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1. The maximum modulus

A FUNCTION f(z) = a1z +... is called starlike in \z\ < 1 if it is analytic in
121 < 1 and maps | z\ < 1 onto a region starlike with respect to 0. Let

M(r) = max| / (z) |
lsl=r

be the maximum modulus of f(z). The author has shown ((8) Theorem 1)
that

exists and that

a = lim log M(r) /log - — (1)
r-»l / l~r

We shall call a the order of/(z). For every d,

V(0) = lim &rgf{reie) (3)
r-»-l

exists, and V(d) is monotone increasing. Hence V(6) is continuous with
the exception of an at most enumerable number of jump discontinuities.
Hence there is a greatest jump. This greatest jump has the height TTCL

((8) Theorem 1).

THEOREM 1. Let f(z) be starlike in | z \ < 1 and let a (0 ^ <x ^ 1) be the order
off(z). Then

where M'(r) is the left derivative.

For every analytic function, the maximum modulus M(r) is piecewise
analytic in 0 ^ r < 1. Hence the left derivative always exists. We can choose
£ on | £ | = r such that |/(£) | = M(r) and (see for instance (4))

/ ' ( £ ) _ W(r)
^J{0~ M(r)- (5)

Proof. 1. Suppose (4) were false. Then there would exist a sequence
{rk} with rfc-> 1 such that
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Let M(rk) =f{rke
iOk), where £& = rke

i0" satisfies (5). We may assume that
{6k} converges. Using a suitable normalization of f(z) we may assume that

If V{9) is defined by (3) then (see for instance (7))

f(z) = a^exp (- flog—L-dVit)). (7)

From this representation it follows that (see the formula before (7) in (7))

for 0 < T] < TT/2. Hence (the numbers i£y will depend only on / and on the
variables displayed)

(V(e ) V ( d ) ) l ^ (8)
l-rk

If V{9) has the jump TT<X* at 8 = 0 then, for every e > 0, there is an h0 > 0
such that V(h) —V{ — h)< 7r(a* + e) for 0 ^ h < hQ. Since V(9) is monotone
it follows that V(9k + rj)~ V(9k — 77) < 7r(a* + e) if 77 > 0 is sufficiently small
and k large. Taken together with (2) this implies that

K2 + a log j ^ ^ log Jffo) g K3(e) + (a* + e) log y - ^ -

for large k. Making k->co we see that a^a* + e; hence a^a*. On the
other hand, TTOC is the greatest jump of V(9). Therefore a* = a, and V(9)
has a jump of height mx at 0.

2. We assume now that a > 0. We want to show that 9,J(l —rk) remains
bounded as k^-co. If this is not true we can assume that for instance
8k> 0 and that 8kj(\ —rk)-> + 00. From (7) we obtain

1 -
.eg

f(rke<°*)
We can write V(t) = ocS{t)+V*(t), where S(t) is constant in —n^t^TT
except for a jump of height 77 at t = 0, and V*(t) is monotone and continuous
at t = 0. Then it follows that

log

( ''
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The part of the last integral that is extended over [ - 29k, 29k] is

J-20k
 & ~ J-20k \ (l~r/,:)2 /

7* ( — 20,.)) log

Since V*(t) is continuous at t = 0 it follows that

- 2 0 *
log(...)dF*(0^o(l).]og--*- (10)

as A; -> oo. Also, since sin T ̂  2T/TT for 0 ̂  T ̂  TT/2,

(11)

Similarly for the integral over [ — n, — 29k]. From (9), (10), and (11) we
obtain

log 1 +

A / /•

Hence 0,./(l — rk)-> + co implies that

f(rk)log + 00,

in contradiction to \f(rk)\^M(rk) — \f(reiOk)\. Therefore we have proved
that dkl(l—rk) remains bounded if a > 0.

