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1. Introduction

The purpose of this article is to formulate and study a notion of an equivariant
formal group law, at least for abelian compact Lie groups A of equivariance.
Although the de®nition is algebraically natural, and may prove to be of interest
elsewhere, it is obtained by abstracting the essential properties of orientable,
complex stable, equivariant cohomology theories E �A� ? �. Accordingly, the
justi®cation for the de®nition, and the applications of results about it are at
present principally topological. We have therefore taken trouble to provide
topological background, motivation and examples before giving the de®nition. A
reader uninterested in the topological applications can jump immediately to Part
III, which begins with § 11.
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The aim is to understand cohomology theories which behave in a simple way
on complex vector bundles, and hence give rise to a good theory of characteristic
classes. In particular, we want to understand tom Dieck's homotopical equivariant
complex bordism [5]. Bordism is universal amongst such complex orientable
theories in a topological sense [16, 4], and non-equivariantly Quillen showed that
its coef®cient ring is the Lazard ring, which is universal in the algebraic sense.
This possibility is more seductive equivariantly, since our knowledge of the
coef®cient ring of equivariant bordism remains incomplete (although Kriz [13]
and Sinha [18] provide useful information). In [10] an equivariant version of
Quillen's theorem is proved, but still without making the structure of the
equivariant Lazard ring explicit.

Since we work with an abelian group A, all simple complex representations are
one dimensional, and it is enough to consider line bundles. Line bundles are
classi®ed by the A-space CP1 of lines in a complete A-universe, so we study
E �A�CP1�, endowed with all the structure inherited from CP1. Since CP1 is a
space, E �A�CP1� is a ring, the tensor product of line bundles makes CP1 into an
abelian group object in the homotopy category, so (when we have a KuÈnneth
isomorphism) E �A�CP1� is a cogroup object, and ®nally, since one can tensor a
line bundle with any one-dimensional representation, CP1 has an action of the
dual group A�, giving rise to a coaction of A� on E �A�CP1�.

To ensure the additive structure is reasonable, we restrict attention to oriented
complex stable theories. Cole has shown [3] that this condition ensures that
E �A�CP�V �� is well behaved. In the non-equivariant case, the ring structure is then
necessarily that of a truncated polynomial ring, but equivariantly this is too much
to ask. However, the Splitting Theorem [3] shows that for any complete ¯ag
V 1 Ì V 2 Ì V 3 Ì . . . Ì V n � V in V the corresponding Schubert cell ®ltration of
E �A�CP�V �� splits additively, as a direct sum of copies of E �A , with basis elements
1, y�V 1�; y�V 2�; . . . ; y�V nÿ1� constructed from the orientation, using the A�-action
and the ring structure.

Thus (see De®nition 11.1) an A-equivariant formal group law over a
commutative ring k is a topological Hopf k-algebra R together with a coaction
of A� and special regular elements y�a� (related by the coaction as the notation
suggests) so that R=�y�a�� � k for all a, and so that R is complete with respect
to the ideal �Qa y�a��. This is a considerable re®nement of the essentially non-
equivariant, classical notion of an Okonek equivariant formal group law [17]. In
effect our equivariant formal group law is a very special `subcogroup of ®nite
index' in an Okonek formal group law.

Returning to topology, we note that any complete ¯ag F in the universe gives
an additive topological basis for E �A�CP1� , and we may express the ring
structure, the cogroup structure, and the A�-action in terms of this basis using
structure constants in E �A . Writing down the formal properties in terms of the
basis, we obtain a list of conditions which must be satis®ed by the structure
constants, and this gives the notion of an �A; F �-equivariant formal group law,
essentially that given in [3] for cyclic groups. This description shows that there is
a representing ring LA�F � for such formal group laws. This process has an
algebraic counterpart, so that an A-equivariant formal group law with a ¯ag F
gives an �A; F �-formal group law, and the latter gives a convenient way of
calculating with A-equivariant formal group laws. Reversing the process, we
conclude that the notion of an �A; F �-formal group law is essentially independent
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of the ¯ag F, and that the ring LA�F � represents A-equivariant formal group laws.
We begin the study of this ring by ®nding a more ef®cient set of generators, and
further results are proved in [10], but the structure remains mysterious and calls
for further investigation.

There are a number of other points of view possible. Firstly, one can give a
coordinate-free description of the structure, which is done in geometric language
in [9]. There is another coordinate-free description, which amounts to viewing an
equivariant formal group as a certain type of deformation of a non-equivariant
one. The structure studied by Hopkins, Kuhn and Ravenel [12] and Greenlees and
Strickland [11] is equivalent to an equivariant formal group law over a suitably
complete ring k.

The rest of the paper is in three parts. In Part I (§§ 2 to 5), we summarize the
basic topological de®nitions and the fundamental splitting theorem of [3]. In Part
II (§§ 6 to 10), we discuss the cohomology of CP1 for a number of well-known
cohomology theories, thereby providing a good supply of examples. Finally, in
Part III (§§ 11 to 16), we come to the purely algebraic part of the paper. In § 11
we give the de®nition of an equivariant formal group law. To make calculations
we need to introduce the framework of a complete ¯ag F giving the de®nition of
an �A; F �-equivariant formal group law in § 12. After showing that an A-
equivariant formal group law together with a ¯ag is equivalent to an �A; F �-
formal group law, we ®nd that the subsequent study of �A; F �-formal group laws
provides tools for calculation with equivariant formal group laws. In particular,
we show that there is a representing ring for equivariant formal group laws. In
appendices we illustrate the theory by considering the special cases of additive
and multiplicative formal group laws, and make formulae explicit for the group of
order 2.

It is possible to read Part III ®rst, as a piece of pure algebra, and then to return
to Parts I and II as a source of examples. However we do not recommend this,
since our experience shows that it is all too easy to underestimate the subtlety of
the structure without examples to hand.

Here is a summary of our notational conventions (all are introduced in more
detail in the text):

A is an abelian compact Lie group,

A� is its dual group Hom�A; S1�,
a; b; g; . . . are typical one-dimensional complex representations,

« is the trivial one-dimensional representation,

V is a complex representation,

T is the circle group,

z is the natural representation of T,

U is a complete A universe,

F is a complete ¯ag in U,

V 1; V 2; V 3; . . . are the terms in F,

a1; a2; a3; . . . are the subquotients of F,

la is left multiplication by a 2 A�,
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l�V � is the Thom class giving a complex stable structure,

x�V � is the pullback of l�V � along S0 ! SV ,

e�V � is the strict Euler class de®ned by a complex orientation.

Part I. Complex oriented cohomology theories

In Part I we introduce the basic topological ingredients: CP1, complex stable and
complex oriented cohomology theories and Euler classes. Much of this is well known,
but various pieces of notation and terminology introduced here are used elsewhere.

2. The classifying space for line bundles

For each complex representation V we may form the A-space CP�V � of
complex lines in V . It is sometimes useful to consider the representation V 
 z of
A ´ T, and then CP�V � � S�V 
 z�=T.

Indeed CP de®nes a functor from the category of vector spaces and injective
maps to the category of topological spaces and injective maps. Thus, in particular,
if W Í V , we have a pair �CP�V �; CP�W ��. For example, if W is one-
dimensional, then CP�W � is a point, so that a one-dimensional subspace of V
speci®es a basepoint of CP�V �: this is signi®cant because basepoints may lie in
different components of the ®xed point set. At the other extreme, if a is one-
dimensional, one may verify that there is a co®bre sequence

CP�V � ÿ! CP�V � a� ÿ! SV 
aÿ 1:�2:1�
We remark that, as an A-space, V is isomorphic to V , so that the co®bre may also
be described as the Thom space of V � a, as is often done when discussing
Thom isomorphisms.

The A-invariant complex lines are exactly the subrepresentations of V , so it is
easy to see that

CP�V �A �
a
a

CP�Va��2:2�

where Va � HomA�a; V � is the a-isotypical part of V . Note that if A is ®nite and
V � kCA is a multiple of the regular representation, we have an isomorphism

A� ´ CP�k«�ÿÿÿ!>
CP�kCA�A

given by �a; W � ! a
W.
For convenience we take U �Lk > 0

L
a2 A� a as our complete A-universe and

we de®ne CP1 � CP�U�, with its topology as a colimit of its subspaces CP�V �
with V ®nite dimensional. It is also convenient to let CP1

W �
S

k > 0 CP�kW �, so
that CP1

« is an A-®xed in®nite complex projective space.
The importance of projective spaces is the following standard fact.

Lemma 2.3. The A-space CP1 classi®es line bundles.

The tensor product of line bundles is commutative and associative up to
coherent isomorphism, and has « as a unit, and we shall constantly use the
represented counterpart.
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Corollary 2.4. The A-space CP1 is an abelian group object up to
homotopy, and the inclusion of ®xed points is a group homomorphism.

We have seen that

�CP1�A � CP�U�A �
a
a

CP�Ua�> A� ´ CP1
« :

It is useful to make explicit the map

i: A� ´ CP1
« ÿ! CP1;

�a; W � 7ÿ! a
W :

This map of abelian groups is absolutely fundamental to our analysis.
Note also that since CP1

a is connected, there is a unique homotopy class
A� ! �CP1�A splitting the natural augmentation �CP1�A ! A�, and it is a group
homomorphism. In particular, A� acts on CP1 through A-maps, by a ´ L � a
 L .
To avoid confusion, we make it explicit. Any vector v in U �La Ua can be
resolved into its components va 2Ua, and under the isomorphism

a
 : U«ÿÿÿ!>
Ua

it is best to view v as a function v: A� ! U«. The action of A� on U is then
given by �a ´ v��b� � v�baÿ1�, and the action of A by �a ´ v��b� � a�v�b��. It is
easy to verify that these commute. When A is ®nite, the action also restricts to an
action on kCA for each k.

3. Complex stability and Euler classes

We have already seen that the ®xed point spaces of interesting A-spaces are
disconnected, so it is rare for there to be a preferred basepoint. This is one reason
why it is convenient to work throughout in the unbased context.

