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Adaptive measurements of urban runoff quality
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Abstract An approach to adaptively measure runoff water quality dynamics is introduced, focusing
specifically on characterizing the timing and magnitude of urban pollutographs. Rather than relying on a
static schedule or flow-weighted sampling, which can miss important water quality dynamics if
parameterized inadequately, novel Internet-enabled sensor nodes are used to autonomously adapt their
measurement frequency to real-time weather forecasts and hydrologic conditions. This dynamic approach
has the potential to significantly improve the use of constrained experimental resources, such as automated
grab samplers, which continue to provide a strong alternative to sampling water quality dynamics when in
situ sensors are not available. Compared to conventional flow-weighted or time-weighted sampling
schemes, which rely on preset thresholds, a major benefit of the approach is the ability to dynamically adapt
to features of an underlying hydrologic signal. A 28 km? urban watershed was studied to characterize
concentrations of total suspended solids (TSS) and total phosphorus. Water quality samples were
autonomously triggered in response to features in the underlying hydrograph and real-time weather
forecasts. The study watershed did not exhibit a strong first flush and intraevent concentration variability
was driven by flow acceleration, wherein the largest loadings of TSS and total phosphorus corresponded
with the steepest rising limbs of the storm hydrograph. The scalability of the proposed method is discussed
in the context of larger sensor network deployments, as well the potential to improving control of urban
water quality.

1. Introduction

Nonpoint source pollution is a leading cause of surface water impairment in the United States and repre-
sents a major management concern as rapid urbanization continues to strain local and regional water
resources [Padowski and Jawitz, 2012; Rowny and Stewart, 2012]. The emergence of reliable environmental
sensors is poised to transform our understanding of nonpoint source pollution and broader water systems
[Hill et al, 2014; Montgomery et al, 2007]. In hydrologic studies, new sensors are revealing previously
unmeasured dynamics that govern water quality across large watersheds. For example, new optical nitrate
sensors are improving the quantification of loads, flow paths, and nutrient dynamics [Hensley et al., 2015;
Miller et al., 2015; Pellerin et al., 2009]. Furthermore, the recent ability to continuously measure turbidity and
sediments has challenged existing assumptions of sediment variability, suggesting that nutrient concentra-
tions exhibit complex dynamics that often cannot be attributed to storm features [Métadier and Bertrand-
Krajewski, 2012].

While these sensor measurements will help to fill critical scientific knowledge gaps, the management of
water systems also stands to significantly benefit from an improved understanding of water quality dynam-
ics. Much of urban water quality management is tuned to handle the storm as a whole, seeking to control
and treat the cumulative event rather than affect its dynamics. This is accomplished through a variety of
green or gray infrastructure solutions [Barrett, 2005; Roy-Poirier et al., 2010], the choice of which is often
based on assumptions of stationarity and few or no measurements. While improved measurements of water
quality will help to guide the design and maintenance of these systems, a new generation of intelligent
infrastructure (controllable ponds, tanks, weirs, bioswales, etc.) stands to benefit even more from improved
quantification of pollutant dynamics. Modern infrastructure will soon route water in real-time to respond to
individual storm events [Kerkez et al., 2016; Montestruque and Lemmon, 2015; Ocampo-Martinez et al., 2013;
Quigley and Brown, 2015] to reduce flooding and improve water quality. Such finely grained control will
benefit from an equally finely grained understanding of water quality dynamics.
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However, the widespread use of in situ sensors is still limited by costs, high power consumption, and main-
tenance requirements. Moreover, for many important parameters, such as metals, there are no in situ sen-
sors to provide such measurements. For emerging contaminants, including viruses and industrial chemicals,
in situ sensors may never become available unless regulations or research drive their development. Auto-
mated samplers, which retrieve water samples for subsequent laboratory analysis, may be used to fill these
measurement gaps. While they may incur considerable expense for installation, maintenance, and repair
[Harmel et al., 2010], automated samplers provide a flexible and automated means by which to reduce
man-hours that would otherwise be required to achieve the same task.

Advances in wireless communications and data architectures are now significantly reducing the overhead
required to deploy environmental sensor networks [Akyildiz et al., 2002; Oliveira and Rodrigues, 2011; Rawat
et al,, 2014], enabling the adaptive and real-time study of water systems. These advances are however not
being leveraged to their maximum potential [Corke et al., 2010; Hart and Martinez, 2006], as the majority of
presently deployed sensor platforms are still used in an off-line fashion. By adapting a study to in situ condi-
tions and various public sources of real-time data such as weather forecasts or streamflow measurements,
the quality of the final experiment stands to significantly improve. This is particularly pertinent in the study
of hydrologic systems and nonpoint source water quality, where abrupt changes in water quality due to
unanticipated flashy storms often contain critical information about water quality dynamics in watersheds
[Fletcher and Deletic, 2007].

The goal of this paper is to investigate a flexible approach by which to adaptively measure nonpoint source
water quality in urban watersheds with the specific objective of characterizing dynamics (timing and magni-
tude) of pollutant runoff. An adaptive sampling algorithm is introduced, which executes on sensor nodes
and queries local weather forecasts to anticipate state changes in a hydrograph signal. These state changes
are then used to guide an online sampling schedule to minimize the resource consumption of a sensor
node, while simultaneously maximizing the information content of the acquired water quality measure-
ments. The adaptive sampling method is evaluated during the 2014 rain season to study the dynamics and
first flush behavior of total phosphorus and total suspended solids (TSS) in an urbanized watershed. While
urban nonpoint source water quality is the focus of this paper, the methods presented herein can readily
be adapted to a broad suite of other resource-constrained hydrologic and water quality studies.