3. Now let again a^ 0. By formula (5) in (7),

Therefore (5) implies that

. M'(rk)
" & ? J _ „ 1 - rk ei((>«-l) K)'

Again writing V(t) = a.S{t)+ V*(t) we obtain

n-r)r M'^ a

\ x 'kl'k )iyf/« \ n l
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The integrand in the last integral tends to 0 as k->co, for each t^O.
Since V*{t) is continuous for t = 0, the point t = 0 has V*-measure 0.
Hence the integrand tends to 0 almost everywhere with respect to the
monotone function V*(t). Because the integrand is absolutely ^ 2,
Lebesgue's theorem on bounded convergence (for Stieltjes integrals)
implies that the integral in (13) tends to 0. If we write

yk = (smd,J2)l(l-rk)
then (13) becomes

If a = 0 then it follows at once that (l-rk)M'(rk)IM(rk)-*Q. Therefore
we may assume that a>0 . Then we have seen that d,J(l—rk) and thus
also yk remain bounded. Since the left side of (14) is real, the second purely
imaginary term on the right side tends to 0. Hence the boundedness of yA.
implies that yk->0. It follows that the first term on the right side of (14)
tends to a. Hence {I — rk)M'(rk)/M(rk)-><x, in contradiction to (6).

2. Estimates of length
Iff(z) = a1z+ ... is univalent in |z\ < 1 let L(r) denote the length

L(r) =
Jo

of the image curve C(r) of | z | = r. Since the point 0 is enclosed by C(r)
it follows that the diameter of C(r) is ^.M(r) = max|/(2)|. Hence

\z\=r

L(r) ^ 2M(r). It would seem that in general L(r) is very much greater
than M(r), due to oscillations of C(r). But it will be shown that this is
not quite true if the growtli of M(r) is sufficiently large.

THEOREM 2. Letf(z) be starlike in \ z \ < 1. / / the order a off(z) is positive
then there is a K = K (/) < co such that

10
2M(r) ^ L(r) ^ K+- M(r). (15)

a

Remarks. 1. Since na is the greatest jump of V(6), the assumption that
a > 0 means that V(6) is not continuous. It can be shown that 'a > 0' is
equivalent to the assumption that the image domain of | z \ < 1 contains a
sector {w : Ax < arg w < A2} of positive angle A2 - Ax.

2. Since (see for instance (10) vol. I, 286)

P(r)= S K l ^ o \f'(

and M(r)^P(r), the theorem implies that also M(r) and P(r) have the
same growth if a > 0.
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3. In (8) it was proved that if/(z) is starlike and M(r) ^ 1/(1 - r ) a (a > 0)
then L(r)-^A(cx)l(l — r)a where A(a) only depends on a. This result is
contained in Theorem 2 except for the constant K which may depend on / .

We shall need the following known lemma.

LEMMA. / / F(z) is analytic and ReF(z) > 0 in\z\<l, and if \F(Q)| g 1,
then

and

Proof. Since ReF(z)>0 there is a monotone increasing function U(t)
such that

and

(16)

If .F(z) = c0 + cx z + ... the well-known inequality

follows at once. Since | F(0) | ^ 1 we obtain | c01 ^ 1 and | cn \ ^ 2 for n ^ 2.
Therefore

] fZ7T oo

- \F(re«>)\*dO= S | c J
*ffJ0 71 = 0

Also, (16) implies that

oo

7 1 = 1

o-it

Hence we see that

1 r2" 1

TTJQ 1—
^2ReF(0)Z5.—r2 1—r2

Proo/ of Theorem 2. Let .F(z) = zf'{z)jf{z). Then i'(O) = 1. Since/(z)
is starlike we have ReF(z) > 0. If h(z) = zf'(z) then A(z) =f(z)F{z)) hence
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Therefore

~ f *\h'{reid)\d6^r-1 M{r)^- [ "' \F{rei0)\2dd + M{r)-^- C"\F'{rei0)\dd.

Thus it follows from the Lemma that

We can write
2n[

dd.
r>2n r-2n\ r-r

L(r) = | h(rel°) \ dd = ^'
Jo Jo I Jo

Hence it follows from (17) that

L{r)£ f f n\h'{Pei0)\dpdd
Jo Jo

Now we use the hypothesis that a > 0. By Theorem 1 there is an ro(f) with
< r0 < 1 such that

v ^'M{p) 501

for r0 ̂  p < 1. Hence (18) shows that, for r > rQ,

501 501 r , , . , > , .„ 19
a

and for 0 ^ r ^ r0 we have L(r) ^ ^ .