A genuine equivariant cohomology theory E �A� ? � is an exact contravariant
functor on A-spaces, which admits an RO�G�-graded extension so that we have
coherent suspension isomorphismseE V�n

A �SV ^ X �> eE n
A�X �

for all real representations V . Amongst these, the most familiar ones are those
with a stronger stability propertyeE jV j�n

A �SV ^ X �> eE n
A�X �

when V is a complex representation, where jV j denotes the space V with trivial
action. This is very convenient: for most purposes we only need to look at the
theory in integer gradings. Following tom Dieck we call these theories complex
stable. As examples, we have the cohomology theory of the Borel construction,
de®ned in terms of a complex orientable non-equivariant cohomology theory by
X 7! E ��EA ´A X �. A Serre spectral sequence argument shows that this is complex

stable, since A acts trivially on H jV j�SV� when V is complex. The other examples
we discuss below include complex equivariant K-theory.

Now let us suppose given a multiplicative, complex stable equivariant
cohomology theory E �A� ? �. For any complex representation V , complex stability
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provides an element

l�V � 2 eE jV jA �SV�
corresponding to the unit in E 0

A , and the E �A-module eE ��SV� is free of rank 1 on
this generator. All complex stability isomorphisms are given by multiplication by
l�V �, and we have l�V �W � � l�V �l�W �. We then de®ne the Euler class

x�V � � e�V�l�V �� 2 E
jV j
A , where eV : S0 ! SV is the inclusion. Thus we have

x�V �W � � x�V �x�W �.
Note that for any based A-space X this giveseE A

� �X ^ S1 V� � eE A
� �X ��1=x�V ��:

This leads to the localization theorem. In fact, if we take S1 År � SV A�0 SV ,
the inclusion

X A ^ S1 Årÿÿÿ!.
X ^ S1 År

is an equivalence by obstruction theory. It follows that eE A
� �X A� ! eE A

� �X �
becomes an isomorphism if we invert all Euler classes x�V � with V A � 0. By
duality we deduce the localization theorem we need [6]: the ®niteness assumption
in the statement is essential.

Lemma 3.1. If X is a based ®nite A-space theneE �A�X A�  ÿ eE �A�X �
becomes an isomorphism if we invert all Euler classes x�V � with V A � 0.

4. Orientations and the cohomology of CP1

Notice that when « Í «� a Í U we have

�« � CP�«� Í CP�«� a� � Saÿ1

Í CP�U� � CP1:

De®nition 4.1 [3]. We say that x�«� 2 E �A�CP1; CP�«�� is an orientation if
for all one-dimensional representations of a 2 A�,

resU«�a x�«� 2 E �A�CP�«� a�; CP�«��> eE �A�Saÿ1�
is a generator.

Remark 4.2. We do not require that x restricts to the standard generator

l�aÿ1� 2 eE �A�Saÿ1�. It is perhaps worth introducing the notation

resU«�a x�«� � uaÿ1l�aÿ1�
for the unit concerned.

We may generate many other elements from an orientation. Firstly, pulling back
along the action

aÿ1: �CP1; CP�a�� ÿ! �CP1; CP�«��
we have x�a� 2 E �A�CP1; CP�a��. To avoid confusion later, we write
la � �aÿ1��; thus, in particular, x�a� � la x�«�. Taking external direct products, if
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V � a1 � . . .� an then we obtain

x�V � � x�a1� � . . . � x�an� 2 E �A�CP1; CP�V ��:
Here the product � is de®ned by pulling back the external cup product along
the map

D: �CP�V �W � Z �; CP�V �W ��
ÿ!�CP�V � Z �; CP�V �� ´ �CP�W � Z �; CP�W ��

de®ned by �v : w : z� 7! ��v : z�; �w : z��. Forgetting the subspace, note that x�V �
de®nes an element y�V � 2 E �A�CP1� which restricts to zero on CP�V �. It turns
out that the pair �CP�V �W �; CP�V �� de®nes a short exact sequence

0 ÿ E �A �CP�V ��  ÿ E �A�CP�V �W ��  ÿ E �A�CP�V �W �; CP�V ��  ÿ 0:

In particular, y�«� is the image of x�«�, and, since the restriction turns out to be
injective, either one determines the other. It is clear that y�0� � 1, that
y�V �W � � y�V�y�W �, and that �aÿ1�� y�V � � y�V 
 a�. Thus all the elements
y�V � can be obtained from y�«� using the action of A� and the multiplication.

To obtain a topological additive base of E �A �CP1� we choose a complete ¯ag

F � �V 0 Ì V 1 Ì V 2 Ì . . .�;
so that dimC�V i� � i, and

S
i > 0 V i � U. Associated to any such complete ¯ag F

we have the sequence a1; a2; . . . of subquotients ai � V i=V iÿ1, so that
V n > a1 � . . .� an, and y�V n� � y�a1�y�a2� . . . y�an�. The basis only depends
on the isomorphism classes of the sequence V n, so the important structure is
represented by the path a1; a2; a3; . . . in the ®rst orthant, NA� . We also allow the
use of ¯ags in other complete universes, since none of the relevant structure
depends on our identi®cation of universes. We sometimes speak loosely as if the
path were equivalent to the ¯ag. The condition that F is a complete ¯ag is simply
that the path eventually enters the monoid-ideal generated by V � �Va�a for each
®nite-dimensional representation V . We use the notation kffyi j i 2 Igg to denote
the product

Q
i2 I k where yi is the characteristic function of the i th factor.

The Splitting Theorem of [3] is the appropriate substitute for the collapse of the
Atiyah±Hirzebruch spectral sequence in the non-equivariant case.

Theorem 4.3 (Cole [3]). A complete ¯ag F � �V 0 Ì V 1 Ì V 2 Ì . . .� speci®es
a basis of E �A�CP1� as follows:

E �A�CP1� � E �Affy�V 0� � 1; y�V 1�; y�V 2�; . . .gg:
Similar results hold for products of copies of CP1, in the sense that the KuÈnneth
theorem holds with completed tensor products.

Proof. We argue by induction that E ^ �CP1; CP�0�� splits as a wedge, and
that F��CP1; CP�0��; E� is the corresponding product. The co®bre sequence

�SV n 
 aÿ1
n� 1 ; �� � �CP�V n�1�; CP�V n�� ÿ! �CP1; CP�V n�1��

ÿ! �CP1; CP�V n��
gives a split exact sequence in homology or cohomology: the splitting is given by
x�V n�1�. This is equally true if CP1 is replaced by CP�U � whenever V n�1 Í U .
The result follows by passage to limits.
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Evidently this theorem gives a means for expressing the cup product, the map
induced by tensor product, and the action induced by the action of A�, using
collections of elements of the coef®cient ring E �A . This lets us describe the
coarsest features of the maps by identifying the leading terms. The framework of
Part III, and especially the notion of an �A; F �-formal group law de®ned in § 12,
allows us to discuss higher terms too.

5. Orientations and Euler classes

The main point is that suitable restrictions of the orientation class are unit
multiples of the Euler classes.

Lemma 5.1. The restriction of y�«� to the point �a � CP�a� is a unit multiple
of the Euler class of a:

resUa �y�«�� � uaÿ1x�aÿ1�,
where the unit uaÿ1 is the one occurring in the de®nition of an orientation.
In general,

resUa �y�b�� � uaÿ1b x�aÿ1b�:

Proof. The result is immediate from the diagram

�CP�a� «�; CP�«�� ÿÿÿ! �CP1; CP�«��x??? x???
Saÿ1

> CP�a� «� CP1x??? x???
CP�a�ÿÿÿÿÿÿÿÿÿÿÿÿ!�

CP�a�

It is convenient to introduce the notation e�b� :� ubx�b� for the elements, and
we refer to them as strict Euler classes associated to a complex oriented theory.
For a general representation we de®ne strict Euler classes so that
e�V �W � � e�V �e�W �.

We can now read off the leading term in the expression for y�b� in any basis.

Corollary 5.2. When working with a basis corresponding to a complete ¯ag
F with ®rst term a, the coef®cient of y�V 0� � 1 in the expression for y�b� in the
F-basis is e�aÿ1b�.

Similarly, we may understand the coef®cient of y�V j� in the expansion
of y�V i�y�V j�.

Lemma 5.3. We have

y�V �y�V j� � e�aÿ1
j�1V �y�V j� � higher terms:

Proof. By induction it suf®ces to prove the special case when V � b is one

dimensional. In this case y�b� � e�aÿ1
j�1b� modulo y�aj�1�, and the result follows.
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Of course if V contains aj�1, the displayed coef®cient is zero. Later we
consider the higher terms in some detail.

Our next task is to provide a good supply of examples (§§ 6 to 10). We will
then give the formal de®nition and tools for calculation.

Part II. Topological examples

In Part II we consider four examples and one non-example. For each of the
examples we describe E �A�CP1�, thereby providing an example for testing the
arguments of Part III. The example of K-theory is important partly because it is
so explicit and partly (see Proposition A.2 and [8]) because it provides a universal
multiplicative formal group law. The examples of Borel cohomology and
cohomology of the ®xed point set are two extremes which must be covered by a
common de®nition: the ®rst gives a classical formal group law with Euler classes
over a suitably complete ring (as in [12, 11]) and the second gives an Okonek
formal group law (as in [17]).

6. Equivariant K-theory

This is one of the few cases where calculations are easy. In fact, Bott
periodicity shows that K-theory is complex stable, and that we may work entirely
in degree 0. Thus the coef®cient ring KA � R�A� is the complex representation
ring. There is a severe danger of confusion here: the coef®cient ring R�A� acts on
KA�X � for any X. On the other hand, when X � CP1 we have an action of A� via
ring homomorphisms: this is quite different from the action of A� Í R�A�. To
minimize confusion, recall that we write la x for the image of the cohomology
class under the action of a 2 A� so that la � �aÿ1��.

This is certainly a case where an equivariant approach is appropriate, since

KA ´T�S�V 
 z�� � KA�CP�V ��;
where z is the natural representation of T. The point here is that the based co®bre
sequence S�V �� ! D�V �� ! SV gives rise to the Gysin sequence. By Bott
periodicity, it takes the form

0 ÿ KA ´T�S�V 
 z��  ÿ R�A��z; zÿ1� ÿÿÿÿÿÿÿx�V 
 z�
R�A��z; zÿ1�  ÿ . . . :

Furthermore, if V � a1 � . . .� an, then

x�V 
 z� � �1ÿ a1z��1ÿ a2 z� . . . �1ÿ an z�;
which is a regular element. Thus

KA�CP�V �� � KA ´T�S�V 
 z�� � R�A��z; zÿ1�=x�V 
 z�:
Next, note that z is already invertible in R�A��z�=x�V 
 z�; indeed

1ÿ x�V 
 z� � z ´ �V � higher terms�:
Either by the completion theorem, or simply by passage to inverse limits, we

see that

KA�CP1
V � � R�A��z�^x�V 
 z�:

Now observe that y � 1ÿ z is an orientation; K-theory is unusual in that this has
®nite degree in z. To verify that it is indeed an orientation, we note that 1ÿ z
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makes sense as an element of KA�CP�V �� for any V, and that 1ÿ z visibly
generates the kernel of

KA�CP�«� a�� � R�A��z�=�1ÿ z��1ÿ az� ÿ! R�A��z�=�1ÿ z� � KA�CP�«��:
The element z, regarded as an element of KA�CP�V ��, is the canonical line

bundle over CP�V � , so it is easy to identify the A� action: la z � az. Since the
action is through ring homomorphisms, y�a� � la�1ÿ z� � 1ÿ az.

