
NON-HOMOGENEOUS CUBIC EQUATIONS

H. DAVENPORT and D. J. LEWIS

1. Introduction

Let <j>{xx, ...,xn) = <f>(x) be a cubic polynomial in n variables with
integral coefficients, say

ff>=C{xv ...,xn)+Q(xv ...,xn) + L(xlt ...,xn)+N, (1)

where C, Q, L are cubic, quadratic and linear forms respectively and N
is an integer. We shall suppose that <f> is not degenerate, that is, that <j>
cannot be transformed into a cubic polynomial in fewer than n variables
by any integral unimodular linear substitution (not necessarily homo-
geneous) on the variables. This does not preclude the possibility that
the cubic form C may degenerate, but we shall suppose that C does not
vanish identically.

Our object is to prove that under certain conditions the equation

4>(xlt...,xn) = 0 (2)

will have a solution in integers; and in fact our conditions will be such as
to ensure that there are infinitely many solutions and to enable us to say
something about their distribution.

It was proved recently! that a homogeneous cubic equation always
has a non-trivial integral solution if n ^ 16. But it is easily seen that no
condition on the size of n can suffice to ensure the solubility of non-
homogeneous equations. In the first place, the following congruence
condition is obviously necessary for solubility, and this condition need
not be satisfied however large n is postulated to be.

Congruence condition. The congruence

<f>(xv...,xn) = 0 (modp») (3)

is soluble% for every prime power pv.

For the analogous problem with a quadratic polynomial instead of a
cubic polynomial, the congruence condition together with the supposition
that the quadratic part of the polynomial is indefinite, is sufficient§ to
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f H. Davenport, " Cubic forms in sixteen variables ", Proc. Royal Soc. (A), 272 (1963),
285-303. This paper was based in part on an earlier paper: " Cubic forms in 32 variables ",
Phil. Trans. Royal Soc. (A), 251 (1959), 193-232. These papers will be referred to as
C.F.16 and C.F.32, respectively.

| The zero solution is admissible, both in (3) and (2).
§ See G. L. Watson, " Indefinite quadratic Diophantine equations ", Mathematika,

8 (1961), 32-38 (Theorem 1).
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ensure integral solubility provided n ^ 5. But a similar result cannot
hold for cubic polynomials. This is illustrated by the following simple
example (due to Dr. G. L. Watson):

It is easily proved that the congruence condition is satisfied if n ^ 5, but
the equation <f> = 0 is insoluble in integers since

A supplementary condition is therefore needed, and we shall give such
a condition in terms of an invariant h(C) of the cubic part C of <f>, which
we introduced recentlyf in a different context. We define h = h(C) to
be the least positive integer such that C(xv ..., xn) is expressible identically
as

Lx(xx, ...,xn)Qx{xx, ...,xn)+... + Lh(xx, ...,xn)Qh{xx, . . . , x n ) , (4)

where Lx, ..., Lh and Qx, ..., Qh are linear and quadratic forms respectively,
with rational^: coefficients. Equivalently, we can define n—h to be the
greatest dimension of any rational linear space contained in the hyper-
surface C = 0; in the representation (4) such a linear space is given by

Plainly h(C) ^.n, and since C does not vanish identically we have
By a combination of the methods used in C.F.I6 and E.S., we shall

prove

THEOREM 1. Suppose that h(C)^ll and that<f>satisfies the congruence
condition. Then the equation (2) has infinitely many solutions in integers.

This will be a consequence of an asymptotic formula which we shall
establish (in Lemma 8) for the number of integer solutions of <f> = 0 with
(xv ..., xn) in a suitable box whose linear dimensions are proportional to
P, as P-^oo; the main term in the asymptotic formula being of order
pn-3

The results apply in the special case when <f> is homogeneous, i.e. when
(f> = C, in which case the congruence condition is trivially satisfied. Thus,
provided h{C)^ll, we get an asymptotic formula of the kind just
described, for the solutions of C(x1} ...,xn) = 0. This formula supple-
ments the results of C.F.I6, where no such asymptotic formula was proved
because the work of that paper presupposed that C did not represent zero.

f " Exponential sums in many variables ", American J. of Math., 84 (1962), 649-665.
This will be referred to as E.S.