We shall now study the question whether Theorem 2 can be improved.
The function

maps 121 < 1 onto the plane cut along the m half-lines

e * « 2 & - l ) / m [ 2 - 2 / 7 B ) + 0 0 ] ( k = l , . . . , m ) .

Hence /w(z) is starlike, and

The order of f(z) is a = 2/m. Hence

lim inf L{r)jM{r) > 2m = 4/a.
r—>-c»

This inequality shows that the factor 19/a of M(r) on the right side of (15)
cannot be replaced by anything better than 4/a, at least if a = 2/m
(m= 1,2,...).
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The hypothesis a > 0 of Theorem 2 means

lim log M{r)/log > 0.
r-»-l 1—7"

It will now be proved that no weaker assumption implies L(r) = 0(M(r)).

THEOBEM 3. Let rj(r) be any positive function such that r)(r)-+0 as r-> 1.
Then there is a starlike function f(z) and a sequence rn->\ such that

log M(rn)/log^{j
l~rn

and L(rn)/M(rn) -> oo.

Proof. 1. We shall construct sequences Xn and rn with 0 < nXn < 2~a

and rn-> 1 such that the functions fo(z) = z and

/rt(z) = zfl(l-CzirAl' (»^1)
v=l

satisfy

log MJrk) ^ (1 - 2-»)log M^ir,,), (19)

Ln(rk)IMn(rk) ^ (1 - 2-) L^r^M^rJ (20)

(l^k^n-1), and

logilfB(rw) ^ 2^(rn)log 1/(1 - r j , (21)
Ln{rn)^\nMn{rn). (22)

Here Mn{r) is the maximum modulus of fn(z) o\\\z\ = r and i^n(r) is the
length of the image curve.

2. Suppose the numbers Ay and rv have already been found up to
v = n— 1. Let

We choose a positive number Xn<2-nln so small that (19) and (20) hold
uniformly in rn for 0 < r n < l . It follows from geometric considerations
that the function z(l — rn

nzn)~Xn maps \z\ = rn onto a curve of length
>2n[(l—rn

2n)~An—l]. We can choose rn (>rn_x) so large that the
following four conditions are satisfied:

\ (23)

) , (24)

Mn(rn)>Ul-rn^)-\ (25)

i(l-rB«»)-*->(l-rn»)-^->. (26)

Then (21) follows from (25) and (26), and (22) from (23) and (24).
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3. Let oo
fiz\ — l i m f (?\ — ? TT M — r " ?v\-\vJ \z) — m x i Jn\z) — z LL\l r

v
 z ) •

n->oo v=l

Since SvA,, < 22-" < 2, computation shows that f(z) is starlike. For fixed
k ̂  1 and w > & it follows from (19) that

logMn(rk) £ (1 - 2 - ) . . . (1 - 2-*~i)logMk[rk) > *log Jffc(rfc);

hence, by (21),
log i f (rfc) = lim ! / > , ) ^ 7?(r,) log 1/(1- r,).

7l->00

It follows from (20) that

Ln(rk)IMn(rk)>lLk(rk)IMk(rk),
and therefore, by (22),

L(rk)IM(rk)>kl*.

3. Coefficient problems
00

Let f(z) = 2 cbnz
n be univalent in \z\ < 1. Recently, Hayman (6) has

shown that .. . . ..

for some absolute constant A. In the special case that f(z) is starlike
this had been proved by Golusin (2) (with A < 100). In the general case,
Biernacki (1) had earlier obtained A |ax| (log(?i+ 1))* as an upper bound.

A function/(z) analytic in \z\< 1 is called close-to-convex if there is a
starlike function g(z) = bxz+ ... such that

R e ^ - V > 0 (27)

for | z | < l . This class of functions was introduced by Kaplan (7). He
showed that every close-to-convex function is univalent.

