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Two interesting examples of D-modules in characteristic p > 0

Mordechai Katzman, Gennady Lyubeznik and Wenliang Zhang

Abstract

We provide two examples of D-modules in prime characteristic p that answer two open questions
in [G. Lyubeznik, ‘A characteristic-free proof of a basic result on D-modules’, J. Pure Appl. Alg.
215 (2011) 2019–2023] in the negative.

1. Introduction

Let K be a field, R = K[x1, . . . , xn] be the ring of polynomials in x1, . . . , xn over K and D
be the ring of K-linear differential operators over K. In a remarkable paper [1], Bavula gave
a characteristic-free definition of holonomic D-modules. In characteristic zero, his definition
coincides with the usual one. He proved, among other things, that his holonomic modules have
one of the most important properties known from the characteristic zero case, namely, their
length in the category of D-modules is finite.

Using Bavula’s ideas, Lyubeznik [3] gave a characteristic-free proof that Rf , for every non-
zero element f ∈ R, is holonomic. This provided the first characteristic-free proof of the well-
known fact that Rf has finite length in the category of D-modules.

In view of these developments, it is interesting to see whether, in characteristic p > 0,
holonomic modules, as defined by Bavula, have other properties known from the characteristic
zero case.

Bavula proved that a submodule and a quotient module of a holonomic D-module are
holonomic. But in characteristic zero it is also true that an extension of two holonomic modules
is holonomic. Does this property hold in characteristic p > 0 as well?

Let F0 ⊂ F1 ⊂ . . . be the Bernstein filtration on D, let M be a holonomic D-module
generated by a finite set of elements m1 . . . ,ms ∈M and letM0 ⊂M1 ⊂ . . . be the filtration on
M defined by Mi = Fim1 + . . .+ Fims. In characteristic zero, it is well-known that dimkMi,
for i� 0, is a polynomial in i of degree n; in particular, limi→∞(dimMi/i

n) exists and is finite.
Does this property hold in characteristic p > 0 as well?

These two questions were raised in the last section of Lyubeznik [3]. In this paper, we give
counter-examples to both of them. In Section 3, we produce a non-holonomic extension of two
holonomic modules in characteristic p > 0 and in Section 4 we produce a holonomic D-module
in characteristic p > 0 such that the function dimkMi is very far from a polynomial and, in
particular, limi→∞(dimMi/i

n) does not exist.

2. Preliminaries

As explained in [3, Section 2], a K-basis of D is the set of products xi11 . . . xinn Dt1,1 . . . Dtn,n

where Dt,i = (1/t!)(∂t/∂xti) : R→ R is the K[x1, . . . , xi−1, xi+1, . . . , xn]-linear map that sends
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xvi to
(
v
t

)
xv−ti (D0,i is the identity map) and i1, . . . , in, t1, . . . , tn range over all the 2n-tuples of

non-negative integers. The Bernstein filtration F0 ⊂ F1 ⊂ . . . on D is defined by setting Fs to be
the K-linear span of the products xi11 . . . xinn Dt1,1 . . . Dtn,n with i1 + . . .+ in + t1 + . . .+ tn �
s. It is not hard to see that Fi · Fj ⊂ Fi+j .

By a D-module, we always mean a left D-module. By a K-filtration on a D-module M , we
mean an ascending chain ofK-vector spacesM0 ⊂M1 ⊂ . . . such that

⋃
iMi = M and FiMj ⊂

Mi+j . Bavula’s definition of a holonomic D-module [1, p. 185], as simplified by Lyubeznik [3,
3.4], is the following.

Definition 2.1. A D-module M is holonomic if it has a K-filtration M0 ⊂M1 ⊂ . . . such
that dimkMi � Cin for all i, where C is a constant independent of i.

It is straightforward to see that every submodule and every quotient module of a holonomic
module are holonomic. Some other properties are that the length of a holonomic module M
in the category of D-modules is at most n!C (see [1, 9.6; 3, 3.5]) (in particular, the length is
finite) and Rf , for every 0 �= f ∈ R, with its natural D-module structure, is holonomic [3, 3.6].

For the rest of this paper, K denotes a perfect field of prime characteristic p. Let Ds be the
(left) R-submodule of D generated by the products Dt1,i1 . . . Dtn,in such that ti < ps for every
i. It is not hard to see that Ds is a ring that (viewing D as a subring of Homk(R,R)) is nothing
but HomRps (R,R). In particular, D =

⋃
sDs.