2. Background

2.1. Problem Description

The study and management of watersheds and drainage networks often hinges upon an accurate detection
and characterization of transient events, as the remainder of the system is often in a steady, relatively well-
understood state. For many urban hydraulic and hydrologic systems, these rapid changes are driven by
highly uncertain phenomena, such as precipitation [Langeveld et al., 2012; Leecaster et al., 2002]. Knowledge
of water quality dynamics during storm events provides a guiding principle for nonpoint source urban
water quality control, which has most recently been brought to the public’s attention through the meteoric
rise of green infrastructure, particularly across much of the United States [Benedict and McMahon, 2006].
Beyond green infrastructure, many cities also implement a variety of Best Management Practices [Barbosa
et al., 2012], several of which are designed to route initial flows toward large retention or detention basins
for settlement or infiltration. In the American Midwest, some of the most critical water quality measure-
ments include nutrients, particularly runoff-generated phosphorus. While algal blooms and eutrophication
are driven by complex dynamics that require both nitrogen and phosphorus, in many freshwater systems,
such as the Great Lakes, phosphorous is often the limiting nutrient [Edwards et al., 2005; Rucinski et al.,
2010].

A large body of research has shown that runoff pollutant concentrations exhibit highly complex dynamics
that depend, among many other factors, on the type of pollutant, intensity of rain events, the physiography
of watersheds, local flow regimes, and antecedent dry periods [Eleria and Vogel, 2005; Hathaway and Hunt,
2011; Langeveld et al., 2012; Leecaster et al., 2002; McCarthy et al, 2012]. One popular concept in urban
hydrologic research is the “first flush” of pollutants into streams and rivers [Bach et al.,, 2010; Lee and Bang,
2000; Métadier and Bertrand-Krajewski, 2012]. This effect has been known to occur particularly in urban
streams that display leading hysteresis, where the highest concentration of contaminants occurs at the
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——Hydrograph beginning of a storm event, as con-
—==Pollutograph taminants are first washed off roads
and other impervious surfaces. Howev-
er, a number of studies have not
observed the first flush [Bertrand-Kra-
jewski et al., 1998; Characklis and Wies-
ner, 1997; Deletic, 1998; Métadier and
Bertrand-Krajewski, 20121, showing that
peak pollutant concentrations do not
always arrive within a small fraction of
the initial runoff (Figure 1). While the
first flush is an important phenome-
non, this initial fraction of runoff may
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Figure 1. Characterizing the peak pollutant runoff arrival is critical to informing sheds and chemical constituents. In
impacts of land use and water quality control practices, which often rely on some streams, high levels of erosion

tions of a first flush. .
assumptions ot a first flus caused by local flow regimes that

exceed geomorphically significant lev-
els are a leading cause of suspended sediment and nutrient loads [Hawley and Vietz, 2016]. For such
streams, peak loads of sediments are often correlated to flows rather than a first flush. To that end, there is
a need to collect representative measurements of storm-driven water quality dynamics to improve our fun-
damental understanding of land use practices on water quality.

2.2. Instrumentation

When compared to water flow, water quality remains relatively expensive and difficult to measure [Fletcher
and Deletic, 2007]. Even today, despite advances in telemetry and low-power microcontrollers, a dense spa-
tial coverage of in situ water quality measurements is still hindered by a lack of reliable and cost-effective
sensors. For many important parameters, such as nitrate, the cost and power consumption of sensors inhibit
their ubiquitous deployment, while for other parameters, such as phosphorus and phosphates, noncolori-
metric or in situ sensing technologies do not even exist [Horsburgh et al., 2010]. Many water quality sensors
also consume more energy than the entire remainder of the data acquisition system and require frequent
servicing to mitigate field effects such as biofouling [Hensley et al., 2015; Wagner et al., 2006]. As such, main-
taining sensor networks to measure water quality across large geographic areas is a resource-intensive task
that presently poses a major barrier to the ubiquitous measurements of urban water quality.

When continuous in situ sensing becomes too expensive or infeasible, field-hardened automated samplers
can be used to collect samples, which can be subsequently analyzed in the laboratory for a variety of water
quality parameters (e.g., nutrients, metals, solids, bacteria, and other emerging contaminants) [Deletic, 1998;
Fletcher and Deletic, 2007; Gall et al., 2010; Harmel et al., 2010]. These units are programmed to pump a sam-
ple of water into one of a number of bottles. Depending on the study objectives, these samples usually
range from one 20 L bottle to as many as twenty-four 1 L bottles. The use of automated samplers presents
a set of unique deployment challenges compared to in situ sensors. In the absence of grid power, the signif-
icant mechanical energy required to physically pump samples places a major drain on battery resources.
Additionally, samples may need to be refrigerated or chemically treated for preservation depending on the
constituents of interest [Harmel et al., 2006; USEPA, 1979]. As is the case in the use of most other sensors,
autosamplers are also plagued by the need to calibrate readings to variability in a stream cross section. For
dissolved constituents, selecting a well-mixed site can remedy this variability as a sample at a single point
may then be assumed to be representative of the entire stream cross section.

