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The secondary work embrittlement in sheet steels
Daoming Li, Gotz HeBling and Wolfgang Bleck

Increasing requirements for cold forming properties have led to the development of interstitlal free (IF) steels. The excellent deep

drawability of IF steels results from extra low carbon and nitrogen contents « 50ppm) in addition to titanium and niobium microalloying for

stabilising the interstitial elements. After cold work, a secondary operation may lead to embrittlement, often via intergranular fracture. This

so called secondary work embrittlement phenomenon has been analysed using several methods, of which the deep drawing of cups as

primary work is the most common method. The influence of impurities on grain boundaries is observed by means of surface analytic

tools, e.g. by Auger electron spectroscopy. The main influence is mechanically the primary work and the kind of secondary loading. From

the metallurgical viewpoint, grain boundary weakening elements, especially phosphorus, and grain boundary strengthening elements, e.g.

Boron and free carbon, have a strong effect on secondary work embrittlement.

Verformungsinduzierte Versprodung von IF Stahlen. Steigende Anforderungen an die Kaltumformbarkeit von Tletzlehstahlen Iuhrten

zur Entwicklung von Stahlen ohne interstitiell eingelagerte Atome (IF-Stahle). Deren herausragende Tiefzieheigenschaften resultieren aus

der Einstellung niedrigster Kohlenstoff- und Stickstoffgehalte « 50 ppm) in Verbindung mit Mikrolegierungsgehalten an Titan und Niob,

die eine stabile Abbindung der interstitiellen Atome gewahrleisten. Nach einer Kaltumformung versagen IF Stahle bei weiterer Beanspru

chung haufig spr6de, meist in Verbindung mit Korngrenzenbruch. Zur Analyse dieses Effektes wurden verschiedene Methoden entwik

kelt, wobei die Verwendung von tiefgezogenen Napfchsn als Erstumformung am weitesten verbreitet ist. Der EinfluB einzelner Elemente

auf die Korngrenzen wird mit oberflachenanalytlschen Methoden, wie zum Beispiel der Auger-Spektroskopie, untersucht. Ais Hauptein

fluBgr6Ben zeigen sich verfahrenstechnisch die Vorverformungsgeschichte und die Belastungsweise bei der zweiten Verformung. Legie

rungstechnisch haben korngrenzenverspr6dende Elemente, insbesondere Phosphor, und korngrenzenfestigende Elemente, zum Beispiel

Bor und ungebundener Kohlenstoff, starken EinfluB auf die verformungsinduzierte Verspr6dung.

In order to meet the demands of the automobile industry,
several grades of interstitial free (IF) steels have been
developed in recent years [I], due to the fact that non
microalloyed Al-killed steels are not suitable for obtaining
excellent deep drawability and non-aging properties during
short time annealing. IF steels are ultra low carbon steels
(ULC-steels), usually containing less than 50 ppm C and
N, respectively, achieved through vacuum degassing, in
which carbonitride forming elements, such as Ti and Nb,
are added to stabilise. the remaining C and N contents. Due
to their low yield strength and high r values, IF steels are
superior, in formability terms, to aluminium killed steels
particularly when continuous annealing including hot dip
coating processes are employed. Moreover, by suitable
chemical modifications, higher strength IF steels with
good formability can be produced.

However, IF steels may exhibit embrittlement, often via
intergranular fracture (IGF), which occurs during a secon
dary operation after a primary forming stage involving the
generation of large compressive circumferential stresses,
e.g. forming by deep drawing. Low temperature and im
pact loading tend to intensify the embrittlement. The phe
nomenon is called secondary work embrittlement (SWE)
or cold work embrittlement (CWE) or strain-induced em
brittlement [2]. The term SWE is used throughout the
present paper. Although SWE is prominent in IF steels,
similar embrittlement has also been reported in rephos
phorised low carbon steel [3]. The brittle fracture in the
case of SWE is typically characterised by IGF, as is exem-

plified in figure 1. Generally, the fracture is initiated inter
granularly and propagates intergranularly and/or trans
granularly [4]. The most common criteria for the suscepti
bility to SWE is the ductile to brittle transition temperature
(DBTT). Above this temperature no embrittlement by
SWE is observed. The proportion of IGF usually increases
with increasing the grain boundary concentration of harm
ful elements such as P [5; 6] or with decreasing that of de
embrittling elements like B [7] and C [5]. As a steel tends
to fracture more favourably in the intergranular mode, the
corresponding DBTT also increases.

