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ABSTRACT
In this paper, extensive simulations are performed to compare two statistical methods to analyze multi-

ple correlated quantitative phenotypes: (1) approximate 𝐹 -distributed tests of multivariate functional lin-

ear models (MFLM) and additive models of multivariate analysis of variance (MANOVA), and (2) Gene

Association with Multiple Traits (GAMuT) for association testing of high-dimensional genotype data. It

is shown that approximate 𝐹 -distributed tests of MFLM and MANOVA have higher power and are more

appropriate for major gene association analysis (i.e., scenarios in which some genetic variants have rela-

tively large effects on the phenotypes); GAMuT has higher power and is more appropriate for analyzing

polygenic effects (i.e., effects from a large number of genetic variants each of which contributes a small

amount to the phenotypes). MFLM and MANOVA are very flexible and can be used to perform association

analysis for (i) rare variants, (ii) common variants, and (iii) a combination of rare and common variants.

Although GAMuT was designed to analyze rare variants, it can be applied to analyze a combination of

rare and common variants and it performs well when (1) the number of genetic variants is large and (2)

each variant contributes a small amount to the phenotypes (i.e., polygenes). MFLM and MANOVA are

fixed effect models that perform well for major gene association analysis. GAMuT can be viewed as an

extension of sequence kernel association tests (SKAT). Both GAMuT and SKAT are more appropriate for

analyzing polygenic effects and they perform well not only in the rare variant case, but also in the case of

a combination of rare and common variants. Data analyses of European cohorts and the Trinity Students

Study are presented to compare the performance of the two methods.
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association mapping, common variants, complex traits, functional data analysis, multivariate analysis of

variance (MANOVA), multivariate functional linear models (MFLM), quantitative trait loci, rare variants

1 INTRODUCTION

Since multi-phenotype analysis can increase power to dissect

complex disorders, analysis of pleiotropic traits has become

a very important topic. One method to analyze pleiotropic

traits is to analyze a single polymorphism at a time to eval-

uate the effect of common variants as is routinely done in

Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

genome-wide association studies (GWAS) or exome studies

(Allison et al., 1998; Chavali et al., 2010; Ferreira &

Purcell, 2009; Galesloot et al., 2014; Huang et al., 2011;

O’Reilly et al., 2012; Ried et al., 2012; Sivakumaran et al.,

2011; Solovieff et al., 2013). In recent years, next-generation

sequencing technologies have provided rich resources to

search for causal genetic variants. Researchers are facing
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ever-increasing amounts of data and the need to analyze

such data efficiently to enable novel discoveries (Ansorge,

2009; Mardis, 2008; Metzker, 2010; Rusk & Kiermer, 2008;

Shendure & Ji, 2008). There are increasing interest in

developing gene-based methods to analyze next-generation

sequencing data of pleiotropic traits (Broadaway et al., 2016;

Maity et al., 2012; Vsevolozhskaya et al., 2016; Wang et al.,

2015). The gene-based methods have several advantages such

as combining multiple variants for a unified analysis, thereby

increasing power, and reducing the number of multiple com-

parisons. In practice, the advantages of different methods are

not always clear. In this article, we aim at evaluating the per-

formance of two gene-based procedures described below to

understand the pros and cons of each procedure.

In Wang et al. (2015), multivariate functional linear mod-

els (MFLM) were proposed to perform gene-based analysis

of pleiotropic traits. The MFLM are very flexible and can be

used to analyze rare variants or common variants or a com-

bination of the two. Here the rare variants’ minor allele fre-

quencies (MAF) are less than 0.01 ∼ 0.05. Broadaway et al.

(2016) proposed a method of Gene Association with Mul-

tiple Traits (GAMuT) for association testing of phenotypes

with high-dimensional rare variant data. By using simulated

data of 30 kb regions using COSI (Schaffner et al., 2005),

the authors compared power levels of GAMuT and approx-

imate 𝐹 -distributed tests of MFLM, and found that GAMuT

had higher power than the approximate 𝐹 -distributed tests of

MFLM for six and ten correlated quantitative phenotypes. In

addition, Broadaway et al. (2016) analyzed four phenotypic

measures of cardiovascular health using data from the Genetic

Epidemiology Network of Arteriopathy (GENOA) (Daniels

et al., 2004), and found that MFLM inflates 𝑃 -values. An

interesting question is: why and how this happens?

The data analyzed in Broadaway et al. (2016) included

48,712 rare genetic variants (MAF < 3%) that fell within

3,277 genes. Hence, each gene region has about 15 rare vari-

ants in the data analysis. Note that MFLM are designed to

analyze high-dimensional next-generation sequencing data of

multiple quantitative traits (Wang et al., 2015). For a gene

region with about 15 rare variants, the number of parameters

of MFLM is about 60 for four phenotypes if one uses B-spline

basis functions suggested by Wang et al. (2015). Therefore,

the number of parameters is much larger than the number of

rare variants in the data analysis making it almost impossible

for MFLM to perform well. If there is only a small number

of variants in a gene region, it would be possible to use linear

regressions to perform model selection to pick up the impor-

tant variants, and then one may be able to get a final optimal

model to analyze the data. In that case, neither MFLM nor

GAMuT is necessary because they are mainly for large num-

ber variant analysis.

In the simulation studies of Wang et al. (2015), genetic vari-

ants located in 3 kb regions were simulated using the package

COSI (Schaffner et al., 2005). In the simulations of rare vari-

ants (defined as MAF < 3%), the 3 kb regions contain a mean

of 53 variants. In the case that some variants are common and

the rest are rare, the 3 kb regions contain a mean of 59 vari-

ants and about 10% are common. If the simulated data used in

Broadaway et al. (2016) are similar, the 30 kb regions would

contain more than 500 rare variants (and each causal variant

contributes a small amount to the traits). Hence, the simula-

tion studies of Broadaway et al. (2016) were based on high-

dimensional genotype data. In the Supplementary Informa-

tion, Broadaway et al. (2016) presented a power comparison

using genetic variants located in 3 kb regions for three pheno-

types and found that GAMuT performed similarly to MFLM

when genetic effect sizes are relatively large.

Some interesting questions and issues stand out: how do

the two methods of GAMuT and MFLM perform for more

simulation scenarios? When does the GAMuT perform bet-

ter and when do the fixed models including MFLM perform

better and why? MFLM are very flexible and can be used to

perform association analysis for (i) rare variants, (ii) common

variants, and (iii) a combination of rare and common vari-

ants. Can GAMuT be used to analyze a combination of rare

and common variants (or just common variants), although

it was designed to analyze rare variants only? Here we per-

form extensive simulations to evaluate the performance of

the approximate 𝐹 -distributed tests of fixed effect models

and GAMuT for quantitative traits by using genetic variants

located in 3–30 kb regions of simulated COSI data. Data anal-

yses of European cohorts and Trinity Students Study (TSS)

are presented to compare the performance of the two methods.

2 MODELS

In gene-based association analysis, the research goal is to

model the association between multiple genetic variants and

phenotypic traits. In this section, we briefly introduce the two

procedures (i.e., GAMuT and MFLM) for gene-based analy-

sis of pleiotropic traits.

