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Abstract

In this paper, extensive simulations are performed to compare two statistical methods to analyze multiple corre-

lated quantitative phenotypes: (1) approximate F -distributed tests of multivariate functional linear models (MFLM)

and additive models of multivariate analysis of variance (MANOVA), and (2) Gene Association with Multiple Traits

(GAMuT) for association testing of high-dimensional genotype data. It is shown that approximate F -distributed

tests of MFLM and MANOVA have higher power and are more appropriate for major gene association analysis

(i.e., scenarios in which some genetic variants have relatively large effects on the phenotypes); GAMuT has higher

power and is more appropriate for analyzing polygenic effects (i.e., effects from a large number of genetic variants

each of which contributes a small amount to the phenotypes). MFLM and MANOVA are very flexible and can be

used to perform association analysis for: (i) rare variants, (ii) common variants, and (iii) a combination of rare

and common variants. Although GAMuT was designed to analyze rare variants, it can be applied to analyze a

combination of rare and common variants and it performs well when (1) the number of genetic variants is large and

(2) each variant contributes a small amount to the phenotypes (i.e., polygenes). MFLM and MANOVA are fixed

effect models which perform well for major gene association analysis. GAMuT can be viewed as an extension of

sequence kernel association tests (SKAT). Both GAMuT and SKAT are more appropriate for analyzing polygenic

effects and they perform well not only in the rare variant case, but also in the case of a combination of rare and

common variants. Data analyses of European cohorts and the Trinity Students Study are presented to compare the

performance of the two methods.

Key Words: rare variants, common variants, association mapping, quantitative trait loci, complex traits, functional

data analysis, multivariate functional linear models (MFLM), multivariate analysis of variance (MANOVA).
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Introduction

Since multi-phenotype analysis can increase power to dissect complex disorders, analysis of pleiotropic traits has

become a very important topic. One method to analyze pleiotropic traits is to analyze a single polymorphism at a

time to evaluate the effect of common variants as is routinely done in genome-wide association studies (GWAS) or

exome studies [Allison et al., 1998; Chavali et al.; 2010; Ferreira and Purcell, 2009; Galesloot et al., 2014; Huang

et al., 2011; O’Reilly et al., 2012; Ried et al. 2012; Sivakumaran et al., 2011; Solovieff et al., 2013]. In recent

years, next-generation sequencing technologies have provided rich resources to search for causal genetic variants.

Researchers are facing ever-increasing amounts of data and the need to analyze such data efficiently to enable novel

discoveries [Ansorge, 2009; Mardis, 2008; Metzker, 2010; Rusk and Kiermer, 2008; Shendure and Ji, 2008]. There

are increasing interest in developing gene-based methods to analyze next-generation sequencing data of pleiotropic

traits [Broadaway et al., 2016; Maity et al., 2012; Vsevolozhskaya et al., 2016; Wang et al., 2015]. The gene-based

methods have several advantages such as combining multiple variants for a unified analysis, thereby increasing

power, and reducing the number of multiple comparisons. In practice, the advantages of different methods are not

always clear. In this article, we aim at evaluate the performance of two gene-based procedures described below to

understand the pros and cons of each procedure.

In Wang et al. (2015), multivariate functional linear models (MFLM) were proposed to perform gene-based

analysis of pleiotropic traits. The MFLM are very flexible and can be used to analyze rare variants or common

variants or a combination of the two. Here the rare variants’ minor allele frequencies (MAF) are less than 0.01

∼ 0.05. Broadaway et al. [2016] proposed a method of Gene Association with Multiple Traits (GAMuT) for

association testing of phenotypes with high-dimensional rare variant data. By using simulated data of 30 kb regions

using COSI [Schaffner et al.; 2005], the authors compared power levels of GAMuT and approximate F -distributed

tests of MFLM, and found that GAMuT had higher power than the approximate F -distributed tests of MFLM for 6

and 10 correlated quantitative phenotypes. In addition, Broadaway et al. [2016] analyzed four phenotypic measures

of cardiovascular health using data from the Genetic Epidemiology Network of Arteriopathy (GENOA) [Daniels et

al., 2004], and found that MFLM inflates p-values. An interesting question is: why and how this happens?

The data analyzed in Broadaway et al. [2016] included 48,712 rare genetic variants (MAF < 3%) that fell within

3,277 genes. Hence, each gene region has about 15 rare variants in the data analysis. Note that MFLM are designed

to analyze high-dimensional next-generation sequencing data of multiple quantitative traits [Wang et al., 2015]. For

a gene region with about 15 rare variants, the number of parameters of MFLM is about 60 for four phenotypes if

one uses B-spline basis functions suggested by Wang et al. [2015]. Therefore, the number of parameters is much
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larger than the number of rare variants in the data analysis making it almost impossible for MFLM to perform

well. If there is only a small number of variants in a gene region, it would be possible to use linear regressions to

perform model selection to pick up the important variants, and then one may be able to get a final optimal model

to analyze the data. In that case, neither MFLM nor GAMuT is necessary since they are mainly for large number

of variant analysis.

In the simulation studies of Wang et al. [2015], genetic variants located in 3 kb regions were simulated using the

package COSI [Schaffner et al., 2005]. In the simulations of rare variants (defined as MAF < 3%), the 3 kb regions

contain a mean of 53 variants. In the case that some variants are rare and some are common, the 3 kb regions

contain a mean of 59 variants and about 10% are common. If the simulated data used in Broadaway et al. [2016] are

similar, the 30 kb regions would contain more than 500 rare variants (and each causal variant contributes a small

amount to the traits). Hence, the simulation studies of Broadaway et al. [2016] were based on high-dimensional

genotype data. In the Supplemenatry Information, Broadaway et al. [2016] presented a power comparison

using genetic variants located in 3 kb regions for three phenotypes and found that GAMuT performed similarly to

MFLM when genetic effect sizes are relatively large.