While one-bottle samplers are a practical means by which to study the composite effects of a storm event,
they do not provide insight into the detailed dynamics of an event, which is important if they are to be
used as substitutes for continuous, in situ sensors. When using multiple sample bottles to resolve urban pol-
lutograph dynamics, the limited number of available bottles becomes a major constraint. If the timing, mag-
nitude, and duration of storms are not accurately anticipated, “wasted” or missed samples often become a
common experimental occurrence. Measuring too slowly can entirely miss the dynamics of an underlying
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Figure 2. (a) Undersampling reduces the use of constrained experimental resources but can lead to an improperly reconstructed water quality signal, (b) rapid sampling may deplete all
of the sampling resources before the event is complete, and (c) triggering on flow thresholds or storm intensities alone may miss the onset of smaller events.

pollutograph (Figure 2a). On the other hand, measuring too fast or too early may deplete the number of
sample bottles before an event is fully captured, which is particularly common if storms last for multiple
days (Figure 2b). To mitigate this, units can be configured to acquire samples if a preset flow threshold is
exceeded, after which the hydrograph can be sampled according to predetermined flow-weighted or
time-weighted intervals [Gall et al., 2010; Harmel et al., 2003]. However, this strategy may miss important
base flow samples. Also, as storm duration and intensity can be highly variable, setting triggers or inter-
vals to static values may not consistently sample a wide range of storm events. Flow-weighted sampling
cannot account for storm intensities that deviate far away from the design storm or have multiple dis-
tinct discharge peaks (Figure 2c). Furthermore, the number of available bottles may still be depleted
before an event is fully captured if the storm lasts longer than expected. While missed base flow concen-
trations can sometimes be estimated from samples taken during other dry weather periods [Anderson
and Rounds, 2010; Beck and Birch, 2012], such estimates may be inaccurate since elevated concentrations
may occur at the onset of a storm [Horowitz, 2009]. None of the conventional sampling techniques dis-
tinguish between important points of the flow hydrograph, such as the peak and inflection points, which
may often contain significant information with regard to the effect of land use variability on the
pollutograph.

2.3. Adaptive Sampling

The concept of adapting measurement strategies or detecting events of interest has been introduced
broadly in the signal processing and machine learning literature for a variety of applications but has seen
limited use in hydrology. Often, adaptive sampling revolves around spatial measurement strategies, where
measurements at one location are used to inform locations of new measurements [Singh et al., 2006]. The
problem can also be extended to the temporal domain, where sampling frequencies are changed during
events of interest [Krause et al., 2009]. The task of detecting these events falls broadly into the literature of
change-point detection [Reeves et al., 2007; Tartakovsky et al., 2014], where a signal is monitored to isolate
abrupt state changes or transient events. While few studies couple these two objectives, in the case of
water quality, adaptive sampling and change-point detection are inherently coupled, as the detection of a
hydrograph change must be accompanied by a change in the sampling schedule to resolve the features
of the pollutograph. Much of the existing literature on these topics does not explicitly incorporate the
physical dynamics or nuances of such phenomenon, which limits their benefit to many real-world
experiments.

While automated samplers provide a way to sample many water quality parameters simultaneously, the off-
line use of these devices impedes their scalability as an experimental platform. The use of in situ measure-
ments coupled with real-time data, which is readily afforded by current technologies, has the potential to
transform these sampling strategies from static to highly adaptive. For example, Gall et al. [2010] reprog-
rammed an automated sampler to distribute 20 sampling bottles throughout a storm event. This approach,
however, did not consider explicit hydrograph states or weather forecasts, which may cause valuable meas-
urements to be missed. To that end, real-time data processing and adaptive sampling will allow sensing
resources to be continuously optimized around site-specific conditions to ensure that measurements are
taken at the most informative points.
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Figure 3. Forecast data are acquired in real-time from the Internet and fused with filtered, real-time sensor data to trigger the automated
sampler based on relevant hydrologic states.

3. Methods

A real-time framework for the adaptive sampling of water quality is presented, which controls automated
samplers to minimize the number of sampling bottles required to reconstruct the temporal dynamics of the
pollutograph. The method continuously adapts to individual storm events by incorporating real-time
weather forecasts and updating a local model of flow conditions to trigger samples in response to hydro-
graph features rather than predetermined timing or flow thresholds. The technique is designed to be com-
putationally simple enough to be executed efficiently on a field-deployable microcontroller, but can also be
readily ported to the cloud or remote servers. The approach (Figure 3) forms an embedded processing
chain, leveraging local and remote computational resources to assimilate real-time sensor measurements
into a model of local water flow. The core of the architecture is comprised of embedded, remotely
deployed, and internet-connected sensor nodes, which obtain live meteorological forecasts from public
web services to persistently update the probability of precipitation in the study area. Measurements from a
local depth sensor are continuously fed to a state estimator, which estimates the flow dynamics of the
stream. These estimates are then fused with the latest weather forecast and routed to a sampling controller,
which determines when the next sample should be taken by the autosampler.

3.1. State Estimation

The state of the hydrograph must first be estimated before water quality measurements can be scheduled.
Let the state x(t) denotes the flow (or stage) of the hydrograph at time t. We assume that the measured
flow is corrupted by noise, &(t), such that a sensor measurement y(t) is given by

y(O)=x(t)+&(t) (1)

where ¢(t) ~ N(0, ¢2) is normally distributed, zero mean. Given the real-world performance of most sensors,
the measurement noise can be taken as stationary, with a variance ¢? that can readily be obtained from
manufacturer datasheets or a simple laboratory evaluation.

