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EXTREMAL MAPPINGS OF FINITE DISTORTION

K. ASTALA, T. IWANIEC, G. J. MARTIN AnD J. ONNINEN

1. Introduction

The theory of mappings of finite distortion has arisen out of a need to extend the
ideas and applications of the classical theory of quasiconformal mappings to the
degenerate elliptic setting. There one finds concrete applications in materials
science, particularly non-linear elasticity and critical phase phenomena, and the
calculus of variations.

In this paper we refine and extend these connections by initiating the study of
extremal problems for mappings with finite distortion.

There are many natural reasons for studying such problems. First, we
eventually hope to lay down the analytical foundations for approaches to
compactifying the moduli spaces for holomorphic dynamical systems such as
Teichmiiller spaces where it is our expectation that a compactification will be by
mappings of finite distortion whose distortion function lies in some natural
integrability class.

Secondly, we find that there are many new and unexpected phenomena
concerning existence, uniqueness and regularity for these extremal problems where
the functionals are polyconvex but typically not convex. These seem to differ
markedly from phenomena observed when studying multi-well type functionals.

Thus our primary aim here is to extend the theory of extremal quasiconformal
mappings by considering integral averages of the distortion function instead of its
L%-norm. Let us indicate the sorts of results we shall prove here by a surprising
example in two dimensions. Suppose f, : S — S is a homeomorphism of the circle.
We ask what is the mapping f : D — D of the disk with f|S = f,, whose distortion
function is minimal in £'-norm. We show that if f, ! € W'/?2(S), then there is a
unique extremal which is a real analytic diffeomorphism with non-vanishing
Jacobian determinant. The condition on f, is sharp. Contrast this with the
classical theory [31] where the mapping f, must be assumed quasisymmetric (a
much stronger assumption). Then there is an extremal quasiconformal mapping
with boundary values f,, but it is not always unique and it is seldom smooth.
Indeed, even when f, is quasisymmetric, the £'-minimiser for the distortion
function will almost never be quasiconformal. This result is doubly surprising
when we note that there is no general modulus of continuity (so no compactness)
nor general improved regularity theory for mappings with only integrable
distortion.
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Away from the £'-theory and closer to the £*-theory we have mappings whose
distortion function is exponentially integrable. In this case there are substantial
results concerning modulus of continuity and regularity available, [16]. From these
one obtains existence of minimisers and some improved regularity for the
boundary value problem as discussed above. However establishing uniqueness
seems difficult.

There are also other natural problems that we shall consider such as the
generalizations to the £! setting of the famous Grotzsch problem concerning
extremal mappings between n-dimensional boxes; see §§6 and 7.

Finally, we wish to make an observation. The principal advantage of minimising
over families of homeomorphisms in the above variational problems lies in the fact
that the inverse maps are also extremal for their own variational integrals.
Sometimes this associated problem is easier to solve than the original one as it
may involve minimising a convex functional. For instance, in n-dimensions, the £!
minimisation problem leads to the n-harmonic equation for the inverse of an
extremal mapping.

2. Formulation of the general problem

We begin by defining the class of mappings which will most concern us here. A
mapping f: Q — Q' between subdomains of R" and of Sobolev class Wlloi (Q,Q) is
said to have finite distortion if there is a measurable function 1 < K(x) < oo such

that
|Df(x)" < K(x) J(z, f) (2.1)
and if J(z, f) € L,.(Q). Here |Df(z)| is the operator norm,
[Df] = max{[Dfv] : [v] = 1},

of the linear differential map Df(z) and J(x,f) =det Df(x) is its Jacobian
determinant. The reader may observe that for homeomorphisms the condition
J(z, f) € LL.(Q) is largely redundant. The smallest function K(z) for which the
distortion inequality (2.1) holds is called the outer distortion of f, defined by
[Df ()"
Kz, f) =———+ 2.2
D= 22
at points where Df(x) exists and is non-singular and we set K(z,f) =1
elsewhere. The operator norm of the differential matrix at (2.2) has the
disadvantage of being insufficiently regular to deal with variational equations.
We therefore introduce the outer distortion function

[Df ()]l
J(z, f)
at points where Df(z) exists and is non-singular and set K(z, f) =1 elsewhere.

Here ||A||*> = n~'tr(A'A) is the mean Hilbert—Schmidt norm. Notice that in two
dimensions

K(z, f) = (2.3)

K ) = 5 (Ko ) + (n=2 (2.4

Ke7)
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is a convex function of K(x, f) and therefore

(o, e =5 (156 Dl + e ) (=2

so that minimising either |K(z,f)|lw or [|K(z, )|« leads to the same
quasiconformal minimisers.

More generally, to every strictly increasing convex function ¥ : [1,00) — [1, 00),
with ¥(1) = 1, we associate two further distortion functions

We can now formulate the major minimisation problem that we shall address.
Let F consist of homeomorphisms f:Q — Q' of finite distortion such that

JQKQ(I’, f)dx < oo. (2.6)

PrROBLEM 1. Given f, € F find a mapping f € F which coincides with f, on
0 and minimizes the integral at (2.6).

We shall also consider related problems where we do not prescribe the precise
boundary values or where we minimise integral averages of other distortion
functions. We now give a fuller discussion of these.

3. Distortion functions

Distortion functions are designed to measure the deviation from conformality of
a given mapping f:Q — Q' by considering the linear differential map
Df(x):R" — R". We shall denote the set of all n x n-matrices by R"*", and
those with positive determinant by R} *". It will be convenient to include the zero
matrix in the domain of distortion functions. The conformal matrices are

COL(n) ={A:|A]" =det A};

equivalently the defining equation could be [|A|" = det A. In two dimensions it is
advantageous to use complex variables. A general linear transformation takes the
form

Az =az+ bz where a,b € C. (3.1)
The determinant, the operator norm and mean Hilbert—Schmidt norm are then
det A= a]” = [b]*, |A] = la| + o], [|AI* = |al* + [b]*. (3.2)

To every pair of ordered f(-tuples I = (iy,...,%) and J=(ji,...,J¢), with
1<ip<...<iy<n and 1<j <. <gesm, there corresponds the /¢ x f-sub-
determinant of a matrix A = [Aj] € R"*" namely

A4
Al =det| : . (3.3)
A;fl Al
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The /th exterior power of A is the (”) X (;‘)—matrix
A= [A5] e RO () (3.4)
indexed by {(-tuples I = (iy,...,%) and J = (ji,...,j,). We shall need the
following well-known identities from exterior algebra:
[AB][XZ AZXZBIX/ [At]éX[ [Alxé}
[ATN = [A™)7Y, det A = (det A)".

Then Cramer’s rule states
A'Ay = (det A)I (3.5)

where A; is the cofactor matrix. To every pair (4,;) there corresponds the (i, j)-
cofactor, which is the product of (—1)""/ with the (n — 1) x (n — 1) subdetermi-
nant obtained by deleting the ith row and the jth column in A. Cramer’s rule can
be formulated by using ¢ x f-minors. Given A’ e R 0)x 'Z), we define the
cofactor matrix Ag” e R (). The cofactor of the element Al is the product
of (—1)tt=Tietittit with the (n—{¢) x (n — f)-subdeterminant obtained by
suppressing the ;,...,7,th rows and j;,...,j,th columns. Cramer’s rule reads as

(AP AL = (det AL (3.6)
Thus in particular, if det A # 0, then
[A7) = (det A)[A™] (3.7)

There is an isometry, called the Hodge star operator, which assigns to A§ %t the
(n — 0)-exterior power of A. This isometry arises from identifying the ¢-tuple I =
(i1,...,1,) with its complementary (n — ¢)-tuple. Hence

‘Agxé} _ |A(n—€)x(n—é)‘ and ”Agxln _ ||A("'_€)X(n_[)”. (3.8)

These identities be can easily derived by reducing A to a diagonal matrix.

The following distortion functions will interest us most as they have the very
important property of being polyconvex; see Appendix A.2. For each A € R}*"
and £ =1,2,...,n— 1, we define

’Aean/ n—{)
(det A)Y/(=0"

||AK><Z||’R/(I’L7£)

K,(A —.
Z( ) (detA)E/(nfé)

K,(4) = (3.9)

We extend this definition to R?*" U {0} by setting K,(0) = K,(0) = 1. Notice that
K,(A)>1 and Ky(A)>1, with equality occurring if and only if A € CO,(n).

The two outer distortion functions discussed previously in (2.2) and (2.3) arise
when /=1 as

K(A) = K, (A" and K(A) =K, (A)"" (3.10)
The corresponding inner distortion functions are
KI(A) = Kn,—l(A) = K(A_l)a KI(A) = Kn—l(A) = ]K(A_l)

When n = 2 the inner distortions are the same as the outer distortions.
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Given the above, a mapping f € Wll(;i(ﬂ, Q') will have finite distortion if
Df(x) € R7*"U{0} for almost every x € Q and J(x,f)=detDf € L] (Q).
Having defined distortion functions for matrices in R7*" U {0} we define for
mappings f: Q — Q' of finite distortion:

|Déxlf(x) ‘”/(”*5)
Y
_ ”Dlxéf(x)”n/(nff)
Y

Ky(z, f) = Ki(Df(x))

: (3.11)

K(z, f) = Ki(Df(x)) (3.12)

The reader may find more about distortion functions in Appendix A.l.

4. Variations of weakly differentiable homeomorphisms

As this paper is largely concerned with Sobolev classes of homeomorphisms we
shall need to establish the existence of suitable variations of such mappings. These
variations may be required to preserve quasiconformality as well as some other
natural properties of mappings. The following theorem captures all those needs.

THEOREM 4.1. Let f:B — R" be a homeomorphism onto its image of the
Sobolev class WI’I(B,R”) and let a € B be a Lebesgue point of Df such that

loc

J(a, f) > 0. Then there exists a diffeomorphism h : B — B, referred to as change of

variables, such that the composite mapping f(x) = f(h(x)) satisfies:

() F(x) = f(x) near OB; .
(ii) the origin is a Lebesgue point of Df;
(iii) Df(0) =1L

The proof for the construction of this change of variables consists of three
lemmas that are of independent interest.

LEMMA 4.1. Given a point a € B and r > |a| there exists a diffeomorphism
® :R" — R" such that

®(0)=a, D®0)=1I and ®(z)=x for|z|>r.

