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The number (up to isomorphism) of positive-definite, even, unimodular lattices of

rank 8r grows rapidly with r. However, Bannai [1] has shown that, when counted

according to weight, those with non-trivial automorphisms make up a fraction of the

whole, which goes rapidly to zero as r!¢. Therefore it is of some interest to produce

families of positive-definite, even, unimodular lattices with large automorphism

groups and unbounded ranks.

Suppose that G is a finite group and V is an irreducible 1[G]-module such that

VC2 is still irreducible. Then, as observed by Gross [8], the space of G-invariant

symmetric bilinear forms on V is one-dimensional and is necessarily generated by a

positive-definite form, unique up to scaling by non-zero positive rationals. Thompson

[23] showed that, if V is also irreducible mod p for all primes p, then it contains an

invariant lattice (unique up to scaling) which is even and unimodular with appropriate

scaling of the quadratic form. Examples arising in this manner are the E
)
-lattice of

rank 8, the Leech lattice of rank 24 and the Thompson–Smith lattice of rank 248.

Gow [6] has also constructed some examples associated with the basic spin

representations of 2A
n

and 2S
n
.

Gross [8] showed how one may obtain more examples by generalising Thompson’s

method to deal with the possibility that V is not absolutely irreducible. Thus he

reconstructed the Barnes–Wall lattices of ranks 2f+" (which are unimodular when f is

even). He also obtained families of lattices associated with the Weil representations

of finite symplectic groups (some of which had previously been constructed by Gow

[7]) and families of even unimodular lattices of ranks 2p#(p#®1) associated with the

cuspidal unipotent representation of the finite projective unitary group PU(3, p#).

Tiep [25, 26] has investigated further examples of the ‘globally irreducible ’

representations which give rise to special lattices in this way.

The examples considered by Gross are closely related to the Mordell–Weil lattices

of Elkies and Shioda [4, 20]. These are the groups of rational points on certain

constant (or potentially constant) elliptic curves over the function fields of algebraic

curves over finite fields. The finite group action comes from automorphisms of the

algebraic curve and the quadratic form comes from a scaling of the canonical height

pairing.

Elkies [5] has constructed the Barnes–Wall lattices as sublattices of certain

Mordell–Weil lattices arising from hyperelliptic curves in characteristic 2 (and the

square of the index is the order of the Shafarevich–Tate group). In [3] we showed how

the symplectic group lattices may be viewed as sublattices of Mordell–Weil lattices

arising from hyperelliptic curves in odd characteristic, thus obtaining a lower bound

for the minimal norm.
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The purpose of this paper is to generalise the families of invariant even

unimodular lattices associated with PU(3, p#) to the case G :¯PU(n­2, q) for any odd

n& 1 and any even power q¯ pf of a prime number; G acts naturally by

automorphisms defined over &
q
#
on the n-dimensional projective hypersurface

X
n
:xq+"

!
­xq+"

"
­I­xq+"

n+"
¯ 0.

We construct the desired lattices as sublattices of the groups of primitive codimension

(n­1)}2 algebraic cycles (modulo numerical equivalence) on X
n
¬E, where the E are

elliptic curves chosen in a suitable isogeny class. The rank is 2(qn+"®qn­I­q#®q)

and the quadratic form comes from a scaling of the intersection pairing. That it is a

definite quadratic form follows from the observation of Gross mentioned in the

second paragraph. Notice that this provides examples for which Grothendieck’s

‘Hodge-style ’ standard conjecture [9] is true. Similarly the conjecture is true for

codimension n}2 cycles on X
n

when n is even. These X
n

were also used by Tate [21]

as examples for which his conjecture on algebraic cycles and poles of zeta functions

may be confirmed.

When n¯ 1 these lattices are sublattices of the familiar Mordell–Weil lattices

arising from Fermat curves of degree q­1. When n¯ 1 and f¯ 2 they are the

examples of Gross already mentioned, but when n¯ 1 and f" 2 they do not come

from globally irreducible representations of any groups. Tiep has explained to me

how this follows from his work [24, 26]. (See [3, Section 10].)
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1. Fermat hypersurfaces and finite unitary groups

Let p be any prime and q¯ pf a power of p. Let k be the finite field &
q
#
and let ka

be an algebraic closure. For each n& 1 one may consider the n-dimensional Fermat

hypersurface of degree q­1 in 0n+"}k. Then

X
n
:xq+"

!
­xq+"

"
­I­xq+"

n+"
¯ 0

is its equation in homogeneous coordinates. One checks immediately that X
n

is

nonsingular.