In most applications, rather than triggering new samples based on the actual flow, it may be more relevant
to trigger samples based on the first or second derivatives of the flow, which are indicators of important
hydrograph features independent of storm duration and magnitude. For example, it is often of interest to
distinguish between the rising or falling limbs of the hydrograph:

dx > 0 rising hydrograph limb (2)

dx < 0 falling hydrograph limb.
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The first derivative can be used to detect the onset of a storm event or find the hydrograph peak, while the
second derivative of the flow d can be used to detect inflection points, which are indicators of precipitation
intensity or base flow conditions. For notational simplicity, let x=dx/dt and X =d?x/dt?. Given the noise in
real-world signals, directly differentiating the noisy signal y would only amplify the effects of the noise, thus
obscuring any meaningful estimate of derivatives. Thus, an improved estimate of x(t) must first be obtained
in real-time before x and X can be used to make sampling decisions. This is particularly true in smaller
storms, for which changes in flow may be subtle.

We derive a noise-free estimate X(t) through a nonparametric kernel smoother [Hastie et al., 2009]. For a
noisy observation y; at time t; let X (t;) : R" — R be a function that obtains a local estimate of x; through
the kernel operation:
, i K(tt)x
X(t/) =Xj=<n
2oim1 K(th tf)
where K(-) is the kernel function and n is the number of observed points to be weighted. Given the normal-
ly distributed noise assumption, a good choice of kernel is given by the radial basis function:

K(t,t;)=exp < (r*_t"f) (4)

3)

2r?

where r is the length-scale parameter. This kernel smoothing operation weighs the importance of neighbor-
ing measurements based on their distance (time, in this case) to the measurement of interest. This smooth-
er is ideally suited for the proposed application, as it does not assume that measurements are taken at even
time intervals. Furthermore, this state estimator is very computationally efficient, permitting its implementa-
tion on computationally constrained, low-power microcontroller platforms or data loggers. Once the mea-
sured data has been filtered, an estimate of the noise-free derivative can be obtained by numerically
differentiating the smoothed state.

3.2. Adaptive Sampling Algorithm

Once estimates of x, x, and X have been obtained, the sampling objective becomes to decide when to take
the next measurement. This can be accomplished by scheduling a future sensor reading at time t+t;, or by
changing the sensor sampling frequency to f;=(t;)~'. Often, the sensor used to derive the flow estimates x(t)
consumes fewer resources than the sensor used for water quality measurements, as is the case with the
automated sampler used in this study. As such, measurements of water height or flow can be made at a
higher frequency and used to drive measurements of water quality.

A real-time probability of precipitation, obtained in our case by querying the public WeatherUnderground
forecast (Weather Underground data from http://www.wunderground.com/), is used to trigger the autosam-
pler to take a water quality sample before a storm. This provides a valuable base flow measurement and
safeguards from missing measurements during instances when the hydrograph changes too rapidly or at
too small of an amplitude to be detected by flow sensors alone. The sampling algorithm (Figure 4) uses the
weather forecast to trigger a sample when the chance of precipitation exceeding 5 mm within the hour sur-
passes 10% (empirically determined based upon an analysis of historical forecasts and the resulting hydro-
logic response). Samples are then subsequently triggered based on the estimates of the hydrograph state.
While many sampling strategies are possible, in the case of this study, the states of interest included (1)
base flow conditions right before a storm, (2) the onset of the hydrograph to detect a potential first flush,
(3) the inflection-point of the rising limb of the hydrograph, (4) the peak of the hydrograph, (5) the
inflection-point of the falling limb of the hydrograph, and (6) the falling limb of the hydrograph as it returns
to within 10% of the prestorm base flow. In the case that the weather forecast is erroneous, the initiation of
a storm event is also marked when the slope in the hydrograph exceeded 7.5 m® over 5 min, which for our
study site corresponded with the minimum observed change in flow from base flow conditions caused by
5 mm of precipitation in 1 h. The algorithm can also be viewed as a state machine, where samples are trig-
gered during state transitions, as determined by estimates of the flow x and its derivatives. The state
machine is designed to account for multiple flow regimes (such as delayed surface flows from neighboring
slopes), taking additional samples if multiple inflection points or local hydrograph peaks are detected.
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Figure 4. Adaptive sampling algorithm (above) and corresponding state machine (below).

3.3. Study Area, Sensors, and Cyberinfrastructure

The adaptive sampling algorithm was tested on a sensor node deployed during the 2014 rain season at the
outlet of an urban watershed near Ann Arbor, Michigan (Figure 5, latitude 42°15'53”, longitude
—83°41/18"). The outlet drains into an end-of-line water quality detention basin located along the Huron
River. Ann Arbor’s climate is classified as humid continental with severe winters, hot summers, no dry sea-
son, and strong seasonality. Annual precipitation is 955 mm and snowfall is 1450 mm. The study area com-
prises a 28 km? catchment that is over 80% impervious with the large concentration of impervious surfaces
located near the centroid of the watershed. By the Richards-Baker flashiness index [Baker et al., 2004], the
catchment has a seasonal index of 0.653, which is relatively high for streams in Michigan.