Some interesting questions and issues stand out: how do the two methods of GAMuT and MFLM perform

for more simulation scenarios? When does the GAMuT perform better and when do the fixed models including

MFLM perform better and why? MFLM are very flexible and can be used to perform association analysis for: (i)

rare variants, (ii) common variants, and (iii) a combination of rare and common variants. Can GAMuT be used

to analyze a combination of rare and common variants (or just common variants), although it was designed to

analyze rare variants only? Here we perform extensive simulations to evaluate the performance of the approximate

F -distributed tests of fixed effect models and GAMuT for quantitative traits by using genetic variants located in 3 -

30 kb regions of simulated COSI data. Data analyses of European cohorts and Trinity Students Study are presented

to compare the performance of the two methods.

Models

In gene-based association analysis, the research goal is to model the association between multiple genetic variants

and phenotypic traits. In this section, we briefly introduce the two procedures (i.e., GAMuT and MFLM) for

gene-based analysis of pleiotropic traits.
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Gene Association with Multiple Traits (GAMuT)

GAMuT utilizes a kernel distance-covariance to build a nonparametric test of independence between multiple pheno-

types and multiple genetic variants, and can be viewed as an extension of sequence kernel association tests (SKAT)

[Ionita-Laza et al., 2013; Lee et al., 2012; Wu et al., 2011]. GAMuT can analyze both quantitative and categorical

phenotypes adjusting for covariates. The kernel distance-covariance framework used by GAMuT assesses if pairwise

phenotypic similarity is independent of pairwise rare-variant genotypic similarity. The phenotypic similarity and

genotypic similarity can be formulated as matrices using a projection or a weighted linear kernel function. An MAF

weighted linear kernel is recommended for the genotypic similarity [Broadaway et al., 2016].

Multivariate Fixed Effect Models

Consider n individuals who are sequenced in a genomic region that has m variants. We assume that the m variants

are located in a region with ordered physical positions 0 ≤ t1 < · · · < tm = T . To make the notation simpler,

we normalize the region [t1, T ] to be [0, 1]. For the i-th individual, let Xi = (xi(t1), · · · , xi(tm))′ denote her/his

genotypes at the m variants and Zi = (zi1, · · · , zic)′ denote her/his covariates. Hereafter, ′ denotes the transpose of

a vector or matrix. For genotypes, we assume that xi(tj)(= 0, 1, 2) is the number of minor alleles of the individual at

the j-th variant located at the position tj . For each individual, we assume that there are L quantitative traits, L ≥ 1.

We assume that the quantitative traits are normally distributed. For the i-th individual, let yiℓ (ℓ = 1, 2, · · · , L)

denote her/his quantitative traits, respectively.

Traditional Additive Effect Models of MANOVA

To model the relationship between the quantitative traits and the m variants, one may use the following additive

effect models of multivariate analysis of variance (MANOVA)

yiℓ = αℓ0 + Z ′
iαℓ +

m∑

j=1

xi(tj)βℓj + εiℓ, ℓ = 1, 2, · · · , L, (1)

where αℓ0 is the overall mean, αℓ = (αℓ1, · · · , αℓc)
′ is a c × 1 column vector of regression coefficients of covariates,

βℓj is the effect of genetic variant xi(tj), and εiℓ is an error term. For each i, the error vector εi = (εi1, · · · , εiL)′ is

normally distributed with a mean vector of zeros and a L × L variance-covariance matrix Σ. Moreover, ε1, · · · , εn

are assumed to be independent. When the number of genetic variants is large, the number of parameters in the

model (1) can be large which may lead to low power. Before fitting the model (1), the QR decomposition can be

applied to the genotype data to remove the redundancy. Since dense variants in a region can be highly correlated to

each other, the QR decomposition could significantly reduce the dimensionality and could be useful in data analysis.
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General Multivariate Functional Linear Models

In this subsection, we introduce general MFLM to connect genetic variants to the traits [Fan et al., 2013, 2014,

2015, 2016a, 2016b, 2016c; Ramsay and Silverman, 2005; Wang et al., 2015]. We view the i-th individual’s genotype

data as a genetic variant function (GVF) as Xi(t), t ∈ [0, 1]. We assume that the GVF Xi(t) is continuous, but this

assumption can be removed as in the beta-smooth models (6).

Note that the sample includes n discrete realizations or observations Xi = (xi(t1), · · · , xi(tm))′ of the human

genome. By using the genetic variant information Xi, we may estimate the related GVF Xi(t). To relate the GVF

to the quantitative traits adjusting for covariates, we consider the following MFLM

yiℓ = αℓ0 + Z ′
iαℓ +

∫ 1

0
Xi(t)βℓ(t)dt+ εiℓ, ℓ = 1, 2, · · · , L, (2)

where βℓ(t) is the genetic effect of GVF Xi(t) at the position t, and the other terms are similar to those in the

MANOVA model (1).

Estimation of Genetic Variant Functions. To estimate the GVF Xi(t) from the genotypes Xi, we use an

ordinary linear square smoother [Fan et al., 2013, 2014; Wang et al., 2015]. The ordinary linear square smoother

method assumes that the GVF is smooth. Let ϕk(t), k = 1, · · · ,K, be a series of K basis functions, such as the

B-spline basis and Fourier basis functions. Denote ϕ(t) = (ϕ1(t), · · · , ϕK(t))′. Let Φ denote the m by K matrix

containing the values ϕk(tj), where j ∈ 1, · · · ,m. Using the discrete realizations Xi = (xi(t1), · · · , xi(tm))′, we may

estimate the GVF Xi(t) using an ordinary linear square smoother as follows [Ramsay and Silverman, 2005]

X̂i(t) = (xi(t1), · · · , xi(tm))Φ[Φ′Φ]−1ϕ(t) (3)

We consider two types of basis functions: (1) the B-spline basis: ϕk(t) = Bk(t), k = 1, · · · ,K; and (2) the Fourier

basis: ϕ1(t) = 1, ϕ2r+1(t) = sin(2πrt), and ϕ2r(t) = cos(2πrt), r = 1, · · · , (K − 1)/2. Here for the Fourier basis, K

is taken as a positive odd integer [de Boor, 2001; Ferraty and Romain, 2010; Horváth and Kokoszka, 2012; Ramsay

et al., 2009; Ramsay and Silverman, 2005].