2.1 Gene Association with Multiple Traits

GAMuT utilizes a kernel distance covariance to build a non-

parametric test of independence between multiple phenotypes

and multiple genetic variants, and can be viewed as an exten-

sion of sequence kernel association tests (SKAT) (Ionita-Laza

et al., 2013; Lee et al., 2012; Wu et al., 2011). GAMuT can

analyze both quantitative and categorical phenotypes adjust-

ing for covariates. The kernel distance covariance framework

used by GAMuT assesses if pairwise phenotypic similarity is

independent of pairwise rare-variant genotypic similarity. The

phenotypic similarity and genotypic similarity can be formu-

lated as matrices using a projection or a weighted linear kernel

function. An MAF-weighted linear kernel is recommended

for the genotypic similarity (Broadaway et al., 2016).
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2.2 Multivariate fixed effect models

Consider 𝑛 individuals who are sequenced in a genomic

region that has 𝑚 variants. We assume that the 𝑚 variants

are located in a region with ordered physical positions 0 ≤
𝑡1 < ⋯ < 𝑡𝑚 = 𝑇 . To make the notation simpler, we normal-

ize the region [𝑡1, 𝑇 ] to be [0, 1]. For the 𝑖th individual,

let 𝑋𝑖 = (𝑥𝑖(𝑡1),… , 𝑥𝑖(𝑡𝑚))′ denote her/his genotypes at the

𝑚 variants and 𝑍𝑖 = (𝑧𝑖1,… , 𝑧𝑖𝑐)′ denote her/his covariates.

Hereafter, ′ denotes the transpose of a vector or matrix. For

genotypes, we assume that 𝑥𝑖(𝑡𝑗)(= 0, 1, 2) is the number of

minor alleles of the individual at the 𝑗th variant located at

the position 𝑡𝑗 . For each individual, we assume that there

are 𝐿 quantitative traits, 𝐿 ≥ 1. We assume that the quan-

titative traits are normally distributed. For the 𝑖th individ-

ual, let 𝑦𝑖𝓁 (𝓁 = 1, 2,… , 𝐿) denote her/his quantitative traits,

respectively.

2.2.1 Traditional additive effect models of MANOVA

To model the relationship between the quantitative traits and

the 𝑚 variants, one may use the following additive effect mod-

els of multivariate analysis of variance (MANOVA)

𝑦𝑖𝓁 = 𝛼𝓁0 +𝑍′
𝑖
𝛼𝓁 +

𝑚∑
𝑗=1

𝑥𝑖(𝑡𝑗)𝛽𝓁𝑗 + 𝜀𝑖𝓁 ,𝓁 = 1, 2,… , 𝐿, (1)

where 𝛼𝓁0 is the overall mean, 𝛼𝓁 = (𝛼𝓁1,… , 𝛼𝓁𝑐)′ is a 𝑐 × 1
column vector of regression coefficients of covariates, 𝛽𝓁𝑗 is

the effect of genetic variant 𝑥𝑖(𝑡𝑗), and 𝜀𝑖𝓁 is an error term.

For each 𝑖, the error vector 𝜀𝑖 = (𝜀𝑖1,… , 𝜀𝑖𝐿)′ is normally dis-

tributed with a mean vector of zeros and a 𝐿 × 𝐿 variance-

covariance matrix Σ. Moreover, 𝜀1,… , 𝜀𝑛 are assumed to be

independent. When the number of genetic variants is large,

the number of parameters in the model (1) can be large, which

may lead to low power. Before fitting the model (1), the QR

decomposition can be applied to the genotype data to remove

the redundancy, i.e., to decompose the genotype matrix into

the product of an orthogonal matrix Q and a triangular matrix

R via Gram–Schmidt process. Since dense variants in a region

can be highly correlated to each other, the QR decomposi-

tion could significantly reduce the dimensionality and could

be useful in data analysis.

2.2.2 General MFLM

In this subsection, we introduce general MFLM to connect

genetic variants to the traits (Fan et al., 2013, 2014, 2015,

2016a,b,c; Ramsay & Silverman, 2005; Wang et al., 2015).

We view the 𝑖th individual’s genotype data as a genetic vari-

ant function (GVF) as 𝑋𝑖(𝑡), 𝑡 ∈ [0, 1]. We assume that the

GVF 𝑋𝑖(𝑡) is continuous, but this assumption can be removed

as in the beta-smooth models (6).

Note that the sample includes 𝑛 discrete realizations or

observations 𝑋𝑖 = (𝑥𝑖(𝑡1),… , 𝑥𝑖(𝑡𝑚))′ of the human genome.

By using the genetic variant information 𝑋𝑖, we may estimate

the related GVF 𝑋𝑖(𝑡). To relate the GVF to the quantita-

tive traits adjusting for covariates, we consider the following

MFLM

𝑦𝑖𝓁 = 𝛼𝓁0 +𝑍′
𝑖
𝛼𝓁 + ∫

1

0
𝑋𝑖(𝑡)𝛽𝓁(𝑡)𝑑𝑡 + 𝜀𝑖𝓁 ,

(2)

𝓁 = 1, 2,… , 𝐿,

where 𝛽𝓁(𝑡) is the genetic effect of GVF 𝑋𝑖(𝑡) at the position

𝑡, and the other terms are similar to those in the MANOVA

model (1).

Estimation of genetic variant functions. To estimate the

GVF 𝑋𝑖(𝑡) from the genotypes 𝑋𝑖, we use an ordinary linear

square smoother (Fan et al., 2013, 2014; Wang et al., 2015).

The ordinary linear square smoother method assumes that the

GVF is smooth. Let 𝜙𝑘(𝑡), 𝑘 = 1,… , 𝐾, be a series of 𝐾 basis

functions, such as the B-spline basis and Fourier basis func-

tions. Denote 𝜙(𝑡) = (𝜙1(𝑡),… , 𝜙𝐾 (𝑡))′. Let Φ denote the 𝑚

by 𝐾 matrix containing the values 𝜙𝑘(𝑡𝑗), where 𝑗 ∈ 1,… , 𝑚.

Using the discrete realizations 𝑋𝑖 = (𝑥𝑖(𝑡1),… , 𝑥𝑖(𝑡𝑚))′, we

may estimate the GVF 𝑋𝑖(𝑡) using an ordinary linear square

smoother as follows (Ramsay & Silverman, 2005)

�̂�𝑖(𝑡) = (𝑥𝑖(𝑡1),… , 𝑥𝑖(𝑡𝑚))Φ[Φ′Φ]−1𝜙(𝑡). (3)

We consider two types of basis functions: (1) the B-spline

basis: 𝜙𝑘(𝑡) = 𝐵𝑘(𝑡), 𝑘 = 1,… , 𝐾; and (2) the Fourier basis:

𝜙1(𝑡) = 1, 𝜙2𝑟+1(𝑡) = sin(2𝜋𝑟𝑡), and 𝜙2𝑟(𝑡) = cos(2𝜋𝑟𝑡), 𝑟 =
1,… , (𝐾 − 1)∕2. Here for the Fourier basis, 𝐾 is taken as a

positive odd integer (de Boor, 2001; Ferraty & Romain, 2010;

Horváth & Kokoszka, 2012; Ramsay, Hooker, & Graves,

2009; Ramsay & Silverman, 2005).

