REGULAR NEIGHBOURHOODS OF GRAPHS IN MANIFOLDS

RONALD H. ROSEN

1. Introduction

It is the purpose of this note to sketch the proof of the following theorem.
Theorem A. Let M be a triangulated n-manifold. If G is a graph which is a subcomplex of M, and if N is a regular neighbourhood of G in M, then the double of N is homeomorphic to an n-sphere with handles.

Here a graph is considered to be a connected 1-dimensional compact polyhedron. The term "regular neighbourhood" is used in the general simplicial complex setting as on p. 33 of [12]; in his earlier work [9] the author employed "barrel neighbourhood" to denote a canonic form of such a second derived mapping cylinder neighbourhood. If M is a connected n-manifold without boundary, the addition of a handle to M is defined as follows. Delete the interiors of two disjoint locally flat equivalently embedded n-cells from M and call the remaining subspace M_{1}. Adjoin the n-annulus $S^{n-1} \times I$ to M_{1} via a homeomorphism of $\partial\left(S^{n-1} \times I\right)$ onto ∂M_{1}. In the terminology of [12; p. 74] this is attaching a 1 -handle. We shall discuss this operation and its uniqueness in more detail in Section 3.
M. Brown and the author announced this theorem for oriented manifolds [4]. The proof has not appeared in print. Now that R. D. Edwards has shown that there exist non-combinatorial triangulations of S^{n} for each $n \geqslant 5$ [5], there has been much work done recently on simplicial complexes which are manifolds. Accordingly, it seems appropriate at this time to place in the literature a proof of our early result. In the intervening years it has become possible to simplify drastically the proof, for example by eliminating several applications of the theory of stable manifolds [3].

2. Regular neighbourhoods of trees

Our notation will mostly follow that of our earlier work [8,9,10, 11]. A manifold will be considered to have no boundary. The join of X and Y will be written as $X * Y$. If X and Y are homeomorphic, we write $X \approx Y$. The double of a generalized manifold with boundary X will be represented by $2 X$.

First of all we consider the case in which the graph is a tree, i.e., an acyclic graph. In a research announcement we outlined a proof of a result which is a precursor of Theorem A.

Theorem 2 of [9]. Let T be a tree which is a subcomplex in the triangulated n-manifold M. Then, if N is a regular neighbourhood of T in $M, 2 N \approx S^{n}$.

It should be pointed out that for $n \geqslant 5$ this can now be deduced from Newman's
work [7]. Of course, our proof holds for all n including dimension 4, about which little is known even now. Our construction will serve to simplify the exposition dealing with Theorem A.

Proof of Theorem 2. By the invariance of regular neighbourhoods [12; Theorem 3.8], we may use any convenient neighbourhood including second derived neighbourhoods.

Let $T=T_{0} \cup e$ where T_{0} is a subtree, e is a 1 -simplex $\left|v_{0} v_{1}\right|$ and $T_{0} \cap e=\left\{v_{0}\right\}$. We proceed by induction on the number of edges in T. Let N_{0} be a regular neighbourhood of T_{0} in M.

For the basis of our induction, we have the case in which $T_{0}=\left\{v_{0}\right\}$. Then the regular neighbourhood N_{0} of T_{0} is PL equivalent to $\mathrm{St}\left(M, v_{0}\right)$. By [8], $2 N_{0} \approx S^{n}$. Otherwise, in the induction step we assume that $2 N_{0} \approx S^{n}$. The proofs of both cases proceed in the same way from this point.

There exists $x_{0} \in \operatorname{Int} e=\left(v_{0} v_{1}\right)$ so that $N_{0} \cap e=\left|v_{0} x_{0}\right|$. Let N_{2} be a regular neighbourhood of $\left|x_{0} v_{1}\right|$ in M. We may assume that N_{0} and N_{2} have been chosen so that $N_{0}{ }^{\prime}=N_{0} \cap \mathrm{St}(M, e)$ is a regular neighbourhood of $\left|v_{0} x_{0}\right|$ in $L *\left|v_{0} x_{0}\right|$, where $L=\operatorname{Lk}(M, e)$, and $\left(N_{0} \cup N_{2}\right) \cap \operatorname{St}(M, e)$ is a regular neighbourhood of e in $\operatorname{St}(M, e)$. This may be done using barrel neighbourhoods as in Lemma 9 of [9]. More abstractly this can be carried out by using a relative form of Corollary 3.30 in [12] applied successively to maximal simplexes of $\operatorname{St}(M, e)$.