The group GL(n­2, q#) of all invertible (n­2)¬(n­2) matrices over k acts on

0n+"}k by its natural action on homogeneous coordinates. We may define a finite

unitary group U(n­2, q) as follows:

U(n­2, q)¯²A `GL(n­2, q#) :A(q)tA¯ I ´.

Here I is the identity matrix, A(q) is the matrix obtained from A by applying the non-

trivial automorphism of k}&
q
to all entries, and B t denotes the transpose of a matrix

B. While GL(n­2, q#) acts on the projective space 0n+"}k the subgroup U(n­2, q)
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preserves the hypersurface X
n
. Since the subgroup of scalar matrices acts trivially on

projective space we mod out by it to obtain an action of the finite projective unitary

group G :¯PU(n­2, q) on X
n
. Although X

n
is clearly defined over &

p
we generally

consider it as a variety over k¯&
q
#
since G acts on X

n
by automorphisms defined

over k.

Fix l to be any prime different from p. Then one may consider the l-adic

cohomology groups H i(X
n
,1

l
), which vanish except for 0% i% 2n. Here X

n
is just X

n

considered as a variety over ka . Each of these groups is a finite-dimensional vector

space over the field 1
l
of l-adic numbers. Let β

i
be the dimension of H i(X

n
,1

l
).

P 1. We ha�e

(1) β
i
¯ 0 if i is odd and i1 n;

(2) β
i
¯ 1 if i is e�en and i1 n;

(3) β
n
¯ (qn+"®qn­I­q#®q

qn+"®qn­I­q$®q#­q­1

if n is odd;

if n is e�en.

This is obtained by comparison with characteristic zero and by using well-known

results about the Betti numbers of diagonal hypersurfaces [14].

The q#-power geometric Frobenius morphism φ acts on X
n

and hence, by

functoriality, on each H i(X
n
,1

l
). By counting k-rational points on X

n
as in [28] and

using the l-adic cohomological formula for gX
n
(k) one obtains the following.

P 2. The morphism φ acts on Hn(X
n
,1

l
) as the scalar (®q)n.

Let E}k be an elliptic curve such that φ is the multiplication map [®q]. It is known

that such an E may be chosen and is unique up to isogeny over k. Further, all the

endormorphisms of E are defined over k and the endomorphism ring is isomorphic

to some maximal order R (strictly speaking, any of a conjugacy class of isomorphic

maximal orders) in K, the definite quaternion algebra over 1 ramified at p and ¢. For

each maximal order R there are one or two possible choices of E in the isogeny class

according as the two-sided ideal class group of R is trivial or not. See [27] for details.

Observe that E is supersingular. For each q we imagine that a choice of E has been

fixed.

2. The definite intersection form

Henceforth we suppose that n is odd. Let Y
n
¯X

n
¬E so Y

n
is an (n­1)-

dimensional proper smooth variety defined over k. Let m¯ (n­1)}2. Let Am be the

free abelian group generated formally by closed irreducible subvarieties, defined over

k, of codimension m in Y
n
. Let Bm¯AmC: 1. There is a 1-linear cycle-class map

(choosing an identification of 1
l
}:

l
with the l-power roots of unity)

c :BmMNH #m(Y
n
,1

l
).

By the Ku$ nneth formula we have

H #m(Y
n
,1

l
)DHn(X

n
,1

l
)CH "(Ea ,1

l
)GHn+"(X

n
,1

l
)CH !(Ea ,1

l
)

GHn−"(X
n
,1

l
)CH #(Ea ,1

l
).

There is a bilinear intersection pairing [ :Am¬Am!: which extends to [ :Bm¬Bm

!1. There is also the cup-product [ :H #m(Y
n
,1

l
)¬H #m(Y

n
,1

l
)!1

l
. We use the
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same notation twice without risk of confusion, particularly since intersection and

cup-products are compatible : for any b
"
, b

#
`Bm we have b

"
[b

#
¯ c(b

"
)[c(b

#
). An

element b `Bm is said to be l-cohomologically equivalent to zero if c(b)¯ 0. It is said

to be numerically equivalent to zero if b[b«¯ 0 for all b« `Bm. The above compatibility

clearly implies that if a cycle is l-cohomologically equivalent to zero then it is

numerically equivalent to zero. We denote this Bm

l
ZBm

num
.

The q#-power geometric Frobenius morphism φ acts on H #m(Y
n
,1

l
) as the scalar

qn+". A conjecture of Tate [21] then predicts that c(Bm)1
l
¯H #m(Y

n
,1

l
).