% It is easily proved that Lx, ..., Lh and Qx, ..., Qh can in fact be taken to have
integral coefficients.
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Nor would such a formula be true without some condition on h(C). For
if, say, h = 2, we could express G identically as

and the solutions of C = 0 with Lx = L2 = 0 in a box of the kind described
above are in number proportional to Pn~2.

The invariant h of C(x) can also be regarded as an invariant of the
polynomial <f>{x), under integral unimodular substitutions (not necessarily
homogeneous), since <j> determines C uniquely. We can restate the signi-
ficance of h in relation to <f>, as follows. We consider any polynomial
equivalent to <f>, and ask what is the maximum number in a subset of
variables which do not occur in this polynomial to the third power. The
greatest number, for all equivalent polynomials, is n—h. This follows easily
from the earlier definition of h, since the cubic part of tf> in (4) is equivalent to

x1Q1'(xv ...,xn) + ...+xhQh'(xv ...,xn),

and here xh+v ...,xn do not occur to the third power. The argument is
reversible.

It may be as well to remark that the value of h is not independent of
the field of coefficients; it may diminish if the field is extended.

In a companion paper to this one, Dr. Watson establishes the solubility
of 0 = 0, subject to the congruence condition, when i^.h^.n—4 and
n ^ 20. His work is based on the interpretation of h just given, which
implies that an equivalent equation becomes quadratic (at most) in n—h
variables when h variables are given any constant values. Combining
the results of both papers, we obtain

THEOREM 2. (Davenport, Lewis, Watson.) / /

n^20 and fc(C)>4

and if <f> satisfies the congruence condition, then (2) is soluble in integers.

Returning to the present paper, we remark that it is essential, in connec-
tion with the asymptotic formula of Lemma 8, to show that the sum of the
singular series associated with the equation (f> = 0 is positive. The usual
way of establishing this is to prove that for every prime p the equation
(f> = 0 has a non-singular integral solution in the jp-adic number field.
This is equivalent to saying that for every v there is a solution of the
congruence (3) for which one at least of the partial derivatives

d(f>ldxv ..., d<f>/dxn

is divisible only by a power of p which is bounded independently of v.
We shall deduce the truth of this from the simpler congruence condition
stated earlier. We prove

THEOREM 3. / / n ^ 15 and if <f> satisfies the congruence condition, then
the equation <f> = 0 has a non-singular integral solution in every p-adic field.
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This result is used also in Dr. Watson's paper. The condition that
n ^ 15 is best possible. For consider the example

2\~P 1^5*^1 ~T~ & 1 *^2 <~ 7 1 3~T~ 8 1 4~l .) 2

I ^ l O ^ ^ I ^11*^2*^4 T ^12*^3 "T ^ 1 3 ^ 3 ^ 4 I ^ 1 4 ^ 4 J

in 14 variables, where p is a prime and N is a quadratic non-residue
This polynomial is non-degenerate and satisfies the congruence condition
trivially (with all the variables 0), but the only integral jp-adic solutions
are those with x1 = x2 = x3 = x4 = 0, and these are all singular.

2. Proof of Theorem 3

It will be convenient to prove a slightly more general result: we shall
allow the coefficients of <f> to be ^)-adic integers instead of restricting them
to being rational integers. This generalization does not affect the meaning
of the congruence condition, and it is immaterial in (3) whether xv ..., xn

are rational integers or £>-adic integers.
We suppose that § does not degenerate in the ^)-adic field, that is,

under linear substitutions with ^j-adic integral coefficients. It is easily
seen that a polynomial with rational integral coefficients which does not
degenerate in the rational field also does not degenerate in any extension
of that field, and in particular in the p-&dic field. For a polynomial <f>
can be transformed into a polynomial in n— 1 variables by a non-singular
linear substitution (not necessarily homogeneous) if and only if there
exist numbers tlt ...,tn such that

identically in xv ..., xn. This identity is equivalent to a system of homo-
geneous linear equations in tx, ..., tn, and if this system is soluble at all
it is soluble in the rational field.