A sensor node and real-time cyberinfrastructure, whose technical details are described in Wong and Kerkez
[2014a,b], were deployed in the northeastern outlet of the watershed. The sensor node is equipped with a
low-power microcontroller (ARM Cortex-M3 architecture) and a low-power wireless module (Telit CC864-
DUAL) to take advantage of urban cellular coverage. For the purposes of this experiment, the node was inter-
faced with a low-cost, low-power ultrasonic depth sensor (MaxBotix MC7384, 3.1mA at 5VDC) to measure the
stage of the hydrograph every 5 min, as well as an automated sampler (ISCO 3700, standby: 10 mA at 12VDC,
sampling: 2000 mA at 12VDC) that drew samples from the run of a stream, where channel features were
deemed moderate and homogenous (Teledyne Isco data are available at http://www.isco.com/WebProduct-
Files/Product_Literature/201/Stormwater_Monitoring_Guide.pdf). To resolve runoff-driven quality dynamics, a
24-bottle configuration of the automated sampler was used. Weather forecast data was queried every 5 min.
For comparison of stage measurements, the node was collocated with a USGS gage (04174518). Upon valida-
tion of the stage estimates, the rating curve of this gage was used to derive flow from our depth readings. In
this study, this permitted for flow, rather than stage, to be used to trigger the automated sampler.

3.4. Water Quality Analysis

The samples taken the by the automated sampler were analyzed for total phosphorus and TSS according to
EPA Methods 365.3 and 160.2, respectively [USEPA, 1979]. EPA Method 365.3 uses a two-step pretreatment
and colorimetric approach to determine total phosphorus concentrations while EPA Method 160.2 deter-
mines TSS concentrations by first filtering a sample and drying the nonfilterable residue in an oven to a
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Figure 5. The study was conducted in Southeast Michigan at the outlet a 28 km? urban watershed.

constant weight. Bottles were pretreated and collected within 24 h of each storm event to ensure samples
were properly preserved prior to analysis. TSS was chosen due to its surrogate relationship with many other
contaminants including total phosphorus [Grayson et al., 1996; Riigner et al., 2013], which was analyzed due
to the study site’s proximity to Lake Erie, where loadings of total phosphorus are of interest to the study of
algal blooms [Dolan and McGunagle, 2005].

To characterize nutrient dynamics and first flush behavior, lab results for each storm event were analyzed
using cumulative mass-volume curve or M(V) curve analysis [Bertrand-Krajewski et al., 1998; Métadier and Ber-
trand-Krajewski, 2012], which compares the dimensionless ratio (percentage) of the cumulative flow-
weighted concentration with the cumulative runoff over the course of a storm event. This analysis permits
the water quality dynamics within multiple storm events to be compared by normalizing for factors such as
storm duration or quantities of loading. To identify the existence and strength of a first flush, each M(V)
curve was approximated with a power law function:

M(k)=V (k)® (5)

b
_ Z;(:‘] GQiAt _ EL1 QiAt;
Z:V:1 GQiAt; Z:V:1 QiAt;

where M(k) and V(k) are the normalized cumulative mass and volume, respectively, up to the k™ sample of
a given storm event over which N total samples are taken; C;, Q;, and At; are the concentration, discharge,
and sampling frequency, respectively, of the i sample [Bertrand-Krajewski et al., 1998; Métadier and Ber-
trand-Krajewski, 2012]. The value of b is inversely proportional to the strength of the first flush (i.e,, a value
much less than unity, 0 < b < 0.185, would correspond to a strong first flush) and the fit is considered satis-
factory for r* > 0.9 [Bertrand-Krajewski et al., 1998]. For each event, the b-value was estimated by minimizing
the least squares fit between equation (5) and the individual data points.

To characterize the variability of pollutant concentrations between storms, the event mean concentration
(EMC) was also calculated. The EMC normalizes the total event load by the total event runoff volume, yield-
ing a flow-weighted average of the pollutant concentration [Langeveld et al., 2012; Lee and Bang, 2000;
Métadier and Bertrand-Krajewski, 2012]. It has been shown that in urban environments, peak EMC of pollu-
tants in storm water runoff can be as much as twenty times larger than base flow EMC during dry weather
conditions [Lee and Bang, 2000]. The EMC was used in this study to quantify the constituent concentrations
carried by runoff in comparison to base flow conditions for each storm event. The influence of other factors
to event mean concentrations, such as antecedent dry conditions [Li et al., 2007] and storm intensity [Ber-
trand-Krajewski et al., 1998], was also considered in the analysis.
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4, Results

4.1. Adaptive Sampling Algorithm

During the 2014 deployment season, the adaptive sampling algorithm was evaluated on four storm events
(1 July, 11 August, 19 August, and 10 September). Each event was preceded by at least a 48 h antecedent
dry period followed by a storm where at least 5 mm of precipitation fell within 24 h (Table 2). The 1 July
event was driven by a 9.4 mm storm over 2 h with a peak flow 2.78 m?/s; the 11 August event was driven
by a 24 mm storm over 7 h, characterized by an initial peak flow of 1.30 m*/s followed 2 h later by a peak
flow of 2.01 m?/s; the 19 August event was driven by a 9.4 mm storm over 2 h with peak flow of 4.33 m*/s;
the 10 September event was driven by a 36 mm storm over 5 h with an initial peak flow of 4.70 m/s fol-
lowed 2 h later by a peak flow of 5.27 m?/s.

The state estimator and real-time kernel smoother correctly identified the pertinent flow regimes, triggering
the automated sampler within an average of 3.5 min (standard deviation ¢ = 3.8 min) to collect water quali-
ty samples as dictated by the control logic (Figure 6, example of 19 August event). The relation between the
stage y, as estimated by the sensor node, and the discharge Q measured by the nearby USGS gage was
found to be Q=0.729 (y—32.5)>*” and was derived using a least squares fit (* = 0.993). The real-time ker-
nel smoothing operation was important to obtaining accurate state estimates, as directly taking the deriva-
tive of the sensor signal yielded a noisy, zero-mean signal that could not be used to determine meaningful
changes in the hydrograph. Integration of real-time weather forecasts into the control logic ensured that
the automated sampler was triggered just before the onset of a storm, allowing for base flow and back-
ground conditions to be decoupled from storm-driven water quality dynamics.