P 3. We ha�e

(1) c(Bm)1
l
¯H #m(Y

n
,1

l
),

(2) Bm

l
¯Bm

num
,

(3) c induces an isomorphism (Bm}Bm

num
)C1

l
DH #m(Y

n
,1

l
).

Proof. One may prove (1) by directly imitating the argument of Katsura and

Shioda [13, Section 2] using Tate’s theorem on homomorphisms of abelian varieties

over finite fields [22] and the inductive structure of Fermat varieties. Given this, (2)

and (3) follow from Proposition 8.4 of [18].

Recall that H#m(Y
m
,1

l
) is a direct sum of three summands, listed above. The

second and third summands are each one-dimensional, generated by the classes of

cycles x, y `Bm respectively ; x may be taken to be the product with E of the

intersection of m hyperplane sections of X
n

and y may be taken to be the product

with a point of E of the intersection of m®1 hyperplane sections of X
n
. Then

x[x¯ y[y¯ 0 and x[y1 0. Define

Cm¯²b `Bm :b[x¯ b[y¯ 0´.

Since the first summand of H #m(Y
n
,1

l
) is clearly orthogonal to the other two with

respect to cup-product, we find that

c(Cm)1
l
¯Hn(X

n
,1

l
)CH "(Ea ,1

l
).

D 1. V¯Cm}(CmfBm

num
).

Thus V is a 1-vector space of dimension 2(qn+"®qn­I­q#®q). We have

VC1
l
DHn(X

n
,1

l
)CH "(Ea ,1

l
).

Further, the natural action of G¯PU(n­2, q) on X
n

endows V with the structure of

1[G]-module. The intersection pairing gives us a G-invariant symmetric bilinear form

©,ª :V¬V!1. The faithful action of the quaternion algebra K on H "(Ea ,1
l
)

commutes with the action of G on Hn(X
n
,1

l
) so K is naturally contained in the

endomorphism algebra End1[G]
(V ).

P 4. We ha�e

(1) V is an irreducible 1[G]-module,

(2) VC2 is an irreducible 2[G]-module,

(3) ©,ª is definite.

Proof. (1) According to [11], the 1
l
[G]-module Hn(X

n
,1

l
) is absolutely

irreducible with character ψ, say. It follows that the 1[G]-module V has character 2ψ.
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If it were reducible (over 1) its endomorphism algebra End1[G]
(V ) would be M

#
(1),

which is impossible since we know that it contains (in fact is equal to) the quaternion

algebra K.

(2) Similarly VC2 is irreducible since KC2, the Hamiltonian quaternion

algebra, is not M
#
(2).

(3) Since VC2 is irreducible it follows from [8, Section 2] that the space of G-

invariant symmetric bilinear forms on VC2 is one-dimensional and is generated by

a positive-definite form. The extension of ©,ª to V C2 is G-invariant and is not zero

(by definition of numerical equivalence) so must be a definite form.

As noted in the introduction, (3) is what is predicted by a conjecture of

Grothendieck [9]. Actually, the space of primitive codimension m cycles (modulo

numerical equivalence) on Y
n
, with respect to a natural ample divisor, is a little larger

than V, containing also the class of x®y. However, V is the interesting part.

3. Almost global irreducibility

Recall that R is a maximal order in K and is the endomorphism ring of E. The

group ring R[G] acts naturally on V and we let M be some R[G]-invariant lattice in

V. For definiteness we may take M to be the image in V of AmfCm.

P 5. (1) The character ψ is absolutely irreducible mod l for each prime

l1 p.

(2) The quotient M}lM is an irreducible (R}lR) [G]-module for each prime l1 p.

(3) After rescaling ©,ª by some non-zero rational number coprime to p, we may

assume that it is integral on M and that detM (that is, det(©�
i
, �

j
ª), where ²�

i
´ is a

:-basis for M ) is purely a power of p.

Proof. Suppose that l1 p is a prime such that ψ is not absolutely irreducible

mod l. Then Hn(X
n
,1

l
) provides a representation with coefficients in 1

l
affording the

character ψ. Let S be a G-stable :
l
-lattice in Hn(X

n
,1

l
). Our supposition (stated

more precisely) is that the &
l
[G]-module S}lS is not absolutely irreducible. Observe

that qn+"®qn­I­q#®q is the smallest dimension of an absolutely irreducible,

nontrivial representation of G in any characteristic not equal to p [15]. Hence the only

possibility is that for some sufficiently large d the irreducible composition factors

of the &
l
d[G]-module (S}lS )C&

l

&
l
d are all trivial. (Recall that if l rgG then

representations of G in characteristic l are not necessarily completely reducible.)