We have to prove that the equation 0 = 0 has a non-singular ^p-adic
integral solution. That is, we have to prove that for every v there exist
xv ...,xn satisfying (3) and such that the highest power of p dividing all
of d^/dXj is bounded independently of v. Here again it is immaterial
whether xx, ...,xn are rational integers or p-adic integers.

Let s#(pl) denote the condition that there exist xv ...,xn such that

<f>(xv...,xn) = 0
and

Xj = 0 (modp1'1) for all j ,

j ^ 0 (modp1) for some j .

Then for the existence of a non-singular jp-adic integral solution it is
necessary and sufficient that the condition s/(pl) shall be satisfied for
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some I. The necessity is immediate, on taking pl~x to be the highest power
of p dividing all d^/dx^ at the hypothetical non-singular solution. The
sufficiency is proved by a well-known process ("Newton approximation"
or "Hensel's lemma") which continues the solution (mo&p21-1) to a
solution (modpv) for every v>2l— 1.

The condition jtf(pl) was used in C.F.32 (p. 197 et seq.), though in that
paper only cubic forms were being considered.

We now proceed with the proof of Theorem 3. By hypothesis there
is a solution xM of

for every positive integer v. The sequence xM has at least one limit point
in the #>-adic sense as v -»• oo ; if a is such a limit point then a is a ̂ p-adic
integral point which satisfies <£(oc) = 0. By replacing x by x-f-a, we can
suppose without loss of generality that a = 0. Hence (1) becomes

cf>(x) = C(x) + Q(x)+L(x).

If .L(x) does not vanish identically the solution x = 0 is non-singular,
since the coefficients in L(x) are the values of the partial derivatives
d^jdXj at this point. Thus we can suppose that

<f>(x) = C(x)+Q(x). (5)

Case 1. Suppose Q(x) = 0 identically. Then <f>(x) = C(x) is a non-
degenerate cubic form in n variables with p-a,dic integral coefficients.
We can approximate to C(x) arbitrarily precisely, in the #-adic sense,
by a form C1(x) with rational integral coefficients. The arithmetical
invariantf used in C.F.32, the vanishing of which expresses the degeneracy
of the form, will be different from zero for C^x), since it is different from
zero for C(x). By Lemma 2.8 of C.F.32, since n > 10, the form C^x)
satisfies the condition s#{pl) for some I, and from the proof of that lemma
it will be seen that I is bounded in terms of the power to which p divides
the arithmetical invariant of Cx(x). If the approximation to C(x) by
Cx(x) is sufficiently precise, this will be the same as the power to which p
divides the arithmetical invariant of C(x), and so will be bounded.
Further, if the approximation is sufficiently precise, the fact that Cf

1(x)
has the property jtf(pl) implies that C(x) has the property stf(pl). Hence
the result.

Case 2. Suppose the quadratic form Q{x) has rank 5 or more. Then
Q(x) is equivalent to a non-degenerate quadratic form in 5 or more
variables. It is well known that such a form represents zero non-trivially

t The invariant in question is denoted by h(C) in C.F.32, but has no connection with
the h(C) of the present paper.
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in the ^p-adic field, and the representation is necessarily non-singular.
Hence there exists a jp-adic integral point (3 at which

Q(0) = 0, g«(P) # 0 for some j ,

where the superscript denotes a partial derivative.
Let px be the highest power of p dividing all the numbers

so that
0 (mod^A+1) for some j .

Choose v > 2A-f-l and take Y=JP"P- T n e n

*(Y) = C(Y) + Q(y)=p*»C(P)+0^0 (mod**).

Also, for some j ,
CO)(Y) =p* CW(P) = 0

« 0

Hence
0

Since 3v >2(v+A+l)—1, the polynomial <£(x) has" the property
for some Z^v+A-f 1, and this proves the result.

Case 3. Suppose Q(x) has rank r= 1, 2, 3 or 4. By a unimodular
2>-adic integral linear transformation from x to y we can express Q{x)
in (5) as R{y1, ...,yr) where R is a non-singular quadratic form. By
collecting together those terms in the transform of C(x) which contain
yv then those which contain y2, and so on, we can write

1, ...,yn) + ...+yrRr(yv ...,yn)

+r(yr+v-,yn)+R(yi>->yr), (6)

where Rlt ..., Rr are quadratic forms and P is a cubic form.