From the join structure of $\operatorname{St}(M, e)=L^{*} e$ it may be concluded that $N_{0}{ }^{\prime}$ is PL equivalent to $X \times\left|v_{0} x_{0}\right|$ and that $\left(N_{0} \cup N_{2}\right) \cap \operatorname{St}(M, e)$ is PL equivalent to $X \times e$, where $X=C(L)$-the cone over L. If $N_{0}{ }^{\prime}$ and $N_{2}{ }^{\prime}=N_{2} \cap \mathrm{St}(M, e)$ have been nicely chosen as in Lemma 9 of [9] we may assume that in both mapping cylinder structures, if $p \in e$ then the fibre over p corresponding to $X \times\{p\}$ is $(p * L) \cap$ ($N_{0}{ }^{\prime} \cup N_{2}{ }^{\prime}$). Let X_{0} denote the fibre over x_{0} in $N_{0}{ }^{\prime}$.

From the choice of N_{0} and N_{2} it now follows that $N_{1}=\mathrm{Cl}\left(N_{2}-N_{0}\right)$ is a regular neighbourhood of $\left|x_{0} v_{1}\right|$ in $\mathrm{Cl}\left(M-N_{0}\right)$. Also $N_{0} \cup N_{1}=N$ is a regular neighbourhood of T in M and $N_{0} \cap N_{1}=X_{0}$.

Select a point $x_{0}{ }^{\prime} \in\left(v_{0} x_{0}\right)$, and let $X_{0}{ }^{\prime}$ be the fibre over $x_{0}{ }^{\prime}$. Then $2 X_{0}{ }^{\prime}$ is a flat suspension ($n-1$)-sphere in $2 N_{0} \approx S^{n}$. That is, $2 X_{0}^{\prime}$ has the following properties: if $S\left(2 X_{0}{ }^{\prime}\right)$ stands for the suspension of $2 X_{0}{ }^{\prime}$ then

$$
S\left(2 X_{0}^{\prime}\right) \approx S(2 X) \approx S(S(L)) \approx S^{1} * L \approx S^{n}
$$

by [8]; since $2 X_{0}{ }^{\prime}$ is bicollared in $2 N_{0}$ it is flat [9, 11], that is, each closed domain in $2 N_{0}$ bounded by $2 X_{0}{ }^{\prime}$ is a topological cone over $2 X_{0}{ }^{\prime}$.

Symmetrically we choose $x_{1}{ }^{\prime} \in\left(x_{0} v_{1}\right)$ so that if X_{1}^{\prime} is the fibre over x_{1}^{\prime} in $N_{1}{ }^{\prime}=N_{1} \cap \operatorname{St}(M, e)$, it follows that $2 X_{1}{ }^{\prime}$ is a flat suspension ($n-1$)-sphere in $2 N_{1} \approx 2 \operatorname{St}\left(M, v_{1}\right) \approx S^{n}$.

We may now represent the double of N as $2 N=W_{0} \cup W_{1}$, so that $W_{0} \cap W_{1}=2 X_{0}$ and $W_{i}-2 X_{0} \approx 2 N_{i}-X_{0}$ for $i=0,1$. This is a canonic representation induced by $N=N_{0} \cup N_{1}$ because in N_{i} we have $X_{0} \subseteq \partial N_{i}$ so that X_{0} is injected into $2 N_{i}$, for $i=0,1$. In N, however, $X_{0} \cap \partial N=\partial X_{0}$, so that $2 X_{0}$ is injected into $2 N$. It may be observed that W_{0} is homeomorphic to the closed domain in $2 N_{0}$ bounded by $2 X_{0}{ }^{\prime}$ which is exterior to X_{0}. The latter closed domain is homeomorphic to $C(2 X)$ as previously noted. This gives us the pair equivalence $\left(W_{0}, 2 X_{0}\right) \approx(C(2 X), 2 X)$. Similarly, $\left(W_{1}, 2 X_{0}\right) \approx(C(2 X), 2 X)$. Consequently, $2 N \approx 2 C\left(2 X_{0}\right) \approx S\left(2 X_{0}\right) \approx S^{n}$.

This completes the proof.