Next, we specialize to the case where A is ®nite and V is the regular
representation, and we let P � x�CA
 z� �Qa�1ÿ za�. There is a straight-
forward and standard way to adapt the discussion to an arbitrary abelian compact
Lie group A. The inclusion i: A� ´ CP1

« ! CP1 induces a map

i�: R�A��z�^P ÿ!
Y
a

R�A��z�^�1ÿa z�:

We have chosen coordinates so that the a th component is induced by completing the
identity map of R�A��z� with respect to P in the domain and �1ÿ az� in the
codomain, as is legitimate since �1ÿ az� divides P. Note in particular that i� is
injective, since the same primes contain the product and the intersection of the ideals
�1ÿ az�. It is also not hard to see that if we invert all the Euler classes x�a� � 1ÿ a
then the ideals become coprime. Thus if we invert the Euler classes before
completion, we obtain an isomorphism by the Chinese Remainder Theorem.

Working modulo all Euler classes, we see that 1ÿ az � 1ÿ z, so that i� is the
diagonal inclusion. If we complete at the augmentation ideal, the components of
i� are each isomorphisms.

Finally, it will be shown in Proposition A.2 (see also [8]) that, as in the
non-equivariant case, K-theory gives rise to the universal multiplicative
equivariant formal group law.

7. The equivariant approach

This is a class of examples generalizing equivariant K-theory, and certainly
including equivariant complex bordism and related theories.

It often happens that there is an A ´ T-equivariant form of the cohomology
theory, so that E �A ´T�X � � E �A�X =T� when X is T-free. In this case we have

E �A�CP�V �� � E �A ´T�S�V 
 z��;
where z is the natural representation of T, just as for K-theory. We also have a
completion theorem in this context, stating

E �A�CP1
V � � �EA ´T�^x�V 
 z�:

Because we are only considering the cohomology of the single in®nite sphere
S�1�V 
 z��, the completion theorem only requires complex stability, and not
highly structured ring and module technology. The most naive form of the
statement would involve local homology, but the calculation of Theorem 4.3
shows that this reduces to the classical completion.

We still ®nd that if V � a1 � . . .� an, then

x�V 
 z� � x�a1 
 z�x�a2 
 z� . . . x�an 
 z�:
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Thus, (with the same adaptions to the in®nite case as for K-theory) the inclusion
i: A� ´ CP1

« ! CP1 induces a map

i�: �E �A ´T�^P ÿ!
Y
a

�E �A ´T�^x�a z�;

where P �Qa x�az�. The map i� is again injective, and the analogue, in which Euler
classes x�V � with V A � 0 are inverted before completion, is an isomorphism.

We have an action of A� on CP1, and hence on the completion of E �A ´T. It can
be rather useful to know that the action exists before completion. In fact the group
A� acts on the group A ´ T by the formula

a ´ �a; z� � �a; a�a�z�:
This induces an action of A� on the cohomology theory E �A ´T� ? �. Since
composition with a: U
 z! U
 z takes a subspace V 
 z of U to Va
 z, we
see that the action on E �A ´T�S�U
 z�� is the same as that on E �A�CP1�
discussed earlier.

8. Borel cohomology

If E is any non-equivariant complex oriented theory, we may consider the
associated Borel cohomology:

b�E ��A�X � � E ��EA ´A X �:
Since A acts trivially on H ��SV� if V is a complex representation, a Serre spectral
sequence argument shows that this is a complex stable theory, and a complex

stable structure is provided by choosing Thom classes. Any class in gb�E��A�CP1�
restricting to a generator of gb�E��A�S 2� is automatically a complex orientation.

These examples are special because b�E��A is already complete at the ideal I
generated by the Euler classes. This means as expected that the associated formal
group law is essentially the non-equivariant formal group law with its base
extended. This is made precise in Example 11.3(iv) below.

We may consider ordinary Borel cohomology with integer coef®cients. From
the equivariant point of view of § 7 or otherwise, we see that b�H ��A�CP1� �
H ��BA� 
 H ��BS1�. Choosing an orientation c we ®nd that this is H ��BA��c�.
Furthermore, H 2�BA�> A�, and we have e�a� � a. It turns out that this gives an
additive formal group law. We shall see in Appendix A that the fact that Euler
classes are Z-torsion for ®nite A is a necessary consequence, and that the
associated formal group law is closely related to the universal additive formal
group law (and equal to it when A is a torus).

9. Cohomology of the ®xed point subspace

The other extreme case is given by cohomology theories in which all Euler
classes are invertible. Thus for this section we suppose E �A� ? � is a complex stable
theory in which all Euler classes x�a� (with a 6� «� are invertible. We shall see
that such a theory is complex orientable provided it is orientable as a cohomology
theory on A-®xed spaces. Theories of this type give Okonek formal groups [17].

Since Euler classes are invertible, we have an equivalence

E � E ^ S0ÿÿÿ!.
E ^ S1 År;
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where S1 År � SV A�0 SV as before. It follows that for any A-space X, the inclusion
X A ! X is a cohomology isomorphism (since the cohomology of any non-®xed
cell is zero). This applies to X � CP1, with �CP1�A � A� ´ CP1

« , where the
multiplication comes from the group structure in A� and CP1

« . Thus

E �A�CP1�>
Y
a

E �A�CP1
« � � E �A�CP1

« �A
�
:

We should explain the notation: if k is a cogroup in the category of rings, we use the
notation k A� for the object which is a product

Q
a k as a ring, but where the

coproduct combines that of k with the group operation on A�. This should not be
confused with the group ring k�A�. More explicitly, if we choose a coordinate y« then

E �A�CP1� �
Y
a

E �A ��ya��

and the coproduct is determined by the group structure of A� and its effect on the
generator y« .

More generally, (2.2) shows that

E �A�CP�V �� �
Y
a

E �A �ya�=�y jVaj
a �;

so it is easy to understand orientations, x � x�«� � �xa�a . An element
� fa�ya�� 2 E �A�CP1� gives an element of E �A�CP1; CP�«�� if f«�y«� has zero
constant term. To give a generator of E �A�CP�«� «�; CP�«�� the coef®cient of y«

must be a unit. Finally, to give a generator of E �A�CP�«� a�; CP�«�� when
a 6� «, the constant term in fa�ya� must be a unit. Thus, if Euler classes are given,
an orientation is speci®ed by

(i) a classical orientation of the classical formal group law E �A�CP1
« � and

(ii) for each a 6� «, an arbitrary power series ga�ya� so that fa�ya� �
e�a� � ya ga�ya�.

The simplest orientation is x � �y«; �x�a��a 6� «�. We use this orientation unless
otherwise stated, and thus we have

y�b� � �yb; �x�baÿ1��a 6� b�;
(that is, the b th component of y�b� is yb, and the a th component is x�baÿ1�
if a 6� b).

Example 9.1. It is perhaps worth a short calculation with A of order 2 to kill
certain preconceptions. Let h denote the non-trivial one-dimensional representation,
and x � x�h�. We thus have

E �A�CP1� � E �A ��y«�� ´ E �A ��yh��;
with E �A acting diagonally on the factors, and A� exchanging the factors. Note that

y�«� � �y«; x� and y�h� � �x; yh�:
We can thus write y�h� in terms of the «; h; «; h; «; . . . basis

y�h� � x ´ 1� �ÿ1� ´ y�«� � xÿ1 ´ y�«�y�h�:
A purely algebraic version of this example is given as Example 11.3(v).
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10. Bredon cohomology

Guided by the non-equivariant case, we might have expected to ®nd additive
formal groups associated to ordinary cohomology. We show here that this is
misguided: readers without prior prejudice should omit this section.

First we show that ordinary cohomology is hardly ever complex stable. Recall
that an ordinary cohomology is one satisfying the dimension axiom, and it is thus
determined by its values M�B� :� E 0

A�A=B�. From the suspension isomorphisms,
the functor A=B 7!M�B� is an additive functor on the stable orbit category: a
Mackey functor. Bredon has shown how to construct the ordinary cohomology
theory H �A � ? ; M � associated to M [2], and it extends to an RO�G�-graded theory
if and only if M is a Mackey functor [14].

We shall see that Bredon cohomology is very rarely orientable. However, even
when the theory is orientable, it is obvious that all Euler classes of non-zero
representations are trivial, since they lie in the zero group.

Let us consider the special case when A is cyclic. First, consider the case
M�B� � LB for an A-module L. If V is A-free then H �A �S�V �; M � �
H ��S�V �=A; L�. Choosing V to be of large dimension we see that this is the group
cohomology H ��A; L� in a range of degrees. Now consider the co®bre sequence

S�V �� ! S0 ! SV , and deduce that H �A �SV ; L� � SH ��A; L� from degree 2 up to the
dimension of V . Thus complex stability implies H ��A; L� is zero in positive degrees.
The main examples occur when the order of A is invertible in L and when L is
projective over ZA. Both these cases are relatively dull.

Now suppose that A is an arbitrary ®nite abelian group. If V is a non-trivial
one-dimensional complex representation of A, it has a kernel K so that A=K is
cyclic, generated by c say. We then have two co®bre sequences

A=K� ÿÿÿ!1ÿ c
A=K� ÿ! S�V �� and S�V �� ÿ! S 0 ÿ! SV :

The ®rst gives an exact sequence

0 ÿ H 1
A �S�V �; M �  ÿM�K � ÿÿÿ1ÿ c

M�K �  ÿ H 0�S�V �; M �  ÿ 0;

and the second shows that H 1
A�S�V �; M �> H 2

A�SV ; M � and that there is an
exact sequence

0 ÿ H 1
A �SV ; M �  ÿ H 0

A �S�V �; M �  ÿM�A�  ÿ eH 0
A�SV ; M �  ÿ 0:

Suppose that H �A� ? ; M � is complex stable, so that H �A�SV� � H �A�S2�. There is
thus an exact sequence

0 ÿM�A�  ÿM�K � ÿÿÿ1ÿ c
M�K � ÿÿÿresA

K
M�A�  ÿ 0;

showing that M�A� � M�K �A=K and that restriction gives an isomorphism
M�A�> M�K �A=K . Applying a similar argument to subgroups, we see that M is
the Mackey functor associated to an A-module L by M�B� � LB. Furthermore, the
discussion of the case L above shows that it too is very restricted.