Proof. Such a diffeomorphism ® will be a perturbation of the identity map,
namely

O(z) =z +n(z)a (4.2)
where n € C3°(B,) satisfies

1
Its differential is a matrix of the form
DO(zx) =I+a® Vn. (4.3)

Since 7 assumes its largest value 1 at the origin, we infer that Vn(0) = 0. Hence
D®(0) =1, as claimed. The Jacobian determinant of ® is computed in B, as

det DO =14 (a, V) =1—|a||[Vn| =1 —|a]|| VNl >0 (4.4)
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and det D® = 1 outside B,. In particular, ® is a local diffeomorphism of R" into
itself. Since ®(x) = x outside the ball B,, by topological arguments we conclude
that @ : R" — R" is one-to-one. O

LEMMA 4.2 (Decomposition of matrices). Given A € R}*"and € > 0, there
exist Ay, Ay, ..., A, € RY*™ such that

I—A)|<e fori=1,2,....k (4.5)
and
A:Al'AQ'...'Ak. (46)

Proof. As R}*" is a connected matrix Lie group, we can decompose A as

A=eNefe. Lt (4.7
where X, X,,...,X,, € R"™*"; see [11, Corollary 2.31]. Next choose § = N7,
where N is a large positive integer such that X —1<e for k=1,2,...,m.
Hence

AmefX | o 0X 6Ky 8Ky 80X, 6K,
N times N times N times
= A -Ay-...- A, where k=mN. (4.8)
For every A; we have
I—A;|< max |1—65X’“|< max ‘1—65|Xk‘ <e, (4.9)
1<k<m 1<k<m
as desired. O

LEMMA 4.3. Given A e€R}*™ and r >0, there exists a diffeomorphism
¥ :R" — R" such that

U(0)=0, D¥(0)=A, and V(x)==zx for |z|=>r.

Proof. First assume that A is sufficiently close to the identity matrix, say
I- Al <4 (4.10)

We construct ¥ as a perturbation of the identity ¥(z) =z — (z — Az)n where
neCEB,), 0<n(x)<1, n(0)=1, and ||V7|« < 2/r. We find the differential of
¥ as follows:

DU(x)=1—(I—-A)n— (x — Az) ® Vn. (4.11)
Clearly, D¥(0) = A. In order to see that det DU(x) # 0, we view DU(z) as a
small perturbation of I. For |z|<r we have the following estimate of the
perturbation term:
In(z)(I = A) + (z — Az) @ V| <) [T — Al + |z — Az[ |V (z)]
S Al +r|T= Af[[Vallo
<3I-A] <3 (4.12)
It follows that det DU(x)>47". As in Lemma 4.1 we conclude that ¥ is a
diffeomorphism of R" onto itself. We now can free ourselves from the assumption
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(4.10) by using the decomposition of Lemma 4.2. Accordingly we put A=
Ay Ay - Ap where [I— A <jfori=1,2,... k Let U}, ¥y, ..., 0, :R" - R"
be the diffeomorphisms constructed above, that is,

U,(0) =0, Yy(x)=ux for |z|=r, and DY, (0)=A4A; fori=1,2,... k.

The composition ¥ =¥, o0W,0...0V, : R" — R" satisfies all the assertions of
Lemma 4.3. O

Proof of Theorem 4.1. We define h as the composition of ® from Lemma 4.1
and ¥ from Lemma 4.3. This latter map ¥ is determined by taking
A =[Df(a)]"' € R¥*™. Actually, the composite map

h=®o¥: :R"—=R" 1h(0)=a,

is a diffeomorphism of the entire space R". It maps the unit ball onto itself, and is
the identity near dB. The chain rule applies to f as follows:

Df(x) = Df(h(x)) Df(x) for almost every x € B. (4.13)
In particular, the origin is a Lebesgue point of Df. Moreover,
Df(0) = Df(a) Dh(0) =1 (4.14)
because
Dh(0) = D®(0) D¥(0) = D¥(0) = [Df(a)] " (4.15)
O

5. Sublinear growth, the failure of minimization

We shall henceforth use the mean value notation

s =l

Given a mapping f, : B — R" we now study minima of the variational integral

min JI‘IB\I/[KI(x,f)} dz, (5.1)

in the class F, = F(f,) of all W""(B,R") homeomorphisms f:B — R" which
coincide with f, on dB. We demonstrate that these integrals may not attain the
minimum value if U exhibits sublinear growth, meaning that

lim M

t—o00 t

—0. (5.2)

In many ways this situation is reminiscent of the well-known Lavrentiev
phenomenon in the Calculus of Variations [21]. For simplicity we consider
quasiconformal boundary data. The reader may easily generalise this situation.

THEOREM 5.3. Let W € C[l,00) be a positive strictly increasing function of
sublinear growth. Given a quasiconformal map f,:B — R" we have

fienffo B\II[KI(x, f)ldx =¥(1). (5.4)
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In particular, the minimization problem (5.1) has no solution in F, if f,: 0B — R"
admits no conformal extension to B.

Proof. Let a € B be a Lebesgue point for both Df(x) and V[K(z, f,)] such
that det Df,(a) > 0. We shall make use of Theorem 4.1 to modify f, without
changing its boundary values and quasiconformality. For this modified map, still
denoted by f,, the origin becomes a Lebesgue point of both functions Df, and
U[K;(z, f,)]. What we have gained here is that f, is an isometry near the origin;
we have Df,(0) =1 and U[K,;(0, f,)] = ¥(1). For every 0 < e < r < 1 we consider
the radial mapping ¢: B — B defined by the rule

g(x) =z p(|z]) (5.5)
where
€ if |z <,

xrl) = — 17
pllel) e 6|Jc| if r<|z| <1.

(5.6)
1—r+1—r

The distortion function of g can be explicitly computed [16, p.114] giving the
following estimate:

1 for |z| <,

Ki(z,9) < 2 5.7
1(@,9) r for r < |z| < 1. (5:7)
—r

Note that g(z) = ex for |z| <r. Now the following composite map is a legitimate
competitor for our variational integral:

f@) = fo(g(x)).
The chain rule is valid for quasiconformal mappings, so we can write
Df(x) = Dfo(9(x)) - Dg(x) = € Dfy(ex), for [z|<r.
Hence we obtain the following estimate of the inner distortion function of f:

Ky(ex, f,) for |z| <,

Ki(z, f) < 2K 5.8
nn<) o<1 (5.8)
—-r

where K = | K (x, f,)||o- We may now evaluate the variational integral

JB\IJ[KI(:E, Plde < J UIK ez, £,)) dz + Jr<x|<1qj< 2K ) da.

o < 1—r
Hence
fomie <] wmsnaea-me(ZE) e
B ly|<e r

Using the supposed sublinear growth of ¥ we find that the latter term goes to
zero as 7 — 1. In the first term we let € go to zero. Since the origin is the Lebesgue
point of W[K;(z, f,)], the integral mean converges to W[K;(0, f,)] = ¥(1). In
conclusion, the infimum at (5.4) does not exceed ¥(1). On the other hand the
integrand is always greater than or equal to ¥(1). Thus (5.4) holds.
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Finally, any minimizer of finite distortion must satisfy the point-wise equation
U[K(x, f)]=%(1) ae. inB

or, equivalently, K;(z, f) =1 a.e. in B because VU is strictly increasing. Thus f is
conformal by the Liouville Theorem [16]. This shows that for arbitrary boundary
values, other than those of a conformal mapping of course, there can be no
minimizers to the problem (5.1). O

6. The L£'-Grotzsch problem, n = 2

In this section we present an L!-variant of the celebrated Grétzsch extremal
problem for mappings between rectangles, [8]. In this section we confine our
discussion to two dimensions. Let Q be the unit square in the plane, that is,

Q=1[0,1] x [0,1] cR?,
and Q" be a rectangle
Q' =1[0,2] x [0,1] C R%
We shall show that
iy [] G ) 0= 3 (6.1)

where F consists of homeomorphisms f: Q — Q' in the Sobolev class Wla‘,(@, R?)
of integrable distortion taking vertices into vertices. Our goal is to show that this
free boundary value problem still has unique extremal. Before jumping into the
proof of this result we demonstrate that uniqueness is lost for K(z, f).

THEOREM 6.2. The minimization problem

nnn,JJQJ((z,f)|sz (6.3)

fer

has infinitely many extremals.

Proof. Suppose f € F; we first show that

2<JI@KXzMﬂ|d4? (6.4)

To see this we note that

1
2 gJ |Df(z + iy)| dxz  for almost all y € [0, 1], (6.5)
0

and then after integrating over y we find that

2< || iD= || VEGT VI D s (6.6)

Upon squaring, Holder’s inequality implies that

v< || mGnlaf || s (6.7)
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Since f:Q — Q' is a homeomorphism of the Sobolev class Wféi(Q,RQ), it
follows that

||, 7@ nas<ie (6.5)

where equality holds if f maps sets of zero measure into sets of zero measure. The
claim (6.4) follows.
For every 0 <a < 1, the piece-wise linear map
x + iy if z€0,a] x [0,1],
Z2)=1( 2— 6.9
9(2) R if z € [a,1] x [0,1] (6.9)
1—-a 1—-a

is a minimizer. Indeed, g is the identity if 0 <z <a, while for z<a <1 we have

2za () 2—-a 2—-a
— 1- = —

Dy(z) ( o1 ), |Dg| = T whence K(z,9) = T (6.10)

The integral of K(z,g) does not depend on a; indeed

9 _
“ K(zg)ldd’=a-1+(1-a)>—2=2. (6.11)
Q 1—-a

This completes the proof of Theorem 6.2. (]

The situation is dramatically different for the distortion function K.
THEOREM 6.12. The minimization problem (6.1) has a unique extremal.

Proof. Let f:Q — Q' be any admissible mapping, that is, f & F. Using
complex notation

f(Z) = u(xvy) + iv($7y)a z=x+1y, (613)

we observe that, for almost every 0 < y < 1,

J:uz(x +iy) de = u(l + 1y) — u(iy) = 2, (6.14)
while, for almost every 0 < z < 1,

J;vy(z +iy)dr = u(z +1) —u(z) = 1. (6.15)

Further integration yields

JJ u, drdy =2 and JJ vydrdy = 1. (6.16)
Q Q

We combine these equations in one weighted sum and use the Schwarz inequality
to obtain

5= JJ (2u, +v,) dz dy < JJ V5 \Ju? + v2 dx dy (6.17)
Q Q (

<JJ \/5\/u§+v5+ug+v§dxdy (6.18)
o y T U

_ ﬁﬁ”@npﬂfu = mjj@mmwa?
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Upon squaring both sides, Holder’s inequality implies

25<10|Q’| ”QK(Z, f)ldz*= QOJJQK(Z, f)ldz. (6.19)
In other words,

”QK(Z, Nldz|* =2 forall feF. (6.20)

As expected, equality occurs when f(z) = 2z +iy. We need only show that the
equation

” K(z, f)|dz’=3 for f€ F yields f=2z+iy. (6.21)
Q

To this end, we must examine when equalities occur in the chain of the above
estimates. First, (6.18) holds as an equality if and only if

u, = v, =0, (6.22)

Y

meaning that u depends only on z, and v depends only on y. Recall that (6.17)
came from using the Schwartz inequality. This forces the following relation:

2v, = u, a.e.in Q. (6.23)

Y

As u, and v, depend on different variables, we infer that u, and v, are constant
functions. This leaves only one possibility,

u(z,y) =2z and o(z,y) =y, (6.24)

as claimed. 0O

7. The Grotzsch problem, n > 2

In higher dimensions there are several distortion functions to investigate. Given
{=1,2,...,n—1 we shall consider the minimization problem

Ifrél}_l JQKK(:r,f) dx (7.1)

where F consists of homeomorphisms f = (f',...,f"):Q — Q' of the Sobolev
class W%&S(Q,R”), where p > ¢, with finite distortion for which K,(z, f) is
integrable. Here Q and Q' are rectangular boxes,

Q=[0,a] X ... x [0,a,] CR", Q' =][0,ai] x ... x[0,a,] CR" (7.2)
We shall assume that f maps every (n — 1)-dimensional face
[0,a1] x ... x [0,a;_1] X {a} X [0,a41] X ... X [0,a,], (7.3)
where a = 0 or a = a;, into the corresponding face
[0,a1] x ... x [0,a;_1] x {a'} x [0,a3.1] x ... x [0,a,], (7.4)

where @’ =0 or a’ = aj, respectively. This actually implies that f maps every
{-dimensional face, £ =0,1,...,n, of Q into the corresponding ¢-dimensional face

of Q’.