Case 3a. Suppose T (yr+v ...,yn)is not identically zero. Choose £>-adic
integers Sv ...,8r and Sr+1, ..., 8n such that

...tSr)^0l T(8r+1> . . . , 8 B ) # 0 .

Let pP be the exact power of p dividing F(Sr+1, ..., 8n). Define

Write

ro(y)

Then Fo is a cubic form in yx, ..., yn, and

ro(€) = O (modpP), r o (e)#O (mod^+i). (7)
Also

R(ev ..., €r)=p*P+*R(8v ..., Sr) = 0 (mod^+2). (8)
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Define a p-a,dic number /JL by

Then fj, =£ 0 and n is a ^p-adic integer by (7) and (8). We have

^(/*e) = /*»ro(e)+/*» *(e) = <>.

Further, by Euler's theorem on homogeneous functions,

n n
S € , 0 « V e ) = S 6 , ^ roW(€)+/x2Pfl(e)} = 3/*»ro(e) + 2/*JB(e)

3 = 1 3 = 1

Hence the point y = pe provides a non-singular £>-adic integral solution
of«£(y) = 0.

Case 3b. Suppose V(yr+1, ...,yn)in (6) vanishes identically. We now
have

Suppose first that there is some j (1 < j < r) for which the quadratic form

Rj(O,...,O,yr+1)...,yn) (9)

in n—r variables does not vanish identically. Choose #-adic integers
yr+1, ...,ynfor which the value of this form is not zero. Then the point

(0, ...,0,

provides a non-singular £>-adic integral solution of ^(y) = 0, since at this
point the partial derivative of if/(y) with respect to yj is the number (9).

Now suppose that the forms (9) are all identically zero. Then every
term in each of the quadratic forms Rj{yx> •••> yn)

 m u s * contain at least
one of the variables yv ..., yr. Hence any term in ifj(y) which contains
any of yr+1, ...,ynisof the first degree in the latter set of variables. Thus
we can write

where Sr+1, ..., Sn are quadratic forms and I \ is a cubic form.

The quadratic forms Sr+1, ..., Sn must be linearly independent, since
otherwise we could express </»(y) as a polynomial in fewer than n variables,
contrary to the hypothesis that </>(x) does not degenerate. The number
of possible terms in a quadratic form in r variables is \r{r-\-1); hence any
set of linearly independent forms cannot number more than this. It
follows that

and since r < 4, this implies that n < 14. This contradicts our hypothesis,
and the proof is complete.
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3. The exponential sum

Let 88 be a fixed box in n dimensional space, defined by inequalities
of the type

x/^x^x/' (l<i<n), (10)

and suppose (merely for convenience) that 0<x/'—x/ < 1. Let P be
a large positive integer and let a be a real number. Define

£ ( a ) = 2 eUcf>(xv . . . , x n ) ) , (11)
x in P3B v '

where e(A) denotes e2*a.
We write the cubic part C(xv ...,xn) of <f> as

C{x)= S CwZiXjX,,, (12)

where the sums go from 1 to n, and the cm are integers which are symmetrical
functionsf of i, j , k. We define the bilinear forms ^ ( x l y ) by

Bj(x\y)= Zws i i - (13)
•i, k

LEMMA 1. Let 8 (0<d <\) be independent of P, let K be independent
of P, and let e be any fixed small positive number. Then either

(A) There are more than p^e-iK-e pairs oj integer points x, y satisfying^

\x\<P°, \y\<P°, Bj(x\y) = 0 ( l < j < n ) , (14)

or (B) if, for any a,

|iSf(a)|>P»-*, (15)

then a has a rational approximation a/q satisfying

(a,q)=l, l^q^cP20, \q*-a\<P-*+20, (16)

where c depends only on the coefficients of the form C(x).