3. Attaching handles to manifolds

Let M be a connected n-manifold. Suppose that D_{0} and D_{1} are disjoint locally flat n-cells in M which are annularly equivalent [3;p.19]. Set $M_{1}=M-\operatorname{Int}\left(D_{0} \cup D_{1}\right)$ and $A^{n}=S^{n-1} \times I$. If h_{i} is a homeomorphism of $S^{n-1} \times i$ onto $\partial D_{i}, i=0,1$, then form the adjunction space from the disjoint union $M_{1}+A^{n}$ via h_{0} and h_{1}. The adjunction space $M_{1} \cup A^{n}$ is said to be formed by adding a handle to M. If h_{0} and h_{1} carry the same sense of orientation from the product orientation on A^{n}, then the handle is called orientable. If h_{0} and h_{1} carry opposite orientations, the handle is called nonorientable.

To discuss the conditions under which this operation is well defined and unique up to orientation, it is convenient to redescribe the attaching of handles using the method of Brown and Gluck [3; p. 46].

Consider the following propositions.
$\left(\mathrm{SHC}_{n}\right)$: Every orientation-preserving self-homeomorphism of S^{n} is stable.
$\left(\mathrm{A}_{n}\right)$: Two disjoint flatly embedded ($n-1$)-spheres in S^{n} bound an annulus.
$\left(\mathrm{I}_{n}\right)$: Every orientation-preserving self-homeomorphism of S^{n} is isotopic to the identity.
$\left(\mathrm{WI}_{n}\right)$: Every orientation-preserving self-homeomorphism h of S^{n} is weakly isotopic to the identity, that is, there is a homeomorphism G of $S^{n} \times I$ onto itself such that for all $x \in S^{n}$ we have $G(x, 0)=(x, 0)$ and $G(x, 1)=(h(x), 1)$.

In [3; Theorem 9.3, p. 12] it was shown that $\left(\mathrm{A}_{n}\right)+\left(\mathrm{WI}_{n-1}\right) \Leftrightarrow\left(\mathrm{SHC}_{n}\right)$. Further, $\left(\mathrm{SHC}_{n}\right) \Rightarrow\left(\mathrm{I}_{n}\right)$ [3; p. 6]. Obviously $\left(I_{n}\right) \Rightarrow\left(\mathrm{WI}_{n}\right)$.

From classical results it had been known that $\left(\mathrm{SHC}_{n}\right)$ is true for $n \leqslant 3$. Kirby proved that $\left(\mathrm{SHC}_{n}\right)$ is true for $n \geqslant 5$ [6].

Thus, we make the following observation.

1. $\left(\mathrm{WI}_{n}\right)$ is true for all n.

If h is a self-homeomorphism of S^{n-1}, let X_{h} be the identification space derived from $S^{n-1} \times I$ by identifying $(x, 0)$ with $(h(x), 1)$. Note that $X_{1} \approx S^{n-1} \times S^{1}$, which we denote by T_{n}. If h is orientation-preserving, it may be easily proved that (WI_{n-1}) implies that $X_{h} \approx T_{n}$.

Now let $r: S^{n-1} \rightarrow S^{n-1}$ be the standard equatorial reflection. We call X_{r} the n-dimensional Klein bottle and denote it by K_{n}. If h is orientation-reversing, it may be established that $\left(\mathrm{WI}_{n-1}\right)$ implies that h is weakly isotopic to r and consequently that $X_{h} \approx K_{n}$.

If M_{1} and M_{2} are connected n-manifolds, D_{i} is a locally flat n-cell in $M_{i}, i=1,2$, and $h: \partial D_{1} \approx \partial D_{2}$, then the connected sum $M_{1} \# M_{2}$ is the (possibly ambiguous) adjunction space formed from $\left(M_{1}-\operatorname{Int} D_{1}\right)+\left(M_{2}-\operatorname{Int} D_{2}\right)$ via identification by h.

A connected n-manifold M is called homogeneous if for any two locally flat embeddings $f_{i}: D^{n} \rightarrow M, i=1,2$, there exists a self-homeomorphism h of M so that $h f_{1}=f_{2}$.

Now suppose that we have attached the handle A^{n} to M_{1} along ∂D_{0} and ∂D_{1}, D_{0} and D_{1} being disjoint annularly equivalent locally flat n-cells in M. Let D_{2} be a locally flat n-cell in M which is annularly equivalent with each D_{i}, and such that Int $D_{2} \supseteq D_{0} \cup D_{1}$. It may now be seen that because $\left(\mathrm{WI}_{n-1}\right)$ is true, $M_{1} \cup A^{n}$ is
homeomorphic to $M \# T_{n}$ if the handle is orientable, and homeomorphic to $M \# K_{n}$ if the handle is non-orientable. The connected sum is derived from M by deleting the interior of D_{2}.