Part III. The algebra of equivariant formal group laws

Part III is entirely algebraic, and may be of interest independent of our
topological applications. Nonetheless, we encourage the reader to become
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acquainted with the examples of Part II so as to be aware of the variety and
complexity of phenomena which arise.

Section 11 gives the de®nition of an equivariant formal group law, § 12 gives a
second de®nition relative to a ¯ag, which is more suitable for calculation. These
are then shown to be essentially equivalent, and the de®nition relative to a ¯ag
used to prove the existence of a universal ring and to establish some basic
properties of it.

11. The de®nition

In this section we give the de®nition of an A-equivariant formal group law. As
usual, the word law refers to the fact that the de®nition is relative to a particular
choice of coordinate speci®ed by the orientation.

The de®nition is motivated by the formal properties of the classifying space
CP1 of line bundles and the de®nition of a complex orientation of a complex
orientable cohomology theory. Thus, because CP1 is an abelian group object, we
see that E �A�CP1� has a product and a coproduct, and because the inclusion of
A� � `a CP�a� ! CP1 is a group homomorphism, it induces a map compatible
with product and coproduct. Finally, there is an axiom encoding the de®nition of
the orientation element.

De®nition 11.1. If A is a ®nite abelian group, an A-equivariant formal group
law over a commutative ring k is a complete topological k-algebra R together with

Afgl1: a continuous comultiplication

D: Rÿ! R b
 R

which is a map of k-algebras, cocommutative, coassociative and counital;

Afgl2: an augmentation

v: Rÿ! k A�

which is a map of k-algebras compatible with the coproduct, so that
ker�v� de®nes the topology;

Afgl3: an orientation element y�«� 2 R so that

(i) y�«� is regular,

(ii) v�«� induces an isomorphism R=�y�«��> k.

If A is a general compact abelian group, the de®nition is the same except that the
topology is de®ned by the system of all ®nite products of ideals ker�v�a�: R! k�.
The space k A� is topologised as a product of copies of the discrete ring k.

Remark 11.2. (i) The coproduct allows us to de®ne an action of A� on R by

la�r� � �v�aÿ1� 
 id�D�r�:
We may then de®ne elements y�a� :� la�y�«��. By Afgl3, y�a� is regular and
v�a� induces an isomorphism R=�y�a��> k. Thus the topology on R is de®ned
by P � �Qa y�a�� if A is ®nite and generally by the system of all ®nite product
ideals �Q i y�ai��.

(ii) This data allows us to de®ne Euler classes by

e�a� � v�«��y�a��
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(or equivalently, e�a� � v�aÿ1��y�«��). Indeed, v may be viewed as a coordinate-
free packaging of Euler classes.

(iii) In view of both the topological motivation and the terminology, the reader
may have expected a coinverse as part of the structure. We shall show in
Appendix B that just as for graded connected bialgebras, the existence of a unique
coinverse is automatic. Thus Condition Afgl1 may be replaced by the requirement
that R is a topological Hopf k-algebra, and Condition Afgl2 by the requirement
that v is a map of topological Hopf k-algebras.

(iv) As in the non-equivariant case, one may also give a coordinate-free
de®nition (that is, a de®nition without specifying the orientation y�«�): this gives
the notion of an equivariant formal group. We defer further discussion to [9].

By contrast with the classical case, the underlying ring R is usually not a power
series ring. We shall show in § 13 that a choice of a complete ¯ag in our universe
gives rise to an additive basis of R. Once we have such a basis, we may make
calculations, and we develop the necessary machinery for this. The abstract fruit
of this is that there is a universal ring for equivariant formal group laws.

Examples 11.3. (i) The motivation in Part I shows that if E �A� ? � is a complex
oriented theory, we may obtain an A-equivariant formal group law by taking
k � E �A , R � E �A�CP1� and y�«� to be the complex orientation. This class of
examples is very general and we refer the reader to Part II for speci®c instances.

(ii) A 1-equivariant formal group law is a formal group law in the classical sense.

(iii) Any formal group law over k gives an A-equivariant formal group law over
k with trivial Euler classes by taking the map v to be the composite of the counit
and the diagonal k! k A� .

(iv) A formal group law over a complete local ring k de®nes a group structure
on the maximal ideal m. If we also specify a group homomorphism e: A� ! m so
that the image generates m as an ideal, this gives an A-equivariant formal group law
over k , with R � k��y��, v�a��y� � e�a� and orientation y�«� � y. This is an algebraic
version of the equivariant formal group law arising from Borel cohomology as in
§ 8. This type of algebraic structure is considered in [12] and [11].

(v) A formal group law over k , together with units e�a� in k for a 6� «, allows us to
de®ne an equivariant formal group law R � k��y��A �. The coproduct on R
combines the coproduct on k��y�� with multiplication on A�. The augmentation on
k��y�� gives the augmentation on R. One possible orientation y�«� has « th factor y
and a th factor e�a� for a 6� «. This is an algebraic version of the equivariant
formal group law arising from cohomology of ®xed points as in § 9.

12. The de®nition relative to a ¯ag

In this section we give another de®nition motivated by the topological case.
Here we use the fact that an orientation, together with a decomposition of CP1

into Schubert cells, de®nes an additive basis of E �A�CP1� when E �A� ? � is complex
oriented. Thus, if we choose a particular ¯ag F, we may express all available
structures with respect to the resulting basis. This idea comes from the ®rst
author's thesis [3], where it is applied to the case of a cyclic group, and the
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obvious type of periodic complete ¯ag. We ®nd it essential to have the ¯exibility
to discuss bases arising from different ¯ags, and have used completely different
notation from [3] to avoid confusion, since our indexing conventions are different.
In particular, we view y�V i� as having a superscript, and use the summation
convention to determine the position of decorations in other notation.

The de®nition is in terms of a topological module with additional structure, so
the following notation is convenient.

Notation 12.1. Given a ring k and a complete ¯ag

F � �0 � V 0 Ì V 1 Ì V 2 Ì . . .�;
we write

kffFgg � kff1; y�V 1�; y�V 2�; . . .gg
for the topological k-module obtained as the inverse limit of the free k-modules
with basis 1, y�V 1�; y�V 2�; . . . ; y�V s�.

De®nition 12.2. An �A; F �-formal group law over a commutative ring k is
the topological k-module kffFgg with a continuous product, a continuous
coproduct and a continuous action of A� satisfying Conditions (R), (A), (T),
(Flag), and (Ideal) below.

To describe the conditions, note that the product, action and coproduct are
speci®ed with respect to the topological basis by formulae

y�V i�y�V j� �
X
s > 0

bi; j
s y�V s�;

la y�V i� �
X
s > 0

d�a�is y�V s�;

Dy�V i� �
X

s; t > 0

f i
s; t y�V s� 
 y�V t�;

for suitable structure constants bi; j
s ; d�a�is and f i

s; t in k. The continuity of the
structure maps may be made explicit in terms of the structure constants.

Continuity conditions:

(1) for ®xed i; s the coef®cients bi; j
s are zero for j suf®ciently large, and

similarly with i and j exchanged,

(2) for ®xed a; s the coef®cients d�a�is are zero for i suf®ciently large, and

(3) for ®xed s; t the coef®cients f i
s; t are zero for i suf®ciently large.

The continuity conditions are necessary in some of the conditions to ensure the
sums in the following statements are ®nite. We have resisted the temptation to
write out the formulae explicitly in terms of structure constants, but the reader is
encouraged to do this at least once; the properties are listed separately to assist
with this. The main formal properties are as follows.

(R) The product is

(1) commutative,

(2) associative, and

(3) unital.
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(A) The action is
(1) through ring homomorphisms,

(2) associative, and

(3) unital.

(T) The coproduct is

(1) through ring homomorphisms,

(2) equivariant in the sense that D ± lab � �la b
 lb� ± D,

(3) commutative,

(4) associative and

(5) unital.

There are also two normalization conditions.

(Flag) y�aj�1�y�V j� � y�V j�1�.
(Ideal) For each i, the ideal �y�V i�� has additive topological basis

y�V i�; y�V i�1�; y�V i�2�; . . . :

Example 12.3. (i) The motivation in Part I shows that if E �A� ? � is a complex
oriented theory, we may obtain an �A; F �-formal group law for any complete ¯ag
F by taking k � E �A and y�«� to be the complex orientation. This class of
examples is very general and we refer the reader to Part II for speci®c instances.

(ii) If A is the trivial group, an equivariant formal group law is simply a
classical one-dimensional commutative formal group law, speci®ed by a coproduct
on the power series ring k��y��, orientation y�«� � y and y�V i� � yi.

It is not easy to construct examples of �A; F �-formal group laws directly, but
we will see in § 13 that any A-equivariant formal group law gives an �A; F �-
formal group law.

13. Comparison

We shall show that an A-equivariant formal group law (as de®ned in De®nition
11.1), together with a ¯ag F, is equivalent to an �A; F �-formal group law (as
de®ned in De®nition 12.2). This gives a means for calculation with A-equivariant
formal group laws. It also proves that an �A; F �-formal group law is essentially
independent of the ¯ag F; later we give formulae showing how the structure
constants for an �A; F �-formal group law are related to those of an �A; F 0�-formal
group law.

Lemma 13.1. An �A; F �-formal group law kffFgg is an A-equivariant formal
group law.

Proof. For simplicity assume F begins with «. We take R � kffFgg, and use
the elements y�a� � la y�«� as the notation suggests. The comultiplication is
explicitly part of the structure of an �A; F �-formal group, and required to have the
properties stated in Afgl1.
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Next, observe that kffFgg=�y�«��> k: it is clear that y�V 1�; y�V 2�; . . . lie in
the ideal �y�«��, and our Condition (Ideal) shows that they also span it. We
may now show that y�«� is regular. Indeed, by de®nition of kffFgg, the
elements 1, y�V 2=«�; y�V 3=«�; . . . have independent images under the map
y�«�: kffFgg ! �y�«��, so it suf®ces to show that they span kffFgg as a
topological k-module. This can be done by adapting the proof of Lemma 13.2 below.