Proof. This is a simpler form of Lemma 9 of C.F.I6, with only two
alternatives instead of three, and is the result indicated at the end of §2
of C.F.16. The fact that the exponential sum S(<x) of the present paper
is defined with a cubic polynomial instead of a cubic form is of no signifi-
cance, for the first step in the proof (see Lemma 3.1 of C.F.32) involves
taking the second difference of $(x), and in this the terms of degree less
than 3 disappear, except to the extent of an additive constant (which is
irrelevant). The bilinear forms jB,-(x|y) in (13) arise as the coefficients
in the second difference of <f>; we have

where ifj is independent of z.

f If necessary, we consider Q(f> in place of <j>.
t |x | = max (Ixil, ..., |a;n|) if x = (x^ ..., xn).
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Alternatively, reference may be made to Lemma 32 of Davenport's
Analytic methods for Diophantine equations and Diophantine inequalities
(Ann Arbor Publishers, 1963). This lemma is the same as Lemma 1
above, except that there K has been given the particular value \nO— e.

Note that alternative (A) is independent of a. If K is taken to be a
particular multiple of 6 (as it will be later) then alternative (A) is essentially
independent of 6 also, since it can be restated in terms of P° only.

LEMMA 2. Let t and r be non-negative integers. Suppose there exist
DRn~l integer points x ^ O with | x | < R, for each of which the bilinear
equations

have exactly r linearly independent solutions in y. / / D is greater than a
certain function of n, and the preceding statement holds for some arbitrarily
large values of R, then

Proof. This result is almost the same as Lemma 3 of E.S., but with
integer points x in | x | <; JR replacing points x whose coordinates are
integers (mod^). The proof given in E.S. applies with only verbal
changes. The analogue of Lemma 2 of E.S., which is needed in the proof,
is provided by Lemma 2 of C.F.I6.

LEMMA 3. The number of pairs of integer points x, y satisfying

\x\<R, \y\<R, Bj(x\y) = 0 (j=l,...,n) (17)

is-\ <^R*n-K for large R, where h = h{C).

Proof. Suppose the contrary. Then for any fixed A there are
arbitrarily large values of R for which there are more than AR2n~h pairs
x, y. Consider the set of those x ^ O in | x | < R for which there are
exactly r linearly independent solutions of the bilinear equations
JS^xly) = 0 in y. Then to each such x there correspond <̂  Rr solutions
in y which satisfy | y | < R. Hence for some r the number of x in the
set is greater than A' R2n-h-r, where A' is large with A. Plainly h-\-r > n.

Applying Lemma 2 with t = h-\-r—n we obtain

h = h{C) <n— r+ {h-\-r-n)-l = h-l,

a contradiction.

Note that if it is supposed that C(x) does not represent 0 non-trivially,
then h(C) = n and the above lemma becomes the same as Lemma 4
of C.F.16.

I The symbol <$ indicates an inequality with an unspecified constant factor.
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LEMMA 4. Let h = h(C). Let 6 ( O < 0 < 1 ) be independent of P.
Then for any a either

\ \ M l * (18)

or a has a rational approximation satisfying (16).

Proof. If we take K = (hd—2e)/4 in Lemma 1, then alternative (A)
is excluded by Lemma 3, and the result follows from alternative (B).

LEMMA 5. For integers a, q with q>0 and (a, q)=l, let

z mod g

Then-f

|^(^?)|<?TC+e"W8- (20)

Proof. We regard 8(a, q) as an instance of S(a) with a = a/q, with
P = q, and with 0 < a ^ < l (j=l, ...,n) as the box SB. We take
6 — \— 6 in Lemma 4. Then a (= a/g) does not have any rational approxi-
mation a'fq' satisfying (16), since this would require

1 < q' < P20, whence 1 < q' < q,
and

|g 'a -a ' |<P- 3 + 2 * 5
whence

\q'alq—a'\<q~2,

and this is impossible. Hence (18) applies, and gives
| S(a, q) | < Pn-ih(i-e)+e = qn+e'-hl8t

4. Major and minor arcs

Let A be a fixed small positive number. Let Wla> Q denote the interval
of values of a given by

| a - a / g | < P - 3 + A , (21)
where a, q are integers satisfying

1 <<?*=: PA, (a,q)=l. (22)

The intervals %Jla q are obviously disjoint. Let $Ji denote the union of
the intervals 5D?a q for 1 ̂  a ̂  q, with the convention that the right-hand
half of 50?! x is replaced by the right-hand half of 9}?0 v Then Wl is
contained in 0 < a ^ l , and we denote its complement relative to this
interval by m.