Our method of specifying a D-module is as follows: we start with a sequence of {M (i)}i�0

where each M (i) is an Rp
i

-module and Rp
i+1

-linear maps Θi : M (i+1) →M (i) such that
the Rp

i

-module maps ψi : Rp
i ⊗Rpi+1 M (i+1) r⊗m�→rΘ(m)−−−−−−−−−→M (i) are bijective. This induces

an R-module isomorphism φi : R⊗Rpi+1 M (i+1) = R⊗Rpi (Rp
i ⊗Rpi+1 M (i+1))

id⊗ψi−−−−→ R⊗Rpi

M (i). Clearly, the compositions ϕi = φ0 ◦ φ1 ◦ . . . ◦ φi : R⊗Rpi+1 M (i+1) →M (0) are R-module
isomorphisms. The natural action of Ds on R makes R⊗Rps M (s) a Ds-module. This induces a
structure of Ds-module on M (0) via the isomorphism ϕi. It is not hard to check that if s < s′,
then the Ds′- and the Ds-module structures thus defined are compatible with the natural
inclusion Ds ⊂ Ds′ , that is, the Ds-module structure is obtained from the Ds′ -module structure
via the restriction of scalars. Since D =

⋃
sDs, this gives M (0) a structure of the D-module.

Both examples in this paper are special cases of the construction described in [2, Section 1].
Each M (i) is a free Rp

i

-module with free generators s
(i)
1 and s

(i)
2 , Θi(s

(i+1)
1 ) = s

(i)
1 and

Θi(s
(i+1)
2 ) = gis

(i)
1 + s

(i)
2 where, for all i � 0, gi is an element of Rxp

i

. Since the elements
Θi(s

(i+1)
1 ) and Θi(s

(i+1)
2 ) generate M (i) as an Rp

i

-module, the associated map ψi (defined in
the preceding paragraph) is surjective. Since ψi is a map between two free Rp

i

-modules of rank
2, it is bijective. If we write σn = −∑n

r=0 gr, then the resulting D-module structure on M is
given by

∂pn(f1, f2) = (∂pnf1 + (∂pnσn)f2, ∂pnf2)

for all n � 0.
Note that we have a short exact sequence of D-modules

0 −→ R
ψ−→M

φ−→ R −→ 0,

where ψ(f) = (f, 0) and φ(f1, f2) = f2. Even though this exact sequence splits in the category
of R-modules, it does not necessarily split in the category of D-modules.

Our examples below result from a judicious choice of the sequences {gi}i�0.
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3. An example of a non-holonomic extension of holonomic modules

The main result in this section is Theorem 3.2, which answers [3, Section 4, Question 1] in the
negative. We do so by analysing the D-module obtained by setting gr = xp

r+p2r

for all r � 0
in the construction of D-modules described in Section 1.

We start with the following calculation to which we shall refer repeatedly.

Lemma 3.1. For any integers 0 � α � β and K � 0, we have,

∂pk(xp
α

xp
β

) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xp
α

+ xp
β

, if k = α = β,

xp
β

, if k = α < β,

xp
α

, if α < β = k,

xp
α

, if p = 2, α = β = k − 1,
0, otherwise.

Proof. We first note that

∂j(xp
α

) =

⎧⎪⎨
⎪⎩
xp

α

, if j = 0,
1, if j = pα,

0, otherwise.

Recall that ∂j is K[xp
γ

]-linear whenever j < pγ , and so, if K < α, we have

∂pk(xp
α

xp
β

) = xp
α

∂pkxp
β

= xp
α

xp
β

∂pk1 = 0.

If K = α, then we use [3, Proposition 2.1] to compute

∂pk(xp
α

xp
β

) =
pk∑
j=0

∂jx
pα

∂pk−jx
pβ

= ∂0x
pα

∂pkxp
β

+ ∂pkxp
α

∂0x
pβ

=

{
xp

α

+ xp
β

, if k = α = β,

xp
β

, if k = α < β.

If α < β = k, then we compute

∂pk(xp
α

xp
β

) =
pk∑
j=0

∂jx
pα

∂pk−jx
pβ

= ∂0x
pα

∂pkxp
β

+ ∂pαxp
α

∂pk−pαxp
β

= xp
α

.

If α � β < k, then we compute

∂pk(xp
α

xp
β

) =
pk∑
j=0

∂jx
pα

∂pk−jx
pβ

= ∂0x
pα

∂pkxp
β

+ ∂pαxp
α

∂pk−pαxp
β

=

{
xp

α

, if α = β = k − 1 and p = 2,
0, if α < β or β < k − 1 or p > 2.

.

Theorem 3.2. The D-module M is not holonomic in the sense of Lyubeznik [3, Definition
3.4].