Revised Functional Regression Models. The genetic effect functions βℓ(t) are assumed to be continu-

ous/smooth. One may expand them by B-spline or Fourier basis functions. Formally, let ψk(t), k = 1, · · · ,Kβ, be

a series of Kβ basis functions. We expand the genetic effect function βℓ(t) by ψ(t) = (ψ1(t), · · · , ψKβ
(t))′ as

βℓ(t) = (ψ1(t), · · · , ψKβ
(t))(βℓ1, · · · , βℓKβ

)′ = ψ(t)′βℓ, (4)

where βℓ = (βℓ1, · · · , βℓKβ
)′ is a vector of coefficients βℓ1, · · · , βℓKβ

. Replacing Xi(t) in MFLM (2) by X̂i(t) in (3)
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and βℓ(t) by the expansion (4), we have the following revised MFLM

yiℓ = αℓ0 + Z ′
iαℓ +

[
(xi(t1), · · · , xi(tm))Φ[Φ′Φ]−1

∫ 1

0
ϕ(t)ψ′(t)dt

]
βℓ + εiℓ

= αℓ0 + Z ′
iαℓ +W ′

iβℓ + εiℓ. (5)

where W ′
i = (xi(t1), · · · , xi(tm))Φ[Φ′Φ]−1

∫ 1
0 ϕ(t)ψ′(t)dt.

Multivariate Functional Linear Models: beta-smooth Only Approach

We now introduce a simplified version of our MFLM, i.e., beta-smooth only model [Fan et al., 2013, 2014; de

Boor, 2001; Ferraty and Romain, 2010; Horváth and Kokoszka, 2012; Ramsay et al., 2009; Ramsay and Silverman,

2005; Wang et al., 2015]. The beta-smooth only MFLM were developed to define the relationship between the ℓ-th

quantitative trait and the m variants [Wang et al., 2015]

yiℓ = αℓ0 + Z ′
iαℓ +

m∑

j=1

xi(tj)βℓ(tj) + εiℓ, ℓ = 1, 2, · · · , L, (6)

where βℓ(tj) is the genetic effect at the physical position tj , and the other terms are similar to those in the model

(1). As for the general MFLM (2), the genetic effect βℓ(t) are expanded by a series of basis functions by relations

(4). Replacing βℓ(tj) by the expansion, the models (6) can be revised as

yiℓ = αℓ0 + Z ′
iαℓ +




m∑

j=1

xi(tj)
(
ψ1(tj), · · · , ψKβ

(tj)
)

βℓ + εiℓ

= αℓ0 + Z ′
iαℓ +W ′

iβℓ + εiℓ, (7)

where W ′
i =

∑m
j=1 xi(tj)

(
ψ1(tj), · · · , ψKβ

(tj)
)
. In the model (6) and its revised version (7), we use the raw genotype

data Xi = (xi(t1), · · · , xi(tm))′. The genetic effect functions βℓ(t) are assumed to be smooth. Thus, the models are

called beta-smooth only. In our previous work, we showed that beta-smooth only models perform similarly to the

general MFLM in real data analysis and simulation studies [Fan et al., 2013, 2014, 2015, 2016a, 2016b, 2016c; Wang

et al., 2015].

Null Hypotheses and Test Statistics

Consider the additive effect model of MANOVA (1) and the revised MFLM (5) and (7). To test for association be-

tween the m genetic variants and the quantitative traits as a group, the null hypothesis is H0 : βℓ = (βℓ1, · · · , βℓm)′ =

0, ℓ = 1, · · · , L, for model (1) and H0 : βℓ = (βℓ1, · · · , βℓKβ
)′ = 0, ℓ = 1, · · · , L, for models (7) and (5). We may test

the null H0 : β1 = · · · = βL = 0 by approximate F -distributed tests based on Pillai-Bartlett trace, Hotelling-Lawley

trace, and Wilks’s Lambda using standard statistical approaches [Anderson, 1984; Rao, 1973].
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Functional Data Analysis Parameters

In the data analysis and simulations, we used the functional data analysis procedure in the statistical package R.

We used two functions from the functional data analysis (fda) R package as follows to create the bases:

basis = create.bspline.basis(norder = order, nbasis = bbasis)

basis = create.fourier.basis(c(0,1), nbasis = fbasis)

The three parameters were taken as order = 4, bbasis = 15, fbasis = 21 for quantitative traits in all simulations.

Specifically, the order of B-spline basis was 4, and the number of B-spline basis functions was K = Kβ = 15, the

number of Fourier basis functions was K = Kβ = 21. To make sure that the results are valid and stable, we tried a

wide range of parameters that 10 ≤ K = Kβ ≤ 21 and the results are very close to each other (data not shown).

Simulation Studies

We utilize two fixed models: (1) MFLM and (2) additive models (1) of multivariate analysis of variance (i.e.,

MANOVA). Simulations were performed to evaluate the performance of the fixed models and GAMuT with sample

sizes 500, 1,000, and 1,500. We used the European ancestry simulated sequence data [Lee et al., 2012; Wu et

al., 2011]. The sequence data are from 10,000 simulated chromosomes covering a 1 Mb region simulated using

the calibrated coalescent model programmed in COSI [Schaffner et al., 2005]. The generated European haplotypes

mimic CEPH Utah individuals with ancestry from northern and western Europe in terms of site frequency spectrum

and linkage disequilibrium pattern.