Revised functional regression models. The genetic effect

functions 𝛽𝓁(𝑡) are assumed to be continuous/smooth. One

may expand them by B-spline or Fourier basis functions. For-

mally, let 𝜓𝑘(𝑡), 𝑘 = 1,… , 𝐾𝛽, be a series of 𝐾𝛽 basis func-

tions. We expand the genetic effect function 𝛽𝓁(𝑡) by 𝜓(𝑡) =
(𝜓1(𝑡),… , 𝜓𝐾𝛽

(𝑡))′ as

𝛽𝓁(𝑡) = (𝜓1(𝑡),… , 𝜓𝐾𝛽
(𝑡))(𝛽𝓁1,… , 𝛽𝓁𝐾𝛽

)′ = 𝜓(𝑡)′𝛽𝓁 , (4)

where 𝛽𝓁 = (𝛽𝓁1,… , 𝛽𝓁𝐾𝛽
)′ is a vector of coefficients

𝛽𝓁1,… , 𝛽𝓁𝐾𝛽
. Replacing 𝑋𝑖(𝑡) in MFLM (2) by �̂�𝑖(𝑡) in (3)

and 𝛽𝓁(𝑡) by the expansion (4), we have the following revised

MFLM

𝑦𝑖𝓁 = 𝛼𝓁0 +𝑍′
𝑖
𝛼𝓁

+

[
(𝑥𝑖(𝑡1),… , 𝑥𝑖(𝑡𝑚))Φ[Φ′Φ]−1 ∫

1

0
𝜙(𝑡) 𝜓 ′(𝑡)𝑑𝑡

]
𝛽𝓁 + 𝜀𝑖𝓁

= 𝛼𝓁0 +𝑍′
𝑖
𝛼𝓁 +𝑊 ′

𝑖
𝛽𝓁 + 𝜀𝑖𝓁 , (5)

where 𝑊 ′
𝑖
= (𝑥𝑖(𝑡1),… , 𝑥𝑖(𝑡𝑚))Φ[Φ′Φ]−1 ∫ 1

0 𝜙(𝑡)𝜓 ′(𝑡)𝑑𝑡.
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2.2.3 MFLM: beta-smooth only approach

We now introduce a simplified version of our MFLM, i.e.,

beta-smooth only model (de Boor, 2001; Fan et al., 2013,

2014; Ferraty & Romain, 2010; Horváth & Kokoszka, 2012;

Ramsay et al., 2009; Ramsay & Silverman, 2005; Wang

et al., 2015). The beta-smooth only MFLM were developed

to define the relationship between the 𝓁th quantitative trait

and the 𝑚 variants (Wang et al., 2015)

𝑦𝑖𝓁 = 𝛼𝓁0 +𝑍′
𝑖
𝛼𝓁 +

𝑚∑
𝑗=1

𝑥𝑖(𝑡𝑗)𝛽𝓁(𝑡𝑗) + 𝜀𝑖𝓁 ,

(6)

𝓁 = 1, 2,… , 𝐿,

where 𝛽𝓁(𝑡𝑗) is the genetic effect at the physical position 𝑡𝑗 ,

and the other terms are similar to those in the model (1). As for

the general MFLM (2), the genetic effect 𝛽𝓁(𝑡) are expanded

by a series of basis functions by relations (4). Replacing 𝛽𝓁(𝑡𝑗)
by the expansion, the models (6) can be revised as

𝑦𝑖𝓁 = 𝛼𝓁0 +𝑍′
𝑖
𝛼𝓁 +

[
𝑚∑
𝑗=1

𝑥𝑖(𝑡𝑗)(𝜓1(𝑡𝑗),… , 𝜓𝐾𝛽
(𝑡𝑗))

]
𝛽𝓁 + 𝜀𝑖𝓁

= 𝛼𝓁0 +𝑍′
𝑖
𝛼𝓁 +𝑊 ′

𝑖
𝛽𝓁 + 𝜀𝑖𝓁 , (7)

where 𝑊 ′
𝑖
=
∑𝑚

𝑗=1 𝑥𝑖(𝑡𝑗)(𝜓1(𝑡𝑗),… , 𝜓𝐾𝛽
(𝑡𝑗)). In the model

(6) and its revised version (7), we use the raw genotype data

𝑋𝑖 = (𝑥𝑖(𝑡1),… , 𝑥𝑖(𝑡𝑚))′. The genetic effect functions 𝛽𝓁(𝑡)
are assumed to be smooth. Thus, the models are called beta-

smooth only. In our previous work, we showed that beta-

smooth only models perform similarly to the general MFLM

in real data analysis and simulation studies (Fan et al., 2013,

2014, 2015, 2016a,b,c; Wang et al., 2015).

2.2.4 Null hypotheses and test statistics

Consider the additive effect model of MANOVA (1) and the

revised MFLM (5) and (7). To test for association between

the 𝑚 genetic variants and the quantitative traits as a group,

the null hypothesis is 𝐻0 ∶ 𝛽𝓁 = (𝛽𝓁1,… , 𝛽𝓁𝑚)′ = 0,𝓁 =
1,… , 𝐿, for model (1) and 𝐻0 ∶ 𝛽𝓁 = (𝛽𝓁1,… , 𝛽𝓁𝐾𝛽

)′ =
0,𝓁 = 1,… , 𝐿, for models (5) and (7). We may test the

null 𝐻0 ∶ 𝛽1 = ⋯ = 𝛽𝐿 = 0 by approximate 𝐹 -distributed

tests based on Pillai-Bartlett trace, Hotelling-Lawley trace,

and Wilks’s Lambda using standard statistical approaches

(Anderson, 1984; Rao, 1973).

2.2.5 Functional data analysis parameters

In the data analysis and simulations, we used the functional

data analysis procedure in the statistical package R. We

used two functions from the functional data analysis (fda) R

package as follows to create the bases:

basis = create.bspline.basis(norder =
order, nbasis = bbasis)

basis = create.fourier.basis(c(0,1), nbasis =
fbasis)

The three parameters were taken as order = 4, bbasis =
15, fbasis = 21 for quantitative traits in all simulations.

Specifically, the order of B-spline basis was 4, and the num-

ber of B-spline basis functions was𝐾 = 𝐾𝛽 = 15, the number

of Fourier basis functions was 𝐾 = 𝐾𝛽 = 21. To make sure

that the results are valid and stable, we tried a wide range of

parameters that 10 ≤ 𝐾 = 𝐾𝛽 ≤ 21 and the results are very

close to each other (data not shown).

3 SIMULATION STUDIES

We utilize two fixed models: (a) MFLM and (b) additive mod-

els (1) of MANOVA. Simulations were performed to evaluate

the performance of the fixed models and GAMuT with sample

sizes 500, 1,000, and 1,500. We used the European ancestry

simulated sequence data (Lee et al., 2012; Wu et al., 2011).

The sequence data are from 10,000 simulated chromosomes

covering a 1 Mb region simulated using the calibrated coales-

cent model programmed in COSI (Schaffner et al., 2005). The

generated European haplotypes mimic CEPH Utah individu-

als with ancestry from northern and western Europe in terms

of site frequency spectrum and linkage disequilibrium (LD)

pattern.

Type I error simulations. To evaluate whether the approx-

imate 𝐹 -distributed tests control false-positive rates accu-

rately, we consider either three or six correlated phenotypes

for each individual. For the three phenotype case, we gener-

ated three correlated quantitative traits using the model

𝑦𝑖1 = 0.5𝑧𝑖1 + 0.5𝑧𝑖2 + 𝜀𝑖1,

𝑦𝑖2 = 0.3𝑧𝑖1 + 0.7𝑧𝑖2 + 𝜀𝑖2, (8)

𝑦𝑖3 = 0.6𝑧𝑖1 + 0.4𝑧𝑖2 + 𝜀𝑖3,

where 𝑧𝑖1 is a continuous covariate from a standard normal

distribution 𝑁(0, 1), 𝑧𝑖2 is a dichotomous covariate taking

values 0 and 1 with a probability of 0.5, and (𝜀𝑖1, 𝜀𝑖2, 𝜀𝑖3)′ fol-

lows a normal distribution with a mean vector of 0 and a 3 × 3

variance-covariance matrix Σ =
⎛⎜⎜⎝
1.00 0.60 −0.35
0.60 1.00 −0.45
−0.35 −0.45 1.00

⎞⎟⎟⎠ . The

3 × 3 variance-covariance matrixΣ is taken from an empirical

analysis of three traits from The TSS (Wang et al., 2015).

