POINT ARBORICITY CRITICAL GRAPHS EXIST

BÉLA BOLLOBÁS and FRANK HARARY \dagger

Abstract

The point arboricity of a graph is the minimum number of colours assignable to the points so that no cycle is monochromatic. A graph is called k-critical if it is connected and the removal of any edge reduces the point arboricity from k to $k-1$. The existence of k-critical graphs of odd order only was established by Kronk and Mitchem. We construct here k-critical graphs of every possible even order.

Introduction

In general, we follow the notation and terminology of the book [2], but we use the terms point and edge. The order of a graph G is the number p of its points. The symbol $G \cup H$ will always refer to the union of disjoint graphs.

We write $n G$ for the union of n disjoint copies of a connected graph G. Also $G_{1}+G_{2}$ is the join of G_{1} and G_{2}, consisting of $G_{1} \cup G_{2}$ and all edges joining (a point of) G_{1} with G_{2}. As usual \bar{H} denotes the complement of a graph H and $G-e$ is the subgraph of G resulting from the removal of the edge e. The addition of a new edge e joining two non-adjacent points of G results in the graph $G+e$.

The subject of the (edge) arboricity of a graph was launched by Nash-Williams [4]. He obtained an exact determination of the arboricity of a graph in terms of its subgraphs, see [2; p. 90].

A colouring of the points of a graph is called acyclic if no cycle has all its points the same colour. The point arboricity $\rho(G)$ of a graph G was introduced by Chartrand, Kronk and Wall [1] as the minimum number of colours in an acyclic colouring of the points of G. A graph G is k-critical with respect to point arboricity if G is connected, $\rho(G)=k$ and for each edge $e, \rho(G-e)=k-1$. Obviously the 2-critical graphs are the cycles, so henceforth we take $k \geqslant 3$.

Kronk and Mitchem [3] established that for each $k \geqslant 3$ and odd $p \geqslant 2 k-1$, there exists a k-critical graph of order p. This was done by verifying that the graph $G=K_{2 k-4}+C_{p-2 k+4}$ has this property. They could not decide whether or not there exists a k-critical graph of even order but they showed that for $k \geqslant 3$ there is no k-critical graph of order $2 k$ or of order $p \leqslant 2 k-2$. Our object is to prove that there exist k-critical graphs of each even order greater than $2 k$. This is done by constructing appropriate families of k-critical graphs.

Preliminary results

The following lemmas are needed in the proof of our main results. As Lemma 1 is an elementary observation, we state it without proof.

Lemma 1. If a connected graph G does not contain three independent points, then every induced subgraph of order 5 contains a cycle.

Received 25 April 1974; revised 23 October 1974.
\dagger Research supported in part by Grant 73-2302 from the Air Force Office of Scientific Research.

$$
\text { [J. London Math. Soc. (2), } 12 \text { (1975), 97-102] }
$$

Lemma 2. For each $h \geqslant 1$, there is a hamiltonian triangle-free graph H of order $4 h+3$ such that the addition of any new edge e results in a graph $H+e$ which contains a spanning subgraph of the form $K_{3} \cup 2 h K_{2}$, the union of a triangle with $2 h$ disjoint edges.

Proof. If $h=1$, it is easy to check that the required graph H may be obtained from C_{7} by adding any three disjoint diagonals, which do not produce a triangle (Fig. 1).

Fig. 1. A graph H for $h=1$.

Fig. 2. A graph H^{*} for $h=2$.

Suppose now that $h \geqslant 2$. In order to construct an appropriate graph H, start with the graph $C=C_{4 h+3}$ and join every pair of points at distance $2 h$ in C. Call these new edges the chords of C. The resulting graph has no triangles. Add edges arbitrarily until a maximal triangle-free graph H is obtained. Obviously H is hamiltonian and triangle-free, and has order $4 h+3$.