Type I error Simulations. To evaluate whether the approximate F -distributed tests control false positive

rates accurately, we consider either three or six correlated phenotypes for each individual. For the three phenotype

case, we generated three correlated quantitative traits using the model

yi1 = 0.5zi1 + 0.5zi2 + εi1,

yi2 = 0.3zi1 + 0.7zi2 + εi2, (8)

yi3 = 0.6zi1 + 0.4zi2 + εi3,

where zi1 is a continuous covariate from a standard normal distribution N(0, 1), zi2 is a dichotomous covariate

taking values 0 and 1 with a probability of 0.5, and (εi1, εi2, εi3)
′ follows a normal distribution with a mean vector

of 0 and a 3 × 3 variance-covariance matrix Σ =




1.00 0.60 −0.35
0.60 1.00 −0.45

−0.35 −0.45 1.00


 . The 3 × 3 variance-covariance matrix

Σ is taken from an empirical analysis of three traits from The Trinity Students Study [Wang et al., 2015].
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For the six phenotype case, we use the same strategy of Broadaway et al. [2016] to generate the correlation

matrix Σ. That is, we consider scenarios of low residual correlation among phenotypes [pairwise correlation among

phenotypes selected from a uniform (0, 0.3) distribution], moderate residual correlation [pairwise correlation selected

from a uniform (0.3, 0.5) distribution], and high residual correlation [pairwise correlation selected from a uniform

(0.5, 0.7) distribution]. The six correlated quantitative traits were generated using the model

yi1 = 0.2zi1 + 0.8zi2 + εi1,

yi2 = 0.3zi1 + 0.7zi2 + εi2,

yi3 = 0.4zi1 + 0.6zi2 + εi3, (9)

yi4 = 0.5zi1 + 0.5zi2 + εi4,

yi5 = 0.6zi1 + 0.4zi2 + εi5,

yi6 = 0.7zi1 + 0.3zi2 + εi6,

where zi1 and zi1 are the same as those of (8).

To be sure that the false positives are properly controlled, empirical type I errors are calculated for the approxi-

mate F -distributed tests. For the three trait case, the type one error rates were reported in Tables 3 and 4 of Wang

et al. (2015). For six traits, the type I errors of the approximate F -distributed tests are reported in Tables 1 and

2, and they are around the nominal levels and so the false positive rates are accurately controlled.

Empirical Power Simulations. For empirical power simulations of quantitative traits, we assumed that 5% of

the variants were causal. We considered two scenarios: (1) all causal variants are rare (MAF < 0.03), and (2)

some causal variants are rare and some are common. Once a subregion of size 3 - 30 kb was selected from the 1

Mb region, a subset of p causal variants located in the subregion was then randomly selected to obtain ordered

genotypes (xi(t1), · · · , xi(tp)). Then, we generated the quantitative traits by adding genetic contributions to models

(8) and (9). For instance, the three quantitative traits were generated by

yi1 = 0.5zi1 + 0.5zi2 + β11xi(t1) + · · · + β1pxi(tp) + εi1,

yi2 = 0.3zi1 + 0.7zi2 + β21xi(t1) + · · · + β2pxi(tp) + εi2, (10)

yi3 = 0.6zi1 + 0.4zi2 + β31xi(t1) + · · · + β3pxi(tp) + εi3,

where zi1, zi2, and (εi1, εi2, εi3)
′ are the same as in the model (8), and the βs are additive effects for the causal

variants defined as follows. We used |βij | = ci| log10(MAFj)|, where MAFj was the MAF of the j-th variant. For

7
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the three trait model (10), we assume that 5% of the variants were causal and the constants ci are defined by

c1 = log(10)/(2k), c2 = log(8.5)/(2k), c3 = log(7)/(2k); (11)

for the six trait case, we also assume that 5% of the variants were causal and the constants ci = 4.0/k for all six

traits, where k depends on region size. The constants k and genetic effect sizes decrease as region sizes increase:

k =





1.0 if region size = 3 kb,

2.0 if region size = 6 kb,

· · · · · ·
9.0 if region size = 27 kb,

10.0 if region size = 30 kb.

(12)

It can be seen that the effect sizes |βij | are smaller and smaller when the region sizes in (12) increase. In particular,

the number of causal variants is large and each causal variant contributes a small amount to the traits if the region

sizes are larger than 12 kb for the three trait case (i.e., ci ≤ log(10)/(2 ∗ 4) ≈ 0.29). For the six trait case, the

constant ci = 0.4 when region size is 30 kb and this is the same as that in the simulations of Figure 3, Broadaway

et al. [2016], except for an additional random contribution N(0, 1)| log10(MAFj)|. For the three trait case, we also

consider a second type of constants: k = 3.0, i.e., effect sizes |βij | do not depend on region sizes and are relatively

large.

For each setting of empirical power calculations, 1,000 datasets were simulated to calculate the empirical power

levels as the proportion of p-values which are smaller than a given α = 0.01 level. The results of two combinations

of traits are reported: one tri-variate combination (y1, y2, y3) and one bivariate combination (y1, y2) for three trait

case. We calculated the empirical power levels for the approximate F -distributed tests based on Pillai-Bartlett

trace, Hotelling-Lawley trace, and Wilks’s Lambda. The results of approximate F -distributed tests based on the

Pillai-Bartlett trace are reported, which are similar to the results of approximate F -distributed tests based on

Hotelling-Lawley trace and Wilks’s Lambda. An MAF weighted linear kernel is used for the genotypic similarity.

Three Traits: Power Comparison When the Constants k are Given by Relations (12). In this case, genetic

effect sizes |βij | decrease as region sizes increase. When some causal variants are rare and some are common, we

report in Figure 1 the empirical power of the approximate F -distributed tests of additive models of MANOVA (1)

and MFLM (7) and GAMuT at α = 0.01. When the region sizes are between 3 kb and 12 kb, both the additive

models of MANOVA and MFLM perform better than GAMuT, and the additive models of MANOVA perform

better than MFLM. When the region sizes are 15 kb and 18 kb, both the additive models of MANOVA and MFLM

perform similarly to GAMuT based on projection matrix, and the additive models of MANOVA start to perform

worse than MFLM. When the region sizes are between 21 kb and 27 kb, both the additive models of MANOVA and

8
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MFLM perform worse than GAMuT based on projection matrix, and the additive models of MANOVA perform

worse than MFLM.

When all causal variants are rare, we report empirical power levels in Figure 2. When the region sizes are

between 3 kb and 9 kb, the additive models of MANOVA perform the best (i.e., better than GAMuT and MFLM),

and MFLM performs better than or similar to GAMuT. When the region sizes are 12 kb and 15 kb, the additive

models of MANOVA perform similarly to GAMuT based on projection matrix. When the region sizes are between

18 kb and 27 kb, the GAMuT based on projection matrix performs the best.