For the six phenotype case, we use the same strategy of

Broadaway et al. (2016) to generate the correlation matrix

Σ. That is, we consider scenarios of low residual correlation

among phenotypes [pairwise correlation among phenotypes

selected from a uniform (0, 0.3) distribution], moderate resid-

ual correlation [pairwise correlation selected from a uniform

(0.3, 0.5) distribution], and high residual correlation [pairwise

correlation selected from a uniform (0.5, 0.7) distribution].
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T A B L E 1 Empirical type I error rates of the approximate 𝐹 -distribution tests based on Pillai-Bartlett trace of six traits and moderate correlation,

when the variants are either rare or common

Basis of both GVF and 𝜷𝓵(𝒕) Basis of beta-smooth only
Region
size

Sample
size

Nominal
Level 𝜶 B-sp basis Fourier basis B-sp basis Fourier basis

MANOVA
Model (1)

6 kb 500 0.001 0.000896 0.000986 0.000894 0.000987 0.000942

0.0001 0.000082 0.000090 0.000082 0.000090 0.000087

1,000 0.001 0.000994 0.001006 0.000994 0.001006 0.000957

0.0001 0.000103 0.000100 0.000103 0.000100 0.000094

1,500 0.001 0.001035 0.000974 0.001034 0.000974 0.000974

0.0001 0.000093 0.000097 0.000093 0.000097 0.000098

9 kb 500 0.001 0.000910 0.000897 0.000910 0.000897 0.000887

0.0001 0.000089 0.000081 0.000089 0.000081 0.000105

1,000 0.001 0.000995 0.000976 0.000995 0.000976 0.000934

0.0001 0.000094 0.000113 0.000094 0.000113 0.000091

1,500 0.001 0.000969 0.000996 0.000969 0.000996 0.000947

0.0001 0.000098 0.000085 0.000098 0.000085 0.000088

12 kb 500 0.001 0.000907 0.000944 0.000907 0.000944 0.000881

0.0001 0.000095 0.000096 0.000095 0.000096 0.000090

1,000 0.001 0.000930 0.000954 0.000930 0.000954 0.000928

0.0001 0.000083 0.000088 0.000083 0.000088 0.000101

1,500 0.001 0.001012 0.000948 0.001012 0.000948 0.000989

0.0001 0.000088 0.000092 0.000088 0.000092 0.000115

15 kb 500 0.001 0.000931 0.000953 0.000931 0.000953 0.000997

0.0001 0.000086 0.000102 0.000086 0.000102 0.000094

1,000 0.001 0.000976 0.000958 0.000976 0.000958 0.000955

0.0001 0.000115 0.000088 0.000115 0.000088 0.000102

1,500 0.001 0.000955 0.000889 0.000955 0.000889 0.001003

0.0001 0.000111 0.000100 0.000111 0.000100 0.000106

18 kb 500 0.001 0.000870 0.000943 0.000870 0.000943 0.000938

0.0001 0.000076 0.000081 0.000076 0.000081 0.000098

1,000 0.001 0.000958 0.001013 0.000958 0.001013 0.000966

0.0001 0.000099 0.000113 0.000099 0.000113 0.000099

1,500 0.001 0.000937 0.000956 0.000937 0.000956 0.000925

0.0001 0.000077 0.000089 0.000077 0.000089 0.000083

21 kb 500 0.001 0.000923 0.000917 0.000923 0.000917 0.000893

0.0001 0.000089 0.000065 0.000089 0.000065 0.000088

1,000 0.001 0.000945 0.000961 0.000945 0.000961 0.000969

0.0001 0.000073 0.000089 0.000073 0.000089 0.000102

1,500 0.001 0.000947 0.000986 0.000947 0.000986 0.000980

0.0001 0.000093 0.000100 0.000093 0.000100 0.000101

24 kb 500 0.001 0.000939 0.000919 0.000939 0.000919 0.000914

0.0001 0.000093 0.000095 0.000093 0.000095 0.000093

1,000 0.001 0.000984 0.000959 0.000984 0.000959 0.000961

0.0001 0.000104 0.000091 0.000104 0.000091 0.000100

1,500 0.001 0.001003 0.000931 0.001003 0.000931 0.001003

0.0001 0.000086 0.000089 0.000086 0.000089 0.000104

27 kb 500 0.001 0.000979 0.001003 0.000979 0.001003 0.000925

0.0001 0.000091 0.000081 0.000091 0.000081 0.000091

1,000 0.001 0.000919 0.000966 0.000919 0.000966 0.000956

(continues)
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T A B L E 1 (Continued)

Basis of both GVF and 𝜷𝓵(𝒕) Basis of beta-smooth only
Region
size

Sample
size

Nominal
Level 𝜶 B-sp basis Fourier basis B-sp basis Fourier basis

MANOVA
Model (1)

0.0001 0.000088 0.000101 0.000088 0.000101 0.000114

1,500 0.001 0.000933 0.000922 0.000933 0.000922 0.000976

0.0001 0.000085 0.000089 0.000085 0.000089 0.000079

30 kb 500 0.001 0.000981 0.001031 0.000981 0.001031 0.000895

0.0001 0.000102 0.000104 0.000102 0.000104 0.000093

1,000 0.001 0.000979 0.000972 0.000979 0.000972 0.001001

0.0001 0.000092 0.000093 0.000092 0.000093 0.000087

1,500 0.001 0.000966 0.000969 0.000966 0.000969 0.000971

0.0001 0.000096 0.000097 0.000096 0.000097 0.000102

The results of “Basis of both GVF and 𝛽𝓁(𝑡)” were based on smoothing both GVF and genetic effect functions 𝛽𝓁(𝑡) of model (5), the results of “Basis of

beta-smooth only” were based on the smoothing 𝛽𝓁(𝑡) only approach of model (7). The order of B-spline basis was 4, and the number of basis functions of

B-spline was 𝐾 = 𝐾𝛽 = 15; the number of Fourier basis functions was 𝐾 = 𝐾𝛽 = 21.

The six correlated quantitative traits were generated using the

model

𝑦𝑖1 = 0.2𝑧𝑖1 + 0.8𝑧𝑖2 + 𝜀𝑖1,

𝑦𝑖2 = 0.3𝑧𝑖1 + 0.7𝑧𝑖2 + 𝜀𝑖2,

𝑦𝑖3 = 0.4𝑧𝑖1 + 0.6𝑧𝑖2 + 𝜀𝑖3, (9)

𝑦𝑖4 = 0.5𝑧𝑖1 + 0.5𝑧𝑖2 + 𝜀𝑖4,

𝑦𝑖5 = 0.6𝑧𝑖1 + 0.4𝑧𝑖2 + 𝜀𝑖5,

𝑦𝑖6 = 0.7𝑧𝑖1 + 0.3𝑧𝑖2 + 𝜀𝑖6,

where 𝑧𝑖1 and 𝑧𝑖1 are the same as those of (8).

To be sure that the false positives are properly controlled,

empirical type I errors are calculated for the approximate 𝐹 -

distributed tests. For the three trait case, the type I error rates

were reported in Tables 3 and 4 of Wang et al. (2015). For

six traits, the type I errors of the approximate 𝐹 -distributed

tests are reported in Tables 1 and 2, and they are around the

nominal levels and so the false-positive rates are accurately

controlled.