666 K. ASTALA, T. IWANIEC, G. J. MARTIN AND J. ONNINEN
One example of a mapping in F is the linear map
aj
g(z) = Nz, ..., \m,)  with A, = a (7.5)

THEOREM 7.6. For each £=1,2,...,n—1, the minimization problem (7.1)
has exactly one solution, namely the linear map g.

Proof. We consider the fth exterior power of the differential matrix

D f(z) e R(D*(D) (7.7)
defined for almost every z = (xq,...,x,) € Q. Toevery multi-index I = (1,4, ...,%),
with 1<4; < ... <i,<n, there corresponds the diagonal entry of D’*f, namely

a(fh, ..., fu
u. (7.8)
8(562»1, . ,.’I,'i[>

We shall first prove the following inequality:
o(fn, ... f")
Aiveen A, < ———|dx. 7.9
' ‘ ][@‘8(@1,...,3:%) v (7.9)
To simplify the writing consider the case (iy,is,...,%) = (1,2,...,¢). Fix the
remaining variables x,. 1 = ¢ 1, ..., ¥, = ¢, and define the mapping

F(xy,xy,...,xp) = (fl(x17...,xe7ce+17...,Cn)7...7f[($17...7x[7Cé+17...7cn))
on the closed /-dimensional rectangle
U:=[0,a;] X ... x [0,a,] C R". (7.10)
This mapping is valued in the closed ¢-dimensional rectangle
U :=[0,a{] X ... x [0,a/] C R". (7.11)

By elementary topological arguments we see that F:TU — U’ is a continuous
surjective map, for every parameter

c=(Cpy1y---s0y) €W :=[0,ap1] X ... X [0,a,] (7.12)

Moreover, for almost every ¢ € W this map F belongs to the Sobolev class

Wllt;f(U,U’), where we emphasize that p>¢=dimU. Now the ¢ x f-minor

A(fY,..., f9/0(xy,...,xz,) is nothing other than the Jacobian determinant of F.

At this point we appeal to geometric measure theory (see for instance [2, Theorem
af's - f)

8.3]), to deduce that
JU 8(1’17 .. .,.’L'[)

Integrating with respect to the parameter ¢ € W, by Fubini’s theorem, we obtain

J ’a(fl,...,ff)
UxW 8(1‘1, e ,l’g)

which is the same as (7.9).

day ... de, > |U|. (7.13)

de>|U'|[W|=ai...a;-ap;...a, (7.14)
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We now multiply (7.9) by the product A; ...\, and sum with respect to all

multi-indices
Z Ny - N,)?

1<i<..<iy<n

@1<L1< ~ i <n iy yxy,)
) 1/2
<][ [ > (Ail...AQ)]
Qlyci <<iy<n
i iy |27 1/2
~ [ Z o, £ ] dr. (7.16)
1<i<...<ip<n a(x’h’ o .,x”)
Hence,
, 1/2
[ > Ay }
1<i<..<ig<n
< f [ Z M? v (7.17)
Q 1< <.<iy<n 8(xil’ e ’xii)
oL, ) 2} v
< _ . 7.18
fc@[lgx,;[@z a( Ljpy oo s L, ) ( )

1<j1<<jp<n

The reader may wish to notice that we have added the missing off-diagonal entries
of D"‘f to give us the Hilbert—Schmidt norm of D**’f:

0% o] < frsone

1<i <<ig<n
l/n (n—0)/n
S(f (a:fda:) (}Kgﬂ;fdﬂt) .
Q

The latter follows by Holder’s inequality and the identity
1D fl = T, ) "R, £

In conclusion,

0/ (t—n) n\ -1 9 n/(2n—2¢)
}QKz(x,f)dx>()\1...)\n)' : m) 3 (Ail...A,-{)]

1<ih<..<ip<n
= }QKZ(I, g) dz. (7.19)

Thus the linear map ¢ is a minimizer. As in the previous section we shall establish
the uniqueness of the minimizer by examining all the steps in the above
computation. First, (7.18) holds as an equality if and only if the matrix D*‘f is
diagonal. We now need an algebraic lemma.

LEMMA 7.1. Let A € R"™" be a non-singular matrix whose £th exterior power
At e RO s diagonal. Then A is diagonal.
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Proof. Set A =[A] and note that det A”*’ = (det A)" # 0. Our goal is to

j
show that A% = 0 whenever a # 8. We choose a multi-index I = {i,...,i,}, with

1<i; <...<i,<n containing a but not B. We shall actually prove that the
whole vector

b= (A, A],... A} eR (7.20)

in which A2 is one of the coordinates, is equal to zero. To this end consider the
{ x f-submatrix of A:

AL AL A
M = e . (7.21)
i iy iy

This is a non-singular matrix because det M is an entry of a non-singular diagonal
matrix A”*‘. We may solve the equation Ma = b for a = (ay,as,...,a,) € R'. By
Cramer’s formula the coordinates of a are given by

a _deth
F det M

for k=1,2,...,¢, (7.22)

where M), is a matrix obtained from M by replacing its kth column by the vector
b= (Ag,A‘fl,...,Ag). Since ( does not belong to the set I, det M is an out-
diagonal entry of A“*‘ and, therefore, is equal to zero. We conclude that each
ar, = 0; hence b = M~'a = 0, completing the proof of Lemma 7.1. O

Using this lemma we infer that Df is also diagonal, the case det Df =0 being
trivial. Obviously, the differential matrix can be diagonal only when each of the
coordinate functions depends on its own variable, f' = f!(z;), ..., f" = f"(z,)-
Furthermore, (7.16) becomes an equality only when the minors

‘(‘3(fi',...,fi‘)
o ,...,x;,)

af
61:1@

of
aril

remain, at almost every point, in the same proportion as the products A; ...\,
This is because the Schwarz inequality has been used in (7.16). In other words,
there is a measurable function A = A\(z) such that

6fi1 afiz
=\ oN Ax). 7.23
Ger| | = A ) (7.23)
The left-hand side depends only on the variables z; ,...,z; , forcing A to be a
constant. On the other hand, each coordinate function f'= f'(z;), defined for
0 < z; < a;, must be monotone because f(xy,2s,...,7,) = (f'(21),..., f"(z,)) is a

homeomorphism. We then see that the derivative of each coordinate function is
constant. This leaves the only possibility that

fl@) =N, Az, (7.24)

as desired.
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8. Linear boundary values

We then turn to Problem 1 from the introduction, that is, minimizing of the
integral (2.6) under fixed boundary values f,. We show first that in the case when
the boundary data is linear and the domain has a boundary of finite (n — 1)-
dimensional Hausdorff measure, the problem has a unique minimizer in the full
class WlOF(Q, R™). This rectifiability assumption allows us to use a general form of
Stokes” Theorem in the setting of Sobolev functions.

THEOREM 8.1. Let Q@ CR" be a bounded domain with (n — 1)-rectifiable
boundary and let W : [0,00) — [0,00) be convex with W'(1) >1.

Given any homeomorphism f:Q — Q' of finite distortion, which coincides on
0} with an orientation-preserving affine map f,: R" — R", we have

JQK\I, (x, f)dx > JQK\I, (z, f,) dx. (8.2)

Equality occurs if and only if f= f, on .

Proof. We begin with the subgradient inequality
W(t) = W(ty) = W' (t)(t — to), (8.3)

valid for every t,t, € [1,00). Here U'(¢y) > ¥’'(1) > 0 is any subgradient of ¥ at .
We use the subgradient inequality at the point

IDSI"

=K(D >1, 4
h=K(DL) = 0 (34)
where the inequality holds since f, is non-singular with det Df, > 0.
We claim that for almost every = € ) we have
Ky (Df(z)) — Ky (Df,)
where
Df|"?
I =T(Df,)=V'(t ||+D R .
(Df,) (to) det DJ, fo € R} (8.6)
and
N 1211
—(Df,) = W'(ty) ~_ ¢ R, (8.7)

(det Df,)*

In fact, as f € Wlloi (Q,R"), it has partial derivatives at almost every = € €, and
at such points = we have two possibilities. Since f is a mapping of finite
distortion, either [|[Df(x)|| =0 or det Df(x) >0

In the first case, by definition, Ky (Df(z)) =1 so that

Ky (Df(2)) — Ky (Df,) = ¥(1) — W(K(Df,))
>0 (ty)(1 - K(Df,) > —¥'(t)K(Df,)  (88)
since W' (¢y) > 0. As
(T, Df,) = n¥'(t))K(Df,)
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and
’Ydet Dfo = \Ij/(tO)K(Dfo)a

the lower bound (8.5) follows whenever ||Df(z)|| =0 or det Df(x) = 0.
In the second case, if x € 2 is such a point that det Df(z) > 0, we have from
the subgradient inequality:

Ky(Df(2)) — Ky (Df,) = ¥'(to) (K(Df(x)) — K(Df,))- (8.9)

We then need the inequality (A.11) from the appendix which implies that

_IDf@I" _ IDfI"
det Df(x)  det Df,

K(Df(x)) = K(D/f,)

(2
>l (D51 - 10,
IDfo|"

Furthermore, we estimate by using the Schwarz inequality

ubpys L DL
DI - 120> 1 { Dl

where we recall that (A, B) = Tr(A'B) and ||A|*> = n~'Tr(A'A). Equality here
holds at z if and only if

Df(x) —Df0>7 (8.11)

Df(z) = Mz)Df,, where the scalar function A(z) > 0. (8.12)

Now combining the estimates (8.9), (8.10) and (8.11) yields the desired bound
and shows that (8.5) holds at almost every point x € ).

For the next step we wish to integrate the terms of (8.5) over the domain €.
However, since f is only assumed to be in Wlloi (©2,R"™) we restrict ourselves to an
increasing sequence of compact subdomains Q; € 2, for j=1,2,..., such that
U, = Q and sup; |0Q;| < oo. This is possible since 9€2 is (n — 1)-rectifiable.

Concerning the first term in the right-hand side of (8.5) we observe, using
Stokes’ formula, that

|, @) - prja|<cf 151l (5.13
Q; 09,
as j — oo. Furthermore, in (8.5) the matrix function Df(z) — Df, appears in an
inner product with a constant matrix. We then infer that upon integration, this
first term converges to zero as j — oo.