The starlike functions form a subclass of the class of close-to-convex
functions (with g(z) = f(z)). Another subclass is formed by the functions
convex in one direction, introduced by Robertson (9). These are the
functions for which the intersection of the image region with each line of
a certain fixed direction is either empty or one interval. A function is
convex in one direction if and only if the starlike function in (27) has
the form

^l-e-4u-e- .z) (28)

with real dx and 62 and complex bv

00

T H E O R E M 4. Letf(z) = *£ anz
n be close-to-convex in\z\<l. Then

n=l
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/ / the starlike function g(z) in (27) does not have the form (28) then there is
a 8 = 8(g) > 0 such that

| a B + 1 | - K I = 0 ( ^ ) . (29)

Remarks. 1. For the special case that /(2) is convex in one direction
Professor M. S. Robertson communicated to me a proof that

-5^\an+1\-\an\<4,

which is a little better than the above estimate (fe2 « 5-54).
2. The functions excluded in the second part of Theorem 4 are those

functions close-to-convex in one direction for which only a g of the form
(28) can be chosen. To see that there are functions convex in one direction
for which not even \aHJL1\ — ja,J->0 holds we can take/(z) = g(z), of the
form (28). Another example is given by the odd function which maps
121 < 1 onto the complement of {| Re ?«| = 1, \ Im w \ ^ 1}.

COROLLARY 1. Let f(z) be starlike in \ z\ < 1. Then either

J \ 1 /1 ~—ili, _ \ II ~ iff. «,\ '

or there is a 8 = 8(/) > 0 such that

The second part of Theorem 4 can be generalized.

THEOREM 5. Let m be an integer ^ 1, and let f(z) be close-to-convex in
121 < 1. Let Re [zf'(z)lg(z)] > 0 for a starlike function

m+l

g{z) * bxz n (l-e-^2)-2""1*1'.

Then there are co^dex numbers ck (k = 0,...,m) with |co| = \cm\ = 1, and
a 8 > 0 defending only on m and g, such that

c0 rc
2 an + cx(n + 1 )2 a,, M + ... + cjn + mf an+m = O(n^^^-S).

Proof of Theorem 4. We may assume that 1%! = |/'(0)| = 1 and
I gr'(O) | = 1. Because of (27) and because g(z) is starlike, the functions

have positive real part, and |JP'(0)I = G'(0) = 1. Since g(z) is univalent
we can choose a t — ^(r) with j ^| = r such that

= max 1 ( 2 - 0 . 7 ( 2 ) 1 ^ ^ (31)
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((3) 162). If h(z) = zf'(z) then, by (30),

h'(z) = -~z(9(z)F(z)) = z-ig(z)(G(z)F(z

With z = rei0 we therefore obtain

i - \U\(z-Z)h'(z)\de£r-iQ(r)(-±- P \G(z)F(z)\d9 + -~\ \F'(z

By the Schwarz inequality,

Hence application of the lemma to 6̂ (2) and ^(z) shows, with (31), that

2
=

d 0
Since fe'(z) = -j- {zf'{z)) = ^ln

2anz
n-1 we see that

dz 1

(z - Q h'(z) = £ 7i2 on z'1 - £ ^2 an ^

1

Therefore (32) implies that

n+1Z\^ 1_f5)a

We take r = rw = (n/(n+ I))2. Because | £| = rn it follows that

<4

This proves the first part of Theorem 4.
The second part follows from Theorem 5. We have

(n+ l)2||an| — |an+1|| ^\n2\an\ — (n + l)2|an+1|| + (2n+ l)|a.J. (33)

By Theorem 5 the first term is O(n2~s') for some 8' > 0. From the assumption
about g it follows that the starlike function g has an order <xx < 2. Hence
g(z) = 0({l-r)-P), for some j3 with l<jS<2. Since Rei^(z)>0, so that
F{z) = Odl-r)-1), and zf'(z) = g(z)F(z), we see that/'(z) = O((l-r)-^"1).
Therefore f(z) = O((l — r)~P). Since f(z) is univalent and jS> 1 it follows
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that aH = OinP-1) ((5) 46). Therefore (33) implies that

(n+l)2\\an\-\an+1\\ = 0{n^') + 0(nP) = 0

for S = min(S',2-j8)>0.

