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Professor Z. Lewandowski has pointed out that the definition of
close-to-convex function given in the paper [1], and used in the proof of
Theorem 1, is a rather restrictive one. It is more natural to say, essentially
as in Kaplan’s original paper [3], that a function f (z)€ § is close-to-convex
if there is a convex function ¢ (z) such that Re{f’(2)/¢'(2)} > 0. The function
¢ may be normalized so that |¢'(0)|=1, but the requirement ¢'(0)=1
imposed in [1] leads to a smaller class of functions.

Nevertheless, the inequality L.(f) < L,(k) remains true for all functions
f which are close-to-convex in the more general sense. A proof is given
below. It seems likely that the Koebe function and its rotations are still
the only extremal functions, but this point is left unsettled.

If f (2) is close-to-convex in the general sense, its derivative may be
represented in the form

f'R)=e¢'(z) P(2),
where $eC, Re{P(2)}>0, and P(0)=e~*, —n[2<a<m/2. Such a
function P(z) has a representation
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where v(s) is a non-decreasing function of total variation 1 on 0<s<2n.
Proceeding as in [1], one finds
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p(t) being the non-decreasing function of unit total variation in terms of
which ¢’(z) is represented. The inequality L (f)<L,(k) is therefore
established if it can be shown that I(«,t)< I(0, 0), where
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But this is an immediate consequence of a more general result on
‘ rearrangements ’ of functions. Given a non-negative measurable
function F(x) on [—a, a], let F*(x) denote its symmetrically decreasing
rearrangement, as defined in [2; p. 278].
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Lemma. If F(z), G(x), and H(x) are non-negative integrable functions
on the interval [—a, a], then

f * Fa) G(z) Hz) dz < f " Fr@) 6% (x) H(2) dx.
—a —-a

Proof. Following [2; p. 278], we first note that the statement is
obviously true if F, G, and H are characteristic functions of measurable
sets. Using this observation, we next prove the inequality for simple
functions; that is, for functions which take only a finite number of values.
Indeed, any such function F can be represented [2; p. 279] as a linear
combination of characteristic functions: '

F(x)=0ay Fi(x) + oy Fo(2)+ ... + o0, Fpp (), o,>0,
in such a way that
F# (@)=, F ¥ (%) + oy Fo¥ () + ... + o, F,*(2).

The inequality then reduces to alinear combination of inequalities involving
characteristic functions. Finally, the general result is obtained by
approximating F, G, and H by sequences of simple functions [2; p. 280].
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