Choosing a suitable basis, the action of G on (S}lS )C&
l
d is by upper-triangular,

unipotent matrices over &
l
d. Letting U be the group of such matrices, we have a

homomorphism θ :G!U. Now gU is a power of l so the restriction of θ to any

subgroup H of G of order prime to l is trivial. Let S «¯SC:
l

W(&
l
d), where W(&

l
d)

is the ring of integers in the unramified extension of degree d of 1
l
. We have just seen

that if H is a subgroup of G of order prime to l than H acts trivially on S «}lS «. By

induction and using a similar argument about homomorphisms of H to groups of l-

power order being trivial, we see that H acts trivially on S «}l rS « for all r& 1, hence

that H acts trivially on S and on Hn(X
n
,1

l
).

Now we make a special choice of H. There is a subgroup of G isomorphic to the

symmetric group S
n+#

, which acts on X
n

by permuting the coordinates x
!
,x

"
,…,x

n+"
.
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If l1 2 we let H be the cyclic subgroup generated by some arbitrary fixed

transposition. If l¯ 2 we use a 3-cycle instead. It follows from Section 5, Proposition

8, that the crystalline cohomology Hn

crys
(X

n
) provides a representation with

coefficients in W¯W(&
q
#
) affording the character ψ. Therefore H acts trivially on

Hn

crys
(X

n
) and on its reduction mod p, the algebraic de Rham cohomology Hn

dR
(X

n
).

But the next section contains explicit bases for the subfactors of the Hodge filtration

of Hn

dR
(X

n
) and it is clear that the action of H (permuting coordinates) is not trivial.

This contradiction shows that (1) must be true.

(2) follows from (1) and [8, Proposition 4.2(3)]. Then (3) follows from the

arguments of Sections 3 and 5 of [8] (note that ©,ª does come from a G-invariant

K-Hermitian form since the one-dimensional space of such forms is identified with

the one-dimensional space of G-invariant symmetric bilinear forms).

Although R and M depend on the particular choice of E, the 1[G]-module V does

not, since an irreducible 1[G]-module is determined by its character, and the

character 2ψ is determined without reference to E as twice the character of the 1
l
[G]-

module Hn(X
n
,1

l
). By choosing the sign of the scaling factor appropriately, we may

assume that ©,ª is positi�e-definite. Our goal in the rest of the paper is to produce an

R[G]-invariant sublattice of M which, after rescaling ©,ª by a power of p, is even and

unimodular, at least in the case that f is even. To get a suitable model of VC1
p

we

need to use crystalline cohomology, for which a good concise reference is [12].

4. The crystalline cohomology of X
n

Let W be the ring of infinite Witt vectors over k. Thus W is the ring of integers

in the unramified extension L of degree 2f of 1
p
. Its maximal ideal is pW and

W}pWDk. Let σ be the automorphism of W}:
p

which lifts the pth-power

automorphism of k. Associated with any proper, smooth variety Z}k of dimension d

are finitely generated W-modules H i(Z )¯H i

crys
(Z ) which are trivial except for

0% i% 2d. The dimension of H i(Z ) is equal to the dimension of H i(Za ,1
l
) for any

prime l1 p. There is a cup-product structure and if Z is a hypersurface then H i(Z )

is a free W-module. If Z*}W is a proper smooth scheme whose special fiber is Z}k,

then there is a natural isomorphism H i(Z )DH i

dR
(Z*), the ith algebraic de Rham

cohomology of Z*. We always choose X$
n

to be the natural lifting of X
n

defined by

the same equation as X
n
. The action of the diagonal subgroup T of G on X}k lifts to

X*}W though the action of the whole group G does not.

The identification of Hn(X
n
) with Hn

dR
(X$

n
) endows it with a Hodge filtration

Hn(X
n
)¯M

!
[…[M

n+"
¯²0´,

and for all 0%k% n we have M
k
}M

k+"
DHn−k(X$

n
, Ωk), the cohomology of the kth

exterior power of the sheaf of differentials on X$
n
.

P 6. (1) The cohomology Hn−k(X$
n
,Ωk) has a W-basis consisting of

elements which may be written

w
m

!
,m

"
,…,mn+"

¯xm
!

!
xm

"

"
…xmn+"

n+"
dx

!
…dx

n+"
,

where (m
!
,…,m

n+"
) ranges o�er all (n­2)-tuples such that 0%m

i
% q®1 for each i

and 3m
i
¯ (n­1®k)q®(k­1).
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(2) An element diag(a
!
,… , a

n+"
) of T acts on w

mo
… ,mn+"

as the scalar

am
!
+"

!
…amn+"

+"
n+"

.