Proof. Let s1 = (1, 0) and s2 = (0, 1) be the free generators of M . Let {Fi}i�0 denote
the Bernstein filtration of D. Let {Mi}i�0 be any K-filtration of M . Our aim is to show that
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limi→∞ dimKMi/i = ∞; we may shift the indices to ensure that s1, s2 ∈M0 and we henceforth
assume that this holds.

Since Mi ⊇ FiM0, it is enough to show that the function d(i) = dimK FiM0 is such that
limi→∞ d(i)/i = ∞.

For any pair of integers (j, k) with j, k � 0, we have xj∂pks2 = (xj∂pkσk)s1. Now consider
the set of elements

E = {rjk := xj∂pkσk | j + pk � pi} ⊆ FpiM0 ⊆Mpi .

Lemma 3.1 gives ∂pk(xp
k

xp
2k

) = xp
2k

, hence deg ∂pkgk = p2k and deg rjk = j + deg ∂pkσk =
j + deg(σk) − pk = j + p2k. Hence, for all different pairs (j, k) and (j′, k′) with K, k′ � i/2,
we have

deg rjk = j + p2k �= j′ + p2k′ = deg(rj′k′),

otherwise p2k − p2k′ = j′ − j, which implies pi | (j′ − j), contradicting the fact that j, j′ < pi.
We deduce that elements rjk of E with K � i/2 and j + pk � pi have distinct degrees and
hence are linearly independent over K. Let �i/2
 denote the least integer greater than or equal
to i/2. For each K � i/2, there are pi − pk many rjk; therefore,

dimK FpiM0 �
∑

i�k��i/2�
(pi − pk)

= (i− �i/2
 + 1)pi − p�i/2�
pi−�i/2�+1 − 1

p− 1
,

which implies that

lim
i→∞

d(pi)
pi

= lim
i→∞

(
(i− �i/2
 + 1) +

pi−�i/2�+1 − 1
pi−�i/2�(p− 1)

)
= ∞.

4. An example of a holonomic module whose multiplicity does not exist

Let M be as in the previous section with gr replaced by gr = x(p+1)pr

. In this section, we
show that Ds2, the D-submodule of M generated by s2, is a holonomic D-module for which
limi→∞(Fis2/i) does not exist. This gives a negative answer to [3, Section 4, Question 2].

We start with the following calculation.

Lemma 4.1. Let K1, . . . , kt, e1, . . . , et be non-negative integers.

(a)

∂pkσk =

{
xp, if k = 0,
xp

k+1
+ xp

k−1
, otherwise.

(b)

(∂pk1 )e1 . . . (∂pkt )ets2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

s2, if e1 = . . .=et = 0,
xps1, if t = 1, e1 = 1, k1 = 0,
(xp

kt+1
+ xp

kt−1
)s1, if t = 1, e1 = 1, kt � 1,

s1, if t = 2, e1 = e2 = 1,
k1 = k2 + 1 or k1 = k2 − 1,

0, otherwise.
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Proof. (a) Lemma 3.1 implies that, for K � 0, ∂pkgr vanishes when r + 1 < k, that
∂pkgk−1 = xp

k−1
and that ∂pkgk = xp

k−1
= xp

k+1
, hence

∂pkσk =

{
xp, if k = 0,
xp

k+1
+ xp

k−1
, otherwise.

(b) This follows immediately from (a).

Theorem 4.2. Let S denote Ds2 and Si denote Fis2. Then

dimk(Si) =

{
2i+ pe+1 − pe + 2, if pe+1 − pe + pe−1 � i < pe+1,

3i− pe−1 + 3, if pe � i < pe+1 − pe + pe−1,

where e is the unique integer such that pe � i < pe+1. Consequently, S is holonomic and
limi→∞(dimk(Si)/i) does not exist.

Proof. Consider a general element xj(∂pk1 )e1 . . . (∂pkt )ets2 with j +
∑t
i=0 eip

ki � i in Si.
Lemma 4.1 shows that xj(∂pk1 )e1 . . . (∂pkt )ets2 equals

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xjs2, with 0 � j � i, if e1 = . . .=et = 0,
xjxps1, with 0 � j � i− 1, if t = 1, e1 = 1, k1 = 0,
xj(xp

k1+1
+ xp

k1−1
)s1, with 0 � j � i− pk1 , if t = 1, e1 = 1, k1 � 1,

xjs1, with 0 � j � i− pk2 − pk2+1, if t = 2, e1 = e2 = 1, k1 = k2 + 1,
xjs1, with 0 � j � i− pk2 − pk2−1, if t = 2, e1 = e2 = 1, k1 = k2 − 1,
0, otherwise.