Empirical power simulations. For empirical power simu-

lations of quantitative traits, we assumed that 5% of the vari-

ants were causal. We considered two scenarios: (1) all vari-

ants are rare (MAF < 0.03), and (2) some variants are com-

mon and the rest are rare. Once a subregion of size 3–30 kb

was selected from the 1 Mb region, a subset of 𝑝 causal vari-

ants located in the subregion was then randomly selected to

obtain ordered genotypes (𝑥𝑖(𝑡1),… , 𝑥𝑖(𝑡𝑝)). Then, we gener-

ated the quantitative traits by adding genetic contributions to

models (8) and (9). For instance, the three quantitative traits

were generated by

𝑦𝑖1 = 0.5𝑧𝑖1 + 0.5𝑧𝑖2 + 𝛽11𝑥𝑖(𝑡1) +⋯ + 𝛽1𝑝𝑥𝑖(𝑡𝑝) + 𝜀𝑖1,

𝑦𝑖2 = 0.3𝑧𝑖1 + 0.7𝑧𝑖2 + 𝛽21𝑥𝑖(𝑡1) +⋯ + 𝛽2𝑝𝑥𝑖(𝑡𝑝) + 𝜀𝑖2, (10)

𝑦𝑖3 = 0.6𝑧𝑖1 + 0.4𝑧𝑖2 + 𝛽31𝑥𝑖(𝑡1) +⋯ + 𝛽3𝑝𝑥𝑖(𝑡𝑝) + 𝜀𝑖3,

where 𝑧𝑖1, 𝑧𝑖2, and (𝜀𝑖1, 𝜀𝑖2, 𝜀𝑖3)′ are the same as in the model

(8), and the 𝛽s are additive effects for the causal variants

defined as follows. We used |𝛽𝑖𝑗| = 𝑐𝑖| log10(𝑀𝐴𝐹𝑗)|, where

𝑀𝐴𝐹𝑗 was the MAF of the 𝑗th variant. For the three trait

model (10), we assume that 5% of the variants were causal

and the constants 𝑐𝑖 are defined by

𝑐1 = log(10)∕(2𝑘), 𝑐2 = log(8.5)∕(2𝑘),

𝑐3 = log(7)∕(2𝑘); (11)

for the six trait case, we also assume that 5% of the vari-

ants were causal and the constants 𝑐𝑖 = 4.0∕𝑘 for all six traits,

where 𝑘 depends on region size. The constants 𝑘 and genetic

effect sizes decrease as region sizes increase:

𝑘 =

⎧⎪⎪⎨⎪⎪⎩

1.0 if region size = 3 kb,

2.0 if region size = 6 kb,

⋯ ⋯
9.0 if region size = 27 kb,

10.0 if region size = 30 kb.

(12)

It can be seen that the effect sizes |𝛽𝑖𝑗| are smaller and

smaller when the region sizes in (12) increase. In particu-

lar, the number of causal variants is large and each causal

variant contributes a small amount to the traits if the region

sizes are larger than 12 kb for the three trait case (i.e.,

𝑐𝑖 ≤ log(10)∕(2 × 4) ≈ 0.29). For the six trait case, the con-

stant 𝑐𝑖 = 0.4 when region size is 30 kb and this is the

same as that in the simulations of Figure 3, Broadaway

et al. (2016), except for an additional random contribution

𝑁(0, 1)| log10(𝑀𝐴𝐹𝑗)|. For the three trait case, we also

consider a second type of constants: 𝑘 = 3.0, i.e., effect sizes|𝛽𝑖𝑗| do not depend on region sizes and are relatively large.

For each setting of empirical power calculations, 1,000

datasets were simulated to calculate the empirical power

levels as the proportion of 𝑃 -values that are smaller than

a given 𝛼 = 0.01 level for three traits and 𝛼 = 2.5 × 10−6
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T A B L E 2 Empirical type I error rates of the approximate 𝐹 -distribution tests based on Pillai-Bartlett trace of six traits and moderate correlation,

when the variants are only rare

Basis of both GVF and 𝜷𝓵(𝒕) Basis of beta-smooth only
Region
size

Sample
size

Nominal
Level 𝜶 B-sp basis Fourier basis B-sp Basis Fourier basis

MANOVA
Model (1)

6 kb 500 0.001 0.000906 0.000919 0.000906 0.000916 0.000921

0.0001 0.000091 0.000088 0.000093 0.000090 0.000085

1,000 0.001 0.000996 0.000930 0.000998 0.000930 0.000918

0.0001 0.000096 0.000091 0.000096 0.000091 0.000089

1,500 0.001 0.000985 0.000991 0.000985 0.000991 0.000984

0.0001 0.000094 0.000099 0.000094 0.000099 0.000095

9 kb 500 0.001 0.000940 0.000925 0.000940 0.000923 0.000912

0.0001 0.000090 0.000095 0.000090 0.000095 0.000100

1,000 0.001 0.000906 0.000969 0.000906 0.000969 0.000900

0.0001 0.000092 0.000086 0.000092 0.000086 0.000092

1,500 0.001 0.000981 0.000980 0.000981 0.000980 0.000952

0.0001 0.000111 0.000091 0.000111 0.000091 0.000076

12 kb 500 0.001 0.000930 0.000901 0.000930 0.000901 0.000909

0.0001 0.000086 0.000089 0.000086 0.000089 0.000078

1,000 0.001 0.000905 0.000930 0.000905 0.000930 0.000946

0.0001 0.000094 0.000085 0.000094 0.000085 0.000094

1,500 0.001 0.000965 0.000983 0.000965 0.000983 0.000984

0.0001 0.000099 0.000099 0.000099 0.000099 0.000097

15 kb 500 0.001 0.000950 0.000947 0.000950 0.000947 0.000940

0.0001 0.000093 0.000099 0.000093 0.000099 0.000093

1,000 0.001 0.000951 0.000946 0.000951 0.000946 0.000965

0.0001 0.000103 0.000094 0.000103 0.000094 0.000098

1,500 0.001 0.000925 0.000966 0.000925 0.000966 0.000987

0.0001 0.000098 0.000089 0.000098 0.000089 0.000104

18 kb 500 0.001 0.000896 0.000957 0.000896 0.000957 0.000913

0.0001 0.000077 0.000088 0.000077 0.000088 0.000105

1,000 0.001 0.000979 0.000955 0.000979 0.000955 0.000946

0.0001 0.000093 0.000078 0.000093 0.000078 0.000105

1,500 0.001 0.000969 0.000985 0.000969 0.000985 0.000962

0.0001 0.000083 0.000114 0.000083 0.000114 0.000105

21 kb 500 0.001 0.000888 0.000929 0.000888 0.000929 0.000936

0.0001 0.000086 0.000085 0.000086 0.000085 0.000077

1,000 0.001 0.000879 0.000940 0.000879 0.000940 0.001018

0.0001 0.000092 0.000095 0.000092 0.000095 0.000093

1,500 0.001 0.000919 0.000932 0.000919 0.000932 0.000989

0.0001 0.000086 0.000079 0.000086 0.000079 0.000086

24 kb 500 0.001 0.000943 0.000846 0.000943 0.000846 0.000931

0.0001 0.000087 0.000091 0.000087 0.000091 0.000076

1,000 0.001 0.000968 0.000986 0.000968 0.000986 0.000975

0.0001 0.000085 0.000084 0.000085 0.000084 0.000085

1,500 0.001 0.000989 0.000990 0.000989 0.000990 0.001014

0.0001 0.000110 0.000096 0.000110 0.000096 0.000090

27 kb 500 0.001 0.000935 0.000960 0.000935 0.000960 0.000946

0.0001 0.000105 0.000107 0.000105 0.000107 0.000092

1,000 0.001 0.000988 0.000974 0.000988 0.000974 0.000984

(continues)
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T A B L E 2 (Continued)

Basis of both GVF and 𝜷𝓵(𝒕) Basis of beta-smooth only
Region
size

Sample
size

Nominal
Level 𝜶 B-sp basis Fourier basis B-sp Basis Fourier basis

MANOVA
Model (1)