In [3; pp. 55-56] it is demonstrated that T_{n} has exactly two global equivalence classes of locally flat embeddings of S^{n-1}; those which separate or do not separate T_{n}.

This has the following consequences.
2. T_{n} is homogeneous.
3. By [3; Theorem 11.1, p. 53], $M \# T_{n}$ is uniquely defined independently of the adjunction map. Furthermore, if M is homogeneous, $M \# T_{n}$ is homogeneous as well.

By slight modifications of the proofs of the above results, it is possible to establish similar properties for K_{n}.

For example, to adapt Lemma 14.1 of $\left[3 ;\right.$ p. 56] to K_{n}, we proceed in the following way. The space $S^{n-1} \times R$ is the universal covering space of K_{n} with projection map p satisfying the relation, $p(x, t)=p(r(x), t+1)$. A generating covering transformation τ of $S^{n-1} \times R$ is defined by $\tau(x, t)=(r(x), t+1)$. Now, as in the cited lemma, let $f: S^{n-1} \rightarrow K_{n}$ be a locally flat embedding which does not separate K_{n} and let f^{x} cover f. Then f separates the ends of $S^{n-1} \times R$.

It may be verified that \tilde{f} and $\tau \tilde{f} r$ have the same sense of orientation, have disjoint images and are stably equivalent in $S^{n-1} \times R$. This allows us to produce an embedding $G: S^{n-1} \times I \rightarrow S^{n-1} \times R$ which agrees with \tilde{f} on $S^{n-1} \times 0$, and with $\tau \tilde{f} r$ on $S^{n-1} \times 1$. This gives us a homeomorphism $h: K_{n} \rightarrow K_{n}$ satisfying $h p=p G$. Accordingly, $h p(x, 0)=f(x)$; that is, f is globally equivalent to the standard embedding $p \mid S^{n-1} \times 0$.

Lemma 14.2 of [3; p. 57] may be used without change of proof to show that if $f: S^{n-1} \rightarrow K_{n}$ is a locally flat embedding which separates K_{n}, then f may be extended over D^{n}.

In the proof that T_{n} is homogeneous, only one additional change need be made to adapt the proof to K_{n}. In the last line of p. 57 of [3], a stable homeomorphism h_{2} of T_{n} is described. More precisely, h_{2} may be required to be the identity on a nonempty open set. This construction carries over without change to K_{n}. Since h_{2} is somewhere the identity, the appropriately chosen covering \tilde{h}_{2} is stable on $S^{n-1} \times R$. The other details go through unchanged.

Hence, we make the following observations.
4. K_{n} is homogeneous.
5. $M \# K_{n}$ is uniquely defined. If M is homogeneous, then so is $M \# K_{n}$.
6. If M is a connected sum of S^{n} with p copies of T_{n} and q copies of K_{n}, then M is homogeneous and topologically unique depending only on the integers p and q.

Applying (6) to spheres with handles, we see that such spaces are uniquely defined provided that at each stage the handle has been attached along annularly equivalent n-cells. This is automatic for $n \neq 4$ by $\left(\mathrm{A}_{n}\right)$. For $n=4$, in our construction in the next section the cells will always be subcomplexes of some common triangulation of the manifold. Using Lemma 1 from the next section or the proof of Theorem 11.2 from [3; p. 33], we are assured that here, too, the cells will be annularly equivalent.

The author acknowledges a helpful discussion with M. Brown concerning the material in this section.

4. A proof of Theorem A

Let T be a spanning tree in G. Since the addition of handles to S^{n} is interchangeable in order and can, in fact, be carried out in our case so that the handles are " disjoint", we may reduce the proof to consideration of the case in which we add in one additional edge.

So we assume that $G=T \cup e$, that $e=\left|v_{0} v_{1}\right|$ is a 1 -simplex of M and that $T \cap e=\partial e=\left\{v_{0}, v_{1}\right\}$. Select $x_{0} \in\left(v_{0} v_{1}\right)$ and $x_{1} \in\left(x_{0} v_{1}\right)$. Choose N_{0} to be a regular neighbourhood of T in M and N_{1} to be a regular neighbourhood of $\left|x_{0} x_{1}\right|$ in $\mathrm{Cl}\left(\mathrm{St}(M, e)-N_{0}\right)$ so that $N=N_{0} \cup N_{1}$ is a regular neighbourhood of G in M. Furthermore, we may suppose that if $L=\operatorname{Lk}(M, e)$ and $X=C(L), N_{1} \approx X \times\left|x_{0} x_{1}\right|$ and $N_{0} \cap N_{1}=X_{0} \cup X_{1}$ with X_{i} corresponding to $X \times\left\{x_{i}\right\}, i=0,1$.

