ELEMENTS OF ORDER P IN THE TATE-ŠAFAREVIČ GROUP

J. S. MILNE

By a global field, we will always mean a number field or a function field in one variable over a finite field. Lang and Tate have shown [4] that the Tate-Šafarevič group of an abelian variety over such a field has only finitely many elements of order dividing a fixed integer m, provided that m is not divisible by the characteristic p of the field. The purpose of this note is to remove the restriction on m. Our proof is complicated by the fact that, unlike the prime-to-p case, there may be an infinite number of principal homogeneous spaces of order p over the global field which split locally at all primes outside a given non-empty finite set, and hence we must work with all the primes of K.

THEOREM. For any abelian variety A over a global field K, and any integer m, the Tate-Safarevič group $\coprod (A/K)$ of A over K has only finitely many elements of order dividing m.

After [4; Theorem 5], we may assume that K has non-zero characteristic p, and that m=p. As in the proof of the above-cited theorem, we may replace K by a finite separable extension and hence assume that the kernel of the isogeny $p:A\to A$ (as a finite group scheme) has a composition series whose quotients are one of the three group schemes $\mathbb{Z}/p\mathbb{Z}$, α_p , μ_p [6]. Correspondingly, $p:A\to A$ will be a composite of isogenies, $p=\phi_{2d}\circ\phi_{2d-1}\circ...\circ\phi_1$, $\phi_i:A_{i-1}\to A_i$, with all the ϕ_i of degree p. Thus, it suffices to prove the statement: let $\phi:A\to B$ be an isogeny over K with kernel equal to one of $\mathbb{Z}/p\mathbb{Z}$, α_p , or μ_p . Then the kernel of the map

$$\left| \left| \left| \left| (\phi) : \right| \right| \right| (A/K) \rightarrow \left| \left| \left| \left| (B/K) \right| \right|$$

induced by ϕ is finite.

We will write $H^i(S, -)$ for a cohomology group with respect to the flat (f, p, q, f) topology on S (or spec S if S is a ring), X for the complete, smooth algebraic curve canonically associated to K/k, and X_0 for the set of closed points of X (i.e. primes of K). If v is in X_0 , then K_v is the completion of K at v and K_v the ring of integers in K_v . All of our group schemes will be commutative.

If G is a group scheme of finite type over K_v , then there is a canonical topology on $H^i(K_v, G)$ [6]. Let \mathcal{N} be a finite flat group scheme over R_v and let $N = \mathcal{N} \otimes_{R_v} K_v$. Then the canonical map $H^1(R_v, \mathcal{N}) \to H^1(K_v, N)$ is injective, because a principal homogeneous space for \mathcal{N} over R_v which has a point in K_v clearly already has a point in R_v . Thus, any element of $H^1(R_v, \mathcal{N})$ is split by the integral closure R_v of

294 J. S. MILNE

 R_{ν} in a finite extension field of K_{ν} , and $H^{1}(R_{\nu}, \mathcal{N})$ may be identified with the Cech cohomology group $\lim_{\longrightarrow} H^{1}(R_{\nu}'/R_{\nu}, \mathcal{N})$ where the limit runs over all such R_{ν}' . It follows easily from this that $H^{1}(R_{\nu}, \mathcal{N})$ is embedded as an open subgroup of $H^{1}(K_{\nu}, N)$.

Now let N be a finite group scheme over K. There is an open subscheme U of X and a finite flat group scheme \mathcal{N} over U such that $\mathcal{N} \times_U$ spec K = N (if $N = \operatorname{spec} S$ then, locally \mathcal{N} is described by a lattice in S which is stable under the map $\delta: S \to S \otimes S$ giving the multplication in N). We define $\Pi' H^1(K_v, N)$ to be the restricted topological product of the groups $(H^1(K_v, N))_{v \in X_0}$ with respect to the family of open subgroups $(H^1(R_v, \mathcal{N}_v))_{v \in U_0}$, where $\mathcal{N}_v = \mathcal{N} \times_U \operatorname{spec} R_v$. Then $\Pi' H^1(K_v, N)$ is independent of the pair (\mathcal{N}, U) , for if (\mathcal{N}', U') is any other such pair there is an open subscheme of $U \cap U'$ on which \mathcal{N} and \mathcal{N}' are isomorphic.