Proof ofTheorem 5. 1. Let

V{6) = lim a,vgg(rei0).

Let 7ra,.(lc = l , . . . ,m+l) be the m+1 greatest jumps of the monotone
function V(6), and let

a 1 ^a 2 ^ . . . ^a w + 1 . (34)

Since V(9) is monotone,

«!+. . .+ «m + aw+1 £ *- C"d V(d) = 2, (35)

with equality only if V(6) is constant except for the jumps 7ra,.. Let 6k

be the point in 0 ^ 6 < 2v at which F(0) has the jump 7TOLIC.

2. We have now to distinguish two cases.
(i) Suppose that ax< 1+ 2/(m+1). It follows from (34) and (35) that

a A ;<l + 2/(m+l) and (m+l)aH l + 1^a1+.. .+aH H_1^2;

hence am+1^2/(m+1). If we had equality then V(d) would be constant
except for jumps of height 2-n7(ra+ 1) at 6 = 8k (k = l , . . . , ra+l) . But then
(j(z) would have the form excluded in Theorem 5. Therefore am+1 < 2j(m +1).
We define

m

g*(z) = g(z)t(z) with 0(z) = \\ {\-e~^z). (36)

Let H{B) be the function which is constant in —co<9<oo except for
positive jumps of height -n at the multiples of 2TT. Let

m
V*(6)= V(8)- Z8(0-0b). (37)

fc=i
Then all positive jumps of V*(6) have height

^7Tmax ( « ! - 1, ...,am- 1,aHt+1) < 2TT/(7/I + 1 ) .

(ii) Suppose that ax^ 1 + 2/(ra+1). It follows that m ^ 2 because
otherwise ax = 2, and #(z) would be of the excluded form. By (35) we
obtain <x,. ^ 2 — ax < 1 for /J ̂  2. Also by (35),

2 m— I
(m- l )a . . <a« + . . . + « . . < 2 - a , < 1 - - - - = - ;m ~ i m~ 1 ~ m + 1 m + 1

hence awl ̂  l/(m + 1) < 2/(m +1). We define
m— 1

g*(z) = g(z)ifj(z) with 0(z) = (1 -or^zf n (1 -eri0*z). (38)
fc=2
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Then all positive jumps of
m—1

v*{6) = V(d) - 2S(d - ej - s s{0 - ek) (39)
fc=2

have height ^7rmax(a1-2,a2— 1, ...,anl_i— l,«m) = 7ram< 2TT/(W + 1).

3. The functions F*(0) defined by (37) or (39) have variation ^ (m + 2) -rr
over every interval of length 2TT. We have proved that in either case the
positive jumps of F*(0) have height <27r/(m+l). Also, it follows from
(37) and (39) that V*(d) - (1 -m/2) 0 has the period 2TT. Using (7) we obtain

g*(z) =

This equation implies (see the proof of Theorem I in (7)) that

log | flf*(re^) | - log r 16X |

^ V . ( - ? • ( « - r) - 2(l - £) r) dr.
0 l - 2 r cos r + r2 \ \ 2/ /

For given 0 < rj < TT/2 we split the integral into an integral over 10,77] and
one over [17,77]. The second integral is

3(ra + 2)7rr
= 2'1 — 2r cos 7] + r

The integral over [0,17] is either negative or

^ i l o g i l l . sup (F*(0 + T ) - F * ( 0 - T ) - ( 2 - W ) T ) .
7T 1— r 0 | T < ,

Since the positive jumps of V*(t) are < 277/(m + 1), it follows that there are
a 8 > 0 and an 17 > 0 such that

sup (F*(0 + T ) - F * ( 0 - T ) - ( 2 - W ) T ) < 7 T ( » - L - - - S )
0 g T ^ J;

for all 0. Hence

log I g*(re«>) \ ^ ( ^ - s) log ̂  + A\, (40)

where i^ does not depend on r.