4.2, Water Quality

Concentrations for both TSS and total phosphorus showed a positive linear correlation with flow
(R? = 0.346 for TSS; R? = 0.437 for TP and standard deviations ¢ = 198.6 mg/L and ¢ = 0.272 mg/L, respec-
tively). Samples taken particularly during peak flows had the highest concentrations and there was no
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Figure 6. Forecasted rainfall and measured hyetograph from (top) Weather Underground. (middle) Hydrograph reported by nearby USGS
gage and estimated by local depth sensor. (bottom) Linearly interpolated pollutograph for total suspended solids (TSS) and total phospho-
rus. Markers indicate samples triggered by the algorithm.
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Table 1. The Coefficients of Determination and b-Values for Power Law Functions for Total Phosphorus (TP) and TSS

M(t) = V(t)°
July 1 August 11 August 19 September 10
b-Value R? b-Value R? b-Value R? b-Value R?
TP (mg/L) 0.775 0.748 0.723 0.839 0.799 0.795 0.908 0.866
TSS (mg/L) N/A N/A 0.684 0.850 0.708 0.687 0.893 0.788

observed hysteresis between peak concentration and peak flow. With the exception of the 11 August event,
peak concentrations strictly corresponded with peak flows (Table 2). The 7 h storm event on 11 August
drove two distinct discharge peaks. During this event, the largest concentrations occurred during the first
peak while the largest flows occurred during the second. In general, for the storms with multiple distinct
hydrograph peaks, the intrastorm hydrograph with the relatively steeper rising limb (larger flow accelera-
tion) had the largest pollutant concentration. This was also seen during the 10 September storm event,
which also exhibited two distinct discharge peaks. During this event, the second peak, while relatively larg-
er, was also characterized by a steeper rising limb and higher concentrations.

Temporal comparison of hydrograph and pollutograph peaks showed no discernable leading hysteresis.
Similarly, through an M(V) curve analysis, none of the water quality dynamics could be classified as exhibit-
ing a strong first flush. Overall, the b-values range from 0.684 to 0.908 and r* < 0.9 (Table 1). Six or more
samples were collected for each event and M(V) curves were generated using a spline interpolation (Figure
7). Similar M(V) curves were observed for both TSS and total phosphorus. TSS could not be analyzed from
the 1 July event as the automated sampler was not initially configured to sample a large enough volume to
provide aliquots for TSS analysis.

Peak concentrations of TSS and total phosphorus were neither correlated with rainfall intensity (r* = 0.105
and r* = 0.0277 for TSS and total phosphorus, respectively) nor antecedent dry weather periods (r* = 0.142
and r? = 0.0841 for TP and TSS and total phosphorus, respectively). The largest of the storm events (10 Sep-
tember, as measured by stage height and cumulative flow volume) recorded the lowest concentrations of
TSS and total phosphorus. Overall, the EMC of total phosphorus was at least three times greater during run-
off than during base flow conditions and the EMC of TSS was at least three times greater (Table 2). For both
TSS and total phosphorus, the runoff EMC of each pollutant did not exhibit a linear trend over time.
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Figure 7. Cumulative mass-volume curves for (left) total phosphorus and (right) total suspended solids. Dashed line indicates uniform pollutant concentration.
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Table 2. The Characteristics for Each Measured Storm Event, Including Peak Flow Information, Rainfall, and the Event Mean Concentra-

tions (EMCs) for Total Phosphorus (TP) and TSS

Flow, Rainfall, and Pollutant Characteristic

August 11 September 10
July 1 Peak 1 Peak 2 August 19 Peak 1 Peak 2
Peak flow (m>/s) 278 1.30 2,01 433 4.70 5.27
Slope of rising limb (m?/s min~") 0.192 0.070 0.044 0.383 0.136 0.167
Peak rainfall (mm/h) 8.89 7.11 7.11 9.40 10.92 13.21
Total rainfall (mm) 9.4 24 9.4 36
Storm duration (h) 2 7 2 5
Antecedent dry period/time since first peak (h) 56 258 2 56 85 2
Peak TP (mg/L) 1.405 0.98 0.679 1.165 0.671 0.829
Peak TSS (mg/L) n/a 776 377 778 426 459
Base Flow Runoff Base Flow Runoff Base Flow Runoff Base Flow Runoff
TP EMC (mg/L) 0.192 0618 0.209 0.659 0.094 0.844 0.059 0.676
TSS EMC (mg/L) N/A N/A 127 401 18 527 5.8 390

5. Discussion

5.1. Adaptive Sampling

Compared to conventional flow-weighted or time-weighted sampling schemes, which rely on preset thresh-
olds, a major benefit of the proposed approach is the ability to anticipate and dynamically adapt to features
of an underlying hydrologic signal. This is particularly valuable when resolving pollutograph dynamics
across a variety of storm durations and intensities, as it ensures that each distinct hydrograph is character-
ized using a similar number of samples. Depending on the objectives of the study, this enables the ability
to resolve flashy events to the same extent as larger events using the same sampling logic. This not only
introduces an element of consistency for interstorm comparisons but also reduces the occurrence of missed
or excessive samples that are common in conventional sampling approaches. In turn, this improves the use
of constrained experimental resources.