We de®ne v: kffFgg ! k A� by taking v�r��a� to be the constant coef®cient in
la�r�. This is a continuous map of rings since la is. Condition Afgl2 follows
from the equivariance of the coproduct. It now follows that y�«� generates
ker�v�«�� and hence that the topology on R is de®ned by the kernel of v. This
completes the proof.

Lemma 13.2. If R is an A-formal group law, we obtain an �A; F �-formal
group law by de®ning y�V � � y�a1�y�a2� . . . y�an� where V � a1 � a2 � . . .� an.

Proof. The main point is to show that if we choose a complete ¯ag F, the
elements 1; y�V 1�; y�V 2�; . . . form a topological basis. Indeed, the elements y�V i�
de®ne a continuous function l: kffFgg ! R of k-modules, and we claim it is an
isomorphism. This will immediately de®ne the ring structure satisfying (R), and
the coproduct structure. The action la is given by the composite

Rÿÿÿ!D R b
 Rÿÿÿ!v k A� 
 Rÿÿÿÿÿ!pa 
 1 fag 
 R:

It is easy to verify that this is an action and that the coproduct is equivariant.
Surjectivity of l follows by approximating elements of R by a convergent series

in the image of l. Indeed, by Condition Afgl3(ii), given s 2 R we may choose
r0 2 k so that sÿ r0 2 �y�a1��, say s � r0 � y�a1�s1. Similarly, s1 � r1 � y�a2�s2

and so forth. To establish injectivity suppose l�P i ri y�V i�� � 0, and suppose
there is a ®rst non-zero coef®cient ri 0

. Thus

l

�X
i

ri y�V i�
�
� y�V i 0�l

�X
i > i 0

ri y�V i=V i 0�
�
:

Since y�V i 0� is regular, this means that l�Pi ri y�V i=V i 0�� � 0, but this is a
contradiction since reducing modulo y�ai 0�1� recovers ri 0

.
Condition (Flag) is built into the de®nition, as are the continuity conditions. To

prove Condition (Ideal) it suf®ces to show that y�a�y�V i� has zero coef®cients of
y�V j� with j < i. If not,

y�a�y�V i� � y�a�y�V j�y�V i=V j� � y�V j�z
with V i=V j 6� 0 and z � z0 � z1 y�V j�1=V j� � . . . with z0 6� 0. Since y�V j� is

regular by Condition Afgl3(i), y�a�y�V i=V j� � z . Now reduce modulo y�aj�1�,
and by Condition Afgl3(ii) (or rather the consequence pointed out in Remark
11.2(i)), we contradict the fact z0 6� 0. This completes the proof.

This shows that kffFgg does not depend in an essential way on the ¯ag F, so
we allow ourselves to write kffFgg � kffUgg. We extend this notation to ®nite-
dimensional subspaces V Ì U by taking kffV gg � kffUgg=�y�V ��. Finally, we
may extend it to in®nite-dimensional subspaces U 0 Í U by taking kffU 0gg to be
the inverse limit of the rings kffV 0gg with the inverse limit topology. There is
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then an induced map resUU 0 : kffUgg ! kffU 0gg. We also have a commutative square

kffUgg ÿÿÿ! kffU 0dgg
ld

???y ???yld

kffUgg ÿÿÿÿÿ! kffU 0gg

�13:3�

14. The representing ring

It is immediate that an �A; F �-formal group law is uniquely speci®ed by
structure constants bi; j

s ; d�a�is and f i
s; t satisfying the continuity conditions, and so

that kffFgg satis®es Conditions (R), (A), (T), (Flag), and (Ideal). We now want
to form the representing ring LA�F � for �A; F �-formal group laws, as the Z-
algebra with generators bi; j

s ; d�a�is and f i
s; t subject to the relations implied by these

conditions. The remaining obstacle is that we must show the continuity conditions
can be given by uniform formulae.

By way of motivation, consider the topological case. Various vanishing
conditions result from the fact that y�V � generates the ideal of elements
restricting to zero on CP�V �.

(VRs) The product y�V 0 �y�V 00 � is zero on restriction to CP�V 0 � or CP�V 00 �.
(VAs) The function la y�V � � y�V 
 a� vanishes on restriction to CP�V 
 a�.
(VTs) The coproduct Dy�V � is zero on restriction to CP�W1� ´ CP�W2� if

CP�W1� ´ CP�W2� maps into CP�V � up to homotopy. A suf®cient condition for this
is given in terms of the dimensions of the ®xed point sets by the CW-approximation
theorem. We require that the inequality

dimCP�W1�B � dimCP�W2�B < dimCP�V �B
holds for all subgroups B Í A. It is easy but unilluminating to express this in
terms of the representations V ; W1 and W2.

The reader should now make explicit the vanishing of structure constants that
these conditions imply in the topological case. For bi; j

s and d�a�is the answer is
precisely as in the following proposition. For the tensor product it states that the

coef®cient f i
s; t is zero if dimCP�V s�1�B � dimCP�V t�1�B < dimCP�V i�B holds

for all subgroups B Í A. Since any ®xed estimate suf®ces for our purpose, we
shall be satis®ed with a cruder one.

Proposition 14.1. For any �A; F �-formal group over k we have the following
explicit vanishing conditions:

(VR) bi; j
s � 0 if s < i or s < j;

(VA) d�a�is � 0 if V i 
 a > V s�1;

(VT) f i
s; t � 0 if V i > aÿ1

1 V s�1 
 V t�1.

Remark 14.2. Note that because the ¯ag F exhausts U, the proposition gives
explicit forms of the continuity conditions of § 12.

Proof. Note that (VR) is equivalent to (Ideal): indeed, it is clear by (Flag) that
all elements y�V j� with j > i lie in the ideal �y�V i��. Both conditions are
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equivalent to requiring that for all j; y�V i�y�V j� has zero coef®cient of y�V k� for
all k < i.

Next we note that (VA) follows. Indeed, if aV i > V s�1 then la y�V i � � y�aV i �
is a multiple of y�V s�1� by (Flag). We have just observed that (VR) shows that
any such element has zero coef®cient of y�V k � with k < s� 1.

For (VT) we use the counit condition and the fact that D is a ring map,
together with (Ideal). For an element u �Pp;q ap;q y�V p� 
 y�V q � we say that u
vanishes up to �s; t� if ap;q � 0 if p < s and q < t. We shall ®nd an i0 � i0�s; t �
so that Dy�V i � vanishes up to �s; t � whenever i > i0: we do not attempt to ®nd
the best possible i0.

Note that by (Ideal), if u vanishes up to �s; t� then any product uv vanishes up to �s; t �.
Furthermore, we may ensure vanishing up to �s� 1; t � by using suitable elements v.
Again by (Ideal), the only terms in u which can contribute to non-vanishing up to
�s� 1; t� in uv are as�1; j y�V s�1� 
 y�V j � for j < t. Thus multiplying by
v1 � y�as�2� 
 z or v2 � z
 y�V t�1� ensures vanishing up to �s� 1; t�.

The counit condition states that

D�y�V �� � 1
 y�V � � y�V � 
 1 mod �y�V 1� 
 y�V 1��:
In particular, D�y�V t�1�� vanishes up to �0; t�, proving (VT) for s � 0; we prove
the general case by induction on s.

For the inductive step we apply equivariance �la 
 1� ± D � D ± la to the counit
condition, and ®nd that

D�y�aV �� � 1
 y�V � � y�aV � 
 1 mod �y�aV 1� 
 y�V 1��:
Thus, taking a � as�2 aÿ1

1 and W � aV we see that if u vanishes up to �s; t �
then D�y�W ��u vanishes up to �s� 1; t� provided W contains as�2 aÿ1

1 V t�1. This
completes the proof.

We may now proceed to form the representing ring.

Corollary 14.3. There is a representing ring LA�F � for �A; F �-formal group

laws, constructed as the Z-algebra with generators bi; j
s ; d�a�is and f i

s; t subject to
the relations implied by (R), (A), (T), (Flag), (VR), (VA) and (VT).

Remark 14.4. Since Lemma 13.1 gives a canonical way to view an �A; F �-
formal group law as an A-formal group law and Lemma 13.2 gives a canonical
way to view this as an �A; F 0�-formal group law, there is a canonical isomorphism

LA�F 0 � ÿ!> LA�F �.

Note that there is massive redundancy in the generating set: we shall see in the
next few sections that the ring is generated by the elements d�a�10 and f 1

s; t .
Finally, we comment brie¯y on the representing ring for objects analogous to

orientable complex stable theories: A-equivariant formal group laws over k with
speci®ed Euler classes. The Euler classes are speci®ed by a function x: A� ! k
and we let Lstrict

A �F; k; x� denote the representing ring when the strict Euler classes
are required to agree with x. Note that this will not necessarily contain k: for
example, the condition x�«� � 0 is imposed. Understanding A-equivariant formal
group laws where the strict Euler classes are unit multiples of speci®ed Euler
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classes (that is, orientability and orientations of complex stable theories) seems
more subtle.

15. Some relations in the representing ring: leading terms

After § 13 we have enough structure to work in the algebraic setup just as if it
arose from topology. The purpose of this section and the next is to establish
relations amongst the structure constants for equivariant formal group laws.
Because the leading terms are the most signi®cant, and in view of the confusing
forest of superscripts and subscripts, we have decided to present discussion of the
®rst few terms separately, as a motivation for the general case. The reader may
also ®nd it helpful to refer to Appendix C where some calculations are done when
A is of order 2. As a matter of logic the present section may be omitted.