In the Figures 1 and 2, GAMuT based on projection matrix performs similarly to GAMuT based on linear kernel

when the region sizes are between 3 kb and 9 kb; When the region sizes are between 12 kb and 27 kb, GAMuT

based on projection matrix perform better than GAMuT based on linear kernel.

Three Traits: Power Comparison When the Constant k = 3.0. In these cases, genetic effect sizes |βij | do not

depend on the region sizes and are relatively large. When some causal variants are rare and some are common, the

power levels are presented in Figure 3. When all causal variants are rare, the power levels are presented in Figure

4. In these Figures, the results of 9 kb region sizes are not plotted since they are the same as those in plots (a3)

of Figures 1 and 2. The obvious features of Figures 3 and 4 are that the additive models of MANOVA perform the

best (i.e., better than GAMuT and MFLM). When some causal variants are rare and some are common, MFLM

perform better than GAMuT. When all causal variants are rare, MFLM perform worse than GAMuT.

Six Traits: Power Comparison When the Constants k are Given by Relations (12). If the residual

correlations are moderate, the empirical power levels are plotted in Figures 5 and 6. When some causal variants are

rare and some are common, the power levels are presented in Figure 5. When all causal variants are rare, the power

levels are presented in Figure 6. It can be seen that the additive models of MANOVA perform the best (i.e., better

than GAMuT and MFLM) in Figures 5 and 6. When some causal variants are rare and some are common, MFLM

perform better than GAMuT. When all causal variants are rare, MFLM perform better than GAMuT when the

region sizes are between 6 kb and 15 kb, MFLM perform similarly to GAMuT when the region sizes are between 18

kb and 24 kb, and MFLM perform similarly to or worse than GAMuT when the region sizes are 27 kb and 30 kb.

In Figures S.1 and S.2, the power levels are plotted when the residual correlations are low. In Figures S.3 and

S.4, the power levels are plotted when the residual correlations are high. The features of Figures S.1 and S.3 are

similar to those of the Figure 1 when some causal variants are rare and some are common, and the features of

Figures S.2 and S.4 are similar to those of the Figure 2 when all causal variants are rare.
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Application to Real Data

In Wang et al. [2015], we analyzed data from the Trinity Students Study (TSS) and European lipid studies by

fixed models. In this report, we analyzed the data by GAMuT. Table 3 reports results of MFLM, additive models

of MANOVA, and GAMuT. In the European lipid studies, four lipid quantitative traits were analyzed in 22 gene

regions: high-density lipoprotein (HDL) levels, low-density lipoprotein (LDL) levels, triglycerides (TG), and total

cholesterol (CHOL). Three quantitative traits (i.e., A, B, and C) from the Trinity Students Study were analyzed in

the region of an enzyme gene. The associations that attain a threshold significance of P < 3.1×10−6 are highlighted

in red [Liu et al., 2014]. If the p-values are around 10−5 but larger than 3.1 × 10−6, we claim the association as

tentative.

In Table 3, the results of GAMuT are new but the other results are mainly from Wang et al. [2015]. GAMuT

detected only one association signal at gene LPL in the FUSION study based on projection matrix for a combination

of (LDL, TG, CHOL) [p = 2.29× 10−6], and this is one of the two cases that MFLM and MANOVA failed to detect

an association (the other instance is from a combination of (LDL, TG) at gene LPL in study of D2d-2007). In

addition, GAMuT based on projection matrix detected seven tentative association signals and GAMuT based on

linear kernel detected five. By MFLM and additive models of MANOVA, however, quite a few combinations of lipid

traits from the 5 European studies showed associations or tentative association signals in the regions of the APOE

and LDLR genes, and all combinations of three traits (i.e., A, B, and C) in the Trinity Students Study showed

association with the enzyme gene (Table 3). Moreover, the p-values of the approximate F -distributed tests of fixed

models are generally much smaller than those of GAMuT. Therefore, the fixed effect MFLM and MANOVA perform

better than GAMuT.

In Tables S.3 and S.4, we report the results of data analysis of the European lipid studies by dividing the data into

rare and common variants based on a cutoff of 0.03. It is worth noting that the gene regions contain both rare and

common variants and the associations are mainly from common variants. GAMuT detected a tentative association

at gene LPL in the FUSION study in Table S.4 based on common variants for the combination (LDL, TG, CHOL)

[p = 2.99 × 10−5], but no association signal was detected in Table S.3 based on rare variants [p = 3.02 × 10−1].

After combining rare and common variants into one group, GAMuT detected an association signal at gene LPL in

the FUSION study based on projection matrix in Table 3 [p = 2.29 × 10−6]. Interestingly, GATuT was designed to

analyze rare variants while the only association was detected in a combination of rare and common variants at gene

LPL.
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Discussion

In this study, extensive simulations were performed to evaluate the performance of tests of fixed effect models and

GAMuT, by using simulated genetic variants located in 3 - 30 kb regions. We carried out simulation analyses for two

scenarios: (1) all causal variants are rare; (2) some causal variants are rare and some are common. No matter which

scenario, fixed effect MFLM and MANOVA perform better than GAMuT when the genetic effect sizes are relatively

large, and GAMuT performs better when the region sizes are large and the genetic effect sizes are small. When

the region size grows, MFLM and MANOVA gradually perform worse and GAMuT performs better if the genetic

effect sizes are smaller and smaller. In short, MFLM and MANOVA perform well if the effective sizes are relatively

large and GAMuT performs well when the effective sizes are small, which was also pointed out in Broadaway et al.

[2016].

In prior studies, fixed effect functional regression models were found to outperform SKAT, its optimal unified

test (SKAT-O), and a combined sum test of rare and common variant effect (SKAT-C) in most cases [Fan et al.,

2013, 2014, 2015, 2016a, 2016b, 2016c; Luo et al., 2011, 2012, 2013; Svishcheva et al., 2015; Vsevolozhskaya et al.,

2014, 2016]. In Fan et al. (2016c), we compared the performance of MFLM and MANOVA, and the performance

of SKAT/SKAT-O/SKAT-C and the univariate fixed models [Fan et al., 2013]. For multivariate analysis, no

comparison was made since there was no multivariate version of SKAT/SKAT-O/SKAT-C to compare with in Fan

et al. (2016c). In this paper, we fill the gap by comparing the performance of MFLM and MANOVA with GAMuT.