If storm patterns drive multiple discharge peaks, such as those experienced on 11 August and 10 Septem-
ber, the smaller peak or the secondary peak, even if short in duration or magnitude, may carry the majority
of the pollutant loadings. The use of a flow-weighted approach may have missed such events if parameter-
ized inadequately. A more dynamic estimation approach, as used in this study, is needed to track not only
the flow, but also changes in the underlying hydrologic signal. In more advanced experiments, rather than
just triggering base flow samples, the weather forecast could also be used to anticipate the number and
timing of samples. In situ and real-time sensor readings (such as stage or turbidity) will still be required,
however, to adapt to site-specific dynamics that cannot be captured by a weather forecast alone. Given the
flexibility of our proposed framework, such modifications can be made easily and the sampling logic can be
updated in real-time without the need to visit the study site.

The flexibility of the framework proposed in this paper is perhaps its biggest benefit. While our sampling
approach focused on site-specific hydrograph features, the sampling logic could be changed relatively
easily to enable a suite of novel and uniquely targeted experimental objectives. Sampling strategies
could be modified to detect debris or faulty sensors by tuning the length-scale parameter of the kernel
in real-time, or by implementing more complex fault-detection algorithms [Zhang et al., 2010]. Future
experiments could also be designed to use distributed rainfall data and measurements from other
sensor nodes to optimize sampling around spatial phenomena of interest. For example, sudden changes
in flow at upstream sensor nodes could be used to alert downstream nodes or to track a storm as it
moves through a region. Additionally, real-time hydrologic models could be used to enable more com-
plex sampling strategies during different seasons. For example, a snowmelt model and a conductivity
sensor could be used to guide chlorine sampling during road salting periods. By leveraging an Internet
connection, the majority of this control logic could be implemented on off-site computers, improving
ease of use by permitting researchers to implement the control logic using systems and languages they
are most comfortable with.
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The benefits of adaptive water quality sampling can be achieved at a relatively small overhead. In fact, in
their simplest implementation, the methods presented in this study could be readily repeated by simply
connecting a cellular modem to the autosampler, relying only on a remote computer and public data (for
example, streamflow and precipitation obtained from CUAHSI's Water Data Center (CUAHSI data from
https://www.cuahsi.org/wdc) ) to control the sampling schedule. The need to process real-time sensor feeds
comes at a slight computational expense but is well achievable using already existing technologies and
data services (for example, Amazon Web Services (Amazon Web Services data from https://aws.amazon.
com) and InfluxDB (InfluxDB data from https://www.influxdata.com/time-series-platform/influxdb)). By add-
ing in situ sensors, such as the low-cost water level sensor used in this study, the capabilities of the auto-
mated sampler can be extended even further to enable more responsive and complex sampling strategies.
For example, given the observed correlation between TSS and total phosphorus, as well as known correla-
tions between those parameters and turbidity [Grayson et al., 1996; Rugner et al., 2013], an in situ turbidity
sensor could be used to design an adaptive sampling regimen for total phosphorus. Rather than sampling
around distinct features of the hydrograph, such a study could focus on sampling around the most uncer-
tain statistical parameters of the regression relationship. This may increase the complexity of the sampling
strategy, but it improves the quality of the data input to the regression, and, in turn, the confidence of the
statistical relationship.

5.2. Water Quality

While the occurrence of a first flush may be variable or specifically associated with large and intense storm
events [Barbosa et al., 2012], no correlation was found between increasing storm intensity and the likeli-
hood of a strong first flush. Similar conclusions have been drawn in other studies that analyzed loading
dynamics of urban runoff [Bach et al., 2010; Deletic, 1998; Métadier and Bertrand-Krajewski, 2012]. The lack of
an observable first flush in our watershed could be attributed to a number of causes, including the relatively
large size of our study area (28 km?). Within our study area, a first flush may have existed in much smaller
subcatchments, as suggested by prior studies (less than 1 km?) [see Lee and Bang, 2000]. However, first flush
may not be evident for larger watersheds, particularly if the pollutograph travel times for each subcatch-
ment superimpose, as their confluence may obscure or widen the concentration profile at the outlet of the
larger watershed [Characklis and Wiesner, 1997; Sansalone and Cristina, 2004]. Furthermore, if one specific
area of the watershed contributes the major pollutant runoff, its travel time in relation to peak discharge at
the outlet of the watershed could impact the perceived first flush dynamics.

In our study watershed, a large concentration of solids would be expected from the dominant, heavily
urbanized and impervious surfaces of the watershed, which all exhibit very short travel times and should
have contributed to a first flush if it existed. To that end, it is likely that erosion, caused by flashy hydro-
graphs or high flows, was the primary driver of water quality in the watershed. Studies have shown that the
majority of the phosphorus in runoff is sediment associated [Ellison and Brett, 2006; Paul and Meyer, 2001],
but in many highly urbanized watersheds, this may need to be directly confirmed since many management
practices are still geared towards treating the first flush [Benedict and McMahon, 2006; Wise, 2008]. The
urban areas in our study watershed may thus not be a major source of nutrient runoff. While outside the
scope of this study, a small number of the events were also analyzed for other dissolved pollutants, which
also did not exhibit first flush characteristics.