Figure 1. SEM fractograph of an IF steel failed in the cup test,
showing intergranular fracture
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Figure 4. Schematic illustrations showing key steps constituting
the bend-unbendtest of stripea used to evaluate the SWE

Figure 2. Typical loading modes of the cup tests for evaluating
SWE

At present, in-service failure of IF steels has scarcely
been reported to be attributed to SWE. Nevertheless, the
susceptibility of steels to SWE is being paid special atten
tion because new formable steel grades are increasingly
required, especially high strength IF steels to which P is
usually added to maintain good drawability. Furthermore,
recycling scrap may cause an increase of tramp elements in
steels in years to come. Therefore, extended investigations
on IGF and/or SWE are justified from both academical and
industrial viewpoints.

In the present paper, a review on the literature related to
SWE in sheet steels is given, some important parameters
are dicussed and approaches for further studies are pro
posed.

Approaches to evaluate SWE

Mechanical testing. To date various experimental
methods have been developed to evaluate the susceptibility
of SWE. The differences between the test methods are
- primary work for specimen preparation: specimens can

be conical cups, flat cups, deep drawn production parts
or Ot-bend-stripes;

- secondary work which is applied during testing: this
can be cup expansion by a conical punch, side crush of
cups or reverse bend of stripes;
edge conditions: as-drawn or trimmed;
loading mode: impact or static;

- evaluation criteria: OBTT, crack-length, critical strain,
pass/fail,absorbed energy, type of fracture or failure
load.

The possibility of combining these different test condi
tions led to a multitude of different testing techniques as
referred to in [4]. That is why it is difficult to compare the
results of various investigators. Figure 2 shows schemati
cally the loading differences for the often used cup tests.

An improved test method used by the present investiga
tors is an instrumentated cup test which is carried out in a
high speed tensile testing machine, allowing loading
speeds up to 5000 mm/s. A cooling chamber, working with
liquid nitrogen, is installed on the loading fixture of the
test machine, with which the cup is expanded with a coni
cal punch in-situ at a specified temperature, eliminating the
temperature rise due to moving the specimen from the
cooling facility to the testing equipment as in" most con
ventional cup tests. Furthermore, the temperature increase
during forming (e.g. by a non-cooled conus) is minimized
because of the cooling of the whole test environment. The
absorbed energy is calculated from the load-displacement
curve. One obvious advantage of this improved test
method is that the transition region for OBTT is abrupt, as
shown in figure 3 for a Ti/Nb-IF steel, and hence the
OBTT can be determined unambigously.

Considering that the cup test requires special cup
making equipment and testing facilities and is time con
suming, a bend-unbend test has been introduced [8], figure
4. The method consists of the following steps: a) bending
strips (usually with an inner radius of 0) as primary work;
b) cooling down the bend specimen to a specified tem
perature and unbending the specimen as secondary work;
c) deciding whether the specimen passes or fails. The
OBTT is defined as the lowest temperature for passing the
test. Further investigations of this method clarified the
mechanical conditions (such as the strain distribution
around the bend tip) inducing the embrittlement and cor
relating the bend-unbend test results with the cup test re
sults [9].

Chemical/thermodynamical approaches. Chemical
examination is aimed to investigate which elements affect
the grain boundary properties and with which intensity.

Auger electron spectroscopy (AES) is a much used tool
for studying the segregation of impurities to grain bounda
ries [10]. In the case of examining IGF, AES allows to
identify and to calculate the concentration of segregants.
The IGF surfaces have to be produced in-situ in the ultra
high vacuum in order to avoid influences of the atmo
sphere. In addition low energy electron diffraction (LEEO)
allows to determine the structure of surfaces [II].