For the second term in the right-hand side of (8.5) we argue by using the
inequality

|, dee s ar <@ <@ =@ = | @D 319

Note that it is at this point that we have exploited the assumption that f is a
homeomorphism in Wlloi (Q,R"). In conclusion, the limit of the integral of this
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second term is non-negative. This shows that

J Ky(z, f)dx >J Ky(z, f,) dx. (8.15)
Q Q

In order to have equality in (8.15) we must have equality in (8.8) and in (8.11), at
almost all points x € Q. This forces first det Df(x) > 0 and then (8.12) to hold
almost everywhere. Equation (8.12), on the other hand, reads also as

Dg(z) = XNz)I, where g=f, o f. (8.16)

This implies that A=\, is a constant and that g¢g(z) =A,I. Thus f(z)=
Aofo(2) + const. Finally, since f= f, on 0, we conclude that f=f, on Q,
as claimed. O

9. An identity

Variations of the identity we are about to formulate are fairly well known in
geometric function theory; see [2, 20]. However, what we need is not explicitly
stated there and for the convenience of the reader, and because it is quite
important in what follows, we present a complete proof of it. Throughout this
section, € and Q' will be bounded domains in R", with n > 2.

THEOREM 9.1. Let f € Wllo"?(Q,Q’ ) be a homeomorphism of finite distortion
with

J Ki(z, f)dr < c. (9.2)
Q

Then the inverse map h: Q' — Q belongs to W-"(Q',Q) and

JQJD’%(@DI" dy = JQKI(377 f) da. (9.3)

Proof. Fix a test mapping ¢ € CF(Q',R"). For k=1,2,...,n we consider the
Sobolev mappings Fj, € WE"(Q,R"),

loc
R T I R Yt
As the kth coordinate function has compact support, we see that
JQJ(Z, F,)dz=0. (9.5)

A lengthy, though standard, computation shows that the vector field
V(z)=(J(z, F),...,J(x,F,)) (9.6)

can be written as:

(D f(@)] e(f(2) + (@, ))[(D'e)(f(x))]z. (9.7)
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Since [, V(z)dz =0 € R", we obtain

| (D@ I e = - D@t ©3)

Q

At this point we appeal to an old result of Reshetnyak [30, Corollary 1, p.182]
concerning change of variables via a homeomorphism of the Sobolev class
WUH(Q,R"). We make the substitution y = f() in the integral on the left-hand
side to obtain

|, [(Owlnw = -] [Ps)] etrie ae (99)

So far we have only exploited the fact that f € Wllof(Q R") is a homeomorphism.

Before using the identity (9.9) let us recall that f, being a mapping of finite
distortion, satisfies the following condition:

Dif(x) =0 if and only if J(z, f) = 0. (9.10)

Hence

Jsz/[(Dt )y dy’<J |DF £(2) || (£ ()] da
J Vi, ) (@ D"l () da
( Ki(z, f) d:c) v (JQ@(f)|n/(ﬂ—1)J(.’f)>(ﬂ1)/n

1/n
= [1K7 (2, D 1 121l g @y (9.11)

where we have made the substitution y = f(x) again. This estimate tells us
exactly that h € W'"(Q',Q) and its differential satisfies

|, 1R dy< [ Kty (9.12)

Now, knowing that h € W'"(Q',Q), we can legitimately use change of variables to
obtain the identity

| Jonr g = [ 1DrGE@I Iyt = | Koo, pyde, ©13)

completing the proof of Theorem 9.1. O

REMARK 9.1. We still owe the reader an explanation why
| DR(f (@) J(x, f) = Ki(z, f)

almost everywhere. To see this we first observe that both f and h are
differentiable almost everywhere. This elegant result belongs to Vaisdla [32].
The chain rule Dh(f(z)) Df(x) =1 shows that J(z, f) > 0 and J(y,h) > 0 almost
everywhere since both f and h preserve sets of zero measure. (A theorem of
Reshetnyak [30, Corollary 1, p.182], tells us that a homeomorphism f of Sobolev
class W,."" preserves sets of measure zero. Precisely, if |E| =0, then |f(E)| = 0.
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Since in our case the inverse map h also belongs to I/Vﬁ)c”, h also preserves sets of
measure zero. The measure of the image is equal to the integral of the Jacobian
determinant, again by this same result.) Now, the formula is a direct consequence
of the definition of the inner distortion,

MK

e D" f(2)|" T (2, f) = [DR(f@)|"T(z, ). (9.14)

KI(£7 f) :
10. The L'-theory with Dirichlet data

The minimisation problem with general boundary values is of course
considerably deeper than the problem for linear data.

We first study homeomorphisms of finite distortion f:Q — Q' between
bounded domains €,Q’ C R", such that the inner distortion function of f
is integrable.

In view of Theorem 9.1, for f € W, (Q,Q’) the minimization of

loc

JQKI(x,f) dx (10.1)

is closely related to a well-known variational problem for the inverse mapping
h=f1:0-Q.

THE DIRICHLET PROBLEM. Given a mapping h, € W' (', R") minimize the
energy

J.Q/|Dh(y)\" dy < 00 (10.2)
over the class of all mappings h € h, + W(l)’"(Q’ ,R™).

While the existence of the minimizer is guaranteed by the principles of convex
analysis, the uniqueness is a delicate issue due to the lack of strict convexity of the
operator norm. One way out of this is to replace the operator norm by the mean
Hilbert—Schmidt norm. Therefore, we consider the following variational integral:

e = | IphI" g (103)

The advantage of using this functional is that the minimization problem
min [ DRI dy, b€ b, + WE" (@R (10.4)
Q'

admits a unique solution for all Dirichlet data h, € W'™(Q',R"). Moreover, the
minimizer is the unique solution to the m-harmonic equation

Div ||Dh||" 2Dh =0, for h € h, + W;™(Q,R"). (10.5)
This equation simply means that

|, o2 on1 pg) = 0 (10.6)
Qf

for every test mapping ¢ € C°(Q2',R").
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To formulate an analogue of Theorem 9.1 we make use of the mean
Hilbert —Schmidt variant of the inner distortion

_ D@

Kl(xa f) J(x f)n_l - anl(Df(x))v (107)

cf. §3.

THEOREM 10.8. Let f € Wi (Q,Q') be a homeomorphism of finite distortion
with

JQKI(:E, f)dx < oo. (10.9)

Then the inverse map h: Q' — Q belongs to W'(Q',Q) and

|, Iy = [ Koo, ) s (10.10)
Q Q

Proof. The chain of inequalities at (9.11), together with Theorem 9.1,
guarantees that h lies in the Sobolev class W'"(Q’,€2). The only thing we have
to worry about here is the identity (10.10). This follows by replacing (9.14) with
the following computation:

K(z, f) = | D7 f(@)|" J(z, f) = IDR(f(2))|I" T (=, f), (10.11)
which proves the identity (10.10). O

To apply Theorem 10.8 to our variational problem we need to recall some of the
considerable literature on the existence and topological properties of harmonic
maps between planar domains. We refer the reader to the recent book of Duren
[6]. In particular, according to the fundamental theorem of Radé [29], Kneser [18]
and Choquet [3], if © C R* is a bounded convex domain, then each homeo-
morphism A, : 9Q' — 9 has a unique continuous extension h : Q' — Q which is
univalent and maps Q' harmonically to . Then, by a theorem of Lewy [23], the
univalent harmonic map has a non-vanishing Jacobian. Its inverse is therefore a
real analytic diffeomorphism.

We now consider the class F = F(2,Q) of W (Q,R?)-regular homeo-

loc

morphisms f: Q — Q' of finite distortion for which K(z, f) is integrable in €.

THEOREM 10.12. Let Q@ C R?* be a convex domain and f, € F(Q,Q'). Then
the minimization problem

. 2 o

has a unique solution. This extremal map is a C*°-diffeomorphism whose inverse is

harmonic in Q.

Proof. Let H = H(Q',Q) denote the class of inverse mappings h = f~1: Q' — Q
where f € F(,9Q). Thus, in particular, hy = f;' € H(',Q). In light of Theorem
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11.1 we are reduced, equivalently, to the Dirichlet problem

min JJ |Dh|*>,  h=hy on OQ. (10.14)
fen JJa

The existence and uniqueness of the minimizer in the Sobolev class h, + V\/(l)’2 (Q,R?)
is well known. The only point to make is that such a minimizer lies in H(Q', Q) by
the Rad6—Kneser—Choquet and Lewy theorems. O

Recently Hencl, Koskela and Onninen [12] showed, by proving the main
identity (9.3) in this class when n = 2, that the minimisation problem of Theorem
10.12 has a unique minimiser in the class Wy (Q, Q).

COROLLARY 10.1. The extremal map f:€Q — Q' solves the quasilinear
Beltrami equation

o —wn 2 (10.15)

where p: Q' — B is an anti-analytic function valued in the unit disk.

Proof. As f is a diffeomorphism with positive Jacobian,

J(z, f) = |f.)P=|£[7> 0 (10.16)

and thus |fz/f.| < 1. Let us define pu: Q" — B by the equation (10.15). We need
only show that p is anti-analytic. For this reason we consider the inverse map

h(&) = f71(€) to write

h-
e =—3 (10.17)
3
Hence
on _ _(fe) _ Thehe * hehg (10.18)
174 he 77)2 ’ '
¢ (Fe)
as claimed. O

Now the following is immediate.

COROLLARY 10.2 (maximum principle). Let K(z, f) denote the inner
distortion of the extremal map. Then

mSXK(x,f) < r%%XK(m,f) (10.19)

for every U C ).

11. The traces of mappings with integrable distortion

Theorem 10.12 demands, for the sake of completeness, that we give necessary
and sufficient conditions for a homeomorphism f;:9Q — 99’ to admit an
extension f:Q — Q/ which lies in F(€,Q’), the class of Wllo’f(QRQ)-regular
homeomorphisms f: 2 — Q' of finite distortion for which K(z, f) is integrable in
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Q. Recall that for the £°° minimisation problem the requisite notion is that of
quasisymmetry, though in this case there is a surprise; see Theorem 11.27.

THEOREM 11.1. Suppose I' = 0Q and I = 9Q' are C'-regular Jordan curves.
A necessary and sufficient condition that a homeomorphism f,: T — I’ should
extend to an f:Q — Q') where f € F(Q,Q'), is that the double integral

rr() == [ oslite) - )l dzaw (112)

converges absolutely. That is,

”FM\ log|f,(2) = fo(w)|||dz| |dw| < oo. (11.3)

Among all such extensions of f, there is one which maps ) diffeomorphically
onto Q.

Using the Riemann mapping theorem we reduce to the case when both 2 and
Q) are disks in C. Because of the Cl-regularity of I' = 9Q and I'’ = 9Q' neither
the hypotheses nor the assertion of this theorem will be affected by such a change
of variables. Therefore, we shall have established Theorem 11.1 once we prove the
following more precise special case of it.