0.0001 0.000105 0.000106 0.000105 0.000106 0.000098

1,500 0.001 0.000999 0.000993 0.000999 0.000993 0.000966

0.0001 0.000097 0.000113 0.000097 0.000113 0.000097

30 kb 500 0.001 0.000900 0.000916 0.000900 0.000916 0.000942

0.0001 0.000069 0.000082 0.000069 0.000082 0.000083

1,000 0.001 0.000953 0.000940 0.000953 0.000940 0.000938

0.0001 0.000109 0.000083 0.000109 0.000083 0.000104

1,500 0.001 0.000997 0.000940 0.000997 0.000940 0.000980

0.0001 0.000095 0.000098 0.000095 0.000098 0.000097

The results of ‘Basis of both GVF and 𝛽𝓁(𝑡)” were based on smoothing both GVF and genetic effect functions 𝛽𝓁(𝑡) of model (5), the results of ‘Basis of

beta-smooth only” were based on the smoothing 𝛽𝓁(𝑡) only approach of model (7). The order of B-spline basis was 4, and the number of basis functions of

B-spline was 𝐾 = 𝐾𝛽 = 15; the number of Fourier basis functions was 𝐾 = 𝐾𝛽 = 21.

level for six traits. The results of two combinations of traits

are reported: one trivariate combination (𝑦1, 𝑦2, 𝑦3) and one

bivariate combination (𝑦1, 𝑦2) for three trait case. We cal-

culated the empirical power levels for the approximate 𝐹 -

distributed tests based on Pillai-Bartlett trace, Hotelling-

Lawley trace, and Wilks’s Lambda. The results of approx-

imate 𝐹 -distributed tests based on the Pillai-Bartlett trace

are reported, which are similar to the results of approximate

𝐹 -distributed tests based on Hotelling-Lawley trace and

Wilks’s Lambda. An MAF-weighted linear kernel is used for

the genotypic similarity.

Three traits: Power comparison when the constants 𝒌

are given by relations (12). In this case, genetic effect sizes|𝛽𝑖𝑗| decrease as region sizes increase. When some variants

are common and the rest are rare, we report in Figure 1

the empirical power of the approximate 𝐹 -distributed tests

of additive models of MANOVA (1) and MFLM (7) and

GAMuT at 𝛼 = 0.01. When the region sizes are between 3 kb

and 12 kb, both the additive models of MANOVA and MFLM

perform better than GAMuT, and the additive models of

MANOVA perform better than MFLM. When the region sizes

are 15 kb and 18 kb, both the additive models of MANOVA

and MFLM perform similarly to GAMuT based on projection

matrix, and the additive models of MANOVA start to per-

form worse than MFLM. When the region sizes are between

21 kb and 27 kb, both the additive models of MANOVA

and MFLM perform worse than GAMuT based on projection

matrix, and the additive models of MANOVA perform worse

than MFLM.

When all variants are rare, we report empirical power levels

in Figure 2. When the region sizes are between 3 kb and 9 kb,

the additive models of MANOVA perform the best (i.e., better

than GAMuT and MFLM), and MFLM performs better than

or similar to GAMuT. When the region sizes are 12 kb and

15 kb, the additive models of MANOVA perform similarly to

GAMuT based on projection matrix. When the region sizes

are between 18 kb and 27 kb, the GAMuT based on projection

matrix performs the best.

In Figures 1 and 2, GAMuT based on projection matrix

performs similarly to GAMuT based on linear kernel when

the region sizes are between 3 kb and 9 kb; When the region

sizes are between 12 kb and 27 kb, GAMuT based on pro-

jection matrix perform better than GAMuT based on linear

kernel.

Three traits: Power comparison when the constant
𝒌 = 𝟑.𝟎. In these cases, genetic effect sizes |𝛽𝑖𝑗| do not depend

on the region sizes and are relatively large. When some

variants are common and the rest are rare, the power lev-

els are presented in Figure 3. When all variants are rare,

the power levels are presented in Figure 4. In these fig-

ures, the results of 9 kb region sizes are not plotted because

they are the same as those in plots (a3) of Figures 1 and 2.

The obvious features of Figures 3 and 4 are that the addi-

tive models of MANOVA perform the best (i.e., better than

GAMuT and MFLM). When some variants are common

and the rest are rare, MFLM perform better than GAMuT.

When all variants are rare, MFLM perform worse than

GAMuT.

Six Traits: Power comparison when the constants 𝒌 are
given by relations (12). If the residual correlations are mod-

erate, the empirical power levels are plotted in Figures 5 and

6. When some variants are common and the rest are rare,

the power levels are presented in Figure 5. When all vari-

ants are rare, the power levels are presented in Figure 6. It

can be seen that the additive models of MANOVA perform

the best (i.e., better than GAMuT and MFLM) in Figures 5

and 6. When some variants are common and the rest are rare,

MFLM perform better than GAMuT. When all variants are

rare, MFLM perform better than GAMuT when the region

sizes are between 6 kb and 15 kb, MFLM perform similarly
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F I G U R E 1 The empirical power of the approximate 𝐹 -distributed tests of the additive models of MANOVA (1) and MFLM (7) using B-spline basis based

on Pillai-Bartlett trace and GAMuT at 𝛼 = 0.01, when some variants are common and the rest are rare, the constants 𝑘 are given by relations (12), 20%/80%

causal variants have negative/positive effects for each of three traits, and 5% variants are causal. The order of B-spline basis was 4, and the number of B-spline

basis functions was 𝐾 = 𝐾𝛽 = 15

to GAMuT when the region sizes are between 18 kb and 24

kb, and MFLM perform similarly to or worse than GAMuT

when the region sizes are 27 kb and 30 kb.

In supplementary Figures S1 and S2, the power levels are

plotted when the residual correlations are low. In supplemen-

tary Figures S3 and S4, the power levels are plotted when the

residual correlations are high. The features of supplementary

Figures S1 and S3 are similar to those of the Figure 1 when

some variants are common and the rest are rare, and the fea-

tures of supplementary Figures S2 and S4 are similar to those

of the Figure 2 when all variants are rare.

4 APPLICATION TO REAL DATA

In Wang et al. (2015), we analyzed data from the TSS and

European lipid studies by fixed models. In this report, we ana-

lyzed the data by GAMuT. Table 3 reports results of MFLM,

additive models of MANOVA, and GAMuT. In the European

lipid studies, four lipid quantitative traits were analyzed in

22 gene regions: high-density lipoprotein (HDL) levels, low-

density lipoprotein (LDL) levels, triglycerides (TG), and total

cholesterol (CHOL). Three quantitative traits (i.e., A, B, and

C) from the TSS were analyzed in the region of an enzyme
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F I G U R E 2 The empirical power of the approximate 𝐹 -distributed tests of the additive models of MANOVA (1) and MFLM (7) using B-spline basis

based on Pillai-Bartlett trace and GAMuT at 𝛼 = 0.01, when all variants are rare, the constants 𝑘 are given by relations (12), 20%/80% causal variants have

negative/positive effects for each of three traits, and 5% variants are causal. The order of B-spline basis was 4, and the number of B-spline basis functions was

𝐾 = 𝐾𝛽 = 15

gene. The associations that attain a threshold significance of

𝑃 < 3.1 × 10−6 are highlighted in red (Liu et al., 2014). If the

𝑃 -values are around 10−5 but larger than 3.1 × 10−6, we claim

the association as tentative.

