic forms', Acta Arith. 10 (1964-65) 423-442.
2. B. J. Birch, D. J. Lewis and T. G. Murphy, 'Simultaneous quadratic forms', Amer. J. Math. 84 (1962) 110-115.
3. V. B. Demjanov, 'Pairs of quadratic forms over a complete field with discrete norm with a finite field of residue classes', Izv. Akad. Nauk SSSR Ser. Mat. 20 (1956) 307-324.
4. H. Hasse, 'Über die Darstellbarkeit von Zahlen durch quadratische Formen im Körper der rationalen Zahlen', J. Reine Angew. Math. 152 (1923) 129-148.
5. T. Y. Lam, The algebraic theory of quadratic forms (Benjamin/Cummings, Reading, MA, 1973).
6. D. B. Leep, 'Systems of quadratic forms', J. Reine Angew. Math. 350 (1984) 109-116.
7. D. J. Lewis, 'Diophantine problems: solved and unsolved', Number theory and applications (ed. R. A. Mollin, Kluwer Academic Publishers, Dordrecht, 1989) 103-121.
8. S. E. Schuur, 'On systems of three quadratic forms', Acta Arith. 36 (1980) 315-322.

Department of Mathematics
University of Michigan
Ann Arbor, MI 48109-1003
USA