THEOREM 11.4. Theorem 11.1 holds when Q' is a disk and € has the
additional property of being convex. In this case, for every extension of f, to an
feF(Q,Q"), we have

[ st - swldzaw < || kG p 1z (11.5)

™

Equality occurs only when f=h"', where h:Q’' — Q is the unique harmonic
extension of f;':T'—T. This extremal extension turns out to be a
diffeomorphism.

REMARK. Our results are reminiscent of ideas of Douglas [5], characterizing
boundary functions whose harmonic extension have finite Dirichlet energy; see
Verchota [33] for more. The Douglas condition for h, = f, ' reads as

” ho(§) —
I'xTr’ -

ho (<)

§—¢
Proof. Observe that (11.5) is invariant under translation and rescaling of ',
so we may assume that Q' is the unit disk, Q' =D c C. Consider the inverse
homeomorphism h, : 9D — 9. As shown in the previous section, f, admits an
extension to f € F(2,Q’) if and only if the Poisson extension h : D — Q has finite
energy. Moreover, in this case the inverse map f = h~! provides us with one of the

desired extensions of f, to f € F(Q,Q).

’|dg||d] < oo. (11.6)
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We begin with integral representation formulas of the complex derivatives of
the harmonic map h in terms of f,: ' — JD:

oh 1 dz

%:%Jr—f(,(z) e (11.7)
a—h—ij = (11.8)
da  2milra—f,(z) '

for every a € D. We give the proof only for (11.7); the second identity follows in
much the same way. Consider an exhaustion of 2 by smooth domains
Q€ E...C, such that

a€ f() e f()e...CD. (11.9)
We have

dz dz . dh(§)
Jp ) —a i Jasz" ) —a A Jc £ a

he d€
— lim JC 25d£ + lim J g (11.10)

)
n—00 —a n—oo | ¢, f —a

where the curves C, = f(9Q,) approach 9dD, uniformly as n — co. We do not
claim here that the lengths of C), stay bounded. Since h; is an analytic function in
D, the first integral is independent of the curve C, and equals 2widOh/da, by
Cauchy’s formula. Concerning the second integral, it would be equal to zero if C,,
was a circle. Indeed, we would have

he d€ Ehs dE
== =0 11.11
J K=p & —a J = p> — a€ ( )

by Cauchy’s theorem for anti-analytic functions. The above arguments suggest
imbedding every f(€,) in a disk, say f(,) C D, €D. We can now express the
curve integral by the area integral by using Stokes’ formula

Jcﬂ, ?E—df - JCW, gg—df ; JE)DH Zg—df - JJ]D)”\f(Qn)d [Zg—dﬂ

_ _” fedinds, (11.12)
DA\f(2) (€ —a)

Holder’s inequality yields

J he dé

c.§—a

1/2
< C(” |Dh|2> —0 asn— oo (11.13)
D\ (2,)

completing the proof of (11.7). Having disposed of formulas (11.7) and (11.8) we
can, since |Dh| € £L*(D), compute the Dirichlet integral of h over an arbitrary disk

D, ={&: |l <r}, with 0 <r <1,
2
2|
la| <7

[J, o =211,

2

8_h
da

Oh

52 (11.14)
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The computation of the first integral goes as follows:

on> 1 dzdw
da 4_7T2”F“[f0(2)—a] [f,(w) —a) —

oa
Hence, by Fubini’s theorem,

”< | - 4L772“Fxr<”|a|<r [fo(2) — Lﬁ%m) dzdw.

da
A tedious (but elementary) computation, developing the integrand as a power
series, yields an explicit expression for the area integral

daf ~
Jjaér (5 - a,)(c — a)
where [£] = |(| = 1. We substitute this value into the latter formula to obtain
ohl|? 1 ,
: dal T o log(1 — dz dw. 11.1
Jjagr da ZWJJI‘XI‘ Og( r fo(z)fo(w)) Zdw ( 7)

Similar arguments to those above show that

5 JJ oh
la| <7

|
oa|
These two equations add up to

Cor

” log(1 — 72 f,(2) f,(w)) dz dw. (11.18)
I'xI

J JDT‘D’”Z = —%Hmlog 11— f,(2) f, () dzdw, (11.19)

which, in view of the identity (10.10), can be stated as

N 71TJJFxrlog r* — f,(2) f,(w)| dzdw

]

= QHJHWK(Z, ) |d=|*.

It is now clear that the integral in the left-hand side increases with r. Letting r go
to 1 we see that the limit exists if and only if K(z, f) is integrable. The only point
remaining concerns the equivalence of the following two properties of the
boundary map f,:I' — 0D: the existence of this limit and the absolute
convergence of the integral

[ Jro8152) = o] i . (11.20)

It is clear that, regardless of the regularity of I', the absolute convergence of the
integral at (11.20) implies that

}1}1% erxrlog’r2 - fo(z)m‘ dzdw = erxrlog\fo(z) — f,(w)|dzdw  (11.21)

by the Lebesgue Dominated Convergence Theorem. For the converse, we need
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Cl-regularity of T'. Suppose that the above limit exists. Since the integrand is
invariant under the interchange of the variables z and w, we may replace the
complex area element dzdw by the real one Re(dzdw). However, on C'-regular
curves this latter element is comparable with |dz||dw| when z is sufficiently close
to w, say

$1dz] |dw| < Re(dz dw) <2 |dz| |dw), (11.22)

provided |z — w| < e. The interested reader may wish to observe that this estimate
fails for the cube € =0,1] x [0,1]. Indeed, near the corner (0,0) we may take
z=z and w = iy to obtain

Re(dzdw) = —Re(i dx dy) = 0. (11.23)

On the other hand (11.22), with 2 replaced by some positive number, remains
valid, for example, for polygons with obtuse angles. Now, for C'-regular curves, in
view of (11.22), the existence of the limit and equality at (11.21) becomes
equivalent to the absolute convergence of the integral at (11.2), as desired. 0

ExAMPLE 11.1. Consider a homeomorphism of the unit circle onto itself f, :
0D — JD given by

L€ =€ for —r <6<, (11.24)
where
P0) =7 Sgneelfﬂz/ﬁ (11.25)
The reader may wish to verify that the double integral

T (0 . )
J J log|e @ — 3| 4o d (11.26)
0J—m

diverges. As a corollary, we see that f, has no homeomorphic extension into the
unit disk with integrable distortion.

Note that in the proof of Theorem 11.4 we did not really have to use
Cl-regularity of the convex domain €; we could have used the limit formula at
(11.21) instead of the integral at (11.5). As € is convex, its boundary I' = 0 is
Lipschitz and, therefore, a rectifiable Jordan curve. We leave the details of such
an extension of Theorem 11.4 to arbitrary convex domains to the reader.

Finally in this section, we wish to observe that given quasiconformal
boundary data, even for the disk D, the minimiser of the £!-problem is seldom
quasiconformal.

THEOREM 11.27. Let f,:ID — D be quasiconformal and F, as in Theorem
10.12. Then the unique minimiser of the problem

. 2 _
rfxéljrrl JJQK(Z, Hldz", f=fyon oD (11.28)

is quasiconformal if and only if f, is bi-Lipschitz.

Proof. Set g, = f,!. We know that the minimiser f exists and its inverse h is
the unique harmonic extension of g,|0D. If f is quasiconformal, then so too is h.
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However a theorem of Pavlovié [28] states that the Poisson extension of the
boundary values g, of a quasiconformal mapping is quasiconformal if and only if
the map g, is bi-Lipschitz. Thus f, is bi-Lipschitz. O

Actually [28] points out that the quasiconformality of the Poisson extension is
equivalent to the boundary values themselves being bi-Lipschitz or that the
Hilbert Transform of their derivative lies in £°.

12. Exponentially integrable distortion

In this section we shall be concerned with the variational integrals (2.6) when
U(t) = M for some fixed parameter A > 0. If Q and ' are bounded domains,
we shall consider the family F of all homeomorphisms f:Q — Q of a finite
distortion such that

J XD dp < oo, (12.1)
Q

We fix f, € F and denote by F, the class of all f € F which coincide with f, on
JR. For convenience we assume, moreover, that f, extends to a neighborhood of €2
as a homeomorphism of finite distortion satisfying (12.1).

THEOREM 12.2. The minimization problem

minJ @D g = m (12.3)
fer, Ja

has a solution.

As an interesting first point to make we show that the inverse mapping of any
f € F, has better Sobolev regularity than f itself, namely f~! € W"“"(Q’,Q). This

is an improvement of Theorem 10.8, since we do not assume that f € Wllog(ﬂ, Q).

THEOREM 12.4. Let f:Q — Q' be a homeomorphism of finite distortion with
J @I 4 < o0, (12.5)
Q

Then f lies in the Orlicz—Sobolev space WHF(Q,Q), with P(t) = t"/log(e +t),
and

|Df|" I J AK(z. )
— < — Q|+ ) dax. 12.6
JQlog(e+||Df||”) M e * (12.6)

Moreover, the inverse map h: Q' — Q belongs to W'(Q',Q) and

| Jonray = | ®ite. e (127
Q Q

Proof. We follow the arguments of Theorems 10.8 and 9.1. In the proof of
Theorem 9.1 we defined auxiliary mappings

B = (e P w7, o) = S m g (@), (128)
i=1
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Recall that the assumption fe WL"(Q,R") was used to ensure that

loc

F, e Wlm( ,R"). This regularity of Fj was important in order to have the
identity

JﬂJ(x,Fk) dx = 0. (12.9)

This time the assumptions of Theorem 12.4 only guarantee that f € Wh(Q, Q).

Indeed, for homeomorphisms of the Sobolev class Wlloi (2,9") we have

|, 70y de < 0] = 2, (12.10)

The distortion inequality
IDAI" <Kz, f) J (=, f)
yields
D"
log(e +[IDfI") ~

where we have employed the elementary inequality

—J(  f) + K@D (12.11)

ab<alog(a+1)+¢e" —1 fora,b>0. (12.12)
Hence
IDf" L J AK(z,f)
— |0 T dr < 0. 12.13
ngog(€+|Df|n) A 249
Thus f e WED(Q,Q) € Wi H(Q, Q). Hence also Fj, € WY (Q,R™).
Although the Jacobian determinant of Fj changes sign, the Jacobian is still
locally integrable. Indeed,

J(x, F)de =df' Ao AdffENdwAdffTIA L NS, (12.14)
where

dw—Zgo ) da; +Z Za dff (12.15)

Hence,

n

J(@, Fy)doe = df' A AdfTIAD O (f(e) da AdfTTIA LA AT

i=1

09 (f@)] n
+{;wz 5, }df Ao Adf (12.16)

which is in £'(Q) because fe W' 1(Q,Q') and J(z, f) € £L(Q). Now Lemma
7.8.1 in [16] comes to the rescue as the identity (12.9) still holds.

For (12.7) we appeal to the computation in the proof of Theorem 9.1. The only
point is to justify change of variables, for which we need condition (N). This
condition has been established in [17] for mappings of exponentially integrable

distortion, completing the proof of Theorem 12.4. O

Proof of Theorem 12.2. Let {f;} be a minimizing sequence. That is,

(i) f;: Q — Q' are homeomorphisms which coincide with f,: Q — Q' on 09,
(i) f; € Wit (2,9,
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(iii) [ Df;(2)]" <Kz, ;) J(z, f;) ae.,
(iv) lim; o fo @) dz = m.