We shall show that H satisfies the condition of Lemma 2. Let e be any edge of \bar{H} and put $H^{*}=H+e$. Then H^{*} contains a triangle K (see Fig. 2). To prove the lemma we show that the subgraph $H^{*}-V(K)$ has a 1 -factor, i.e.,

$$
H^{*}-V(K) \supset 2 h K_{2} .
$$

Label the points of C by $v_{0}\left(=v_{4 h+3}\right), v_{1}, \ldots, v_{4 h+2}$, so that v_{i} is adjacent to v_{i+1}, $i=0, \ldots, 4 h+2$. Without loss of generality, let $V(K)=\left\{v_{0}, v_{r}, v_{r+s}\right\}$, where

$$
0<r \leqslant s \leqslant t=4 h+3-(r+s)
$$

If r and s are odd then so is t. As $C-V(K)$ is the union of disjoint paths with $r-1, s-1$ and $t-1$ points, the alternating edges from these paths form the required 1 -factor.

Thus we can suppose that exactly one of r, s and t is odd and two are even.
We now describe how to find a chord x independent of the edges in K such that $C-V(K)-V(x)$ is the union of disjoint paths of odd length. The edge x together with alternating edges from these paths will form the desired 1 -factor.

If r is odd then choose the edge $v_{r+1} v_{r+1+2 h}$ for the chord x. As s and t are even
and $r+s<r+1+2 h<4 h+3$, this chord has the required properties, since

$$
r-1, r+s-(r+2)=s-2, r+1+2 h-(r+s+1)=2 h-s
$$

and

$$
4 h+3-(r+1+2 h+1)=2 h+1-r
$$

are all even.
If s is odd then we take x to be the chord $v_{r-1} v_{r+2 h+2}$. As

$$
r+2<r+2 h+2<4 h+3
$$

the appropriate paths contain $r-2, s-1,2 h+1-s$ and $2 h-r$ points.
Finally, if t is odd then we can choose $x=v_{r+1} v_{r+2 h+4}$. As

$$
r+s<r+2 h+3<4 h+3
$$

$C-V(K)-V(x)$ is the disjoint union of four paths of even length, namely, of length $r-1, s-2,2 h+2-s$ and $2 h-1-r$.

The Existence Theorem

By the results of Kronk and Mitchem [3], the existence of a k-critical graph $(k \geqslant 3)$ of order p has been established for all odd $p \geqslant 2 k-1$ and the impossibility has been shown for $p-2 k$ and $p<2 k-1$. Our theorem asserts the existence for all remaining even $p \geqslant 2 k+2$. The proof which we have been able to devise involves three separate propositions, whose combination yields the results: In Proposition 1, the existence of a k-critical graph of even order p is proved for $2 k+2 \leqslant p \leqslant 3 k-3$; Proposition 2 shows it for $3 k-2 \leqslant p \leqslant 4 k-4$; Proposition 3 handles the remaining $p \geqslant 4 k-3$. The proof of each of these propositions has the same form, namely,
(a) an appropriate graph G is constructed,
(b) it is verified that $\rho(G) \geqslant k$,
(c) it is shown that for each edge e of $G, \rho(G-e) \leqslant k-1$.

It will be convenient in the proof of the theorem to have the following terminology. A colour class of a given colouring of the points of a graph containing just r points is called an r-set of the colouring.

Theorem. Let $k \geqslant 3$ and let p be an even number greater than $2 k$. Then there exists a k-critical graph of order p.

Proof. As mentioned above, the proof is divided into three stages.
Proposition 1. The theorem holds when

$$
2 k+2 \leqslant p \leqslant 3 k-3
$$

Proof of Proposition 1.

(a) Define h by $p=2 k+2 h$. Let H be a graph of order $4 h+3$ whose existence is guaranteed by Lemma 2. Then we construct the graph G of even order p as the join $G=\bar{H}+K_{p-(4 h+3)}$.
(b) Let us show now that $\rho(G) \geqslant k$. Take an acyclic colouring of G with $\rho(G)$ colours. Denote by c_{r} the number of r-sets of the colouring. As $\rho(G)$ is the smallest number of colours in an acyclic colouring of G, at most one colour class has only one element, so $c_{1}=0$ or 1 . As G does not have 3 independent points, Lemma 1 implies that every colour class has at most 4 points. Thus

$$
\rho(G)=\sum_{1}^{4} c_{r}
$$

and

$$
\begin{equation*}
p=\sum_{1}^{4} r c_{r} \tag{1}
\end{equation*}
$$

Furthermore, if a colour class does have 4 points they all belong to \bar{H}; if a colour class has 3 points then at least 2 of these points belong to \bar{H}. Consequently,