The thermodynamics of segregation are described by the
Langmuir-McLean equation [12]:
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Figure 3. Absorbed energy as a function of temperature in the
instrumentated cup test (v - loading speed, DR - draw ratio); the
DBTT is determined to -102°C
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Table 1. Typical values of free energy t1G? (i = element) for segregation of p. C and B in

different steels

8i: occupancy of grain boundary sites by the segregating
element i. Xi: mole fraction in the bulk, R: general gas

constant, T: temperature, L1Gp (usually with a negative

value): free energy of segregation.

L1G? is determined by:

Steel system t1G~ t1Gg t1Gg microstructure temperature

Fe-IO%Mn-P-B [13] -47 kJ/mol - 97 kJ/mol austenite 750-1100°C

Fe-0.2% P-B [14] -100 kJ/mol ferrite 800°C

Fe-C-P [6] -53 kJ/mol -76 kJ/mol ferrite 600°C

segregate strongly and vice versa [10]. Intergranular em
brittlement of steels at low temperatures correlates with
impurity segregation [16]. In iron-based alloy systems, Si
[17], P [5], S [18], Ge, As, Se [17], Sn [19], Sb [16], Te,
Bi [17] are identified as embrittlers, while B [20] and C [5]
are documented to strengthen grain boundaries.

The weakening effect on grain boundaries can be ex
plained using an embedded atom theory and the strength
ening effect using a covalent theory [21...23]. Elements
like B, C and N tend to increase grain boundary cohesion
and other elements like Hand 0 tend to decrease the cohe
sion, as the first show predominantly covalent binding,
which increases the grain boundary strength while the
latter have a grain boundary state similar to the chemi
sorbed state, allowing them to change the state in the time
while a crack is passing. Furthermore, a theory of pair
bonding has been proposed which enables the change in
grain boundary cohesion to be calculated readily from
tabulated thermodynamic data of sublimitation enthalpies
and atom sizes [24]. For the ferrous matrix, it is indicated
by this theory that Bi, S, Sb, Se, Sn and Te will be highly
embrittling, followed in order of reducing effect, by P, As,
Ge, Si and Cu. In increasing order of their remedial effect
on embrittlement in iron are N, Band C. For IF steels, the
effects of C, Band P on IGF/SWE are of crucial impor
tance and are separately addressed below.

Effect of carbon. It is generally recognised that the lack
of solute C in IF steels significantly decreases the cohesive
strength of a grain boundary which is depleted through the
stabilisation process by Ti and/or Nb. Three hypotheses
have been proposed to explain the effect of carbon on the
IGF [5]:
- site competition hypothesis: C atoms replace segre

gated P atoms at grain boundaries which leads to a de
creased P segregation and thus reduces IGF. Investiga
tions of P and C segregation in Fe-P-C alloys show that
the segregation of P decreases with increasing C bulk
concentration [6; 25];

- chemical interaction hypothesis: C atoms change the
state of the atomic bond around P and thereby reduce
the negative effect of P on the grain boundary cohe
sion;

- carbon increasing the grain boundary cohesion by
itself, irrespective of the P segregation: the grain
boundary strengthening effect of C as described above
reduces IGF independent of the P grain boundary cov
erage. Ageing at 872 K for specimens with 0.52% P
and 0.0008% C increases the degree of C segregation at
grain boundaries and lowers the DBTT, while it does
not affect the degree of grain boundary segregation of
P [5]. There are also examples in other alloying sys-

(I)

(2)

8· (-
L1G9J--'- = xi exp --'

1-8i RT

L1H?: enthalpy of segregation, LiSt's: excess entropy of

segregation.
Table 1 lists some typical values of the free energy ob

tained in different alloying systems regarding the segrega
tion by a particular element. A general trend is found in
table I: either B or C has a free energy value significantly
lower than that of P regarding their segregation to grain
boundary. This general observation rightly accounts for the
strengthening effects of Band C segregation to the grain
boundary.