Geneticists have long known of the existence of polygenes which have small effects on phenotypes [Fisher,

1918]. If the number of causal genetic variants at a gene locus is very large and each variant contributes a small

amount to the traits, SKAT/SKAT-O/SKAT-C and GAMuT perform better than the tests of fixed models. Thus,

SKAT/SKAT-O/SKAT-C as well as GAMuT are more appropriate for analyzing polygenic effects. In major gene

association analysis, we look for genes which have relatively large effects (otherwise, they are not major genes).

When the number of causal genetic variants at a major gene locus is not very large and the contribution of a few

causal variants to the traits is reasonably large, the fixed models should work well, which should be the case for

most complex disorders.

The GAMuT procedure was designed for the analysis of rare variants but we use GAMuT to analyze a combi-

nation of common and rare variants. As noted in Ionita-Laza et al. [2013], this would be suboptimal and would

lead to the common variants drowning out the effects of rare variants. It is very likely that GAMuT can be revised

to improve power to analyze a combination rare and common variants by implementing a strategy similar to the

combined sum test outlined in Ionita-Laza et al. [2013]. In terms of MFLM, it does not need to be weighted by

11
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MAF. The genetic effect functions βℓ(t) is actually the effect of the genetic variant functions at the location t, which

can be thought of as a weighted effect. In Fan et al. (2014), we explored the issues using weighted genetic variant

functions defined by the MAF, and found that the power is very similar to the power without weights. Hence, it

is not necessary to add weights in functional regression models. One benefit of treating genotype data functionally

is that the genetic effect function naturally serves as a weighting function; this function is determined by the data,

and takes marker spacing and linkage disequilibrium (LD) and similarity among individuals into account. In short,

the functional regression models are data driven approaches.

By using gene-based tests, one may discover associations with a variant set. Gene-based tests do not reveal pre-

cisely which variants are associated with the disease, but the findings can suggest targeted follow-up and laboratory

investigation [Zuk et al., 2014]. If all variants had small effects on the phenotypes, it would be hard to locate them.

If the contribution of some causal variants to the traits is reasonably large, it would be possible to locate them. We

argue that MFLM and MANOVA perform better in most major gene association studies.

In our real data analysis, we found that multivariate fixed models perform better than GAMuT in most gene

regions. Note that the European lipid data contain both rare and common variants. As argued by Ionita-Laza

et al. [2013], it is reasonable to assume that a combination of rare and common variants affects the risk of many

complex disorders. GAMuT detected only one association signal at gene LPL while multivariate fixed models failed

to confirm it. Hence, the two methods can be complementary instead of competing with each other. It is our hope

that our work may shed more light in gene-based association analysis to facilitate dissection of complex disorders.
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Ried JS, Döring A, Oexle K, Meisinger C, Winkelmann J, Klopp N, Meitinger T, Peters A, Suhre K, Wichmann

HE, and Gieger C. 2012. PSEA: Phenotype Set Enrichment Analysis - a new method for analysis of multiple

phenotypes. Genetic Epidemiology 36:244-252.

Rusk N, Kiermer V. 2008. Primer: Sequencingthe next generation. Nat Methods 5:15.

Schaffner SF, Foo C, Gabriel S, Reich D, Daly MJ, Altshuler D. 2005. Calibrating a coalescent simulation of

human genome sequence variation. Genome Research 15:1576-1583.

Shendure J, Ji H. 2008. Next-generation DNA sequencing. Nat Biotechnol 26:1135-1145.

Sivakumaran S, Agakov F, Theodoratou E, Prendergast JG, Zgaga L, Manolio T, Rudan I, McKeigue P, Wilson JF,

and Campbell H. 2011. Abundant pleiotropy in human complex diseases and traits. The American Journal

of Human Genetics 89:607-618.

Solovieff N, Cotsapas C, Lee PH, Purcell SM, and Smoller JW. 2013. Pleiotropy in complex traits: challenges and

strategies. Nat Rev Genet 14:483-495.

Svishcheva GR, Belonogova NM, Axenovich TI. 2015. Region-based association test for familial data under func-

tional linear models. PLoS ONE 10:e0128999.

Vsevolozhskaya OA, Zaykin DV, Greenwood MC, Wei C, Lu Q. 2014. Functional analysis of variance for association

studies. PLoS ONE 9(9), e105074.

Vsevolozhskaya OA, Zaykin DV, Barondess DA, Tong X, Jadhav S and Lu Q. 2016. Uncovering local trends in

genetic effects of multiple phenotypes via functional linear models. Genetic Epidemiology 40:210-221.

Wang YF, Liu AY, Mills JL, Boehnke M, Wilson AF, Bailey-Wilson JE, Xiong MM, Wu CO, Fan RZ. 2015.

Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models. Genetic

Epidemiology 39:259-275.

Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. 2011. Rare-variant association testing for sequencing data with

the sequence kernel association test. The American Journal of Human Genetics 89:82-93.

Zuk O, Schaffner SF, Samocha K, Do R, Hechter E, Kathiresan S, Daly MJ, Neale BM, Sunyaev SR, Lander

ES. 2014. Searching for missing heritability: Designing rare variant association studies. Proceedings of the

National Academy of Sciences 111 (4):E455E464.

15



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Table 1: Empirical Type I Error Rates of the Approximate F -distribution Tests based on Pillai-
Bartlett Trace of Six Traits and Moderate Correlation, When the Variants Are either Rare or
Common. The results of “Basis of both GVF and βℓ(t)” were based on smoothing both GVF and genetic effect
functions βℓ(t) of model (5), the results of “Basis of beta-Smooth Only” were based on the smoothing βℓ(t) only
approach of model (7). The order of B-spline basis was 4, and the number of basis functions of B-spline was
K = Kβ = 15; the number of Fourier basis functions was K = Kβ = 21.