(3) The w
m

!
,m

"
,…,mn+"

lift to a W-basis for Hn(X
n
) consisting of simultaneous

eigen�ectors for T with distinct characters. (We also denote these basis elements

w
m

!
,…,mn+"

.)

Proof. (1) follows from [19, Section 3]. Then (2) is obvious. Observing that the

characters of T arising are all distinct, (3) then follows from the fact that p does not

divide the order of T.

D 2. If 3m
i
¯ (n­1®k) q®(k­1) we say that w

m
!
,…,mn+"

(or any

nonzero multiple of it) is of type k.

The absolute pth-power Frobenius morphism of the scheme X
n

to itself (defined

to be the identity on points and the pth power on the structure sheaf) gives rise, by

functoriality, to a σ-linear map F from Hn(X
n
) to itself. Thus F(a�)¯ aσF(�) for any

a `W and � `Hn(X
n
).

P 7. (1) If w is one of our standard basis elements for Hn(X
n
) then

Fw¯ cw« for some c `W and w« some standard basis element. The character of T

associated to w« is p times that associated to w.

(2) If w is of type k then ord
p
(c)¯k.

(3) If w is of type k then F fw is of type n®k.

Proof. (1) For any fixed t `T suppose that t.w¯ λw. Then t.Fw¯F(t.w)¯
F(λw)¯ λσFw¯ λpFw since λ is a root of unity. Thus Fw is a simultaneous

eigenvector for T, its associated character being p times that for w. It must be a

multiple of one of our standard basis of elements since their associated characters are

all distinct, c.f. [10, 19, 20].

(2) Ogus explains near the end of this paper [19] how this follows from Mazur’s

work on Frobenius and the Hodge filtration [16, 17].

(3) By (1), F f multiplies characters by pf ¯ q but T has exponent q­1 so F f

multiplies characters by ®1. Since (q®1®m
i
)­1¯ (q­1)®(m

i
­1), one sees that

w
q−"−m

!
,…,q−"−mn+"

has minus the character of w
m

!
,…,mn+"

. If 3m
i
¯ (n­1®k) q®(k­1) one easily checks

that 3(q®1®m
j
)¯ (n­1®(n®k)) q®((n®k)­1).

Adopting a new notation, suppose that w
"

is some standard basis element in

Hn(X
n
). Then there are standard basis elements w

i
for i& 1 and elements c

i
`W such

that Fw
i
¯ c

i
w

i+"
for each i and ord

p
(c

i
)¯k

i
, where w

i
is of type k

i
. It follows from

the crystalline cohomological formula for gX
n
(k) that F #f acts as multiplication by

(®q)n on Hn(X
n
). Hence w

i+#f
¯w

i
and subscripts may be thought of mod2f. We get

cyclic ‘F-orbits ’ of basis elements of lengths dividing 2f. Note that k
i
­k

f+i
¯ n.

Incidentally, it follows fairly easily from the fact that X
n

is really defined over &
p

that

all the c
i
are actually in :

p
.
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5. The range of the cycle class map

Let c :Bm!H #m(Y
n
)C

W
L be the cycle map constructed by Milne in Section 2 of

[18]. Then c is compatible with intersection and cup products and c(Bm)Z
H #m(Y

n
)F=p

m C:
p

1
p
. As for l-adic cohomology, there is a Ku$ nneth formula (use [12,

3.3] and the fact that everything is torsion-free) and c(Cm)ZHn(X
n
)CH "(E )CL,

so that c(Cm)Z (Hn(X
n
)CH "(E ))F=p

m C:
p

1
p
.

P 8. (1) c(Cm)1
p
¯ (Hn(X

n
)CH "(E ))F=p

m C:
p

1
p
.

(2) VC1 1
p
D (Hn(X

n
)CH "(E ))F=p

m C1
p
.

Proof. We shall see soon that the dimension of the right-hand side is

2(qn+"®qn­I­q#®q). The action of KC1
p

on H"(E) commutes with F, as does

the action of G on Hn(X
n
), so KC1

p
acts by 1

p
[G]-endomorphisms on the right-

hand side. Since KC1
p
1M

#
(1

p
), we find that the right-hand side is an irreducible

1
p
[G]-module. (The W[G]-module Hn(X

n
) must be absolutely irreducible, nontrivial

of minimal degree, since the trivial character of T does not occur.) Now c(C
m
)1

p
is

a 1
p
[G]-submodule so is either zero or the whole thing. But Cm contains elements

which are not numerically equivalent to zero, so c(Cm)1
p

cannot be zero and must

be the whole thing. Hence we obtain (1), and (2) now follows by comparing

dimensions.