Mechanisms oflGF/SWE in IF steels

Equation (l) predicts that the segregation increases with
decreasing temperature and with increasing bulk concen
tration. This was verified experimentally: lowering the
annealing temperature from 800 to 500°C for a Fe-P alloy
with 0.17% P bulk concentration increases the grain
boundary concentration of P about 40%. Raising the P
bulk concentration from 0.018 to 0.046% at an annealing
temperature of 600°C increases the grain boundary con
centration ofP the same [12].

By comparing technical segregation with such equilib
rium experiments it has to be considered that the segre
gating elements have to reach the grain boundary by diffu
sion. As the influence of temperature on the diffusion is
reverse to the influence on the segregation, the temperature
range 400-600 °C is critical for P segregation [12]. This
com petitional sensitivity to temperature of segregation and
diffusion is further confirmed by recent investigation [15],·
in which maximum enrichment of P is achieved for the
temperature range between 600 and 780°C for Ti-Nb IF
steels with P addition and with Mn adddition by an an
nealing time of 5 minutes. This temperature range is, in
comparison to the former, relatively high as a non
equilibrium segregation is focused.

Chemical/metallurgical viewpoints. Impurities in steels
can have strong effects on the me-
chanical behaviour, especially when
they tend to enrich or segregate at
grain boundaries. As a general rule,
elements of groups IV to VI in the
periodic table, e.g. Sn, P, As, Sb, S,
Se and Te segregate at grain bounda
ries and cause the embrittlement of
steels [12]. Solutes of a low solubility
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crease of P mass contents from 0.11 to 0.67% increases the
DBTT by around 200K when the C level is < 50ppm and
by around 120K when the C level is 100ppm and above.

Effect of B. Boron is generally used to increase the
hardenability of some steels. The main disadvantages of
adding B to cold formable steels are the corresponding
decrease in the r value and the increase in the recrystalli
zation temperature. Since it is a neighbour of carbon in the
periodic table, it- can be expected that B has an effect
similar to that of C on the grain boundary cohesion of iron
[24]. Because the state of B is difficult to control, owing to
its extremely low solubility in iron and easy combination
with impurities such as N, 0, and C, direct experimental
evidence has seldom been found to clarify the mechanism
of B acting as an intrinsic effect on the grain boundary
cohesion of iron, although a few hypotheses have been
proposed [24; 28]. Nevertheless, this does not preclude the
revelation of significant improvement of the resistance to
SWE realised by the addition of B. For a high-purity Fe
0.2 % P alloy, it was found that an addition of 12.5 ppm B
completely prevents the P-induced IGF and lowers the
DBTT by about 170K in the impact test [14]. Their results
on chemical analysis suggests that the segregation of P
decreases markedly with the segregation of B while P
atoms are replaced by B atoms at grain boundaries. The
suppression of the IGF is attributed principally to the in
herent role of B in increasing the grain boundary cohesion
of iron, and secondarily to the decrease in the segregation
of P due to the segregation of B. The intrinsic strengthen
ing role of B is evidenced in figure 6 showing that an
addition of 0.002% B decreases the transition temperature
in the cup test by about 80K independent of P content [20].
The second effect of B by displacing P at grain boundaries
is shown in figure 7: B mass contents up to 0.001% reduce
the P segregation, but B addition over 0.001% has no more
effect on the P segregation [20].

Effect ofP. The grain boundary segregation of phospho
rus has been identified to weaken the grain boundary cohe
sion and act as one of the major factors affecting the sus
ceptibility to SWE [3]. This effect is already reflected in
figures 5 and 6. IGF can also occur in non-IF steels with a
high P content due to the segregation of P to grain bounda
ries [6], but this segregation is easier in IF steels due to no
or less solute C to compete for grain boundary sites. For
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terns which seem to support the intrinsic effect of C in
preventing IGF caused by sources other than the segre
gation of P. One is the effect of C in the elimination of
[GF in pure molybdenum [26]. The other is the result
that about an atomic mass fraction of 80 ppm C com
pletely prevents IGF in as-quenched specimens of high
purity iron, tested at 170K under hydrogen charging
[27].