LEMMA 6. Suppose that h = h(C)^ 17. Then

f
Jin

(23)

It is to be understood that </> is a fixed cubic polynomial.
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Proof. Let ${d) denote the set of those a in 0 ̂  a ^ 1 which have a
rational approximation ajq satisfying the conditions (16), which we now
repeat for convenience of reference:

1 < q <cP*d, {a, q) = l} |qa-a \ < P-*+29. (24)

Plainly ${Q) increases with 6. Since every a has a rational approximation
satisfying

and these imply (24) when 0 = |-j-e, the whole interval O ^ a ^ l is
contained in $(f+e)- On the other hand, the set m is contained in the
complement of <f(£A—e), for the inequalities (24) with 0 = ^A—e imply
the inequalities (21) and (22).

We choose numbers 80,61,...)dg such that

|A-e = 0o<e1<...<0g = l+e. (25)

Then m is contained in the union of the sets

*{0/)-*{0f_1),f=l, ...,g. (26)

By Lemma 4 with 9 = df_x we have

for all a in the set (26). Further, the set (26) is part of £(6f), and by (24)
the measure of £{6f) is

S
i e a=l

Hence

r \s(ai)\doL
J(26)

since h ̂  17.
Provided the numbers 90, ..., 6g in (25) are chosen sufficiently near

together (but independent of P), the last exponent is less than

A A
w - 3 - — + 2e<n-3- — ,

since e is arbitrarily small. This proves Lemma 6.

LEMMA 7. For a in Wlaq we have

S{<x) = q-nS(a, q)I(P) + O(Pn-1+2*), (27)

where j8 = <x.—ajq and

J ( ) § . (28)
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Proof. In the sum (11) defining #(<x), put xj = qyi-\-zi, where
0 < zt < q. Then

q

The inner sum is over all y such that qy-\-z is in the box P38. Thus the
variables yv ...,yn run over independent intervals whose lengths are

, since q is small compared with P.
For any integer point y and any differentiable function -F(Y)), we have

= f | ^ , 1 , (29)
U-yki/2

the maximum being taken over j and over r\ in the cube of integration.

When F(r\) = e(fl(f>(qr\-\-z)), we have

Applying (29) to each integer point y in the inner sum above, we obtain
an integral extended over a union of unit cubes, which differs from the
box of summation by an amount at most 1 in each dimension. The
discrepancy in volume is ^{P/q)71'1- Hence

Zefaiqy+z)) = L (jfyfaiQ+z)) di, + O(ff|j8| P2(P/?)») +O((P/q)

where the integration for r\ is over those Y) for which (?YJ+Z lies in

Changing from the variable /) to % — qr\-j-z, the last expression is

Substituting in the double sum, we obtain

and now (27) follows from (21) and (22).

5. The asymptotic formula

LEMMA 8. Suppose that h = h(C)^ 17. Then the number ̂ (P) of
solutions of <f)(x) = 0 with x in P3S satisfies

JV{P) = P»~3 J(P){@+tf(P-A'9)}+0(Pw-4+5*), (30)
where

and

© = £ £ q~nS(a,q) (31)
3=1 «=1

J(P) = ^ Jy J* e(yP-30(Px)) dx. (32)
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Proof. The number of integer points x in P88 with <f>(x) = 0 is

S(<x.)doL,
Jo10

by the definition of S(<x.) in (11). We split the interval of integration
into the various intervals ^Jta>Q and the set m. By Lemma 6 the contribu-
tion of m is O(Pn~3~A/9). By Lemma 7, the contribution of the intervals

2 £ f S{<x)daL

2 f
= 2 2 g~nS(a,q)

gsjpA « = l J l / ?KP~ t J + A

(«, 3)=1

The error term here is 0(Pn~4+5A).
The integral with respect to /S, on putting p = p-sy} becomes

and by (28)
c r

J Pan J So

Thus the integral with respect to jS becomes Pn~3J(P).