LEMMA 1. Let N be one of the group schemes $\mathbb{Z}/p\mathbb{Z}$, α_p , μ_p . Then the canonical maps $\alpha_v: H^1(K,N) \to H^1(K_v,N)$ define an injection $\alpha: H^1(K,N) \to \Pi' H^1(K_v,N)$, and the image of α is a discrete subgroup of $\Pi' H^1(K_v,N)$.

Proof. The maps α_v can be identified with, respectively, the maps

$$K/\wp K \to K_v/\wp K_v$$

$$K/K^p \to K_v/K_v^p$$

$$K^*/K^{*p} \to K_n^*/K_n^{*p}$$

induced by the inclusion of K in K_v . In defining the restricted topological product $\Pi'H^1(K_v,N)$ we may take $\mathcal N$ to be $\mathbb Z/p\mathbb Z$ (resp. α_p,μ_p) regarded as a group scheme over X. Then the image of any element of $K/\wp K$ (resp. K/K^p , K^*/K^{*p}) is contained in $H^1(R_v,\mathbb Z/p\mathbb Z)=R_v/\wp R_v$ (resp. $H^1(R_v,\alpha_p)=R_v/R_v^p$, $H^1(R_v,\mu_p)=R_v^*/R_v^{*p}$) for almost all v. Thus the α_v do define a map $\alpha:H^1(K,N)\to\Pi'H^1(K,N)$, and α is injective by class field theory [1; p. 12, Th. 2; p. 82, Th. 1]. $\Pi'H^1(K_v,\mathbb Z/p\mathbb Z)$ is isomorphic, both topologically and algebraically, to the adele group V of K modulo its closed subgroup $\wp V$. Hence im (α) is isomorphic to $(K+\wp V)/\wp V$, and we must show that $\wp V$ is an open subgroup of $K+\wp V$. Let V(0) be the open subgroup ΠR_v of V, and let $M=(V(0)+\wp V)\cap K$. Then [cf. 1; p. 23] $M/\wp K$ is dual to the Galois group of the maximal abelian unramified extension of K of exponent p, and this is finite. Hence $\wp V$ is open in $M+\wp V$ (because it is closed and of finite index) and $M+\wp V=(V(0)+\wp V)\cap (K+\wp V)$ is open in $K+\wp V$.

Similarly, the second case reduces to showing that if $M = (V(0) + V^p) \cap K$, then M/K^p is finite. If $a \in M$, $a = \alpha + \beta^p$ ($\alpha \in V(0)$, $\beta \in V$) define

$$i(a) = \overline{\beta} \in V / (V(0) + K).$$

Then i is a well-defined map $M \to V/(V(0)+K)$ with kernel K^p , and V/(V(0)+K) is well-known to be finite.

The third case may be proved similarly using the ideles instead of the adeles.

LEMMA 2. Let $N = \ker(\phi)$, and let $\beta_v : B(K_v) \to H^1(K_v, N)$ be the map in the cohomology sequence arising from $0 \to N \to A \to B \to 0$. Then the β_v define a map $\beta : \prod_{v \in X_0} B(K_v) \to \Pi' H^1(K_v, N)$, and the image of β is compact.

Proof. There is an open subscheme U of X and an isogeny $\tilde{\phi}: \mathcal{A} \to \mathcal{B}$ of abelian schemes over U such that $\tilde{\phi}_{(K)} = \phi$. Let $\mathcal{N} = \ker{(\tilde{\phi})}$ and let $v \in U_0$. There is an exact commutative diagram

$$\mathcal{B}(R_v) \to H^1(R_v, \mathcal{N}) \to H^1(R_v, \mathcal{A})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$B(K_v) \to H^1(K_v, N) \to H^1(K_v, A)$$

where the rows are the cohomology sequences of the short exact sequences

$$0 \to \mathcal{N} \to \mathcal{A} \to \mathcal{B} \to 0,$$
$$0 \to N \to A \to B \to 0.$$

and

respectively.

The first vertical arrow is an isomorphism, and $H^1(R_v, \mathscr{A}) = 0$ [2; Th. 11.7; 3], and hence β_v maps into the subgroup $H^1(R_v, \mathscr{N})$ of $H^1(K_v, N)$ for all $v \in U_0$. This shows that the β_v define a map β as required.