A steel with a mass content of about 0.01% C can pre
vent the occurrence of [GF caused by the grain boundary
segregation of P and lower the DBTT in the charpy impact
test, figure 5. The increasing DBTT for specimens with
0,02 % C and more is caused by pearlite nodules [5]. The
DBTT is also strongly affected by the P content, an in-
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distortion is negligible. By contrast, grains in the inner
radius region are compressed in the circumferential direc
tion and elongated in the radial direction. It is experimen
tally confirmed that the DBTT determined by the bend
unbend test approximates the one determined by the cup
test [9].
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Figure 8. Percentage of IGF as a function of grain boundary P
content in Fe-P alloys

Mechanical viewpoints

example, the DBTT may become higher than room tem
perature for a Ti stabilised steel with just about 0.013 % P
[3]. As an example, figure 8 shows that the percentage of
IGF increases with increasing grain boundary P content
[6].

The local chemistry near or on the grain boundaries is
affected by the processing of the material. For instance,
increasing the continuous annealing temperature of cold
strip in order to dissolve carbides or annealing in a car
burizing atmosphere [29] can dissolve C and, hence, in
crease the resistance to SWE, which additionally leads to
an increase in mechanical strength associated with bake
hardening capability [30]. However, it should be noted that
high temperature annealing of fully stabilised IF steels
results in a higher resistance to SWE on the condition that
an appropriate cooling rate after soaking is applied in order
to avoid reprecipitation of the dissolved carbon [31].
Coiling at high temperatures (e.g. 750°C) decreases the
amount of solute carbon and hence, increases the DBTT in
the SWE test [32], because C tends to react with Ti to form
the precipitation of carbides as the coiling temperature
increases. Lowering the coiling temperature of IF steel
suppresses full C-precipitation and, hence, improves the
toughness of the hot-rolled steel, but the solute C pre
served on the hot-band can precipitate during the annealing
process and have a reverse effect.

o 0.5 1 1.5 2 2.5

Distance from cup bottom, inch
Figure 9. Distribution of the three principal engineeringstrains with
distance from the bottomof a draw cup
draw ratio: 2.41, thickness of sheet: 0.9 mm, die gap: 1.6 mm, and
die radius: 14.3 mm

Effects of test conditions. Effect ofdraw ratio (primary
strain). The primary strain level and its distribution are
mainly determined by the draw ratio, although the sheet
thickness and the die entry radius can also affect the strain
distribution to some extent. The DBTT increases with
increasing the draw ratio, as is shown in figure 10 [32].
Assuming that ductile-brittle transition is a result of coun
terbalance between yield strength and fracture strength, an
increase in the yield strength due to increased draw ratio
could reasonably contribute to an elevation of DBTT.
Besides, the effect of the circumferential strain, produced
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For the occurrence of IGF in general terms, it is argued
that the stress concentration at the tip of a slip band inter
secting with a grain boundary may exceed the cohesive
strength of the boundary, hence, giving grain boundary
fracture [33]. Therefore it is understandable that factors
influencing the stress intensification at the tip of a slip
band determines whether or not IGF can occur in a specific
application, e.g. coarse grains intensify the stress concen
tration at the tip of a slip band promoting IGF.

For the cup drawing, figure 9 gives the strain distribu
tion as a function of distance from the cup bottom, meas
ured by grid marking, applied to the blanks prior to cup
drawing [2]. It is important to notice that the maximum
tensile and compressive strains occur near the top of the
cup where the IGF is usually found. Since this combina
tion of the maximum tensile and compressive strains
causes the grains to elongate severely in the direction par
allel to the drawing axis and the tensile stress is applied
perpendicular to the elongated grain boundaries as the top
of the cup is expanded by a conical ram during the secon
dary work in the cup test these local conditions promote
IGF by a critical weakening of the grain boundaries [2].
For the bend-unbend test, compressive strains are devel
oped around the inner radius during bending. The grain
distortion prior to unbending was examined by metallo
graphy in order to estimate the strains [9]. It is found that
the local strain conditions are similar to a deep drawn cup
near the edge (DR = 2.41), or even more severe. The re
sults indicate that grains at the outer rim are stretched in
the circumferential direction and compressed in the radial
direction. In the middle area around the neutral axis, grain
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Figure 10. DBTT as a function of draw ratio