It remains to consider

SA 2 q-nS(a,q).

This series, continued to infinity, is absolutely convergent by Lemma 5,
since h > 17, and has sum @. The finite sum above differs from © by
an amount

2

This proves Lemma 8.

6. TAe singular integral

So far the box Sfi has been arbitrary;. we now choose it in a particular
manner which will ensure that

lim J{P) = JQ>0. (33)
P-»oo

The choice will depend only on the cubic part C(x) of <£(x). By Lemma 6.1
of C.F.32 there exists a real non-singular solution (£]_*, ..., £n*) of C(^) = 0
with £,-* ^ 0 for every j . We take ^ to be a cube

&•- /»< * , < 6 * + p , (34)

with p a sufficiently small positive number.
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LEMMA 9. With 88 chosen as above, (33) holds.

Proof. For x in the fixed box &, we have

if | y | < P A . Hence, by (32),

J(P)= f

By Lemma 6.2 of C.F.32, if p is chosen sufficiently small, the integral
on the right has a limit Jo > 0 as P->oo. Hence the result.

7. The singular series

LEMMA 10. If h = h(C) ^ 17 and <f>(X.) satisfies the congruence condi-
tion then © > 0.

Proof. I t is well known that

v
where « p

v

)
v=l a=l

(a, p)=l

It follows from Lemma 5 that

whence (since A ^ 17)

Thus there exists p0 such that

n x(p) > h
P>Po

I t is also well known that

x (p) = lim M {pv)lp^n~l>, (35)
v-*<x>

where M(pv) denotes the number of solutions of the congruence

<f>(x1,...,xn) = 0 (modp") (36)

with 0 < xi < pv (j= 1, ..., n). We now prove that the limit on the right
of (35) is positive provided the equation <f>(x) = 0 has a non-singular p-adic
integral solution.

Let a be a non-singular £>-adic solution of <f>(x) = 0, and let pP be the
highest power of p dividing all the partial derivatives ^(3)(a). Let M'{pv)
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denote the number of solutions of (36) which satisfy
1), (37)

and which are mutually incongruent to the modulus pv~P. We prove that
if v^ 2/a+l then

M' (pv) ^^-DO'-ap- i ) ; (38)

this will suffice for the result just stated. Plainly (38) holds if v = 2p-\-1,
on taking an integer point x = a (mo&p2P+1). Assuming the result (38)
for a particular value of v, we take x to be any one of the solutions of
(36) and (37), and consider

We have n
<j>(y) = < £ ( X ) + ^ - P 2 t,<P(x) (m

2 = 1

Here <£(x) is divisible by pv and all of <f>{j){x) are divisible by pP and one
at least of them is not divisible by pP+1. Hence, noting that 2 (v—p) ^ v-\-1,
the congruence <£(y) = 0 (mod )̂""1"1) is satisfied if and only if tv ...,tn

satisfy a linear congruence (mod^>) with the coefficients of tlf ..., tn not
all ^ 0 (raodp). This has pn~1 solutions, and for each solution we get a
point y satisfying

the points y arising from distinct x being distinct m.odpv~P+1. Hence

and this proves (38) by induction on v.
By Theorem 3, the fact that <f>(x) satisfies the congruence condition

implies the existence of a non-singular p-Sbdic integral solution of <£(x) = 0,
since n ^h > 17. It follows from the preceding that %(p) > 0 for each
P ^Po> whence © > 0.

8. Proof of Theorem 1

By Lemmas 8 and 9, if the box 3% is suitably chosen, the number./f (P)
of integer points x in P38 with <f>(x) = 0 satisfies

as P-*-oo, where Jo > 0. By Lemma 10 we have © > 0 under the hypo-
theses of Theorem 1. Hence there are infinitely many solutions.

We may further remark that the vectors from the origin to the solutions
lie asymptotically everywhere dense on the cubic cone C(x) = 0, since
the vectors to the real points (^, ..., £n*) which are admissible in §6 lie
everywhere dense on the cone.
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