As in (12.13) this yields uniform estimates of the differentials in the Orlicz space
LP(Q),
Df|I" 1 .
J % << |9 +J MM dr <O for j=1,2,....  (12.17)
alog(e+ ||DflI") ~ X 0

From these estimates we deduce that the {f;} are equicontinuous on ﬁ._The
simplest way to see this is, perhaps, as follows. We extend each f; beyond @ by

setting
~ ; Q
fi= By on S (12.18)
f,  beyond (.

The extension is possible since f; = f, on 92 and f, is defined in a neighborhood
of €, as a homeomorphism of finite distortion satisfying (12.1). We can now use
the local estimates of [14, Theorem 1.4] to conclude, with equicontinuity of {f;}

on €.
Ascolli’s theorem gives us a subsequence, again denoted by f;, such that

;= f uniformly on Q. (12.19)
Hence
Df; — Df weakly in £”(Q,R"""). (12.20)

Consider then the inverse mappings h; : Q' — Q. Theorem 12.4 yields
J | Dh||" = J Ky(z, f;)de <C, forj=1,2,.... (12.21)
Q' Q

As above, the homeomorphisms {%;} which coincide with the given h, = f, L on
O share a uniform modulus of continuity on Q’. Hence, we find that

h;=h uniformly on Q. (12.22)

This, together with (12.19), implies that f is a homeomorphism, with h as its
inverse. It remains to show that

J M@ gy = m. (12.23)
Q

To this end, we observe that the integrand is polyconvex; see Appendix A.2.
Precisely, we have the following pointwise inequality:

MEX) 5 AKA) |\ AEAWR () K (A)]

A||”‘1 A
S AK(4) AK(A) _”|| _
>e + de “det A —||A|| S X—A

A n
— A K@ 4(!1' ; [1)2 (det X — det A) (12.24)
(§]

for matrices A, X € R*". Given any ¢ > 0 we consider the set Q. € Q on which

J(z, f)>e and |Df(x)]| <1/ (12.25)
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Moreover,

U@ ={zeq:J@f >0} (12.26)

>0
For = € Q,, we can write (see (A.14))
eAJK(a:.,f:y») > e)\]K(:n,f)

+_nAeAW|Df<ar>n'H< Df(x)

D) - Df@))

S, f) N\ |IDf()l
— AMK@) ||f(];(75;))|2| [J(z, f;) = I (z, f)]. (12.27)

For notational simplicity we introduce measurable bounded coefficients
A e LQ,R™™) and a € L2(£,) which enter the right-hand side. Integrating
over €}, yields

J ML) g > J
Q.

— JQ o(z)[J(z, fj) — J(z, [)] da. (12.28)

PRI 4 J (A(x), Df](l') — Df(x))dx

€ €

Q

The last two integrals converge to zero as j — oo. By the definition of outer
distortion,

K,(z, f) = 1<K,(z, f;) whenever J(z, f) = 0.

With this convention in mind we can write

J K@D g 4 J K@) qg
0, J(z,f)=0

< liminf U A KES) g 4 J A KET) dy
Q J(z,f)=0

J—00

< lim infj @S dg = m, (12.29)
Q

J—00

Letting € — 0, we conclude that

J M@ d <m. (12.30)
Q

O

REMARK 12.1. Tt is shown in [19] that in fact J(z, f) > 0 almost everywhere,
so the addition of the integral over the set where J(z, f) = 0 is redundant.

13. Variational equations

Suggested by many problems in the Calculus of Variation we strongly believe
that if U € C*[1,00) then the extremals are continuously differentiable, as in the
case U(t) = t.
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CONJECTURE 13.1. Suppose V¥ is C*-smooth. Then every homeomorphism of
finite distortion on a domain ) that minimizes the variational integral

JOK\II ({E, f) dz
subject to given boundary values is a Ct“-diffeomorphism in .

Unfortunately, we do not even know whether the minimizers enjoy partial
regularity as in the Quasiconvex Calculus of Variations [7].

Under the conjecture we have the following computation. We begin with a
variation of the complex Beltrami coefficient

u(e f) =22, (13.)
I
where we assume that f: Q — Q' is an orientation-preserving diffeomorphism. Let
n € C°(2) be a complex-valued test function. For all sufficiently small complex
parameters A we still have J(z, f + An) > 0, and f + An enjoys the same boundary
values as f. The complex differential of u(z, f), denoted by = p(z, f), is a
C-linear operator on Ci°(£2). It acts on a test function n € C(2) by the rule

R T (132)

Now consider the function

£
o= (e f) = e = (13.3)
Its complex differential is computed by using the chain rule
i = (e ) = i (13.4)
More explicitly, for each n € C(Q),
. . 7z U2
Kl =k(z, flnl=r|l—=—-). 13.5
) = it )l = (2 - %) (135)
Next recall the linear distortion function
[LLPHEE DRI 1+ k(2 )
K(z f) = = = . 13.6
( ) |fz|2_|f2|2 ‘](Z7f) 1 7R(Z7f) ( )
Again by the chain rule we find that
K = K 2;7 e E— 13.7
CN= G (13.7)
that is,
: : 25 (0= m)
Kn] = K(z, = ———). 13.8
= e Dl = 2 (- (135)

More generally, for every convex WU :[1,00) — [1,00) we have the corresponding
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distortion function
fz 2+ fE ’
Ky = Ky f) = W (e ) = w( LA
|fz| _|f2|
whose complex differential equals

kot =t 0= (17) 25 (5 7)

2 1+ kK _E E_H_zz
:<1n>2q’(1—n)(fn|f|2fn)' (13.10)

13.1. The Lagrange—FEuler equations

We want now to discuss the minimizers f of the general variational integrals

” Ky (z, f) |dz|*. (13.11)
Q
If fis also a C'(Q)-diffeomorphism, then
QJ Ky (z f+ M) |dz)>=0 at A=0 (13.12)
oA Ja

for every test function n € Cg°(€2). This gives

[(1—1n>2‘1’/<1+z) m: [fzum—m)ﬂ/(ﬁ:ﬂz

or equivalently

0 (A(k)\ 0 [(A(k)
£< f- >_$< f. ) 1513
where
(14K 2k , |f2|2+|le2> 21117 | £
A =v =U . 13.14
(=) (1—f~e> 1= ry (IfZIQ—IfzIQ -y B

Let us now introduce the so-called conjugate stationary solution g = g(z) in
order to express (13.13) as a first order system. From now on we need to assume
that  is a simply connected domain.

Note that A(k)/fs and A(k)/f. are continuous in . Therefore there is
g € CY(Q), unique up to a constant, such that

99 _A(k) 09 _A(k)

(92 a fz ’ 32 o fz '
Notice that g need not be a homeomorphism even supposing that f were. However
we do have the following.

(13.15)

LEMMA 13.1. The minimizer f and its conjugate stationary function g have
the same complex Beltrami coefficient,

9z = (2)g. with g. fs =gz f. = A(k) >0 (13.16)

for almost every z € ().
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To every extremal mapping f:€ — Q' there corresponds a holomorphic
function F': Q" — C defined by

F(&) =g(f ), (13.17)

where g denotes the conjugate function to f. Indeed, since f is a homeomorphism,
we can always express g(z) = F(f(z)), for some mapping F: Q' — C. Now, F is
holomorphic because f and g have the same Beltrami coefficient. The chain rule
gives the following relations:

9. =F'(f(2) ., 9==F'(f(2)) . (13.18)
Hence
99z _ AW
L A A (13.19)
We recall the derivatives of the inverse map h(§) = f’l(f),
he(€) = —f(2) J(&,h),  he(§) = fo(2) J (&, ), (13.20)

and compute

JEOI_ Ef kT

- o ¢ 13.21
FU& AL o ke a2y

where

k=k(z f) = |n(z £ = (& ) = k(& h). (13.22)

COROLLARY 13.1. Let f:Q— Q' be a C'-diffcomorphism which is a
minimizer for the variational integral (13.11) subject to given boundary values.
Then its inverse h : Q' — § satisfies the Beltrami equation

oh o(&) oh

ah_p S o 13.23

TGN 52
where ¢(£) = —F'(€) is a holomorphic function in Q' and k= k(¢ h) is as in
(13.22).

Tt is appropriate at this stage to recall that mappings satisfying (13.23) with a
constant 0 <k < 1 are referred to as Teichmiiller mappings [22, p.231]. For this
reason we shall call i the pseudo-Teichmiiller mapping. What is so special about
the Beltrami coefficient of A is that its argument is a harmonic function.

Note that in the case when ¥(¢) =t and h is harmonic, as in Theorem 10.8, we
find that

$(€) = hehg (13.24)

where both h, and hz are analytic functions.

The conjugate stationary solutions reduced (13.13) to a first order equation for
the inverse. As an alternative development we note that non-divergence forms of
equation (13.13) are also interesting. These are actually systems of second order
PDEs for the real and imaginary part of f. Since the integrand at (13.11) is
polyconvex, such systems must satisfy the Legendre—Hadamard, -ellipticity
condition; see [4, 10, 26] for more details. Let us consider the simplest case of
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the distortion function

IDFRIP P+

Kz, f) = = : (13.25)
I 0 ILP-IEP
In this case ¥(¢) =t and hence
oLF 2] £2f2
A(r) =7|f§| leL 5 (13.26)
(£ =1£F)
The Euler—Lagrange equation reads as
9 |fz|2fE _ 0 ‘fE|2fz
— ) === = ). (13.27)
92\ J(z f) 9Z\ J(z f)
Lengthly computation reduces (13.27) to an elegant non-divergence equation
sz:afzz+ﬂfEEv (1328)
where
L+ u(z O |LPHIE
see (A.28). This quasilinear system is elliptic, meaning that
2k

Tt is somewhat peculiar that (13.28) turns out to be C-linear with respect to the
second order derivatives. We refer to the appendix for a detailed computation.

13.2. Equations for the inverse map

Suppose that a C!-diffeomorphism f:Q — Q’ is a minimizer of the variational

integral
2, 112
“QKW(Z, £) |d=f?= “g(%) 22, (13.31)

This just amounts to saying that the inverse map h: £’ — Q minimizes the
integral

[], e mstenace= [ o -epro( BEY e 1z

|he|™ — g
This time the variation of the integrand reads as
. . J— — 2Kk J Ne e /
JU+ JUK) = (hene — heng) ¥ + (—5——>\If 13.33
( )] = (hene — hgng) A= wf e (13.33)

whose complex conjugate gives the following divergence form of the Lagrange—
Euler equation:

2([(K+ W' — Ulhg) + 0

¢ g ¥ — (K- 1)W']he) = 0. (13.34)
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First we view the square brackets as given measurable coefficients
0 0
— (M hz) +—=(Nhg) = 13.
g (M 1) + 5 (N ) =0, (13.35)
where
M) = (K+1)¥'(K) - ¥(K) and N(¢) =¥(K)— (K- 1¥'(K), (13.36)

where K = K(&, k). From this point of view, if M = M(§) and N = N (&) happen
to be smooth, then the equation (13.35) is elliptic. Indeed,

(M + N)hg + Mchz + Nehe =0, where M+ N = 2 U'(K) > 0. (13.37)

On the other hand, we may consider (13.35) as the Lagrange—FEuler equation of
a quadratic energy integrand

£l = ”ngVlle + N [e[) el (13.38)

However, inequality M + N > 0 is insufficient for this functional to be convex. We
must assume that both coefficients M(€) and N (&) are non-negative. This happens
if and only if

<K+ 1. (13.39)

The case ¥(K) =K has already been investigated in Theorem 10.12 where we
have shown that h then satisfies the Laplace equation. Practically, there are no
other examples since (13.39) forces almost linear growth of V.