Next select $x_{0}{ }^{\prime} \in\left(v_{0} x_{0}\right)$ and $x_{1}{ }^{\prime} \in\left(x_{1} v_{1}\right)$. Let $X_{i}{ }^{\prime}(\approx X)$ be the fibre over $x_{i}{ }^{\prime}, i=0,1$, of the mapping cylinder $N_{0} \cap \operatorname{St}(M, e)$. It follows that $2 X_{i}^{\prime}$ is flat in $2 N_{0} \approx S^{n}$. Again each closed domain in $N \cap S t(M, e)$ bounded by any distinct pair of $X_{0}{ }^{\prime}, X_{0}$, $X_{1}, X_{1}{ }^{\prime}$ is homeomorphic to $X \times I$. By Lemma 5 of [9] we may select flat $(n-1)$-spheres S_{0} and S_{1} in $2 N_{0}$ so that S_{0} separates $2 X_{0}{ }^{\prime}$ and $2 X_{0}$ in $2(N \cap(\operatorname{Int} \operatorname{St}(M, e)))$ and S_{1} separates $2 X_{1}$ and $2 X_{1}^{\prime}$ in $2(N \cap(\operatorname{Int~St}(M, e)))$.

If $n \geqslant 5$, then S_{0} and S_{1} bound an annulus $A_{0}\left(\approx S^{n-1} \times I\right)$ in $2 N_{0}$ [6]. Similarly the closed domain A_{1} bounded by S_{0} and S_{1} in $2(N \cap(\operatorname{Int} \operatorname{St}(M, e)))$ is also an annulus. Thus $2 N=A_{0} \cup A_{1}$ and $A_{0} \cap A_{1}=\partial A_{i}=S_{0} \cup S_{1}$. Therefore $2 N$ is an n-sphere with handle.

If $n=4$, then $L \approx S^{2}$ because $S^{1} * L \approx S^{4}$ [10; Section I]. In this case we have that X_{0} and X_{1} are 3-cells so that $2 X_{0}$ and $2 X_{1}$ are 3 -spheres. The closed domain A_{1} in $2(N \cap(\operatorname{Int} S t(M, e)))$ bounded by $2 X_{0}$ and $2 X_{1}$ has already been observed to be homeomorphic to $2 X \times I$. Since $2 X \approx S^{3}, A_{1}$ is a bona fide annulus. We may subdivide $2 N_{0}$ by starring from x_{0} and x_{1} so that $2 X_{0}$ and $2 X_{1}$ become subcomplexes of this triangulation of S^{4}. By the construction, $2 X_{0}$ and $2 X_{1}$ are flat in S^{4}. We may then conclude from [3; p. 13] that these 3 -spheres bound an annulus A_{0} in $2 N_{0}$. Alternatively, this step can be verified as a separate lemma given below.

In any event, for $n=4$ we again have a representation $2 N=A_{0} \cup A_{1}$ with $A_{0} \cap A_{1}=\partial A_{i}=2 X_{0} \cup 2 X_{1}$. Thus again $2 N$ is a 4 -sphere with handle.

If M is orientable, then clearly so is N and, therefore, $2 N$ as well. In this case, $2 N$ is an n-sphere with oriented handles. If M is non-orientable, $2 N$ may or may not be orientable depending on how G is situated in M.

The result we have used for dimension 4 may be stated as follows.
Lemma 1. Let S_{0} and S_{1} be subcomplexes of a triangulation of S^{n}. Suppose that $S_{0} \cap S_{1}=\varnothing$, and S_{i} is a flat $(n-1)$-sphere, $i=0,1$. Then A, the closed domain in S^{n} bounded by $S_{0} \cup S_{1}$, is an annulus.

Remark. Substantially the same proof works if we assume that S_{0} and S_{1} are homeomorphic to the same suspension ($n-1$)-sphere.

Proof. Let K be the ($n-2$)-skeleton of S^{n}. The simplicial structure on S^{n} restricts to a PL structure on $S^{n}-K$ (the union of the interiors of all n-dimensional and ($n-1$)dimensional simplexes).