L 1. The cohomology H "(E ) has a W-basis ²e
!
, e

"
´ such that Fe

!
¯ e

"
and

Fe
"
¯ γe

!
with ord

p
(γ)¯ 1.

For the proof see [2, Lemma 4].

D 3. S :¯ (Hn(X
n
)CH "(E ))F=p

m.

Our next task is to identify this :
p
-module. The condition F¯ pm can be dealt with

one F-orbit at a time. Given an F-orbit J¯²w
"
,w

#
,…,w

#f
´ (note that this list may

involve repetition) we define H
J

to be the W-submodule of Hn(X
n
) generated by J.

Let S
J
¯Sf (H

J
CH "(E )). Then S¯G

J
S

J
and it suffices to examine each S

J
.

Now F f inverts characters and one may check that no self-inverse character

occurs, so f is not divisible by the length of any F-orbit. Hence the length of the

F-orbit J is of the form 2l for some l r f. Suppose that w `S
J
, say

w¯3
#l

i="

(a
i
w

i
C e

!
­b

i
w

i
C e

"
).

Then Fw¯3 (aσ

i
c
i
w

i+"
C e

"
­bσ

i
c
i
γw

i+"
C e

!
). Since we require Fw¯ pmw¯

p(n+")/#w we have the conditions

aσ

i
c
i
¯ pmb

i+"
, (1)

bσ

i
c
i
γ¯ pma

i+"
, (2)

hence
aσ#

i
c
i
c
i+"

γ¯ p#ma
i+#

¯ pn+"a
i+#

, (3)

bσ#

i
c
i
c
i+"

γσ ¯ p#mb
i+#

¯ pn+"b
i+#

,

so
ord

p
(a

i+#
)¯ord

p
(a

i
)­k

i
­k

i+"
®n, (5)

ord
p
(b

i+#
)¯ord

p
(b

i
)­k

i
­k

i+"
®n. (6)

Henceforth we assume that f is even.
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The F-orbit J¯²w
"
,w

#
,…,w

#l
´ may be divided into two ‘complementary’ F #-

orbits J
!
¯²w

"
,w

$
,…,w

#l−"
´ and J

e
¯²w

#
,w

%
,…,w

#l
´. (Here w

"
has been chosen

arbitrarily.) We see from the above equations that the coefficient a
"
determines all the

a
i
for i odd and all the b

i
for i even. But a particular choice of a

"
will not lead to an

element of S
J

unless

aσ#l

"
c
"
c
#
…c

#l
γγσ# … γσ#l−# ¯ pl(n+")a

"
.

Using the fact that F #f acts as ®qn on Hn(X
n
) and as ®q on H "(E ), combined with

Hilbert’s Theorem 90, one easily checks that the possible coefficients a
"

form a :
p
-

submodule of rank 2l of W. Similar remarks apply to b
"
. Hence we obtain the

following.

L 2. The :
p
-module S

J
is free of rank 4l and S is a free :

p
-module of rank

twice the W-rank of Hn(X
n
), namely 2(qn+"®qn­I­q#®q).

In order for all the ord
p
(a

i
) and ord

p
(b

i
) to be nonnegative there are certain

nonnegative integers n
i
and m

i
such that necessarily ord

p
(a

i
)& n

i
and ord

p
(b

i
)&m

i
.

We have

m
i+"

¯ n
i
­k

i
®m, (7)

n
i+"

¯m
i
­k

i
­1®m, (8)

n
i+#

¯ n
i
­k

i
­k

i+"
®n, (9)

m
i+#

¯m
i
­k

i
­k

i+"
®n. (10)

Then S
J
C:

p

W¯S
J
W may be decomposed according to characters of T and has a

basis

²pniw
i
C e

!
, pmi w

i
C e

"
:1% i% 2l ´.

L 3. (1) For a gi�en F-orbit J the quantity n
i
­m

f+i
depends only on

imod2.

(2) In fact, n
i
­m

f+i
depends only on J.

Proof. (1) Using equations (9) and (10) we get

(n
i+#

­m
f+i+#

)®(n
i
­m

f+i
)¯k

i
­k

f+i
­k

i+"
­k

f+i+"
®2n,

but this is zero since k
j
­k

f+j
¯ n for all j.

(2) Recall that f is even. We check that

(n
i
­m

f+i
)®(n

f+i+"
­m

i+"
)¯ (n

i
®m

i+"
)­(m

f+i
®n

f+i+"
)

¯ (m®k
i
)­(m®1®k

f+i
)¯ 2m®1®(k

i
­k

f+i
)¯ n®n¯ 0.