In Table 3, the results of GAMuT are new but the other

results are mainly from Wang et al. (2015). GAMuT detected

only one association signal at gene LPL in the FUSION study

based on projection matrix for a combination of (LDL, TG,

CHOL) (𝑃 = 2.29 × 10−6), and this is one of the two cases

that MFLM and MANOVA failed to detect an association

(the other instance is from a combination of (LDL, TG) at

gene LPL in study of D2d-2007). In addition, GAMuT based

on projection matrix detected seven tentative association sig-

nals and GAMuT based on linear kernel detected five. By

MFLM and additive models of MANOVA, however, quite a

few combinations of lipid traits from the five European stud-

ies showed associations or tentative association signals in the

regions of the APOE and LDLR genes, and all combinations of

three traits (i.e., A, B, and C) in the TSS showed association

with the enzyme gene (Table 3). Moreover, the 𝑃 -values of
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F I G U R E 3 The empirical power of the approximate 𝐹 -distributed tests of the additive models of MANOVA (1) and MFLM (7) using B-spline basis based

on Pillai-Bartlett trace and GAMuT at 𝛼 = 0.01, when some variants are common and the rest are rare, the constant 𝑘 = 3.0, 20%/80% causal variants have

negative/positive effects for each of three traits, and 5% variants are causal. The order of B-spline basis was 4, and the number of B-spline basis functions was

𝐾 = 𝐾𝛽 = 15

the approximate 𝐹 -distributed tests of fixed models are gener-

ally much smaller than those of GAMuT. Therefore, the fixed

effect MFLM and MANOVA perform better than GAMuT.

In supplementary Tables S3 and S4, we report the results

of data analysis of the European lipid studies by dividing

the data into rare and common variants based on a cutoff of

0.03. It is worth noting that the gene regions contain both

rare and common variants and the associations are mainly

from common variants. GAMuT detected a tentative associ-

ation at gene LPL in the FUSION study in supplementary

Table S4 based on common variants for the combination

(LDL, TG, CHOL) (𝑃 = 2.99 × 10−5), but no association sig-

nal was detected in supplementary Table S3 based on rare

variants (𝑃 = 3.02 × 10−1). After combining rare and com-

mon variants into one group, GAMuT detected an association

signal at gene LPL in the FUSION study based on projection

matrix in Table 3 (𝑃 = 2.29 × 10−6). Interestingly, GATuT

was designed to analyze rare variants while the only associa-

tion was detected in a combination of rare and common vari-

ants at gene LPL.
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F I G U R E 4 The empirical power of the approximate 𝐹 -distributed tests of the additive models of MANOVA (1) and MFLM (7) using B-spline basis based

on Pillai-Bartlett trace and GAMuT at 𝛼 = 0.01, when all variants are rare, the constant 𝑘 = 3.0, 20%/80% causal variants have negative/positive effects for

each of three traits, and 5% variants are causal. The order of B-spline basis was 4, and the number of B-spline basis functions was 𝐾 = 𝐾𝛽 = 15

5 DISCUSSION

In this study, extensive simulations were performed to eval-

uate the performance of tests of fixed effect models and

GAMuT, by using simulated genetic variants located in 3–30

kb regions. We carried out simulation analyses for two scenar-

ios: (1) all variants are rare; (2) some variants are common and

the rest are rare. No matter which scenario, fixed effect MFLM

and MANOVA perform better than GAMuT when the genetic

effect sizes are relatively large, and GAMuT performs better

when the region sizes are large and the genetic effect sizes are

small. When the region size grows, MFLM and MANOVA

gradually perform worse and GAMuT performs better if the

genetic effect sizes are smaller and smaller. In short, MFLM

and MANOVA perform well if the effective sizes are rela-

tively large and GAMuT performs well when the effective

sizes are small, which was also pointed out in Broadaway et al.

(2016).

In prior studies, fixed effect functional regression mod-

els were found to outperform SKAT, its optimal unified test

(SKAT-O), and a combined sum test of rare and common vari-

ant effect (SKAT-C) in most cases (Fan et al., 2013, 2014,
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F I G U R E 5 The empirical power of the approximate 𝐹 -distributed tests of the additive models of MANOVA (1) and MFLM (5) and (7) based on Pillai-

Bartlett trace and GAMuT at 𝛼 = 2.5 × 10−6 for six traits and moderate correlation, when some variants are common and the rest are rare, 20%/80% causal

variants have negative/positive effects for each of six traits, and 5% variants are causal. The order of B-spline basis was 4, the number of B-spline basis functions

was 𝐾 = 𝐾𝛽 = 15, and the number of Fourier basis functions was 𝐾 = 𝐾𝛽 = 21

2015, 2016a,b,c; Luo et al., 2011, 2012, 2013; Svishcheva

et al., 2015; Vsevolozhskaya et al., 2014, 2016). In Fan

et al. (2016c), we compared the performance of MFLM and

MANOVA, and the performance of SKAT/SKAT-O/SKAT-

C and the univariate fixed models (Fan et al., 2013). For mul-

tivariate analysis, no comparison was made because there was

no multivariate version of SKAT/SKAT-O/SKAT-C to com-

pare with in Fan et al. (2016c). In this paper, we fill the gap

by comparing the performance of MFLM and MANOVA with

GAMuT.

Geneticists have long known of the existence of polygenes,

which have small effects on phenotypes (Fisher, 1918). If

the number of causal genetic variants at a gene locus is very

large and each variant contributes a small amount to the traits,

SKAT/SKAT-O/SKAT-C and GAMuT perform better than

the tests of fixed models. Thus, SKAT/SKAT-O/SKAT-C as

well as GAMuT are more appropriate for analyzing poly-

genic effects. In major gene association analysis, we look for

genes that have relatively large effects (otherwise, they are not

major genes). When the number of causal genetic variants at
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F I G U R E 6 The empirical power of the approximate 𝐹 -distributed tests of the additive models of MANOVA (1) and MFLM (5) and (7) based on Pillai-

Bartlett trace and GAMuT at 𝛼 = 2.5 × 10−6 for six traits and moderate correlation, when all variants are rare, 20%/80% causal variants have negative/positive

effects for each of six traits, and 5% variants are causal. The order of B-spline basis was 4, the number of B-spline basis functions was 𝐾 = 𝐾𝛽 = 15, and the

number of Fourier basis functions was 𝐾 = 𝐾𝛽 = 21

a major gene locus is not very large and the contribution of a

few causal variants to the traits is reasonably large, the fixed

models should work well, which should be the case for most

complex disorders.

The GAMuT procedure was designed for the analysis of

rare variants but we use GAMuT to analyze a combination

of common and rare variants. As noted in Ionita-Laza et al.

(2013), this would be suboptimal and would lead to the com-

mon variants drowning out the effects of rare variants. It is

very likely that GAMuT can be revised to improve power to

analyze a combination rare and common variants by imple-

menting a strategy similar to the combined sum test outlined

in Ionita-Laza et al. (2013). In terms of MFLM, it does not

need to be weighted by MAF. The genetic effect functions

𝛽𝓁(𝑡) is actually the effect of the GVFs at the location 𝑡,

which can be thought of as a weighted effect. In Fan et al.