Region Sample Nominal Basis of both GVF and βℓ(t) Basis of beta-Smooth Only MANOVA
Size Size Level α B-sp Basis Fourier Basis B-sp Basis Fourier Basis Model (1)

6 kb

500
0.001 0.000896 0.000986 0.000894 0.000987 0.000942
0.0001 0.000082 0.000090 0.000082 0.000090 0.000087

1000
0.001 0.000994 0.001006 0.000994 0.001006 0.000957
0.0001 0.000103 0.000100 0.000103 0.000100 0.000094

1500
0.001 0.001035 0.000974 0.001034 0.000974 0.000974
0.0001 0.000093 0.000097 0.000093 0.000097 0.000098

9 kb

500
0.001 0.000910 0.000897 0.000910 0.000897 0.000887
0.0001 0.000089 0.000081 0.000089 0.000081 0.000105

1000
0.001 0.000995 0.000976 0.000995 0.000976 0.000934
0.0001 0.000094 0.000113 0.000094 0.000113 0.000091

1500
0.001 0.000969 0.000996 0.000969 0.000996 0.000947
0.0001 0.000098 0.000085 0.000098 0.000085 0.000088

12 kb

500
0.001 0.000907 0.000944 0.000907 0.000944 0.000881
0.0001 0.000095 0.000096 0.000095 0.000096 0.000090

1000
0.001 0.000930 0.000954 0.000930 0.000954 0.000928
0.0001 0.000083 0.000088 0.000083 0.000088 0.000101

1500
0.001 0.001012 0.000948 0.001012 0.000948 0.000989
0.0001 0.000088 0.000092 0.000088 0.000092 0.000115

15 kb

500
0.001 0.000931 0.000953 0.000931 0.000953 0.000997
0.0001 0.000086 0.000102 0.000086 0.000102 0.000094

1000
0.001 0.000976 0.000958 0.000976 0.000958 0.000955
0.0001 0.000115 0.000088 0.000115 0.000088 0.000102

1500
0.001 0.000955 0.000889 0.000955 0.000889 0.001003
0.0001 0.000111 0.000100 0.000111 0.000100 0.000106

18 kb

500
0.001 0.000870 0.000943 0.000870 0.000943 0.000938
0.0001 0.000076 0.000081 0.000076 0.000081 0.000098

1000
0.001 0.000958 0.001013 0.000958 0.001013 0.000966
0.0001 0.000099 0.000113 0.000099 0.000113 0.000099

1500
0.001 0.000937 0.000956 0.000937 0.000956 0.000925
0.0001 0.000077 0.000089 0.000077 0.000089 0.000083

21 kb

500
0.001 0.000923 0.000917 0.000923 0.000917 0.000893
0.0001 0.000089 0.000065 0.000089 0.000065 0.000088

1000
0.001 0.000945 0.000961 0.000945 0.000961 0.000969
0.0001 0.000073 0.000089 0.000073 0.000089 0.000102

1500
0.001 0.000947 0.000986 0.000947 0.000986 0.000980
0.0001 0.000093 0.000100 0.000093 0.000100 0.000101

24 kb

500
0.001 0.000939 0.000919 0.000939 0.000919 0.000914
0.0001 0.000093 0.000095 0.000093 0.000095 0.000093

1000
0.001 0.000984 0.000959 0.000984 0.000959 0.000961
0.0001 0.000104 0.000091 0.000104 0.000091 0.000100

1500
0.001 0.001003 0.000931 0.001003 0.000931 0.001003
0.0001 0.000086 0.000089 0.000086 0.000089 0.000104

27 kb

500
0.001 0.000979 0.001003 0.000979 0.001003 0.000925
0.0001 0.000091 0.000081 0.000091 0.000081 0.000091

1000
0.001 0.000919 0.000966 0.000919 0.000966 0.000956
0.0001 0.000088 0.000101 0.000088 0.000101 0.000114

1500
0.001 0.000933 0.000922 0.000933 0.000922 0.000976
0.0001 0.000085 0.000089 0.000085 0.000089 0.000079

30 kb

500
0.001 0.000981 0.001031 0.000981 0.001031 0.000895
0.0001 0.000102 0.000104 0.000102 0.000104 0.000093

1000
0.001 0.000979 0.000972 0.000979 0.000972 0.001001
0.0001 0.000092 0.000093 0.000092 0.000093 0.000087

1500
0.001 0.000966 0.000969 0.000966 0.000969 0.000971
0.0001 0.000096 0.000097 0.000096 0.000097 0.000102
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Table 2: Empirical Type I Error Rates of the Approximate F -distribution Tests based on Pillai-
Bartlett Trace of Six Traits and Moderate Correlation, When the Variants Are Only Rare. The
results of “Basis of both GVF and βℓ(t)” were based on smoothing both GVF and genetic effect functions βℓ(t) of
model (5), the results of “Basis of beta-Smooth Only” were based on the smoothing βℓ(t) only approach of model
(7). The order of B-spline basis was 4, and the number of basis functions of B-spline was K = Kβ = 15; the number
of Fourier basis functions was K = Kβ = 21.

Region Sample Nominal Basis of both GVF and βℓ(t) Basis of beta-Smooth Only MANOVA
Size Size Level α B-sp Basis Fourier Basis B-sp Basis Fourier Basis Model (1)

6 kb

500
0.001 0.000906 0.000919 0.000906 0.000916 0.000921
0.0001 0.000091 0.000088 0.000093 0.000090 0.000085

1000
0.001 0.000996 0.000930 0.000998 0.000930 0.000918
0.0001 0.000096 0.000091 0.000096 0.000091 0.000089

1500
0.001 0.000985 0.000991 0.000985 0.000991 0.000984
0.0001 0.000094 0.000099 0.000094 0.000099 0.000095

9 kb

500
0.001 0.000940 0.000925 0.000940 0.000923 0.000912
0.0001 0.000090 0.000095 0.000090 0.000095 0.000100

1000
0.001 0.000906 0.000969 0.000906 0.000969 0.000900
0.0001 0.000092 0.000086 0.000092 0.000086 0.000092