Discussion

On the mechanisms. It is concluded by the preceding
sections that the SWE in IF steels is mainly caused by
grain boundary de-cohesion processes (lack of strength
ening elements and/or surplus of embrittling elements).
For an easy revelation of the SWE phenomenon as in the
cup test, the mechanical conditions have to intensify the
secondary deformation process (e.g. drop-weight loading,
low temperature, cup expansion with circumferential stress
perpendicular to the elongated grain boundaries). These
considerations should explain why SWE is scarcely found
in a practical secondary forming operation where the
straining and/or environmental conditions are usually less
severe than in the test for SWE evaluation. Therefore the
present evaluation tests actually serve to examine the sus
ceptibility of a steel to SWE. The typical deformation
history (heavily deformed at the initial forming stage and
intensively strained during the secondary deformation) in
the fore-mentioned evaluation tests acts to make the em
brittlement more severe through an up-shifting of DBTT
but is not an exclusive mechanical condition for the occur
rence of the embrittlement. For example, IGF can occur in
IF steels under fatigue loading conditions, as in the fatigue
crack growth test [35; 36].

The grain boundary chemistry plays a key role in af
fecting the susceptibility of a steel to IGF. This argument
has already been confirmed by Hondros and McLean [33],
which predicts that most pure metals are close to the bor-

determines the velocity for conventional impact cup tests,
increasing the drop height increases the DBTT [4].

Effect of cup edge/sheet surface conditions. Trimming
the edge of the cup decreases the DBTT under both static
and impact test conditions. The presence of flanges in most
deep drawing parts decreases the strain level and the stress
concentration in critical areas, leading to a decrease in the
DBTT [2]. For the bend-unbend test, surface flaws in the
form of extrusions are found around the inner radius area,
presumably due to the heterogeneous deformation gener
ated in differently oriented grains [9]. These flaws can
further facilitate the formation of brittle fracture when the
specimen is unbent at an appropriate low temperature.
From a viewpoint of fracture mechanics, this type of effect
should reasonably be expected.

Effect of tooling dimensions. A decrease in the die pro
file radius from 13 to 6mm causes an elevation in the fail
ure temperature of about 80K for a high-P IF steel and is
assumed to be attributed to the increased yield strength as
the smaller die profile radius hinders the flowing of the
steel and thus leads to higher strains [34]. For the bend
unbend test, it is found that the DBTT decreases by about
30 degrees with increasing the bend radius from 0 to O.5t
[9]. As for the tooling condition in the secondary deforma
tion, the cone angle also exhibits an obvious influence on
SWE. Because the cone angle affects both the circumfer
ential stress component on the cup and the strain rate at
impact, a consistent dependence of the cone angle on SWE
has yet to be built up [4].
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due to the release of (the elastic portion of) circumferential
stress upon leaving the die during drawing, should also be
considered [4], as a higher draw ratio causes higher cir
cumferential stresses and, as a result, higher circumferen
tial strain.

It must be noted that the maximum strains in severely
drawn cups are much higher than typical strains in most
automotive parts. While in the former major strains up to
99% and minor strains up to -55% are obtained, strains in a
door panel (major strain 4%, minor strain I%) or in a
quarter panel (major strain 35%, minor strain -15%) are
much smaller. But in floor panels (major strain 62%, minor
strain -49%) and especially in oil pans (major strain 100%,
minor strain -50%) critical amounts of strain have been
reported [32].