Although peak pollutant loads corresponded with peak flows, this relationship was nuanced, where a higher
fraction of contaminants arrived after peak flow rather than before. This has also been seen in prior studies
[Métadier and Bertrand-Krajewski, 2012]. Furthermore, b-values were much greater than 0.185, indicating a
lack of a strong first flush in our study catchment. As such, flow values may need to exceed geomorphically
significant levels to begin moving sediment [Booth and Jackson, 1997]. However, this would need to be
studied in detail by augmenting the sampling strategy.

Peak concentrations were also poorly correlated with rainfall intensity and duration of antecedent dry
weather periods. While this is contradictory to some studies [Li et al., 2007], it has been observed by others
[Métadier and Bertrand-Krajewski, 2012]. The relationship between EMC and rainfall has been generally not-
ed to be weak, suggesting that EMC is likely driven by location-specific rather than storm-specific features
[Gnecco et al., 2005]. As such, EMC may not be the best sole measure of water quality characteristics, partic-
ularly when studying pollutant dynamics of individual storms. Concentrations for any given event are a
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complex function of buildup and washoff characteristics [Métadier and Bertrand-Krajewski, 2012] and spatial
rainfall variability, which thus suggests that any given storm event may exhibit unique concentration mag-
nitudes and temporal characteristics.

Throughout this study, pollutograph dynamics were driven by variable storm patterns, a number of which
contained multiple hydrograph peaks. Low correlations between concentration and discharge were
observed and have been similarly reported for other urban catchments [Rees et al., 2006], indicating that
concentration may not be fully explained by discharge alone. While lower concentrations of TSS and total
phosphorus may have resulted from dilution, caused by increased flows mobilizing more coarse-grained
sediments [Tiefenthaler et al., 2000], this could not be confirmed consistently across all events. Within storm
events with multiple peaks, the peak concentration did not just correspond with the peak flow, but rather
with the hydrograph peak that had the steeper rising limb (larger flow acceleration). On an intraevent scale,
this suggests that rather than a lag in the pollutograph, as would be suggested by M(V) analysis alone, the
concentrations are heavily driven by the hydrograph features. The acceleration of flows may correspond
with increased forces exerted on solids, which raise the erosive action on the stream. In our watershed, the
“flashiness” of the hydrograph, a well-known symptom of the urban stream syndrome [Walsh et al., 2005], is
thus perhaps the best predictor of peak concentrations within an individual event.

Better characterizations of water quality thus demand more spatially dense measurements and an improved
understanding of pollutograph dynamics, a task which will be made easier by the adaptive sampling meth-
ods presented in this paper. In particular, more samples will be required to determine if a first flush is evi-
dent in smaller upstream locations, where the pollutograph may be dominated by runoff from impervious
regions, rather than stream dynamics. That said, upscaling the adaptive sampling framework will need to be
done carefully, as optimal sampling schedules may likely be guided by site-specific features. Even sites that
are very close to one another may exhibit distinctly different pollutograph dynamics. As such, initial meas-
urements and calibrations will likely still need to be carried out on each site, after which the most suitable
adaptive sampling strategy can be tuned. A feature-driven approach, such as the one presented here, will
form a good starting point to help formulate a site-specific sampling strategy. The proposed adaptive sam-
pling framework will provide a flexible and low-overhead means by which to reduce the resources required
to investigate the dynamics that are most uncertain at any site.

6. Conclusions

Increasing the temporal resolution of measurements will significantly improve our fundamental under-
standing of water quality dynamics. Understanding these dynamics across various scales can also help deci-
sion making by guiding watershed-specific solutions that strike a balance between local treatment (e.g.,
green infrastructure), restoration, or end-of-line solutions. Until reliable and cost-effective in situ sensors are
available for most important parameters, multibottle automated samplers will continue to provide a strong
alternative to resolving the water quality dynamics of hydrologic systems.

Given real-time notifications and the convenience of using a feature-driven approach to automatically col-
lect samples, the method proposed in this paper could lower barriers for small research groups, agencies or
even individuals to now seamlessly maintain large networks of autosamplers (networks of ten or more sam-
plers). The flexibility the framework presented herein not only makes this possible for automated samplers,
but also for in situ sensors that consume a significant amount of power or are limited by reagent availability
or electrode duty cycling.

The lack of an observed first flush in our watershed cautions the implementation of many popular storm
water control measures for improving urban runoff quality. The majority of these systems, such as retention
ponds and constructed wetlands are designed to capture a maximum volume of flow (1-2 year storms),
which is retained for settling while excess flows are released through overflow structures. However, if the
inflows to the basin do not exhibit a first flush, the basin may only retain the initial, lower concentration
flows, while discharging higher concentrations once storage capacity has been reached.

An exciting paradigm may arise from this realization however: by equipping urban storm water systems
with sensors and controllers (valves, gates, pumps, etc.), it will be possible to maximize the treatment of run-
off through real-time control [Kerkez et al., 2016]. While this idea will require significant future studies to vet
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its promise, the site-specific characterization of water quality dynamics (or corresponding proxies), as pro-
vided by our approach, will allow controllers to be optimally tuned to individual storm events. For example,
a gate could be opened at the beginning of a storm to allow lower concentration flows to exit the water-
shed, while closing to capture the highest concentration inflows and retain them as long as possible before
the next storm event. Similarly, these solutions could be implemented upstream to reduce the exceedance
of geomorphically significant flows, and thus downstream erosion and nutrient loads. These real-time sys-
tems are presently being constructed in this study watershed and will be evaluated in the future.
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