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1. Introduction

It is the purpose of this note to sketch the proof of the following theorem.

THEOREM A. Let M be a triangulated n-manifold. If G is a graph which is a sub-
complex of M, and ifN is a regular neighbourhood of G in M, then the double ofN is
homeomorphic to an n-sphere with handles.

Here a graph is considered to be a connected 1-dimensional compact polyhedron.
The term " regular neighbourhood " is used in the general simplicial complex setting
as on p. 33 of [12]; in his earlier work [9] the author employed " barrel
neighbourhood " to denote a canonic form of such a second derived mapping
cylinder neighbourhood. If M is a connected n-manifold without boundary, the
addition of a handle to M is defined as follows. Delete the interiors of two disjoint
locally flat equivalently embedded n-cells from M and call the remaining subspace Mv

Adjoin the n-annulus S"~1xl to Mx via a homeomorphism of d(S"~l xl) onto dMv

In the terminology of [12; p. 74] this is attaching a 1-handle. We shall discuss this
operation and its uniqueness in more detail in Section 3.

M. Brown and the author announced this theorem for oriented manifolds [4].
The proof has not appeared in print. Now that R. D. Edwards has shown that there
exist non-combinatorial triangulations of S" for each n ^ 5 [5], there has been much
work done recently on simplicial complexes which are manifolds. Accordingly, it
seems appropriate at this time to place in the literature a proof of our early result.
In the intervening years it has become possible to simplify drastically the proof, for
example by eliminating several applications of the theory of stable manifolds [3].

2. Regular neighbourhoods of trees

Our notation will mostly follow that of our earlier work [8,9,10,11], A manifold
will be considered to have no boundary. The join of X and Y will be written as
X * Y. IfX and Y are homeomorphic, we write X « Y. The double of a generalized
manifold with boundary X will be represented by IX.

First of all we consider the case in which the graph is a tree, i.e., an acyclic graph.
In a research announcement we outlined a proof of a result which is a precursor of
Theorem A.

THEOREM 2 OF [9]. Let T be a tree which is a subcomplex in the triangulated
n-manifold M. Then, if N is a regular neighbourhood of T in M, 2N « S".

It should be pointed out that for n ^ 5 this can now be deduced from Newman's
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work [7]. Of course, our proof holds for all n including dimension 4, about which little
is known even now. Our construction will serve to simplify the exposition dealing
with Theorem A.

Proof of Theorem 2. By the invariance of regular neighbourhoods [12; Theorem
3.8], we may use any convenient neighbourhood including second derived neighbour-
hoods.

Let T = T0\j e where To is a subtree, e is a 1-simplex |i>0 vx\ and Tone = {v0}.
We proceed by induction on the number of edges in T. Let No be a regular neighbour-
hood of To in M.

For the basis of our induction, we have the case in which To = {v0}. Then the
regular neighbourhood No of To is PL equivalent to St (M, v0). By [8], 2N0 « S".
Otherwise, in the induction step we assume that 2N0 « Sn. The proofs of both cases
proceed in the same way from this point.

There exists xoelnte = (voVy) so that None = |uo*ol- Let JV2 be a regular
neighbourhood of \x0 vt\ in M. We may assume that No and N2 have been chosen so
that No' = No n St (M, e) is a regular neighbourhood of |y0 xo| in L * |y0 xo\, where
L = Lk (M, e), and (No u N2) n St (M, e) is a regular neighbourhood of e in St (M, e).
This may be done using barrel neighbourhoods as in Lemma 9 of [9]. More abstractly
this can be carried out by using a relative form of Corollary 3.30 in [12] applied
successively to maximal simplexes of St (M, e).

From the join structure of St (M, e) = L* e it may be concluded that No' is
PL equivalent to X x \v0 xo\ and that (No u N2) n St (M, e) is PL equivalent to
X x e , where X — C(L)—the cone over L. If No' and N2' = N2 n St (M, e) have been
nicely chosen as in Lemma 9 of [9] we may assume that in both mapping cylinder
structures, if p e e then the fibre over p corresponding to X x {p} is (j> *L)n
(No' \J N2')- Let Xo denote the fibre over x0 in No'.

From the choice of No and N2 it now follows that Nx = Cl (,N2—N0) is a regular
neighbourhood of \x0 vx\ in Cl (M—No). Also No u Nx = N is a regular neighbour-
hood of T in M and NonNl = Xo.

