HADAMARD GAP SERIES AND NORMAL FUNCTIONS

L. R. SONS AND D. M. CAMPBELL

In this note we prove the following theorem.

Theorem 1. Let \(f \) be an analytic function defined in the unit disc \(\{ z \mid |z| < 1 \} \) by
\[
f(z) = \sum_{k=0}^{\infty} c_k z^n \text{ where } n_{k+1}/n_k \geq q > 1.\]
Then \(f \) is normal if and only if \(f \) is Bloch if and only if \(\limsup |c_k| < \infty \).

J. S. Hwang [3] has proved the above theorem in the special case where \(c_k = n_k^m \) for some \(m > 1 \) and \((n_{k+1}/n_k) \rightarrow \infty \) as \(k \rightarrow \infty \).

The proof of Theorem 1 is based on ideas of W. Fuchs and techniques which go back to Hardy and Littlewood. Throughout the remainder of the paper \(p_0 \) will denote the maximum of \(2 \log 20/(q-1-\log q) \) and \(\log 10/(\log q-1+q^{-1}) \).

Consider the associated real valued function \(F \) defined by
\[
F(x) = \sum_{n=0}^{\infty} x^{n_{k+1}/n_k} q > 1.
\]

By accentuating the dominance of the largest term of this series by successive differentiations Fuchs [2] proved for all integers \(p \) with \(p \geq p_0 \) that \(F^{(p)}(x) \) behaves in certain intervals like a single term. To be precise, if \(p \geq p_0 \) and \(v \) is sufficiently large, then for any \(s \) in the interval
\[
\exp \left(\frac{-p}{n_c} \right) \leq s \leq \exp \left(\frac{-p}{2n_c} \left(1 + \frac{\log q}{q-1} \right) \right),
\]
we have the inequality
\[
\sum_{k \leq r} n_k(n_k-1)...(n_k-p+1) s^n \leq \frac{1}{4 n_c(n_c-1)...(n_c-p+1)} s^n. \quad (1)
\]

This observation about the associated real valued function \(F \) lets us prove the following important result.

Theorem 2. Let \(f \) be an analytic function defined in \(\{ z \mid |z| < 1 \} \) by \(f(z) = \sum c_k z^n \), \(n_{k+1}/n_k \geq q > 1 \), where \(\limsup |c_k| = \infty \). Then for all integers \(p \) with \(p \geq p_0 \) and all \(M > 0 \), there is an \(s \) such that
\[
(1-|z|)^p |f^{(p)}(z)| \geq M
\]
for every \(z \) on the circle \(|z| = s \).

Received 16 January 1979; revised 9 April 1979.

Proof. Let \(\mu(r) = \sup_k |c_k| r_n^k \). The analyticity of \(f \) in \(|z| < 1 \) and \(\lim \sup |c_k| = \infty \) together imply that \(\mu(r) \) is a monotone increasing function which tends to infinity as \(r \to 1 \).

Let \(p \) be an arbitrary integer greater than \(p_0 \). Choose \(r_0 \) such that \(\mu(r_0) \geq 4M(2e)^p/p! \). Let \(v \) be the largest integer such that
\[
|c_v| r_0^{k_v} \geq \mu(r_0)/2.
\]

We note that \(r_0 \) can be chosen near enough to \(1 \) so that \(n_v \geq p \), and we assume henceforth that \(r_0 \) is so chosen. Now set \(s = s_0 r_0 \) where \(s_0 = \exp(-p/n_v) \). Then
\[
|f^{(p)}(se^{i\theta})| \geq n_v(n_v - 1)(n_v - p + 1)|c_v| s_0^{n_v - p} - \sum_{k \neq v} n_k(n_k - 1)(n_k - p + 1)|c_k| s_0^{n_k - p} \tag{3}
\]

Using (1) and (2) we obtain
\[
\sum_{k \neq v} n_k(n_k - 1)(n_k - p + 1)|c_k| (s_0 r_0)^{n_k - p} \leq \sup_k (|c_k| r_0^{n_k}) s_0^{n_v - p} \sum_{k \neq v} n_k(n_k - 1)(n_k - p + 1)s_0^{n_k - p} \leq 1/2 n_v(n_v - 1)(n_v - p + 1)|c_v| s_0^{n_v - p} r_0^{n_v - p}. \tag{4}
\]

Thus from (3) and (4) we find
\[
|f^{(p)}(se^{i\theta})| \geq 1/2 n_v(n_v - 1)(n_v - p + 1)|c_v| M 2^p/p! \geq n_v(n_v - 1)(n_v - p + 1) M 2^p/p!.
\]

And therefore
\[
(1 - s)^p|f^{(p)}(se^{i\theta})| \geq (1 - s_0)^p n_v(n_v - 1)(n_v - p + 1) M 2^p/p!
\]
\[
\geq \left(\frac{p}{n_v} \right)^p n_v(n_v - 1)(n_v - p + 1) M/p! = \frac{M p^p}{p!} \left(1 - \frac{1}{n_v} \right) \left(1 - \frac{2}{n_v} \right) \left(1 - \frac{p - 1}{n_v} \right)
\]
\[
\geq \frac{M p^p}{p!} \left(1 - \frac{1}{p} \right) \left(1 - \frac{2}{p} \right) \left(1 - \frac{p - 1}{p} \right) = M,
\]

which concludes the proof of Theorem 2.