We shall need to discuss various different ¯ags, so when necessary we write
b�F �i; j

s or �bF�i; j
s to emphasize that we are working with the ¯ag F, and similarly

for the d and f functions. The essential dif®culty is in the form of the product, so
we comment on y�V i �y�V j � a little further. We show that to express it in terms
of the ¯ag basis, it is suf®cient to understand the action of A� in that basis. The
idea is that the path aj; aj�1; aj�2; . . . also de®nes a complete ¯ag F=V j, and the

corresponding basis is y�V j=V j � � 1; y�V j�1=V j �; y�V j�2=V j �; . . . : The point of

this is that y�V j �y�V j�n=V j � � y�V j�n�, which is an element of the original
basis. Thus we simply express y�V i � in terms of the new basis as

y�V i � �Pk b
i; j
j� k y�V j� k=V j � and then y�V i �y�V j � �Pk b

i; j
j� k y�V j� k�. Thus

b
i; j
s � bi; j

s , explaining the notation. In practice we do this one step at a time,
since y�V i � � y�a1� . . . y�ai�. It therefore suf®ces to identify y�a�y�V j �, for all a
and j. For this we note that y�a� � laaÿ1

j� 1
y�a j�1�, and work with respect to the

F =V j basis.
We also write Fd for the ¯ag �V 0d Ì V 1d Ì V 2d Ì . . .� whose associated path is

a1d; a2 d; a3 d; . . . : We refer to Fd as the rotated ¯ag. It is clear by applying ld to
the formula de®ning dF that

dFd�ad�is � dF�a�is:
It is thus no loss of generality to work with ¯ags beginning with V 1 � «, and in

this section we assume the ¯ag path begins «; a; b; g; . . . : We show that for any
complete ¯ag F 0 the action coef®cients dF 0 ���1� can be deduced from the
coef®cients dF���1�. It then follows that all product coef®cients �bF��;�� can be
deduced, and all the higher dF . Since we are just dealing with the ®rst few terms,
we simplify notation; we already know that for r 2 A� we have e�r� � d�r�10, and
we de®ne l�r� � d�r�11, m�r� � d�r�12, and n�r� � d�r�13; . . . : Thus by de®nition,

y�r� � e�r� � l�r�y�«� � m�r�y�«�y�a� � n�r�y�«�y�a�y�b� � . . . :

The ®rst observation is that the coef®cient dF�r�1i only depends on the ¯ag as far
as V i�1. This is because the coef®cient can be recovered after reduction modulo
y�V i�1� � y�«�y�a2� . . . y�ai�1�. Accordingly, we write e�r�; la�r�; ma;b�r�; . . . to
emphasize this.

We also need the coef®cients en
F�r�; ln

F�r�; mn
F�r�; . . . in lr y�V n�, and we show

by induction on n that these can be deduced from the coef®cients e; la; ma;b; . . . :
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Indeed y�V n�1� � y�V n�y�an�1�, so we have

lr y�V n�1� � en
F�r�y�an�1r� � ln

F�r�y�V 1�y�an�1r� � mn
F�r�y�V 2�y�an�1r� � . . . :

The trick for calculating the i th term is to express y�an�1r� in the F=V i basis. Of
course this uses the coef®cients eF =V i ; lF =V i ; mF = V i ; . . . : This looks dangerously
close to being circular, so we show explicitly that it is not.

Lemma 15.1. The leading term is given by

en
F�r� � e�V nr�:

Proof. The proof here and in the following two lemmas is to expand the right-
hand side of the equation

lr y�V n�1� � lr�y�V n��y�an�1r�:
To do this we ®rst expand lr�y�V n�� to obtain

en
F�r�y�an�1r� � ln

F�r�y�«�y�an�1r� � mn
F�r�y�«�y�a�y�an�1r� � . . . :

Now expand y�an�1r� with respect to the «; a; b; . . . basis in the ®rst term, with
respect to the a; b; g; . . . basis in the second term, with respect to the b; g; d; . . .
basis in the third term, and so forth. This gives the required formula.

One important consequence is that if rÿ1 occurs in V n, this leading term
vanishes. Since F is a complete ¯ag, we thus see that en

F�r� � 0 if n is suf®ciently
large. Note also that for n > 2 this coef®cient depends on more than the ®rst
subquotient of F.

For the higher terms we cannot expect a closed formula, but a recursive
algorithm is quite suf®cient. The proofs are precisely like those for Lemma 15.1
above, and the general case is presented in detail in the next section.

Lemma 15.2. The ®rst term is given recursively in terms of Euler classes and
la�r� by the formula

ln�1
F �r� � e�V nr�la�an�1r� � ln

F�r�e�aÿ1an�1r�:

We note here that, once n is large enough that e�V nr� � 0, the recursion states
that ln�1

F �r� � ln
F�r�e�aÿ1an�1r�. Thus if an�1 � arÿ1, we obtain zero. Once

again we see that ln
F�r� � 0 if n is suf®ciently large. Finally, we note that if

n > 2 then ln
F�r� � 0 modulo Euler classes.

It is instructive to record one further instance explicitly.

Lemma 15.3. The second term is given recursively in terms of Euler classes
and la�r� by the formula

mn�1
F �r� � e�V nr�ma;b�an�1r� � ln

F�r�laÿ1b�aÿ1an�1r� � mn
F�r�e�bÿ1an�1r�:

The new feature here is that the coef®cient l is associated to a different ¯ag.
We had therefore better ensure that we can deduce it before we need to apply this
recursive formula.

Suppose then that F 0 begins «; z; . . . : Thus y�r� � e�r� � lz�r�y�«� modulo
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y�«�y�z�. Now, ®nd the ®rst occurrence of z in F, and express y�r� in terms of
the F basis:

y�r� � e�r� � la�r�y�«� � ma;b�r�y�«�y�a� � . . . ;

it is suf®cient to work modulo y�«�y�a� . . . y�z�. Now we expand
y�a�; y�a�y�b�; y�a�y�b�y�g�; . . . in terms of the F 0=« basis. In the present case
we only seek the coef®cient of y�«� so we only need the constant term in the
expansions, and this is easily calculated. Thus we obtain

lz�r� � la�r� � ma;b�r�e�azÿ1� � na;b;g�r�e�azÿ1�e�bzÿ1� � . . . ;

and the sum is ®nite, since e�zzÿ1� � 0.
Note in particular that this shows that la�r� � lz�r� modulo Euler classes, so

taking z � r we see that la�r� � 1 modulo Euler classes.

16. Some relaitons in the representing ring: the general case

We extend the calculations of the previous section to higher coef®cients. The
discussion is directed towards understanding the universal ring LF�A�. Our ®rst
task is to give a reasonably ef®cient set of generators. The reader may also ®nd it
helpful to refer to Appendix C where some calculations are done when A is of
order 2.

Theorem 16.1. The representing ring LF�A� is generated as an algebra by
the Euler classes e�a� and the coef®cients f �F �1j; k . The representing ring
L strict

A �k; F; x� is generated as a k-algebra by the elements f 1
s; t .

The strategy of proof is as follows, where we write x �y; z� to mean that x
can be expressed in terms of y and z , together with some self-explanatory
abbreviations.

Process 0: dF 0 ���1n�1  �dF 0 ���1n; d 1
F� (see Lemma 16.4).

Process 1: f n�1  � f n; d ��
from the fact that (D�y�V n�1�� � D�y�V n��D �y�an�1��.

Process 2: d n�1  �d < n; d 1� (see Lemma 16.3).

Process 3: d n  � f n; e� (see Lemma 16.7).

Here, Process 0 has been used to avoid specifying the ¯ags used for the
generators d 1 in Process 2. Using Process 3 we obtain the generators d 1 from
the coef®cients f 1 and e. Then, using Process 2 recursively, we obtain all the
generators d n. Finally, Process 1 can be used recursively to obtain all the
coef®cients f n. We have already seen how the coef®cients b can be obtained from
the generators d. We now turn to the detailed implementation of the strategy.

First, let us write the de®nition of the coef®cients dF in longhand:

y�r� � dF�r�10 � dF�r�11 y�V 1� � dF�r�12 y�V 2� � dF�r�13 y�V 3� � . . . :

The ®rst observation is that the coef®cient dF�r�1i only depends on the ¯ag as far as
V i�1. This is because the coef®cient is determined by reducing modulo
y�V i�1� � y�«�y�a2� . . . y�ai�1�. Accordingly we write dV 1�r�0; dV 2�r�1; dV 3�r�2; . . .
to emphasize this; note that we have also omitted the superscript 1. By contrast
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with the previous section we have not normalized the ¯ag to begin with «, so the
start of the ¯ag is an essential piece of information.

We begin by summarizing the results of the previous section in the general
notation: note that we have rotated the ¯ags to the natural position.

Lemma 16.2. (i) The leading term is given by

dF�r�n0 � e�aÿ1
1 V nr�:

This is zero if n is suf®ciently large.

(ii) The ®rst term is given recursively in terms of Euler classes and dV 2���1� by
the formula

dF�r�n�1
1 � dF�r�n0 dV 2�aÿ1

1 an�1r�1 � dF�r�n1dV 2=V 1�aÿ1
2 an�1r�0:

This is zero if n is suf®ciently large, and if n > 2 then d�r�n1 � 0 modulo
Euler classes.

(iii) The second term is given recursively in terms of the coef®cients dF���1� by
the formula

dF�r�n�1
2 � dF�r�n0 dV 3�aÿ1

1 an�1r�2 � dF�r�n1dV 3=V 1�aÿ1
2 an�1r�1

� dF�r�n2 dV 3=V 2�aÿ1
3 an�1r�0:

It is not hard to write down the general recursion, and it should now be
possible to understand what it means.

Lemma 16.3.

dF�r�n�1
k � dF�r�n0 dV k� 1�aÿ1

1 an�1r�k � dF�r�n1dV k� 1=V 1�aÿ1
2 an�1r�kÿ1

� dF�r�n2 dV k� 1= V 2�aÿ1
3 an�1r�kÿ2

� . . .� dF�r�nkÿ1 dV k� 1=V kÿ 1�aÿ1
k an�1r�1

� dF�r�nk dV k� 1= V k�aÿ1
k�1an�1r�0:

Proof. First note that lr y�V n�1� � �lr y�V n��y�an�1r�. When calculating the
term dF�r�ni y�V i�y�an�1r�, we need to express y�an�1r� in terms of the F =V i

¯ag, so the j th coef®cient is dF =V i�aÿ1
i�1 an�1r�1j � dV i� j� 1=V i�aÿ1

i�1an�1r�j. This gives
the stated formulae.

Now, suppose by induction that all coef®cients dF 0 ���1l with l < k and all coef®cients
dF����l with l < k can be expressed in terms of the coef®cients dF���1�. Noting that the
only occurrence of d���1k on the left-hand side uses the F basis, we see that the
lemma shows that the coef®cients dF���n�1

k can also be so expressed.

It thus follows by induction that if all coef®cients dF 0 ���1l with l < k can be
expressed in terms of the coef®cients dF���1l with l < k then all coef®cients
dF����l with l < k can be so expressed.