Select a point x0' e (v0 x0), and let Xo ' be the fibre over ;c0'. Then 2X0' is a flat
suspension («— l)-sphere in 2N0 « S". That is, 2X0' has the following properties: if
S(2X0') stands for the suspension of 2X0' then

S(2X0') « S(2X) « S(5"(L)) « S1 * L « S"

by [8]; since 2X0' is bicollared in 2N0 it is flat [9, 11], that is, each closed domain
in 2N0 bounded by 2X0' is a topological cone over 2X0'.

Symmetrically we choose xi'e(xovi) so that if X^ is the fibre over xx' in
Nt' = Nt n St(M, e), it follows that 2Xt' is a flat suspension (n — l)-sphere in
2Nt « 2 St (M, yx) « S".

We may now represent the double of N as 2N = Wou Wu so that WQr\Wi = 2X0

and PFj — 2Z0 « 2N, —AT0 for i = 0, 1. This is a canonic representation induced by
N = NouNl because in Nt we have Xo £ dNt so that Z o is injected into 2Nh for
i = 0, 1. In N, however, Xor\dN = 5X0, so that 2X0 is injected into 2N. It may be
observed that Wo is homeomorphic to the closed domain in 2N0 bounded by 2X0'
which is exterior to Xo. The latter closed domain is homeomorphic to C(2X) as
previously noted. This gives us the pair equivalence (Wo> 2X0) a (C(2X), 2X).
Similarly, (Wit 2X0) « (C(2X), 2X). Consequently, 2N « 2C(2X0) » S(2Z0) » S".

This completes the proof.
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3. Attaching handles to manifolds

Let M be a connected «-manifold. Suppose that Do and Di are disjoint locally
flat w-cells in M which are annularly equivalent [3; p. 19]. Set Mx = M-Int (Do u DJ
and An - S"'1 xl. If ht is a homeomorphism of S"'1 x i onto dDh i = 0, 1, then
form the adjunction space from the disjoint union M1+An via h0 and hv The adjunc-
tion space Mt u A" is said to be formed by adding a handle to M. If h0 and /^ carry
the same sense of orientation from the product orientation on A", then the handle is
called orientable. If h0 and hx carry opposite orientations, the handle is called non-
orientable.

To discuss the conditions under which this operation is well defined and unique
up to orientation, it is convenient to redescribe the attaching of handles using the
method of Brown and Gluck [3; p. 46].

Consider the following propositions.

(SHCJ: Every orientation-preserving self-homeomorphism of S" is stable.

(An): Two disjoint flatly embedded (w-l)-spheres in S" bound an annulus.

(In): Every orientation-preserving self-homeomorphism of S" is isotopic to the
identity.

(WIn): Every orientation-preserving self-homeomorphism h of S" is weakly isotopic
to the identity, that is, there is a homeomorphism G of S" xl onto itself such that for
all xe S" we have G(x, 0) = (x, 0) and G(x, 1) = (h(x), l).

In [3; Theorem 9.3, p. 12] it was shown that (A,,) + (WI,,_4) o (SHCn). Further,
(SHQ) => (In) [3; p. 6]. Obviously (/„) *> (WIn).

From classical results it had been known that (SHCn) is true for n ^ 3. Kirby
proved that (SHCn) is true for n ^ 5 [6].

Thus, we make the following observation.

1. (WIJ i5 true for all n.

If h is a self-homeomorphism of S""1, let Xh be the identification space derived
from S""1 xl by identifying (x, 0) with (h(x), l). Note that X{ « S""1 x S\ which
we denote by Tn. If h is orientation-preserving, it may be easily proved that (WJn_ i)
implies that Xh « Tn.

Now let r: S""1 -> S""1 be the standard equatorial reflection. We call Xr the
^-dimensional Klein bottle and denote it by Kn. If h is orientation-reversing, it may
be established that (WI,^) implies that h is weakly isotopic to r and consequently
that *„«!<:„.

If Mj and M2 are connected ^-manifolds, Dt is a locally flat «-cell in Mit i = 1,2,
and h : dDt « dD2, then the connected sum Ml^M2 is the (possibly ambiguous)
adjunction space formed from (Mt — Int Dt) + (M2 — Int D2) via identification by h.

A connected H-manifold M is called homogeneous if for any two locally flat
embeddings/i: Dn -> M, i = 1, 2, there exists a self-homeomorphism h of M so that

Now suppose that we have attached the handle A" to Mx along dD0 and 5D1}

Do and Dv being disjoint annularly equivalent locally flat n-cells in M. Let D2 be a
locally flat «-cell in M which is annularly equivalent with each Dit and such that
IntD2 2 Dou Dv It may now be seen that because (WI,,.!) is true, MXKJ An is
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homeomorphic to M$Tn if the handle is orientable, and homeomorphic to M#iC,,
if the handle is non-orientable. The connected sum is derived from M by deleting the
interior of D2.