From this we can see that, among {xj(∂pk1 )e1 . . . (∂pkt )ets2 | j +
∑t
i=0 eip

ki � i}, there are
three types of elements: elements obtained when t = 0 (that is, e1 = . . . = et = 0), elements
obtained when t = 1 and elements obtained when t = 2. Let V1 be the K-span of all elements
of the first type, that is,

V1 = K〈xjs2 | 0 � j � i〉.

Let V2 be the K-span of all elements of the second type, that is,

V2 = K〈xjxps1 | 0 � j � i− 1〉 +K〈xj(xpk+1
+ xp

k−1
) | 0 � j + pk � i, k � 1〉.

Let V3 be the K-span of all elements of the third type, that is,

V3 = K〈xjs1 | 0 � j � i− 1 − p〉.

It should be pointed out that all elements of the first type are in the copy of R generated
by s2 and all elements of the other two types are in the copy of R generated by s1; and hence
dimK(Fis2) = dimK(V1) + dimK(V2 + V3) since s1 and s2 are linearly independent. It is clear
that V1 is a (i+ 1)-dimensional K-vector space; it remains to calculate dimK(V2 + V3).
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To calculate the dimension of V2 + V3, we break V2 into pieces as follows:

V2,0 = K〈xjxps1 | 0 � j � i− 1〉,
V2,1 = K〈xj(xp2 + x)s1 | 0 � j � i− p〉,

...

V2,e−1 = K〈xj(xpe

+ xp
e−2

)s1 | 0 � j � i− pe−1〉,
V2,e = K〈xj(xpe+1

+ xp
e−1

)s1 | 0 � j � i− pe〉.
If i � 2p+ 1, then V2,0 + V3 = K〈xjs1 | 0 � j � i− 1 + p〉. Since V2,0 + V3 contains xjxs1 with
0 � j � i− p, we see that V2,1 + V2,0 + V3 contains xjxp

2
s1 with 0 � j � i− p. Consequently,

V2,1 + V2,0 + V3 = K〈xjs1 | 0 � j � i− p+ p2〉.
Similarly, we have

V2,e−1 + . . .+ V2,0 + V3 = K〈xjs1 | 0 � j � i− pe−1 + pe〉.
It remains to analyse V2,e = K〈xj(xpe+1

+ xp
e−1

)s1 | 0 � j � i− pe〉. There are two cases:
Case 1: i � pe+1 − pe + pe−1, that is, [pe, i− pe−1 + pe] ∩ [pe+1, i− pe + pe+1] �= ∅. In this

case, similar to the consideration of V2,e−1 + . . .+ V2,0 + V3, we can see that V2,e + . . .+ V2,0 +
V3 consists of all polynomials of degree less than or equal to i− pe + pe+1. Therefore,

dimK(V2 + V3) = i− pe + pe+1 + 1,

and hence
dimK(Fis2) = dimK(V1) + dimK(V2 + V3) = 2i− pe + pe+1 + 2.

Case 2: i < pe+1 − pe + pe−1, that is, [pe, i− pe−1 + pe] ∩ [pe+1, i− pe + pe+1] = ∅. In this
case, the degrees of the basis elements of V2,e (which are all distinct) exceed the degree of any
element in V2,e−1 + . . .+ V2,0 + V3, thus dimK V2,e + V2,e−1 + . . .+ V2,0 + V3 = dimK V2,e +
dimK V2,e−1 + . . .+ V2,0 + V3 = (i− pe−1 + pe + 1) + (i− pe + 1) and

dimK(Fis2) = (i+ 1) + (i− pe−1 + pe + 1) + (i− pe + 1) = 3i− pe−1 + 3.

We note that, for all i, we have dimK(Si) � 4i, therefore S = Ds2 is holonomic.
For all i of the form pe, we have

lim
e→∞

dimK(Spe)
pe

= lim
e→∞

3pe − pe−1 + 3
pe

= 3 − 1
p
;

but, for all i of the form pe+1 − pe, we have

lim
e→∞

dimK(Spe+1−pe)
pe+1 − pe

= lim
e→∞

3(pe+1 − pe) − pe−1 + 3
pe+1 − pe

= 3 − 1
p2 − p

.

Therefore, limi→∞(dimK(Si)/i) does not exist.

Remark 4.3. A reasonable theory of holonomic modules should include the polynomial
ring itself as a holonomic module. However, our example in this section indicates that any
such theory of holonomic modules cannot have both the extension property and the existence
of multiplicity at the same time. If extensions of holonomic modules are holonomic, then our
module M = Ds2 in this section will be holonomic, but as we have seen the multiplicity of M
does not exist.
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