That is why the variational approach has to be abandoned when W has
overlinear growth. There is, however, an interesting and promising non-divergence
form of (13.34). A tedious computation leads to a second order equation

hg = ahg + Bhg + Yhe + Shg, (13.40)

where the complex coefficients «, 3, v and 6 depend in a rather explicit way, by
means of U, only on the first order derivatives h; and hg.

We shall not bother with these explicit formulas here but refer the interested
reader to our appendix. What is perhaps more interesting is the ellipticity
condition

|1+ @A+ BEON > [1OX+6(E)A| (13.41)

for every complex number A of modulus 1. This means that our second order
equation (13.40) is not only elliptic but also lies in the same homotopy class as the
Laplacian [1]. Verification of the ellipticity condition at (13.41) is again postponed
to the appendix.

14. Extremal mappings between annuli

In previous sections we introduced the basic theory for extremal mappings of
finite distortion. Here we apply these methods and ideas in the classic setting of
identifying extremal mappings of finite distortion between annuli. Here we are
quickly brought to consider the properties of harmonic mappings between annuli
and the conjecture of Nitsche discussed next.



EXTREMAL MAPPINGS OF FINITE DISTORTION 689
14.1. The Nitsche Conjecture in the plane

Let A(p,1) be the annulus {z € C: p < |z| < 1} where 0 < p < 1. For a given p
let H(p) be the family of all harmonic homeomorphisms h: A(p,1) — A(o,1).
Denote by r(p) the supremum of o as h varies over the family H(p). In 1962
Nitsche showed that x(p) < 1, that is, that A(p,1) cannot be mapped to an
arbitrarily thin annulus, and posed a question concerning the validity of the
formula

2p
K’(p) - 1 + p2 9
see [27]. The most recent results towards this conjecture can be found in [24, 34].
See too the recent monograph [6].

Nitsche’s conjecture, together with our earlier results, would have the rather
surprising consequence that the L'-minimisation problem among the class of
homeomorphisms

F={f:A(1,p) — A(1,0) and f € W}

has a minimiser if and only if 0 <2p/(1+ p?). (Recently the first three authors
have completely solved this L'-minimisation problem.)

It will be from the point of view of L'-minimisers that we consider the problem.
We shall also weaken the regularity assumptions to W't

14.2. Extremal mappings between annuli

Let
A=A(r,R)={2€C:r< |z < R}

denote the usual round annulus in the plane whose modulus is defined to be
R
M(A) = log?.

A topological annulus A is the homeomorphic image of a round annulus. In the
plane, this is equivalent to being doubly connected, but this is not so in higher
dimensions. We will only be concerned with bounded topological annuli. Such A
can be written as

A=Q\F

where 2 is a bounded topological disk and F' is a relatively compact connected
subset.

Consider now the variational problem of minimising the L'-norm of the
distortion function K(z, f) among all homeomorphisms f of finite distortion on the
annulus A(r, R), normalized so that the modulus of the image has a fixed value
M < log(R/r). With the next theorem we show that for this problem the
minimiser exists, is unique and C'*°-smooth. Moreover, the minimiser is a radial
function and has the explicit form described in (14.4) and (14.5).

THEOREM 14.1. Let f: A= A(r,R) — A be a homeomorphism of finite
distortion. Suppose that

M(A) < logg. (14.2)
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Then
|| wepla= [ w (143
where the extremal mapping f, has the form
folpe®y = €’ p(p), for 0<0 <2r, r<p<R (14.4)
and
p(t) =t+ Vit +a? (14.5)
and the number a is determined from the equation

R+ VR +a?
s r+Vr?+a? .
Equality occurs in (14.3) if and only if f = Afy + b for some \,b € C, with A\ # 0.
The extremal map is unique up to conformal change of the target annulus.

M(A) =2lo

Proof. We may assume that A= Q\ F is a round annulus with radii

Ry=R+VR+d>, ro=r+Vr’+a, (14.6)

and make a few preliminary observations. First, as f € W2 (4) is a homeo-
morphism, we see that the Jacobian determinant

J(zf) =L = £ =0

is an integrable function,
|| 76 st <
If, in addition, the distortion function

z ’ + z ’
it o

then from Holder’s inequality we see that

IDf (=)l = VK2 f) /(2 f) € L'(A).

Thus we in fact have f e Wh(A).

Let S, ={z:|z| =t}, with r <t < R. Then, as a consequence of Fubini’s
Theorem, for almost every ¢ the mapping f& W"!(S,) and is absolutely
continuous. For such ¢, the image of the circle S, is a rectifiable Jordan curve
for which we have the length inequality

K(z f)

Sl< | s+ 1D

z|=t

Next, an elementary computation provides us with the identity

= (S ) Ve (147)
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with K =K(z, f). We now apply Holder’s inequality to see that

<J51|fz| + |fz|>2 < (JS,K+ \/@) L;J(z’ 7. (14.8)

The function x+ x + Va? — 1 is concave for x> 1 and so we may apply Jensens’
inequality to see that

JSIK +VEKE 1< 27rt( ][StK + G&K>2—1)

27t

Then of course

ot | KG D =5 (50 + ),

If we substitute this back into (14.8), we find that

<Jsflfz| + |f;|>2 < % ij(z, . (14.9)

Now we put this into the isoperimetric inequality

] e n< s ()

t
< 2(0) JStJ(va)-

Equivalently,

Js 7 0) 200
|F| + _U’r‘<|z|<t J(Z7 f) ot

Once we notice that the numerator is the derivative of the denominator on the
left-hand side of (14.10) we can integrate this inequality to obtain

(14.10)

1 Ryt
log (1 b ” J(z, f)) > 2J o (14.11)
|F‘ r<|z|[<R rot
Here the area inequality |F|+ ”,.<|Z‘ - J(z, f) <7R} simplifies this expression to
R
t
J @ dt < M = log 1. (14.12)
T o

The next step we wish to take is to compare the above computation with the
particular case f = f;. There we see that

g0(t) =t/ V* +a?,

Kalenf) =5 (i) + o).

R
J 90(t) dt = log&.
T To
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This tells us that

JR 9t = o) ,

t<0
r t

while 1 — 1/g3(t) = —a®/t*. Further, the convexity of g J(g+ 1/g) implies that

(1) o 2) (S

To complete the argument, we note the inequality

|| xen= jRJ K )
= ( >tdt
> ( )tdt—ﬂajfgt—godt
> [] e o).

Tracing the argument back, we see that equality holds only when f is obtained
from fy by a rotation. O

Appendix

A.1. More about distortion functions

For a non-singular matrix A € R}?*" we obtain, from (3.7) and (3.8),

VK(A™) = "VK,(A). (A1)

Various bounds of norms of the matrices A**¢ will be useful.

LEMMA A.1 (Hadamard-type inequality). For every 1<{<k<n and
A € R™", we have

1/¢

|An><m 1//{ ’Alx£’ and ”Anxm”l/ng ”Alxl”l/l' (A2)

Proof. Tt involves no loss of generality to assume that A is diagonal, say
A =diag{\,...,\,}, where 0< X <...<)\,. The first inequality reduces,
equivalently, to

()‘n)‘n—l s >‘7z—fa‘+1)1/ﬁ g (>‘n>‘n—1 s >‘n—€+1)1/( (A3)

which is easy to verify. The second inequality has already been pointed out in [15,
Lemma 2.1] with a proof based on symmetric averages; see also [25]. O

Hadamard’s inequalities give sharp relations between the distortion functions.
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LemMMA A.2. We have the following chains of inequalities:

K <K< ... <K/ <...<K,,<K, (A.4)
and
Kt kP> sk s s k20 s ), (A.5)
Similarly,
Ky <Ko< ... <K <... <K, <K, , (A.6)
and
n— n— n—{)/l n— n—
Ky > K2 R kYO S V0D, (A7)

Proof. Let A€ R!*". We may assume that det A =1. For (A.5) we apply
Lemma A.1. Given 1</< k< n, we have

n/l

[KZ(A)](nff)/Z: |Aé><l| > |Am></‘;|n/h': [KH(A)](717R)/H, (AS)

as desired. The same arguments give inequalities at (A.7) where, instead of the
operator norm, the mean Hilbert—Schmidt norm has been used in the definition of
the distortion functions.

For the inequality at (A.4) we argue in much the same way. This time, we
express K, in terms of the inverse matrix. Since det A = 1, we have

K/(A) = [Kn,—é (A—l)]lf/(”—f): |[A_1] (77,—1{‘)><(n—15)|"/("_é)
<| [A—l](n—n)X(nfﬁ)w/(n—m) _ |Anxn|n/(n—ﬁ,): K.(A) (A9)

by (3.7) and (3.8). Again, the same arguments give the inequalities at (A.6),
completing the proof. O

A.2. Polyconvexity
A matrix function Z: R"*" — R is said to be polyconvex if it can be written as
E=F(AY AP AT (A.10)

where (A1 A2*2 . A"*") is a list of all possible minors of A € R"*" and the
function F is convex. The list of minors can be identified with a point in RY,
where

Thus F:RY - R.
Our basic examples of polyconvex functions are the distortion functions
Ky, Ky s R — R
Precisely,
B HAZXZHn/(nf[)
Kl = qerayren

is a convex function of det A and the f-minors. For this, we observe that the
function z/y” of two variables x,y € R 4 iIs convex whenever ao> 3+ 12>1; see
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[16, Lemma 8.8.2]. In particular,

fo a a—1 «

x a- a a

Hence,

n A0 Y (=0 y »
00 - ) > 2 (ML) - )

n—~{\ det A
/ ”AZXZ'H n/(n—{)
N n—1 -1 HA[XZH £/ (n—=10) AlxL Xlxé _Aéxé
“\ v det A AT’
/¢ ”A({x[H n/(n—1)
- det X — det A). A2
n—/¢ < det A (de et4) ( )
More generally,
PK(A) = P(Kl(A)7 cee aanl(A)) : Rixn - [1700)? (A13)

where

P:[l,00) x ... x [1,00) — [1,00)

(n—1) times

is a given convex function non-decreasing in each variable, when all the other
variables are held fixed. That is, the partials P, = 90P/0; are non-negative. In
particular, we have

n—1

Pe(X) = Pe(A) 2 ) TL(A)K(X) — K, (A)]
(=1

n

> (Gy(A), X — A, (A.14)
/=1

A.3. Second order elliptic system

The variational equations are very useful in the study of extremal problems.
Both the extremal mapping and its inverse turn out to satisfy their own second
order system of PDEs. It is important to examine the ellipticity of such systems.
We include in this appendix a brief discussion of the systems of two equations
with two unknowns. Using complex numbers we find that the system reduces to
one complex equation. The general form of the second order elliptic operator is

o 0* 0* 0* 0* o

_ \ \ \
L=alx) g 55 T @ g 5, TG g5 + 2555 T ¢ g, 5; H 19g257

For a fixed z € Q C C, the coefficients give rise to a point (a,b,¢,0,¢,f) € CS. The
ellipticity conditions determine an open set E C CS. This set, as shown by Bojarski
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[1], consists of six components represented by

5 &
0207’ 0207
2 T2
0 9 (A.15)
020z’ 0207
o? ?
0z0z'  0z0%’

In contrast with the scalar elliptic equations the elliptic systems with measurable
coefficients are not well developed yet; see [13, 9] for details. It turns out that the
systems in the same homotopy class as the Laplacian A =48°/0z0% (or its
complex conjugate A ) are best suited to the regularity properties of the solutions.
In [1] it is shown that such systems take the form

sz = OZ(Z) fzz+ﬂ(z) f?E+7(Z)E+6(’2) Ea (A16)

where the ellipticity condition reads as
|14+ a(z) A+ B(2) A| > [v(2) XA+ 6(2) A| (A.17)

for all A€ C with modulus 1. The next two subsections are devoted to a
computation showing that variational equations for the extremal mappings belong
to this homotopy class.