Hence, we may run a PL flat arc J in $A-K$ from a point $x_{0} \in S_{0}-K$ to a point
$x_{1} \in S_{1}-K$. The arc J is chosen so that it is the core of a PL flat n-cell $C \subseteq A-K$, so that $C \cap S_{i}$ is an ($n-1$)-simplex F_{i} interior to an ($n-1$)-simplex of $S_{i}, i=0,1$.

It follows easily that $S=\left(S_{0} \cup \partial C \cup S_{1}\right)-\operatorname{Int}\left(F_{0} \cup F_{1}\right)$ is a flat $(n-1)$-sphere and bounds an n-cell $D \subseteq A$ so that $\mathrm{Cl}(A-D)=C$. There is a homeomorphism h of $\partial\left(I^{n-1} \times I\right)$ onto ∂D, carrying $I^{n-1} \times 0$ onto $S_{0}-\operatorname{Int} F_{0}$ and $I^{n-1} \times 1$ onto $S_{1}-\operatorname{Int} F_{1}$. Of course, h can be extended over $I^{n-1} \times I$ onto D giving a product structure under which $h\left(\partial I^{n-1} \times I\right)=\partial C-\operatorname{Int}\left(F_{0} \cup F_{1}\right)$. This structure may be extended over C to give a homeomorphism $\left(A, S_{0}, S_{1}\right) \approx\left(S^{n-1} \times I, S^{n-1} \times\{0\}, S^{n-1} \times\{1\}\right)$.

5. Concluding observations

It is well known that a closed connected combinatorial n-manifold M can be expressed as the union of $n+1 \mathrm{PL} n$-cells. In [4] an analogous result was described without assuming the triangulation of M to be combinatorial; in this situation, of course, the cells are only topologically embedded.

Theorem B. Let M be a connected triangulated n-manifold. Then M is the union of $n+1$ open n-cells. If M is compact, then each open cell may be chosen to be the interior of an n-cell.

This can be established by use of the following elementary lemmas.
Lemma 2. Let $\Gamma=\left\{C_{1}, C_{2}, C_{3}, \ldots\right\}$ be a discrete collection of cellular subsets of a connected n-manifold M. Then $\bigcup \Gamma$ lies in an open n-cell U. If Γ is finite then U may be chosen to be the interior of a closed n-cell.

The proof reduces to the fact that a point $x \in M-D$, where D is an n-cell, may be engulfed by Int D. See Lemmas 1 and 2 of [2].

Lemma 3. Let S be a simplex of a triangulation of the n-manifold M. Suppose that A is a compact starlike subset of Int S. Then A is cellular in M.

This involves a straight-forward application of Theorem 2 of [8].

References

1. M. Brown, " The monotone union of open n-cells is an open n-cell ", Proc. Amer. Math. Soc., 12 (1961), 812-814.
2. M. Brown, "A mapping theorem for untriangulated manifolds", "Topology of 3-manifolds etc. ", Proc. of the Univ. of Georgia Institute (1961) (Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962), 92-94.
3. M. Brown and H. Gluck, "Stable structures on manifolds; I-III", Ann. of Math., 79 (1964), 1-58.
4. M. Brown and R. Rosen, " Triangulated manifolds ", Notices Amer. Math. Soc., 10 (1963), Abstract 603-97, p. 460.
5. R. D. Edwards, "The double suspension of a certain homology 3-sphere is S^{5} ", Notices Amer. Math. Soc., 22 (1975), Abstract 75T-G33, p. A-334.
6. R. Kirby, "Stable homeomorphisms and the annulus conjecture ", Ann. of Math., 89 (1969), 575-582.
7. M. H. A Newman, "The engulfing theorem for topological manifolds ", Ann. of Math., 84 (1966), 555-571.
8. R. Rosen, "Stellar neighborhoods in polyhedral manifolds ", Proc. Amer. Math. Soc., 14 (1963), 401-406.
9. R. Rosen, "Polyhedral neighborhoods in triangulated manifolds", Bull. Amer. Math. Soc., 69 (1963), 359-361.
10. R. Rosen, "The five dimensional polyhedral Schoenflies theorem", Bull. Amer. Math. Soc., 70 (1964), 511-516.
11. R. Rosen, "Concerning suspension spheres", Proc. Amer. Math. Soc., 23 (1969), 225-231.
12. C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology (Springer-Verlag, New York, 1972).

Department of Mathematics,
University of Michigan,
Ann Arbor, Michigan 48109,
U.S.A.