D 4. (1) d
J
:¯ n

i
­m

f+i
,

(2) d
max

¯max
J
d
J
,

(3) r
J
¯ d

max
®d

J
.

6. An e�en unimodular sublattice

The W-modules H "(E ) and Hn(X
n
) are self-dual with respect to the cup-product

pairings. This is Poincare! duality (use [12, 3.5.4] and the fact that everything is

torsion-free).
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L 4. (1) We ha�e e
!
[e

!
¯ e

"
[e

"
¯ 0 and e

!
[e

"
is a unit in W.

(2) If we and w« are standard basis elements for Hn(X
n
) then w[w«¯ 0 unless the

characters of T associated to w and w« form an in�erse pair. If this happens (that is, if

w and w« belong to the same F-orbit and are of the form w
i
,w

f+i
) then w[w« is a p-adic

unit.

Proof. (1) follows from the fact that the cup-product pairing on H "(E ) is skew-

symmetric and perfect. (2) follows from the fact that the cup-product pairing on

Hn(X
n
) is T-invariant and perfect.

L 5. (1) If J is an F-orbit and �, �« `S
J

then �[�« is di�isible by pdJ.

(2) Moreo�er, detS
J
¯ pdJrankSJ. (This is the determinant of the restriction of the

cup-product pairing and is well defined as a power of p.)

Proof. (1) is an easy consequence of the previous lemma and detS
J

may be

calculated using our basis for S
J
C:

p

W.

Recall that R¯End(E ) is a maximal order in K, the definite quaternion algebra

over 1 ramified at p and ¢. So there is a two-sided maximal ideal J of R such that

pR¯J#. Choose π `J such that π a pR. The action of R on H "(E ) commutes with F

so R acts on S.

L 6. We ha�e

(1) detπrJ S
J
¯ pdmaxrankSJ,

(2) up to a p-adic unit, (π�)[(π�«)¯ p�[�« for all �, �« `S,

(3) �[�« is di�isible by pdmax for all �, �« `πrJ S
J
.

Proof. (1) follows from (2) of the previous lemma. (3) follows from (2) combined

with (1) of the previous lemma. To prove (2) we note that SC1
p
¯VC1

p
and cup-

product on the left agrees with ©,ª on the right (up to a p-adic unit). The symmetric

bilinear form such that (�, �«)*©π�,π�«ª for all �, �« `V is G-invariant, so is

necessarily of the form (�, �«)* c.©�, �«ª for some non-zero rational number c. Since

J#¯ pR we find that ord
p
(c)¯ 1, as desired.

We define a :
p
-submodule , of S by

,¯G
J
πrJ S

J
.

Then , is a :
p
-lattice in VC1

p
. Recall that we have a :-lattice M in V and that ©,ª

is normalised, so that M is an integral lattice and detM is a power of p.

D 5. Let L be the lattice in V such that LC:
l
¯MC:

l
for all primes

l1 p but LC:
p
¯,.

P 9. (1) For all � `L we ha�e ©�, �ª ` 2pdmax :.

(2) Also, detL¯ pdmaxrankL.

Proof. (2) follows from (1) of the previous lemma. Suppose that � `L. To show

that ©�, �ª ` 2:
l

for all primes l1 p just copy the argument in the proof of [8,

Proposition 8.3], that is, use the fact that ©,ª is the trace of a Hermitian form. It
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remains to show that ©�, �ª ` 2pdmax :
p
. For this recall the basis for S obtained in

Section 5. If we express � in terms of this basis and consider �[� we see that only the

cross terms survive and each appears twice. Hence we get the factor 2, and the power

of p comes from (3) of the previous lemma.

Now we simply rescale ©,ª by dividing it by pdmax to obtain L as an even,

unimodular lattice in V. In other words, ©�, �ª ` 2: for all � `L and detL¯ 1. Also

L is R-stable. It remains to prove that it is G-invariant.

7. In�ariance of the sublattice

The group Am, of codimension m cycles on Y
n
, is clearly G-invariant, so the lattice

M in V is G-invariant. Moreover, LC:
l
¯MC:

l
for all primes l1 p, so it remains

to show that LC:
p

is G-invariant. Let J and J « be two F-orbits. Any fixed element

g `G maps S to itself. Restricting the domain to S
J

and projecting the range to S
J« we

obtain a map θ
g
:S

J
!S

J«. It suffices to show that θ
g
(πrJ S

J
)ZπrJ« S

J«, that is, that

θ
g
(S

J
)ZπdJ−dJ« S

J«. This is obvious if d
J
% d

J« so we suppose that d
J
" d

J«. The

following proposition then does the trick.