In [3; pp. 55-56] it is demonstrated that Tn has exactly two global equivalence
classes of locally flat embeddings of S"""1; those which separate or do not separate Tn.

This has the following consequences.

2. Tn is homogeneous.

3. By [3; Theorem 11.1, p. 53], M#Tn is uniquely defined independently of the
adjunction map. Furthermore, if M is homogeneous, M # Tn is homogeneous as well.

By slight modifications of the proofs of the above results, it is possible to establish
similar properties for Kn.

For example, to adapt Lemma 14.1 of [3; p. 56] to Kn, we proceed in the following
way. The space S""1 x R is the universal covering space of Kn with projection map
p satisfying the relation, p(x, t) — p(r(x), t+l). A generating covering transformation
T of S""1 xR is defined by t(x, t) = (r(x), t + \). Now, as in the cited lemma, let
/ : S""1 -> Kn be a locally flat embedding which does not separate Kn and let/cover/.
Then / separates the ends of S"~i x R.

It may be verified tha t / and xfr have the same sense of orientation, have disjoint
images and are stably equivalent in S""1 x R. This allows us to produce an embedding
G : S""1 x / -> S""1 xR which agrees w i t h / o n S""1 xO, and with xfr on S""1 x 1.
This gives us a homeomorphism h: Kn-> Kn satisfying hp = pG. Accordingly,
hp(x, 0) —f(x); that is , / is globally equivalent to the standard embeddingp\S"~l xO.

Lemma 14.2 of [3; p. 57] may be used without change of proof to show that if
f:S"~l-*Kn is a locally flat embedding which separates Kn, then / may be
extended over D".

In the proof that Tn is homogeneous, only one additional change need be made
to adapt the proof to Kn. In the last line of p. 57 of [3], a stable homeomorphism h2

of Tn is described. More precisely, h2 may be required to be the identity on a non-
empty open set. This construction carries over without change to Kn. Since h2 is
somewhere the identity, the appropriately chosen covering h2 is stable on S""1 xR.
The other details go through unchanged.

Hence, we make the following observations.

4. Kn is homogeneous.

5. M-$Kn is uniquely defined. If M is homogeneous, then so is M%Kn.

6. If M is a connected sum of Sn with p copies of Tn and q copies of K,,, then M is
homogeneous and topologically unique depending only on the integers p and q.

Applying (6) to spheres with handles, we see that such spaces are uniquely defined
provided that at each stage the handle has been attached along annularly equivalent
w-cells. This is automatic for n ^ 4 by (An). For n = 4, in our construction in the next
section the cells will always be subcomplexes of some common triangulation of the
manifold. Using Lemma 1 from the next section or the proof of Theorem 11.2 from
[3; p. 33], we are assured that here, too, the cells will be annularly equivalent.

The author acknowledges a helpful discussion with M. Brown concerning the
material in this section.



570 RONALD H. ROSEN

4. A proof of Theorem A

Let T be a spanning tree in G. Since the addition of handles to S" is
interchangeable in order and can, in fact, be carried out in our case so that the handles
are " disjoint ", we may reduce the proof to consideration of the case in which we add
in one additional edge.

So we assume that G = T u e , that e = |yo
yil is a 1-simplex of M and that

T ne = de = {v0, t;J. Select x0e (v0 vj and Xt e (x0 vj. ChooseNo to be a regular
neighbourhood of T in M and iVA to be a regular neighbourhood of \xoxx\ in
Cl (St (M, e)—No) SO that N = NouN1 is a regular neighbourhood of G in M.
Furthermore, we may suppose that if L = Lk (M, e) and X = C(L), Nt « X x \x0 x{\
and No^Ni = XOV XX with X{ corresponding to X x {*;}, / = 0, 1.

Next select x0' e (v0 x0) and xt' e (xj yx). Let X / ( « Z) be the fibre over A*/, i = 0,1,
of the mapping cylinder No n St (M, e). It follows that 2X/ is flat in 2N0 » Sn.