The following lemma completes the justi®cation of Process 0.

Lemma 16.4. The coef®cient dF 0 �r�1k can be expressed in terms of the

coef®cients dF 0 ���1l with l < k and the coef®cients dF���1�.
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Proof. By rotation we may suppose that F 0 also begins with a1. Now
dF 0 �r�1k � d�V 0�k� 1�r�k is the coef®cient of y��V 0 �k� in the F 0 expansion of y�r�.
We will give a way of calculating this coef®cient in terms of the dF���1�. Indeed,

we also have y�r� �P i dF�r�1i y�V i �. Furthermore, y�V i � � y�a1�y�V i=V 1�, and

we may express y�V i=V 1� in terms of the F 0=V 1 basis, and the coef®cient of

y��V 0 �k=V 1� will give us the contribution to the coef®cient in question.

Furthermore, the contribution from y�V i � is zero once V i contains �V 0 �k�1, since
y�V i � is then already zero modulo y��V 0 �k�1�; thus the number of terms is ®nite. It
thus suf®ces to apply the following lemma with W � V i=V 1 and F 00 � F 0=V 1.

Lemma 16.5. If we write y�W � in the F 00 basis as y�W � �P l�F 00 �Wi y��V 00 �i �
then the coef®cients �F 00 �Wl may be expressed in terms of coef®cients dV���m
with m < l.

Proof. The proof is by induction on the dimension of W . If W � 0, the result
is trivial. The inductive step is to write W � W 0 � b. Then we have

y�W � � y�W 0�y�b� �P i�F 00 �W
0

i y��V 00 �i �y�b�, and in the i th term we write y�b�
in terms of the F 00=�V 00 �i basis, using the coef®cients dF 00= �V 00 �i�b�a 00i�1�ÿ1�1j . The

contributing coef®cients have i� j � l, so both i; j < l. This completes the proof

of Lemma 16.5 and hence also the proof of Lemma 16.4.

Corollary 16.6. Modulo Euler classes we have dF�r�11 � 1, and dF�r�1k � 0
if k 6� 1.

Proof. We have given explicit formulae when k � 0 or 1 in the previous
section. In principle the previous two lemmas also give an explicit formula in
terms of Euler classes, but it is perhaps worth giving a less cluttered proof.

Suppose then that k > 2, and that the result has been proved for l < k for all
¯ags. For the rest of the proof we work modulo Euler classes without comment.
We prove that dF�r�1k � dF 0 �r�1k for any ¯ag F 0, and hence by taking F 0 to begin
with r, that both vanish.

First note, by induction, that in any basis F 00,

y�r� � y�s� � dF 00 �srÿ1�1k y��V 00 �k � � higher terms,

so that y�V � � y�W � if dim�V � � dim�W � < k. Now take any two complete ¯ags
F, and F 0. By rotation we assume that both F and F 0 begin with «. Expanding

y�r� in the F 0 basis we have

y�r� � y�«� � dF 0 �r�1k y��V 0 �k � � higher terms.

Similarly, in the F basis we have

y�r� � y�«� � dF�r�1k y�V k � � higher terms.

However y�V k � � y�«�y�V k=«� , and by the observation, y�V k=«� � y��V 0 �k=«�
modulo y��V 0 �k�1=«�. Similarly y�V k� i � � y�«�y�V k=«�y�V k� i=V k � � 0, modulo

y��V 0 �k�1=«�. Thus dF�r�1k � dF 0 �r�1k as required.

Finally, we see that the equivariance of D allows us to deduce the coef®cients
dF�a�1� from the coproduct and the Euler classes.
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Lemma 16.7. The following formula gives the action coef®cients in terms of
the cogroup coef®cients and the Euler classes

dF�b�ik �
X

j

f i
j; k e�bV 1 
 V j �:

Note that the j � 0 term is f i
0; k � d i

k.

Proof. Firstly, we see from the equivariance of D that

lb � �resUbÿ 1 b
1�D:
Applying this to y�V i �, we see that the coef®cient of y�V k� on the left is dF�b�ik.
To identify the coef®cient of y�V k � on the right we recall that, by de®nition,
resUbÿ1 � resUV 1 lbV 1 , and calculate

�resUbÿ 1 b
1�Dy�V i � � �resUV 1 lbV 1 b
1�
X
j;k

f i
j; k y�V j � 
 y�V k �

� �resUV 1 b
1�
X
j; k

f i
j ;k

X
l

d�bV 1� j
l y�V l � 
 y�V k�

�
X
j;k

f i
j; k d�bV 1� j

0 y�V k �:

This completes the proof of Lemma 16.7 and hence also the proof of
Theorem 16.1.

Appendix A. The additive and multiplicative group laws

Let us consider two special cases: the additive and multiplicative laws. It is
easy to pick these out since we do not need to say much about which ¯ag we are
considering. For simplicity, we work in the ungraded setting. For further details
and extensions of these results see [8].

The additive law is given by

D�a�y�«�� � y 0�«� � y 00�«�
and the multiplicative law by

D�m�y�«�� � y 0�«� � y 00�«� ÿ y 0�«�y 00�«�:
The instructive thing here is how this imposes restrictions on the Euler classes. In
particular, the additive law implies that the Euler classes are all Z-torsion when A
is ®nite; this shows that we cannot expect to use logarithms in the same way as
the non-equivariant case, since Euler classes are not generally of this form.
However, results of tom Dieck [7] suggest that (at least for cyclic groups) we
may hope to use the multiplicative logarithm as in [1, I.6.7].

For convenience of calculation we shall assume the ¯ag begins with «. Thus the
additive case has f 1

1;0 � f 1
0;1 � 1 and f 1

j; k � 0 otherwise. Thus, from Lemma 16.7
we see that

y�b� � e�b� � y�«�:
Rotating by a we ®nd that e�ab� � e�a� � e�b�, that is, e: A� ! k is a group
homomorphism, and in particular if bn � «, we see that ne�b� � 0. This identi®es
the universal ring for additive equivariant formal group laws.
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Proposition A.1. The free commutative ring Symm�A�� on the abelian group
A� is universal for additive formal group laws. If A is a torus, this is the
coef®cient ring of ordinary Borel cohomology.

The multiplicative case has f 1
1;0 � f 1

0;1 � 1, f 1
1;1 � ÿ1 and f 1

j;k � 0 otherwise.
Thus, from Lemma 16.7 we see that

y�b� � e�b� � �1ÿ e�b��y�«�:
Rotating by a shows that �1ÿ e�ab�� � �1ÿ e�a���1ÿ e�b��, that is,
1ÿ e: A� ! k ´ is a group homomorphism. This identi®es the universal ring for
multiplicative group laws.

Proposition A.2. The group ring Z�A�� is the universal ring for multiplicative
group laws. Since A is abelian, Z�A��> R�A�, and the coef®cient ring of K-theory
is universal for multiplicative formal group laws.

Appendix B. The coinverse

We show here that any A-equivariant formal group law has a unique coinverse,
and is thus a Hopf algebra. This is exactly analogous to the fact that a connected
bialgebra has a coinverse, and the proof is analogous to that of [15, 8.2], although
substantially more complicated. The idea is that the formal group law is equipped
with a ®ltration: the subquotients are controlled by the well-understood Hopf
algebra k A� and the ®ltration is complete.

Proposition B.1. Given an A-formal group law �R; D; v; fy�a�ga2A� �,
there exists a unique algebra homomorphism g: R! R such that the following
diagram commutes:

Rÿÿÿ!D R b
k Rÿÿÿÿ!1
 g
R b
k R

v�«�
???y ???ym

kÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ!
j

R

Moreover,

(1) g ± g � 1R,

(2) �g
 g� ± D � D ± g,

(3) la ± g � g ± laÿ 1 ,

(4) v�a� ± g � v�aÿ1�.

Proof. Let 0 Ì V 1 Ì V 2 Ì . . . be a complete ¯ag in U with V i�1 � V i � ai�1

as usual. We assume for convenience that a1 � V 1 � «. If g exists, we may
express it in terms of the ¯ag basis

g�y�V i �� �
X1
j�0

ci
j y�V j �;

and if it is to be continuous, we require that for any ®xed j we have ci
j � 0 for

large i.
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We shall construct g by ®nding the coef®cients ci
0; c i

1; ci
2; . . . in turn. We

therefore take

gn�y�V i �� �
Xn

j�0

c i
j y�V j �;

and suppose inductively that gn: R! R is a k-module homomorphism with the
property that

m ± �1
 gn� ± D�x� � j ± v�«��x� mod �y�V n�1��
for any x 2 R. To start the induction, set g0 � v�«�.

Now suppose gn has been constructed: we wish to ®nd coef®cients ci
n�1 2 k so

as to de®ne a map gn�1 that has the inverse property modulo �y�V n�2��. For any
x 2 R we de®ne rx 2 k by

m ± �1
 gn� ± D�x� � j ± v�«��x� � rx y�V n�1� mod �y�V n�2��:
We need to choose the coef®cients ci

n�1 in such a way that

m ± �1
 �gn�1 ÿ gn�� ± D�x� � ÿrx y�V n�1� mod �y�V n�2��
for any x 2 R. It suf®ces to establish this as x runs through the topological
basis y�an�2� � y�V 1an�2�; y�V 2an�2�; y�V 3an�2�; . . . : We write the coproduct

D: R! R b
k R as

D�y�V i �� �
X

f i
s; t y�V s � 
 y�V t �:

Recall that for ®xed s, t, f i
s; t � 0 for large i and that the unital condition of

the A-equivariant formal group law implies that

f i
s;0 � f i

0; s �
1 if s � i;

0 if s 6� i:

�
Using the A�-equivariant property of D, we see that

D�y�V ian�2�� �
X

f i
s; t y�V san�2� 
 y�V t �:

Thus

m ± �1
 �gn�1 ÿ gn�� ± D�y�V ian�2�� �
X

f i
s; t c

t
n�1 y�V san�2�y�V n�1�:

Since a1 � «, we see that y�V n�2� divides y�V san�2�y�V n�1� if s > 1. Since f i
0; t

is 1 when t � i and is 0 otherwise we ®nd that

m ± �1
 �gn�1 ÿ gn�� ± D�y�V ian�2�� � ci
n�1 y�V n�1� mod �y�V n�2��:

Thus we de®ne ci
n�1 � ÿry�V ia n� 2�. It remains only to check the continuity condition

that these coef®cients must vanish for large i. This follows since m ± �1
 gn�1� ± D
gives the continuous homomorphism j ± v�«�: R! R=�y�V n�2��.