$$
\begin{equation*}
4 c_{4}+2 c_{3} \leqslant 4 h+3 \tag{2}
\end{equation*}
$$

The relations (2) and (1) imply

$$
\begin{aligned}
k & =\frac{1}{4}(2 p-4 h) \leqslant \frac{1}{4}\left\{2 p-\left(4 c_{4}+2 c_{3}-3\right)\right\} \\
& =\frac{1}{4}\left(4 c_{4}+4 c_{3}+4 c_{2}+2 c_{1}+3\right) \\
& =c_{4}+c_{3}+c_{2}+\left(2 c_{1}+3\right) / 4
\end{aligned}
$$

As k is an integer and $c_{1}=0$ or 1 ,

$$
k \leqslant \sum_{1}^{4} c_{r}=\rho(G)
$$

(c) Let e be an edge of G. We shall colour $G-e$ acyclically with $k-1$ colours. This will imply that $\rho(G)=k$ and G is k-critical.

Suppose first that e joins two points of \bar{H}. Then by Lemma 2, $H+e$ contains $K_{3} \cup 2 h K_{2}$ as a spanning subgraph. Colour the points of this K_{3} and a point of $K_{p-(4 h+3)}$ with the first colour. Use each of the next $2 h$ colours to colour the points of a copy of K_{2} (in $K_{3} \cup 2 h K_{2} \subset H+e$) and a point of $K_{p-(4 h+3) \text {. Divide the remaining }}$ $p-(6 h+4)=2 k-4 h-4$ points into $(k-2 h-2) 2$-sets. This gives an acyclic colouring of G with $1+2 h+(k-2 h-2)=k-1$ colours.

Suppose now that e has an endpoint in $K_{p-(4 h+3)}$. Using the facts that H is hamiltonian and $k \geqslant 2 h+3$, one can easily find an acyclic colouring of $G-e$ which has $(2 h+2) 3$-sets and $\{p-3(2 h+2)\} / 2=(k-2 h-3) 2$-sets. Thus $\rho(G-e) \leqslant k-1$, completing the proof of Proposition 1.

Proposition 2. The theorem holds when $3 k-2 \leqslant p \leqslant 4 k-4$.

Proof of Proposition 2.

(a) Given integers $k \geqslant 3$ and p such that $3 k-2 \leqslant p \leqslant 4 k-4$, it is convenient to introduce an auxiliary parameter $n=p-3 k$. Note then that $-2 \leqslant n \leqslant k-4$. Denote by $L_{2 m}$ the graph obtained from $K_{2 m}$ by removing the edges in an arbitrary 1 -factor.

Construct the graph G by taking the following join:

$$
G=2 K_{2 n+5}+L_{p-4 n-10} .
$$

(b) Consider an acyclic colouring of G with $\rho(G)$ colours. Then by Lemma 1 every colour class contains at most 4 points. Even more, if 4 points are in a colour class, they are all in the $2 K_{2 n+5}$ part of G. Therefore there are at most $(n+2) 4$-sets among the colour classes and the rest are 3 -sets or smaller. Counting the number of points in the colour classes, we find that

$$
\begin{aligned}
& \rho(G) \geqslant(n+2)+\frac{3 k+n-4(n+2)}{3} \\
& =(n+2)+(k-n-3+1)=k .
\end{aligned}
$$

(c) Let e be an edge of G. Suppose first that e lies in the $2 K_{2 n+5}$. Then we can choose an acyclic colouring of G having a 5 -set colour class in the $2 K_{2 n+5}$. Further, we can form $(n+1) 4$-sets in the $2 K_{2 n+5}$ and the remaining points can be placed into 3 -sets. Thus the number of colour classes in this acyclic colouring is just $k-1$.

If e is not in $2 K_{2 n+5}$, then there is an acyclic colouring of G with $(n+2) 4$-sets of points in the $2 K_{2 n+5}$ and just one more 4 -set in G. The remaining colour sets can be formed as 3 -sets giving in all $k-1$ colour classes in $G-e$. Thus $\rho(G-e) \leqslant k-1$, as required.