Again each closed domain in N n St (M, e) bounded by any distinct pair of Xo', Xo,
Xu Xi is homeomorphic to Xxl. By Lemma 5 of [9] we may select flat
(«-l)-spheres 5 0 and Sx in 2N0 so that So separates 2X0' and 2X0 in

2(N n (Int St (M, e))) and Sj separates 2XX and 2 X / in 2 ( N n (Int St (M, e))V

If n ^ 5, then So and Sj bound an annulus ^40(~ S""1 x^) m 2N0 [6]. Similarly

the closed domain Ax bounded by So and 5j in 2(JVn(lntSt(M, e))\ is also an

annulus. Thus 2N = Aou Ax and Aon Ax = dA( = S o u Sx. Therefore 2iV is an
«-sphere with handle.

If n = 4, then L « S2 because Sl * L « S4 [10; Section I]. In this case we have
that Xo and Xx are 3-cells so that 2X0 and 2X£ are 3-spheres. The closed domain Ax

in 2(iVn (Int St (M, e))j bounded by 2X0 and 2Xt has already been observed to be

homeomorphic to 2XxI. Since 2X « S3, y4t is a 6o«a y?rfe annulus. We may
subdivide 2N0 by starring from xQ and xt so that 2XQ and 2 ^ ! become subcomplexes
of this triangulation of S4. By the construction, 2X0 and 2XX are flat in S4. We may
then conclude from [3; p. 13] that these 3-spheres bound an annulus Ao in 2N0.
Alternatively, this step can be verified as a separate lemma given below.

In any event, for n = 4 we again have a representation 2N = AQ\J A^ with
AonAl= dAi = 2XQ u2Xi. Thus again 2N is a 4-sphere with handle.

If M is orientable, then clearly so is N and, therefore, 2N as well. In this case,
2N is an «-sphere with oriented handles. If M is non-orientable, 2N may or may not
be orientable depending on how G is situated in M.

The result we have used for dimension 4 may be stated as follows.

LEMMA 1. Let So and St be subcomplexes of a triangulation of S". Suppose that
Son St = 0 , and S( is aflat (n — \)-sphere, i = 0, 1. Then A, the closed domain in
S" bounded by So u Su is an annulus.

Remark. Substantially the same proof works if we assume that So and St are
homeomorphic to the same suspension (n — l)-sphere.

Proof. Let K be the (n — 2)-skeleton of S". The simplicial structure on S" restricts
to a PL structure on Sn — K (the union of the interiors of all H-dimensional and («— 1)-
dimensional simplexes).

Hence, we may run a PL flat arc J in A — K from a point x0 e So — K to a point



REGULAR NEIGHBOURHOODS OF GRAPHS IN MANIFOLDS 571

Xj e Sl — K. The arc J is chosen so that it is the core of a PL flat «-cell C <= A — K,
so that C n 5t- is an ( « - l)-simplex F,- interior to an (n- l)-simplex of Sh i = 0, 1.

It follows easily that S = ( S o u 5 C u S J - I n t ( F o u Fx) is a flat (n-l)-sphere
and bounds an w-cell D ^ Aso that Cl (A- D) = C. There is a homeomorphism // of
dil"'1 xl) onto dZ), carrying7""1 xO onto S 0 - I n t F o and 7""1 x 1 onto S t - I n t Ft.
Of course, h can be extended over I"'1 xl onto D giving a product structure under
which h{dln~x xl) = 8C—Int (Fo u F J . This structure may be extended over C to
give a homeomorphism (X, So, Sj) « (S""1 x / , S""1 x {0}, S""1 x {1}).

5. Concluding observations

It is well known that a closed connected combinatorial ^-manifold M can be
expressed as the union of n +1 PL «-cells. In [4] an analogous result was described
without assuming the triangulation of M to be combinatorial; in this situation, of
course, the cells are only topologically embedded.

THEOREM B. Let M be a connected triangulated n-manifold. Then M is the union
of n +1 open n-cells. If M is compact, then each open cell may be chosen to be the
interior of an n-cell.

This can be established by use of the following elementary lemmas.

LEMMA 2. Let T = {C1? C2, C3, ...} be a discrete collection of cellular subsets of a
connected n-manifold M. Then [J T lies in an open n-cell U. If F is finite then U may be
chosen to be the interior of a closed n-cell.

The proof reduces to the fact that a point xeM — D, where D is an «-cell, may be
engulfed by Int D. See Lemmas 1 and 2 of [2].

LEMMA 3. Let S be a simplex of a triangulation of the n-manifold M. Suppose that
A is a compact starlike subset of Int S. Then A is cellular in M.

This involves a straight-forward application of Theorem 2 of [8].
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