4. As in the proof of Theorem 4, let h(z) = zf'(z). Then again

= rei0)If i/i(z) is defined by (36) or (38) then (with z = re
1 r2n 1 pin

- \f(z)h'{z)\d8 = —\ \g*(z)\\G(z)F(z
Z7T J o Z7T? JQ
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by the lemma where, from (40),

Q{r) = max|gr*(z)| =
lel-r

Hence we see that
2n

1 r2

—
Z7T Jo

By (36) and (38) we can write

with |co | = |c,,,| = 1. In the power series expansion of
m oo

ifj{z)h'(z) = ScA.zm-& S ^ a . z " - 1

the coefficient of z71"^"1-1 is

fc=0
Therefore (41) implies that

k-0

where K% does not depend on n and r. If we choose r = 1 — 1/n, Theorem 5
follows.

oo

T H E O E E M 6. Let f(z) = %anz
n be starlike in \z\ < 1. Let m = 1,2, . . . .

l

/ / there is a sequence {nv} satisfying

nv+1 — nl) = 0(nv
e) for every e>0 , ifm=l, (42)

nv+i ~nv = °(l°g nv) if m>l, (43)

max K + f c | = O ^ ^ ^ + D - 1 - ^ ) (44)
0^fc<m-l "

for some rj' > 0, ^e?i ei^er

f(z) = a, zU j T _ _ _ j 5 7 _ , (45)

or ^/iere is an rj > 0 $wc/* £Aa/ /or aW ?i,

an = O ( )

Remark. The coefficients of /(z) = z ( l - z" l + 1 ) - 2 / ( m + 1 ) satisfy an = 0
for WHM (mod(m+l) ) and an~const .n2 / { m + 1 )~1 for ? i= l (mod(w+l) ) .
Therefore the assumption that f(z) shall not have the form (45) cannot
be dropped.
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Finally we shall prove that if a starlike function has not too few gaps
then either the coefficients are very regularly distributed or they are
small.

COROLLARY 2. Let f(z) be starlike in \z\< I. / / there is a sequence {?&„}
satisfying (42) such that anv = 0 then either

(i) there is a q>0 \such that {an} has the 'period, q and an = 0 exactly if
n=Q (modq), or

(ii) thereisan-q>wsuch that aa - Oin-'i).

Proof of Theorem 6. 1. Let first m = 1, and let us assume that (45) is
not true. From Corollary 1 we obtain | aA | — | <Vn I = O(/x~s) for some
S>0. If n is given let nv be such that nv_1 < n ̂  nv. Then

I an | ̂  || an | -1 an+11| + ... +1| aVv_x \ - \ aVv \\ + \ aVv |

^ {nv-nv_x)max\\ajl\-\a/l+11| +1anJ.

Because of (42) we have nv — nv_x = 0(ri1,_1
5/2). Therefore (44) implies that

an = Oin^'^Oin-^ + Oin-V) = O(n~>>),

with rj = min (17', 8/2).

2. Let now ra>l, and let (45) be not true. By Theorem 5 (with
g(z) =f{z)) there are a S > 0 and a K such that

m

. n*\anI 5; £ IckI (n + kf \an+k\ + Kn*">»»» *-*.

If C = max I ck I it follows by induction that
n*Ian\ZC(1 + Cy> '£ (n + k+p)*\all+J,+v\

-ti (46)
for every p = 0,1,.... For given n let nv_x %n<nv. We take p — nv — n—l
in (46). Together with (44) we thus obtain

n2\an\ = (1 + C)n"-n"-i (0(w,2/<'»+1>+W) + 0(n2/(Hl+1)+1-*)). (47)

By (43) we have ] o g ( 1 + ^ ^ =

Therefore it follows from (47) that

n2\aj = 0 ( n 2 / ( ' n ) ,

with -q = min (^'/2,8/2) > 0.

Proof of Corollary 2. Let us assume that (ii) is not true. Then it follows
from Theorem 6 that

l~eri0*z}'
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(It is not possible that 6X — 92 because then | an | = n # 0.) The coefficients
of this function are

an = const. e-
i0*n(l-eil0*-°t)n).

If (61 - 62)I2TT were irrational then an # 0 for all n. If q is the lowest positive
denominator of (6X — 62)I27T then (i) follows.
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