Effect of loading rate (strain rate). The DBTT increases
with increasing the rate at which the secondary work is
applied [2], e.g. a drop-weight cup test gives a higher
DBTT than a static cup test. Figure 11 shows that, as the

tangential strain rate 4> increases only from 0.04 to 2.6 s",

the DBTT found in the instrumented conical cup test in
creases by about 30 DC for a Ti-stabilised IF steel. As
suming the fore-mentioned ductile-brittle transition argu
ment, this effect is mainly attributed to an increase in yield
strength with increasing strain rate. Since the drop height
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der-line between ductile and brittle fracture, but more on
the ductile side due to the difficulty in satisfying the shear
preventing requirement for IGF. In the presence of de
cohesion element(s) on grain boundaries, grain boundary
cohesion can be reduced by a factor of - 2 and, hence, the
requirement for IGF is readily satisfied for many metals
[33].

The important role of grain boundary chemistry is also
demonstrated in' the occurrence of IGF in many other ap
plications of engineering alloys. Grain boundary segrega
tion of impurity elements such as P, S, Sn, and Sb, even
with low bulk concentrations (50-200 ppm), is responsible
for the occurrence of temper embrittlement, creep cavita
tion, stress relief cracking, and stress corrosion cracking
[37], in which the failure processes all take the path along
grain boundaries, despite that contrasting differences in
mechanical/environmental conditions exist among these
cases. In view of this, the IGF in the case of SWE shares a
background common to those found in many other engi
neering alloys.

On the approaches to SWE. As the IGF found in SWE
is common to that found in other grain boundary degrading
phenomena in engineering alloys, more fundamental
chemical and/or thermodynamical approaches are empha
sised in order to understand IGF in general terms. The
mechanical tests (e.g. the cup test) show what causes SWE
but a fundamental chemical and/or thermodynamic ap
proach should exhibit how it causes IGF and hence SWE.
Depending on which aspect of chemical/thermodynamical
approaches should be emphasised, a comparison has to be
made of the IGF features between the SWE in ULC steels
and the embrittlement cases in other engineering alloys.
While the segregation of certain elements to grain bounda
ries is essential for the various IGF processes mentioned
above, the different fracture mechanisms depend on differ
ent consequences of ,the segregation process. For the IGF
in the case of temper embrittlement, the formation of the
embrittling precipitates is necessary for the weakening of
grain boundary. In the case of creep failure, the cavitation
process is necessitated before any coalescence can possibly
occur for the IGF. Under the condition of stress corrosion,
the segregation must provide a local electrical potential
favourable for the propagation of grain boundary cracking.
However, for the IGF of ULC steels such as in SWE, the
grain boundary decohesion results from the segregation
itself. In other words, it is adequate to consider which
element occupies the atom site of grain boundary.

Based on the above analysis, it is concluded that the seg
regation process has to undergo extensive investigation.
The thermodynamical aspects of the segregation are im
portant for getting a fundamental understanding of the
process.

Current SWE evaluation tests, e.g. the cup test, detect
the susceptibility of a steel to SWE. Due to the non stan
dardised test conditions and inherent inaccurancies these
tests can merely provide a relative comparison of SWE
susceptibility among materials. Since the deformation
history (including primary and secondary forming opera
tions) differs from case to case in practice, it seems impos-
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sible to use one single parameter (e.g. of strain) to evaluate
the phenomenon of SWE. Similar to the concept of
equivalent stress in establishing strength theory for multi
axial loading, it might also be worthwhile to investigate
the possible existence of a comprehensive parameter de
scribing the (primary + secondary) deformation history.

Concluding remarks

The IGF occurring in ULC steels share a common
background with the IGF events found in many other
applications of engineering alloys. In all of these cases,
the segregation of certain elements to grain boundaries
plays a crucial role for the decohesion of the bounda
ries;
the IGF phenomenon in the case of SWE of ULC steels
is mainly detected by the cup test and the bend-unbend
test, in which the cup test currently plays a major role;
the particular strain history intensifies the tendency of
IGF through the elevation of the DBTT (ductile to brit
tle transition temperature);
the DBTT is increased by high amounts of strain dur
ing primary work, by high strain rate, by internal stress
and by grain boundary segregation especially of P;
the DBTT is decreased by C and B segregation at the
grain boundaries.
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