P 10. θ
g
(S

J
CW )Z pdJ−dJ«(S

J« CW ).

Proof. Let J¯²w
i
´ with associated numbers ²n

i
,m

i
´ (as in Section 5) and

J«¯ ²w!
i
´ with associated numbers ²n!

i
,m!

i
´. We may choose w

"
so that either n

"
¯ 0

or m
"
¯ 0. We suppose that m

"
¯ 0 since the other case is similar. For any i we have

n
f+i

®n
i
¯ (3f+i−"

j=i
k
j
)®nf}2 so that F f(pniw

i
)¯ pnf+i+nf/#w

f+i
up to multiplication by

a p-adic unit. Similar statements hold for the m
i
, n!

i
and m!

i
.

For an arbitrary fixed j suppose that the coefficient of w!
j

in g.pn
"w

"
is exactly

divisible by pa. Now F f(pn
"w

"
) is divisible by pnf+"

+nf/# so g.F f(pn
"w

"
) is divisible by

pnf+"
+nf/#. But g commutes with F f so certainly the coefficient of w!

f+j
in F fg.pn

"w
"

is

divisible by pnf+"
+nf/#. Hence

a­n!
f+j

®n!
j
­nf}2& n

f+"
­nf}2.

Hence (since m
"
¯ 0) we have

a& n!
j
­n

f+"
®n!

f+j
& n!

j
­(n

f+"
­m

"
)®(n!

f+j
­m!

j
)¯ n!

j
­d

J
®d

J«.

This implies that θ
g
(pn

" w
"
C e

!
)Z pdJ−dJ«(S

J« CW ). In fact, since g is acting only on

Hn(X
n
), we have θ

g
(pn

" w
"
C e

!
)Z pdJ−dJ«(H

J« CWe
!
).

Up to p-adic units, pmi+" w
i+"

¯Fpni w
i
}pm and pni+# w

i+#
¯Fpmi+" w

i+"
}pm−". Similar

statements apply with J replaced by J«. Repeatedly applying F}pm and F}pm−" to the

case i¯ 1 we obtain

θ
g
(pni w

i
C e

!
)Z pdJ−dJ«(S

J« CW ) for i odd,

θ
g
(pmi w

i
C e

"
)Z pdJ−dJ«(S

J« CW) for i even.

That takes care of half the basis elements for S
J
CW. But we also have m

i
¯ 0 for

some even i or n
i
¯ 0 for some odd i so we may take care of the rest similarly. This

is because our basis elements for S
J
CW come in two F-orbits and for each orbit

there is a minimum n
i
or m

i
equal to zero.
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8. Some remarks

(1) There remains the problem of obtaining a reasonable lower bound for the

minimal norm of L. This leads to several problems. One needs to know the

relationship between MC:
p
and (Hn(X

n
)CH "(E ))F=p

m. Are they always equal as in

the case n¯ 1? Is detM a pure power of p before rescaling the intersection pairing?

Then one needs a lower bound for the self-intersection number of a cycle in CmfAm.

In the case n¯ 1 one divides gX
"
(k) by gE(k) and obtains the bound 2(q®1).

In the case n¯ 1 a lower bound for the minimal norm of L is 2(q®1)}pf/# (since

d
max

¯ f}2). I do not know what to do for n" 1.

(2) When f is odd it is easy to adapt the above methods to produce an R-stable,

G-invariant, even integral lattice L in V with detL¯ p(rankL)/#

(3) Remember that L (and R, up to conjugacy) depend on the particular choice

of E in a fixed k-isogeny class. For a given maximal order R in K, does every even,

unimodular, R[G]-stable lattice in V arise from our construction for some choice of

E with endomorphism ring R?

(4) When n is even, primitive codimension n}2 cycles on X
n

give an irreducible

1[G]-module V of dimension qn+"®qn­I­q$®q#­q as a vector space. The

intersection pairing endows V with a G-invariant, definite, symmetric bilinear form.

Our method breaks down since when n is even the minimal degree of an absolutely

irreducible, nontrivial representation of G in characteristic not equal to p is

qn+"®qn­I­q$®q#­q®1 [15]. This is just as well since otherwise we would be able

to produce even unimodular lattices of rank not divisible by 8, which is impossible.

(5) If p& n­1 the reduction mod p of Hn(X
n
) (namely Hn

dR
(X

n
)) has (n­1)f

irreducible k[G]-module composition factors, each occurring with multiplicity one.
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