Proof of Theorem 1. Pommerenke [8] proved \(\lim \sup |c_k| < \infty \) implies \(f \) is Bloch, and it is well known that Bloch functions are normal [9, p. 268]. It therefore suffices to prove that \(\lim \sup |c_k| = \infty \) implies \(f \) is not normal.

Fix an integer \(p \) for which \(p > p_0 \). Lappan [4] proved that if \(f \) is normal, then there is a finite constant \(K \) such that
\[
\frac{|f^{(p)}(z)(1 - |z|)^p}{1 + |f(z)|^{p + 1}} \leq K \tag{5}
\]
for all \(z \) in the unit disc. According to Theorem 2 there is a sequence of radii \(s_n \) such that for \(|z| = s_n \)

\[
(1 - |z|)^p |f^{(p)}(z)| \geq n.
\]

If \(\min |f(z)| \) on \(|z| = s_n \) tends to \(\infty \), then \(f \) has Koebe arcs and is therefore non-normal [9, p. 267]. If \(\min |f(z)| \) on \(|z| = s_n \) does not tend to \(\infty \), then by passing to a subsequence we can find an integer \(M \) and a sequence of points \(z_n, |z_n| = s_n \), such that \(|f(z_n)| \leq M < \infty \). For this sequence of points

\[
\frac{(1 - |z_n|)^p |f^{(p)}(z_n)|}{1 + |f(z_n)|^{p+1}} \geq \frac{n}{1 + M^{p+1}},
\]

which proves that (6) cannot hold. Therefore \(f \) must be non-normal.

Corollary. Let \(f \) be defined in the unit disc by \(f(z) = \sum_{k=1}^{\infty} k^k z^k \). Then all of its derivatives and all of its integrals are non-normal functions which are analytic in \(\{z | |z| < 1\} \).

Remark 1. Motivated by a result of MacLane [5, p. 46], Bonar [1, p. 59] posed the following question. If \(f \) is a strongly annular function, can \(f \) be written as \(f(z) = g(z) + h(z) \) where \(g(z) = \sum a_k z^{\mu_k}, \lim \inf \mu_{k+1}/\mu_k > 3 \), and \(h(z) \) is bounded in the unit disc? The answer is no. To see this, let \(F(z) = \sum z^k \). Since \(n_{k+1}/n_k \) is a growth function for \(g(z) + h(z) \) where \(g(z) = \sum a_j z^{\mu_j}, \lim \inf \mu_{j+1}/\mu_j > 3 \), and \(h \) is bounded in the unit disc. The coefficients in the power series expansion of \(h \) about zero must go to zero since \(h \) is bounded. Therefore for \(k \) sufficiently large the index set \(\{\mu_j\} \) must contain all exponents of the form \(\{2^{j-1}\} \). Consequently, \(3 \leq \lim \inf \mu_{j+1}/\mu_j \leq 2 \), which is absurd. An appropriate modification works for any \(q > 1 \).

Remark 2. Piranian [7] asked whether a bounded function of finite area must have a normal derivative. Theorem 1 lets us answer this in the negative. Let \(f \) be defined by

\[
f(z) = \sum_{n=1}^{\infty} n(2^n + 1)^{-1} z^{2^n+1} = \sum_{j=1}^{\infty} a_j z^j.
\]

Then \(f \) is bounded by \(\sum n2^{-n} \), and \(\sum |a_j| \leq \sum n^2 2^{-n} \) shows that \(f \) has finite area. Theorem 1 guarantees that \(f'(z) = \sum n z^{2^n} \) defines a non-normal function in the unit disc.

We close with two open questions.

Question 1. If \(f(z) = \sum c_k z^k \), \(n_{k+1}/n_k \geq q > 1 \), \(\lim \sup |c_k| = \infty \), must \(f \) be annular? If the maximum modulus of \(f \) grows rapidly enough, the answer is yes [c.f. 6, Thm. 4].

Question 2. What is the best value for \(p_0 \) for which Theorem 2 is true?
References

Mathematics Sciences Department,
Northern Illinois University,
DeKalb, Ill, 60115,
U.S.A.

Mathematics Department,
University of Michigan,
Ann Arbor, Mich. 48109,
U.S.A.