(2014), we explored the issues using weighted GVFs defined

by the MAF, and found that the power is very similar to

the power without weights. Hence, it is not necessary to add

weights in functional regression models. One benefit of treat-

ing genotype data functionally is that the genetic effect func-

tion naturally serves as a weighting function; this function is
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T A B L E 3 Results of association analysis of four lipid traits in five European studies in the regions of APOE, LPL, and LDLR genes and three traits

of the Trinity Students Study in the region of an enzyme gene using the 𝐹 -approximation based on Pillai-Bartlett trace

𝑷 -values of the 𝑭 -approximation based on Pillai–Bartlett trace 𝑷 -values of GAMuT

Basis of both GVF and 𝜷𝓵(𝒕) Basis of beta-smooth only

Study Gene
Combinations

of traits B-sp basis Fourier basis B-sp basis Fourier basis
MANOVA
Model (1)

Projection
matrix

Linear
kernel

D2d-2007 APOE LDL,TG 4.33 × 10−23 8.96 × 10−23 4.33 × 10−23 8.96 × 10−23 4.92 × 10−22 2.01 × 10−4 2.01 × 10−4

LDL,CHOL 1.21 × 10−20 2.08 × 10−19 1.21 × 10−20 2.08 × 10−19 7.91 × 10−19 4.62 × 10−4 4.62 × 10−4

TG,CHOL 2.98 × 10−18 2.69 × 10−18 2.98 × 10−18 2.69 × 10−18 1.20 × 10−17 1.61 × 10−3 1.61 × 10−3

LDL,TG,CHOL 9.10 × 10−20 3.45 × 10−19 9.10 × 10−20 3.45 × 10−19 1.84 × 10−18 7.31 × 10−5 3.51 × 10−4

LPL LDL,TG 5.15 × 10−2 2.85 × 10−2 5.15 × 10−2 2.85 × 10−2 4.32 × 10−1 4.36 × 10−5 4.36 × 10−5

FUSION APOE LDL,TG 3.05 × 10−7 2.02 × 10−8 3.05 × 10−7 2.02 × 10−8 3.83 × 10−8 1.90 × 10−1 1.90 × 10−1

LDL,CHOL 1.20 × 10−7 1.29 × 10−8 1.20 × 10−7 1.29 × 10−8 1.75 × 10−8 4.88 × 10−2 4.88 × 10−2

TG,CHOL 4.25 × 10−4 1.06 × 10−5 4.25 × 10−4 1.06 × 10−5 1.93 × 10−5 4.95 × 10−1 4.95 × 10−1

LDL,TG,CHOL 8.02 × 10−6 6.44 × 10−7 8.02 × 10−6 6.44 × 10−7 1.11 × 10−6 1.33 × 10−1 9.41 × 10−2

LPL LDL,TG 7.11 × 10−5 2.82 × 10−3 7.11 × 10−5 2.82 × 10−3 2.73 × 10−2 2.71 × 10−5 2.71 × 10−5

LDL,TG,CHOL 8.51 × 10−4 1.79 × 10−2 8.51 × 10−4 1.79 × 10−2 6.32 × 10−2 2.29 × 10−6 8.61 × 10−4

Norway APOE LDL,TG 1.42 × 10−25 8.16 × 10−25 1.42 × 10−25 8.16 × 10−25 4.72 × 10−24 2.43 × 10−4 2.43 × 10−4

LDL,CHOL 8.12 × 10−29 1.64 × 10−27 8.12 × 10−29 1.64 × 10−27 6.70 × 10−27 1.13 × 10−4 1.13 × 10−4

TG,CHOL 5.32 × 10−20 1.46 × 10−19 5.32 × 10−20 1.46 × 10−19 6.08 × 10−19 1.66 × 10−3 1.66 × 10−3

LDL,TG,CHOL 1.18 × 10−24 3.06 × 10−23 1.18 × 10−24 3.06 × 10−23 1.68 × 10−22 8.33 × 10−5 2.20 × 10−4

DIAGEN APOE LDL,TG 1.78 × 10−8 1.76 × 10−7 1.78 × 10−8 1.76 × 10−7 4.47 × 10−7 3.73 × 10−3 3.73 × 10−3

LDL,CHOL 1.24 × 10−9 1.44 × 10−8 1.24 × 10−9 1.44 × 10−8 3.24 × 10−8 1.60 × 10−1 1.60 × 10−1

TG,CHOL 2.99 × 10−6 2.49 × 10−5 2.99 × 10−6 2.49 × 10−5 4.51 × 10−5 1.71 × 10−1 1.71 × 10−1

LDL,TG,CHOL 1.81 × 10−10 4.43 × 10−9 1.81 × 10−10 4.43 × 10−9 1.19 × 10−8 1.25 × 10−3 1.83 × 10−2

METSIM APOE LDL,TG 2.70 × 10−7 3.45 × 10−7 2.70 × 10−7 3.45 × 10−7 7.77 × 10−7 6.29 × 10−4 6.29 × 10−4

LDL,CHOL 3.87 × 10−5 5.63 × 10−5 3.87 × 10−5 5.63 × 10−5 9.45 × 10−5 3.08 × 10−3 3.08 × 10−3

LDL,TG,CHOL 1.09 × 10−6 2.08 × 10−6 1.09 × 10−6 2.08 × 10−7 3.91 × 10−6 9.51 × 10−4 1.06 × 10−3

LDLR LDL,TG 1.20 × 10−4 2.59 × 10−5 1.20 × 10−4 2.59 × 10−5 2.51 × 10−5 2.85 × 10−4 2.85 × 10−4

LDL,CHOL 3.24 × 10−5 2.99 × 10−7 3.24 × 10−5 2.99 × 10−7 7.83 × 10−7 1.12 × 10−5 1.12 × 10−5

TG,CHOL 5.49 × 10−4 2.03 × 10−5 5.49 × 10−4 2.03 × 10−5 2.09 × 10−5 1.76 × 10−5 1.76 × 10−5

LDL,TG,CHOL 4.26 × 10−5 1.19 × 10−6 4.26 × 10−5 1.19 × 10−6 1.72 × 10−6 6.16 × 10−5 3.24 × 10−5

Trinity An A,B 2.14 × 10−20 3.14 × 10−18 2.14 × 10−20 3.14 × 10−18 7.67 × 10−17 4.21 × 10−3 2.44 × 10−3

Students enzyme A,C 1.08 × 10−17 9.53 × 10−16 1.08 × 10−17 9.53 × 10−16 4.46 × 10−15 2.36 × 10−3 2.53 × 10−3

Study gene B,C 6.54 × 10−15 9.51 × 10−12 6.54 × 10−15 9.51 × 10−12 1.05 × 10−10 8.96 × 10−2 5.83 × 10−2

A,B,C 2.30 × 10−21 5.87 × 10−18 2.30 × 10−21 5.87 × 10−18 1.56 × 10−16 7.42 × 10−3 3.91 × 10−3

The associations that attain a threshold significance of 𝑃 < 3.1 × 10−6 are highlighted in red (Liu et al. 2014). The results of “Basis of both GVF and 𝛽𝓁(𝑡)”
were based on smoothing both GVF and genetic effect functions 𝛽𝓁(𝑡) of model (5), and the results of “Basis of 𝛽-smooth only” were based on smoothing 𝛽𝓁(𝑡)
only approach of model (7). GVF, genetic variant function.

determined by the data, and takes marker spacing and LD and

similarity among individuals into account. In short, the func-

tional regression models are data-driven approaches.

By using gene-based tests, one may discover associations

with a variant set. Gene-based tests do not reveal precisely

which variants are associated with the disease, but the find-

ings can suggest targeted follow-up and laboratory investiga-

tion (Zuk et al., 2014). If all variants had small effects on the

phenotypes, it would be hard to locate them. If the contribu-

tion of some causal variants to the traits is reasonably large,

it would be possible to locate them. We argue that MFLM

and MANOVA perform better in most major gene association

studies.

In our real data analysis, we found that multivariate fixed

models perform better than GAMuT in most gene regions.

Note that the European lipid data contain both rare and com-

mon variants. As argued by Ionita-Laza et al. (2013), it is rea-

sonable to assume that a combination of rare and common

variants affects the risk of many complex disorders. GAMuT

detected only one association signal at gene LPL, while mul-

tivariate fixed models failed to confirm it. Hence, the two

methods can be complementary instead of competing with
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each other. It is our hope that our work may shed more light

in gene-based association analysis to facilitate dissection of

complex disorders.
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