Each β_v is continuous with respect to the canonical topologies on the cohomology groups. Indeed, let K' be a finite extension of K and consider the exact commutative diagram

$$0 \to N(K') \to A(K') \xrightarrow{\phi} B(K')$$

$$\downarrow \qquad \qquad \downarrow \delta \qquad \qquad \downarrow$$

$$0 \to N(K' \otimes_K K') \to A(K' \otimes_K K') \to B(K' \otimes_K K')$$

All of the maps are continuous because they are given by polynomials. $N(K' \otimes_K K')$ has the subspace topology induced by that of $A(K' \otimes_K K')$, and ϕ is an open map onto its image. It follows that the inverse image (under β_v) of any open subset of $H^1(K'/K, N)$ is open in $\{b \in B(K) \mid \exists a \in A(K'), \phi(a) = b\}$. The required continuity follows now by taking unions over all such K'. The continuity of the β_v imply that of β , and the compactness of the $B(K_v)$ imply that of $\Pi B(K_v)$ and hence of its image in $\Pi' H^1(K_v, N)$.

We may now prove the theorem. Consider the commutative diagram:

$$\begin{array}{ccccc} B(K) & \to & H^1(K,N) & \to & H^1(K,A) \\ \downarrow & & & \downarrow \alpha & & \downarrow \\ \Pi & B(K_v) & \to \Pi' H^1(K_v,N) & \to \Pi H^1(K_v,A) \end{array}$$

We will show that the inverse image $S^{(\phi)}$ of ker (\coprod (ϕ)) in $H^1(K, N)$ is finite. By Lemma 1, $\alpha(S^{(\phi)})$ is isomorphic to $S^{(\phi)}$, but $\alpha(S^{(\phi)})$ is the intersection of a compact subgroup im (β) , with a discrete (and closed) subgroup im (α) , and hence is finite.

We now give an example to illustrate the fact that in general, if A is an abelian variety over a global field K of characteristic p, and S is a non-empty finite subset of X_0 , then

$$H^1(K, A, S) = \ker \left(H^1(K, A) \to \prod_{v \in X_0, v \notin S} H^1(K_v, A) \right)$$

has infinitely many elements of order p. Choose K = k(X), a pure transcendental extension of the finite field k, and choose A to be an abelian variety which has good reduction everywhere except possibly at the prime v_{∞} corresponding to X^{-1} . A comes from an abelian scheme \mathscr{A} on $U = \operatorname{spec} k[X]$, and if $S = \{v_{\infty}\}$, then $H^1(K, A, S) = H^1(U, \mathscr{A})$ [5; p. 98; Lemma 1]. Moreover, assume that the kernel of multiplication by p on \mathscr{A} has a composition series among whose quotients are a $\mathbb{Z}/p\mathbb{Z}$ or an α_p (such abelian varieties do exist; consider for example, constant abelian varieties). Then $H^1(K, A, S)$ has finitely many elements of order p if and only if $H^1(U, \mathbb{Z}/p\mathbb{Z})$ (or $H^1(U, \alpha_p)$) is finite. But $H^1(U, \mathbb{Z}/p\mathbb{Z}) = k[X]/\wp k[X]$ and

$$H^1(U, \alpha_n) = k[X]/k[X]^p,$$

which are both infinite.

It is also easy to give examples of abelian varieties over function fields in one variable over algebraically closed fields whose Tate-Šafarevič groups have infinitely many elements of order p.

References

- 1. E. Artin and J. Tate, Class field theory (Harvard, 1961).
- A. Grothendieck, "Le groupe de Brauer III", in Dix Exposes sur la cohomologie des Schemas (North-Holland, Amsterdam; Masson, Paris, 1968).
- 3. S. Lang, "Algebraic groups over finite fields", Amer. J. Math., 78 (1956), 555-563.
- S. Lang and J. Tate, "Principal homogenous spaces over abelian varieties", Amer. J. Math., 80 (1958), 659-684.
- J. Milne, "The Tate-Šafarevič group of a constant abelian variety", *Inventiones math*, 6 (1968), 91-105.
- S. Shatz, "Cohomology of artinian group schemes over local fields", Ann. of Math., 79 (1964), 411-449.

University of Michigan.