Proposition 3. The theorem holds when $p \geqslant 4 k-4$.

Proof of Proposition 3.

(a) Let $p \geqslant 4 k-4$ be even and let h_{1}, h_{2} be natural numbers such that

$$
4 k-8+2 h_{1}+2 h_{2}=p
$$

Let the graph G of order p be the join

$$
\begin{equation*}
\left(K_{2 k-6}+C_{2 h_{1}+1}\right) \cup\left(K_{2 k-6}+C_{2 h_{2}+1}\right)+\bar{K}_{2}=\left(H_{1} \cup H_{2}\right)+\bar{K}_{2} . \tag{3}
\end{equation*}
$$

Before proving that G is k-critical, we give another description of G.
Let $\tilde{G}_{i}=K_{2 k-4}+C_{2 h_{l}+1}, i=1,2$, and let $u_{i}, v_{i} \in V\left(K_{2 k-4}\right) \subset V\left(\tilde{G}_{i}\right), i=1,2$. Put $G_{i}=\widetilde{G}_{i}-e_{i}, i=1,2$, where e_{i} is the edge $u_{i} v_{i}$ of \tilde{G}_{i}. Then G is obtained from $G_{1} \cup G_{2}$ by identifying u_{1} with u_{2} and v_{1} with v_{2}. Denote by $u, v \in V(G)$ the points obtained from u_{i} and v_{i}. Note that in (3), $V\left(\bar{K}_{2}\right)=\{u, v\}$.
(b) It is easily seen that $\rho\left(\widetilde{G}_{i}\right)=k$ and $\rho\left(H_{i}\right)=k-1$. In fact these are the critical graphs of odd order constructed by Kronk and Mitchem [3].

Suppose G has an acyclic colouring with $k-1$ colours. Then, as $\rho\left(\widetilde{G}_{i}\right)=k$, u and v must be of the same colour, say 1 , and there exists a path P_{i} in $\tilde{G}_{i}-e_{i} \subset G$, connecting u and v, whose vertices all have colour 1. Thus $P_{1} \cup P_{2}$ is a cycle whose vertices are all 1. This contradiction shows that $\rho(G) \geqslant k$.
(c) Let now e be an arbitrary edge of G. To complete the proof of the proposition we have to show that $\rho(G-e) \leqslant k-1$. Without loss of generality it suffices to discuss the following two cases.
(1) $e=u w$, where $w \in V\left(H_{1}\right)$. Colour with 1 the vertices u, v, w and another vertex z of H_{2}. Choose acyclic colourings of $H_{1}-w$ and $H_{2}-z$ with the same $k-2$ colours, different from 1. Thus we obtain an acyclic colouring of G with $k-1$ colours.
(2) e is an edge of H_{1}. Choose an acyclic colouring of the subgraph $\tilde{G}_{2}-e_{2}$ of G with $k-1$ colours. In this colouring, u and v must have the same colour, say 1. As $\rho\left(H_{1}-e_{1}\right)=k-2$, we can find an acyclic colouring of $H_{1}-e$ with $k-2$ new colours. This gives an acyclic colouring of G with $k-1$ colours.

Thus the proof of the theorem is complete. On combining this theorem with the results of [3], we see that for $k \geqslant 3$, there exist k-critical graphs of order $p=2 k-1$ and $p \geqslant 2 k+1$ only.

The above proof of the theorem involves the construction of three different families of graphs. This would be simplified by the discovery of a proof using only one construction.

References

1. G. Chartrand, H. V. Kronk, and C. E. Wall, " The point arboricity of a graph ", Israel J. Math., 6 (1968), 169-175.
2. F. Harary, Graph theory (Addison-Wesley, Reading, Mass., 1969).
3. H. V. Kronk and J. Mitchem, " Critical point-arboritic graphs ", J. London Math. Soc. (2), 9 (1975), 459-466.
4. C. St. J. A. Nash-Williams, "Edge-disjoint spanning trees of finite graphs ", J. London Math. Soc., 36 (1961), 445-450.

Trinity College, Cambridge University.

The University of Michigan and Wolfson College, Oxford University.