A.3.1. The Lagrange—FEuler equation in non-divergence form. We begin this
section by issuing a warning. The computations below can only be rigorously
justified for specific extremals only after we have established sufficient regularity.

We are going to express the variational equation (13.13) in non-divergence
form. In our computation the explicit formula for A = A(k) is irrelevant. Before
formulating the equation we need to introduce the following coefficients:

fz fE
a(z) ==, b(z) =-~. (A.18)
|fz| |f2|
Hence, the complex dilatation of f is
wiz) =Z=abk (A.19)

where k= [fz[/[f.]
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LEMMA A.3. Equation (13.13) is equivalent to

kA f (I«UA’ 2,<;> &f

C=r) a0 *\a 1o

Proof.  For notational simplicity we introduce the function A(k) = A(k*) = A(k)
and collect some formulas first. The chain rule gives

0A o Ok
i - A21
oA (A21)
0A 1o Ok
53 A'(k) 7 (A.22)
The derivatives of k become linear forms of the second derivatives of f, namely
ok  — - _ B
2‘fz|azbf22 + bfz? - ka‘fz? - ka’fzz7 (A23)
[ S _
ASI G =B fex + BTz ~ Kafx — kaToe (A.22)
Equation (13.13) expands into
(Ff2hs = LER)A(KR) = (Ffz = £ L) AK) (A.25)
which, in view of formulas (A.23) and (A.24), takes the form
2\ 3 FT 2 2A 27—
_Qkfzé+(1+k)abf23 + k“ab 1+k—./4/ fzz_ka fzz
- 2A 9

Finally, we solve this linear equation for f- in terms of f., and f= to conclude
with (A.20). O

It is interesting to know when the equation (A.20) is linear over the field of
complex numbers. This happens if and only if

kA'(k) 14k
Ak) 1—-r (),

(A.27)

in which case the equation reduces to

A+r)fz=pnfe + Afz (A.28)
as claimed at (13.28). Note that the only solution to (A.27), up to a multiplicative
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constant, is

A(k) = (A.29)

as in (13.26).
Recall that the formula (A.20) is the variational equation for the functional

JJQKW(Z, £)ldz)? (A.30)
where
Ky = U(K) = ¥ G - :) (A.31)
and U :[1,00) — [1,00) is convex, with ¥(1) = 1. In this case
Ar) = \IJG * Z) q i)z . (A.32)

We want hence to express kA'(k)/A(k) in terms of ¥. Elementary computation
yields
2kA" (k) "

Ay = XK (K*—1) 37 (A.33)

On substituting this into (A.20) we obtain

’ 121<K+\111/ + K=Y aaja]; = R+ (& -] ? aajéfz
+ 20" — (K* - 1) ¥"] % %
2
K- 1) "] i s
— [(K*—1)w"] % £~ (A.34)

A.3.2. Non-divergence equation for the inverse map. We begin with the
system in divergence form

([P(K) = (K + 1) (K)] hg)¢ = ([¥(K) = (K = ¥’ (K)] he)e (A.35)

which we have derived at (13.34). To make further calculations we need the

following identity:

2[he[*Ke = (K +1)*[h by + hghg] — (K= 1)2[hgche + hgh].  (A.36)

As K= (14+k)/(1 — k), we find that

2 Ok
K=—°2 ="
¢ (1_5)2 8@-
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and we compute
2
ok Il o o
|h| e |h| (—2 = (hghg + hghg) — k(b he + hghe),
¢ lhel™ /¢

from which formula (A.36) can be obtained.

Now, formally differentiating the equations in divergence form gives us the
second order system

0 = 49" (K) e *hg + (K + 1) (hgz [he|* + gz h2) 9" (K)

— (K+ 1)(K = 1)*(hg hehe + heg hzh) V" (K)

— (K= 1)(K+1)*(hgg hehe + hg highe) 0" (K)
+ (K= 1) (hec b + he |he*) 2" (K).
We write ®(K) = ¥/(K)/P"(K) and collect terms to find that
0= he [4he[*® + (K + 1)°|hg|* + (K — 1)°|h[*]

— b [(K+1)(K—1)*hghe + (K= 1)(K+1)°hz h¢]

— g [(K+1)(K = 1)°hz he]

+he [(K—1)°R7]

+he [(K+1)°h2]

— hz [(K = (K + 1)° Bz he .
and

0= he [4® + (K + 1)’k + (K - 1)*]

el

—he [(K+1)(K—-1)° + (K - 1)(K+1)*]

AN

h_
— hee [(K+1)(K — 1)2]h_z
+h«[<K1>3]Z=j
ey
+ hz [(K+1) ]W

— hz (K= 1)(K+1)7]

A
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We simplify these terms and remove the common factor of K — 1:

0="hg %—&-2(]1{2 +1)| = hg [2K(K +1)] Z
he
—he [(K+ 1)K -1)]* e (K- 1) =
¢ ¢
h2 h-
— hz [(K+1)7] =

Now to simplify matters we make a couple of substitutions and write everything
in terms of k = k(¢, h); here recall that we have used the notation x = k* above.
We put

h, hz
a:—c, b:—c7
] ]
and recall that
1+ K 2 2k?
K:m, Whence K-’-lzm and K—].:m

Our equations now have a common factor 4(1 — k?)? and when this is removed
and we substitute

2(1 — K2)?®  2(1 — k»)*0’
k‘2 = k‘2‘1/// ’

P =
they read as
0= [P+ (1+K)hg— (1+k)kabhg — Kabh
427 | 127 7
The complex conjugate equation reads as
0=[P+ 1+ hg— (1+K)kabhg — kbahg
42 72 _—
We multiply (A.37) by [P+ (1 4 k)] and equation (A.38) by (1 + k*)kab and add

so as to eliminate the term h@ We obtain

0=hg [P+ (1 +k) =1 +F)]
+he [P — 1+ Y+ A+ E)]Kab

+hg<[ + 1+ kY = 1+ )] Ka?

+hg [P+ (1+E) — (1+ )]0
+hg [—P— (1+ k) + (1+ k)] kab,

which simplifies to the following result.

LEMMA A.4. The inverse mapping satisfies the equation
[P +2P(1+ k') + (1 =) (1 — k) | hg
=[P+ 1—k)]Kabhe + [P — k(1 - k)] kabhg

+[KF(1-K)-Plk'a’hg + [k - P —1]b2h—

% (A.39)
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where
_12\2yy!
p_ 20— KPv
kQ\I/”

In a moment we are going to try to determine if this system is elliptic and in
order to do this we need to simplify these equations as much as possible. For this
reason we introduce the new variable

20/ (K)

D= nwm

and remove a further common factor to obtain the system
0=[D*(1—K)+2D(1+ k') + (1 = k) hgz
+[D+ 1)K abhe — [k — D] kab hg
2174 27— 27—
+[D -k ]Ka he+[D+1]b hz

We now recall that an operator of the form Hh@—l—ah({ + ﬁha—l—’yh_«—l— 6h—§ is
elliptic and lies in the same homotopy class as the Laplacian if and only if

|04+ aX + BA] > |yA + 6\ | (A.40)

for every A € C with |A\| =1. For us the desired inequality reads, after a little
simplification, as

| (D — E)E'a*X + (D + 1)) |
<|D*(1— k) 42D+ k) +1 -k — (D + 1)k*ab)\ + (k> — D)kabX |.
In order to simplify this notation we introduce the new complex variable
E=abA, [¢=1,
and then we need to show, for D > 0, that
(D~ KK+ (D + 1)¢ |

<|D*1—K)+2DA+E)+1 -k — (D+1)E¢ + (K — D)KE|. (A.41)
Before establishing this inequality we suggest that the reader checks the limiting
and easier case D =0 (that is K = co) by verifying that

L= K — K+ KE| = ¢ - K°%).

We now turn to establishing the ellipticity condition at (A.41). We write
€ =z + iy for real = and y, with 22 + y> = 1. We put this into the inequality and
separate out the real and imaginary parts and then compute the square of the
absolute values. We are thus asked to verify that

[(D—=K)E' +(D+1) %2> + [(D-E)E' — D — 1%
< [D*A—K)+2DA + ) +1 -k —kD(1 + k*)z)?
+ [2k* + DE(K* — 1) ]* "
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We next write 3> = 1 — 2 to obtain a quadratic polynomial in z,

[D*(1— k) +2D(1 + k') +1—k5)?
—2kD(1 + K[ D*(1 = k%) +2D(1 + k") +1 - K]z
+ K D*(1 + k*)2® 4 [2k* + Dk(K* — 1) ]
— 2+ DE(K =D 2® = [(D— K + D+1)%2°
— (DK =D -1 +[(D- k) =D — 12> > 0.

Next we group together the coefficients of z? and find that there sum is negative.
That is, we see that

K D*(1+ k%) — [2k* + Dk(K* — 1)) = [(D — K))k* + D+ 1]
+ (D= KK —(D+1)]?
= - D*,(1+ k)1 +2K*) < 0.

This then implies that the extreme case is when x =1 and y = 0. Thus the
inequality (A.41) reduces to showing that

|D*(1 = k) +2D(1 4+ kY +1 — K — kD1 + k)| > |(D — K))k* + D + 1|
That is,
D*(1 — k) + D2+ 2k — K — k) > D(K* + 1).
Rearranging and simplifying, we see that this reduces to verifying that
D*(1—K)+D(1—-k)1—k) >0

which, in view of the fact that 0 <k < 1, is clear.
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