So far we have proved the existence of a k-module homomorphism g: R! R
that makes the diagram commute. It is clear from the way we constructed it that g
is unique with this property, but in any case this follows from an easy formal
argument: if g and g 0 are both inverses then the composite

Rÿÿÿ!D R b
k R b
k Rÿÿÿÿÿÿÿÿÿÿ!g 
 1 
 g 0
R b
k R b
k Rÿÿÿ!m

R

must agree simultaneously with g and g 0.
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To show that g is a k-algebra homomorphism and to establish the other claims
we argue similarly by uniqueness of inverse. Let S denote R b
k R. Note that S has
a coproduct DS: S! S b
k S de®ned by the composite

R b
k Rÿÿÿÿÿ!D
 D
R b
k R b
k R b
k Rÿÿÿÿÿÿÿ!1
 t
 1

R b
k R b
k R b
k R;

where t denotes the twist map. The ring S has a unit map jS: k ! S de®ned by
jS � j
 j and an augmentation vS: S! k A� de®ned as the composite

R b
k Rÿÿÿÿ!v
 v
k A� b
k k A� ÿÿÿ!m

k A� :

In fact, we may regard S as a two-dimensional A-formal group over k. Now by
diagram chasing it can be shown that m ± �g
 g� and g ± m are both inverse to
the multiplication m: S! R in the sense that if f denotes either of m ± �g
 g� or
g ± m, then the diagram

Sÿÿÿ!DS
S b
k Sÿÿÿÿÿ!m
 f

R b
k R

vS�«�
???y ???ym

kÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ!
j

R

commutes. It follows formally that m ± �g
 g� � g ± m and hence that g is an
algebra homomorphism. Dually, �g
 g� ± D and D ± g must agree since a
diagram chase shows that they are both inverse to D . Similarly, g ± g and 1
agree since they are both inverse to g. For claim (3) we use the equivariant
property of D and observe that

m ± �1
 �la ± g ± la�� ± D � m ± ��la ± laÿ 1� 
 �la ± g ± la�� ± D

� m ± �la 
 la� ± �1
 g� ± �laÿ 1 
 la� ± D

� la ± m ± �1
 g� ± D

� la ± j ± v�«�
� j ± v�«�:

Thus la ± g ± la � g since they are both inverse to 1. One can check directly from
our construction of g that g�y�«�� 2 �y�«��. Hence v�«� ± g � v�«�. It follows that

v�a� ± g � v�«� ± la ± g � v�«� ± g ± laÿ 1 � v�«� ± laÿ 1 � v�aÿ1�:

Appendix C. The group of order 2

In this appendix we make some of the formulae explicit for the group A � C2

of order 2. We use the ¯ag with alternating subquotients «; h; «; h; «; h; «; h; . . . :
Since there is only one non-trivial element of A�, we write simply d i

j � d�h�ij, and
continue with the convention that we drop i if i � 1. It is convenient to declare
d i

j � 0 if j < 0. As we give formulae it will become ever more apparent that there
is a sense in which an equivariant formal group is a deformation of a non-
equivariant formal group with the Euler class e � d0 as deformation parameter [9].

First note that since

y�h� � d0 � d1 y�«� � d2 y�«�y�h� � . . . ;
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by rotation we have

y�«� � d0 � d1 y�h� � d2 y�h�y�«� � . . . ;

and thus, premultiplying both sides by y�«� we have an expression for y�«�2 in the
standard basis:

b1;1
k � dkÿ1:

Thus

kffUgg � k��x���y�=�y2 � xp�x� � yq�x��
where y � y�«�, x � y�«�y�h�, and where p�x� � d1 � d3 x� d5 x2 � . . . and
q�x� � e� d2 x� d4 x2 � . . . : Now consider y�V i �y�V j �; if i or j is even, it is

clearly y�V i� j �, and if both are odd it is y�V iÿ1�y�V jÿ1�y�«�2 � y�V i� jÿ2�y�«�2.
Combining these into a single formula we have

b
i; j
k � d�hi j �kÿ iÿ j�1:

For d n
i note that if n is even, lh y�V n� � y�V n �, so that d n

i � dn
i . The same

observation when n is odd gives d n
k � dkÿn�1. Also, the fact that

lh � �resh 
 1� ± D gives

dk � d1
k � ef 1

1; k:

Altogether we have

d n
k �

dn
k if n is even,

dn
k � ef 1

1; kÿn�1 if n is odd.

�
In a single formula

d n
k � dn

k � e�hn� f 1
1; kÿn�1;

and

b
i; j
k � d

i� j
k � e�h i j � f 1

1;kÿ iÿ j�1:

We can obtain useful relations from the statement lh lh � 1 (or alternatively by
using the recursive formula for d n�1). Thus

y�h� � �d0 � d1 y�«�� � y�V 2��d2 � d3 y�«�� � y�V 4��d4 � d5 y�«�� � . . . ;

and applying lh again we have

y�«� � �d0 � d1 d0�y�V 0� � d1 d1 y�V 1� � d1 d2 y�V 2� � d1 d3 y�V 3� � . . .

� �d2 � d3 d0�y�V 2� � d3 d1 y�V 3� � d3 d2 y�V 4� � d3 d3 y�V 5� � . . .

� �d4 � d5 d0�y�V 4� � d5 d1 y�V 5� � d5 d2 y�V 6� � d5 d3 y�V 7� � . . .

� �d6 � d7 d0�y�V 6� � d7 d1 y�V 7� � d7 d2 y�V 8� � d7 d3 y�V 9� � . . . :

Comparing coef®cients of y�V 0� and y�V 1� we ®nd that

d0 � d1d0 � 0 and d1d1 � 1:

Similarly, comparing coef®cients of y�V 2 n� and y�V 2 n�1� for n > 1 we ®nd that

d1d2 n � d3 d2 nÿ2 � . . .� d2 n�1 d0 � d2 n � 0

and

d1 d2 n�1 � d3 d2 nÿ1 � . . .� d2 n�1 d1 � 0:
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Writing the ®rst two in terms of f 1
1;� we obtain

e�2� ef 1
1;1� � 0 and �1� ef 1

1;1�2 � 1:

The ®rst of these allows us to omit e�2� ef 1
1;1� f 1

1;2 n from the subsequent even
terms to obtain

e2� f 1
1;3 f 1

1;2 nÿ2 � f 1
1;5 f 1

1;2 nÿ4 � . . .� f 1
1;2 n�1 f 1

1;0� � 0

and

2e�1� ef 1
1;1� f 1

1;2 n�1 � e2� f 1
1;3 f 1

1;2 nÿ1 � f 1
1;5 f 1

1;2 nÿ3 � . . .� f 1
1;2 nÿ1 f 1

1;3� � 0:

We really want to examine the consequences of these relations e-adically and with
e inverted. As a ®rst step, note that modulo e2 the ®rst states that 2e � 0, and the
rest are all consequences. Modulo 2, the ®rst reads e2f 1

1;1 � 0, and the second
follows from it. The remaining even terms read

e2� f 1
1;3 f 1

1;2 nÿ2 � f 1
1;5 f 1

1;2 nÿ4 � . . .� f 1
1;2 n�1 f 1

1;0� � 0;

and the remaining odd terms are trivial if 2n� 1 � 3 mod 4 and give

e2� f 1
1;2 m�1�2 � 0

in the remaining case (where 2n� 1 � 4m� 1). If we instead invert e, the ®rst

relation states that ef 1
1;1 � ÿ2, the second is a consequence. The relation from y�V 2�

gives f 1
1;3 � 0, and the successive relations from y�V 4�; y�V 6�; . . . allow us to deduce

that f 1
1;2 n�1 � 0 for n > 1. The relation from y�V 2 n�1� is automatically satis®ed.

To obtain the recursive formula for f n�1 we use Dy�V n�1� � Dy�V n�Dy�an�1�,
and there are then two cases, since an�1 is « or h depending on whether n� 1 is
odd or even. The ®rst case is straightforward, but the second uses
D�y�h�� � �1
 lh��D�y�«���; together these give the formulae

f n�1
s; t �

X
i; j; k ; l

f n
i; j f 1

k ; l d�hi k �sÿ iÿ k�1d�h j l �tÿ jÿ l�1 if n� 1 is odd,X
i; j; k ; l;m

f n
i; j f 1

k ; l d�h i k �sÿ iÿ k�1 d l
m d�h j m �tÿ jÿm�1 if n� 1 is even.

8>><>>:
Combining this with our expressions for the d coef®cients we obtain

f n�1
s; t �

X
i; j; k ; l;m

f n
i; j f 1

k ; l�d i� k
s � e�h i k � f 1

1; sÿ iÿ k�1��d l
m � e�hn� f 1

1;mÿ l�1�

´ �d j�m
t � e�h j m � f 1

1; tÿ jÿm�1�:
It is perhaps worth making explicit the structure of the additive and

multiplicative laws in this case. For an additive law, the action is given by

lh y�V n� � y�V n� � e�hn�y�V nÿ1�
and the product is given by

y�V i �y�V j � � y�V i� j � � e�h i j �y�V i� jÿ1�:
Let x � y�V 2� � y�«�y�h�, and y � y�«�. The ring kffFgg is the x-adic

completion of the ring k�x; y�=�y2 � x� ey� � k�y�. The action by A� is given
by y 7! e� y, which is of order 2 since e is. Of course x � y�e� y�, so the
completion is the one we are used to.
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For a multiplicative law, the action is given by

lh y�V n� � �1ÿ e�hn��y�V n� � e�hn�y�V nÿ1�
and the product is given by

y�V i �y�V j � � �1ÿ e�h i j ��y�V i� j � � e�h i j �y�V i� jÿ1�:
Let x � y�V 2� � y�«�y�h�, and y � y�«�. The ring kffFgg is the x-adic

completion of k�x; y�=�y2 � �1ÿ e�x� ey�. The action by A� is given by
y 7! e� �1ÿ e�y, which is of order 2 since �1ÿ e�2 � 1. Since �1ÿ e� is a unit,
the ring is k�y� again. The completion is with respect to x � y�e� �1ÿ e�y�. We
may let z � 1ÿ y, and it is reasonable to view 1ÿ e as the image of h in k, under
the classifying map R�A� ! k so that we obtain the completed ring k�z�^�1ÿ z��1ÿh z�
in the form familiar from K-theory.
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