1500
0.001 0.000981 0.000980 0.000981 0.000980 0.000952
0.0001 0.000111 0.000091 0.000111 0.000091 0.000076

12 kb

500
0.001 0.000930 0.000901 0.000930 0.000901 0.000909
0.0001 0.000086 0.000089 0.000086 0.000089 0.000078

1000
0.001 0.000905 0.000930 0.000905 0.000930 0.000946
0.0001 0.000094 0.000085 0.000094 0.000085 0.000094

1500
0.001 0.000965 0.000983 0.000965 0.000983 0.000984
0.0001 0.000099 0.000099 0.000099 0.000099 0.000097

15 kb

500
0.001 0.000950 0.000947 0.000950 0.000947 0.000940
0.0001 0.000093 0.000099 0.000093 0.000099 0.000093

1000
0.001 0.000951 0.000946 0.000951 0.000946 0.000965
0.0001 0.000103 0.000094 0.000103 0.000094 0.000098

1500
0.001 0.000925 0.000966 0.000925 0.000966 0.000987
0.0001 0.000098 0.000089 0.000098 0.000089 0.000104

18 kb

500
0.001 0.000896 0.000957 0.000896 0.000957 0.000913
0.0001 0.000077 0.000088 0.000077 0.000088 0.000105

1000
0.001 0.000979 0.000955 0.000979 0.000955 0.000946
0.0001 0.000093 0.000078 0.000093 0.000078 0.000105

1500
0.001 0.000969 0.000985 0.000969 0.000985 0.000962
0.0001 0.000083 0.000114 0.000083 0.000114 0.000105

21 kb

500
0.001 0.000888 0.000929 0.000888 0.000929 0.000936
0.0001 0.000086 0.000085 0.000086 0.000085 0.000077

1000
0.001 0.000879 0.000940 0.000879 0.000940 0.001018
0.0001 0.000092 0.000095 0.000092 0.000095 0.000093

1500
0.001 0.000919 0.000932 0.000919 0.000932 0.000989
0.0001 0.000086 0.000079 0.000086 0.000079 0.000086

24 kb

500
0.001 0.000943 0.000846 0.000943 0.000846 0.000931
0.0001 0.000087 0.000091 0.000087 0.000091 0.000076

1000
0.001 0.000968 0.000986 0.000968 0.000986 0.000975
0.0001 0.000085 0.000084 0.000085 0.000084 0.000085

1500
0.001 0.000989 0.000990 0.000989 0.000990 0.001014
0.0001 0.000110 0.000096 0.000110 0.000096 0.000090

27 kb

500
0.001 0.000935 0.000960 0.000935 0.000960 0.000946
0.0001 0.000105 0.000107 0.000105 0.000107 0.000092

1000
0.001 0.000988 0.000974 0.000988 0.000974 0.000984
0.0001 0.000105 0.000106 0.000105 0.000106 0.000098

1500
0.001 0.000999 0.000993 0.000999 0.000993 0.000966
0.0001 0.000097 0.000113 0.000097 0.000113 0.000097

30 kb

500
0.001 0.000900 0.000916 0.000900 0.000916 0.000942
0.0001 0.000069 0.000082 0.000069 0.000082 0.000083

1000
0.001 0.000953 0.000940 0.000953 0.000940 0.000938
0.0001 0.000109 0.000083 0.000109 0.000083 0.000104

1500
0.001 0.000997 0.000940 0.000997 0.000940 0.000980
0.0001 0.000095 0.000098 0.000095 0.000098 0.000097
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Figure 1: The empirical power of the approximate F -distributed tests of the additive models of
MANOVA (1) and MFLM (7) using B-spline basis based on Pillai-Bartlett trace and GAMuT at
α = 0.01, when some causal variants are rare and some are common, the constants k are given by
relations (12), 20%/80% causal variants have negative/positive effects for each of three traits, and
5% variants are causal. The order of B-spline basis was 4, and the number of B-spline basis functions was
K = Kβ = 15.
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Figure 2: The empirical power of the approximate F -distributed tests of the additive models of
MANOVA (1) and MFLM (7) using B-spline basis based on Pillai-Bartlett trace and GAMuT at
α = 0.01, when all causal variants are rare, the constants k are given by relations (12), 20%/80%
causal variants have negative/positive effects for each of three traits, and 5% variants are causal. The
order of B-spline basis was 4, and the number of B-spline basis functions was K = Kβ = 15.
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Figure 3: The empirical power of the approximate F -distributed tests of the additive models of
MANOVA (1) and MFLM (7) using B-spline basis based on Pillai-Bartlett trace and GAMuT at
α = 0.01, when some causal variants are rare and some are common, the constant k = 3.0, 20%/80%
causal variants have negative/positive effects for each of three traits, and 5% variants are causal. The
order of B-spline basis was 4, and the number of B-spline basis functions was K = Kβ = 15.
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Figure 4: The empirical power of the approximate F -distributed tests of the additive models of
MANOVA (1) and MFLM (7) using B-spline basis based on Pillai-Bartlett trace and GAMuT at
α = 0.01, when all causal variants are rare, the constant k = 3.0, 20%/80% causal variants have
negative/positive effects for each of three traits, and 5% variants are causal. The order of B-spline basis
was 4, and the number of B-spline basis functions was K = Kβ = 15.
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Figure 5: The empirical power of the approximate F -distributed tests of the additive models of
MANOVA (1) and MFLM (5) and (7) based on Pillai-Bartlett trace and GAMuT at α = 2.5 × 10−6

for six traits and moderate correlation, when some causal variants are rare and some are common,
20%/80% causal variants have negative/positive effects for each of six traits, and 5% variants are
causal. The order of B-spline basis was 4, the number of B-spline basis functions was K = Kβ = 15, and the
number of Fourier basis functions was K = Kβ = 21.
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Figure 6: The empirical power of the approximate F -distributed tests of the additive models of
MANOVA (1) and MFLM (5) and (7) based on Pillai-Bartlett trace and GAMuT at α = 2.5 × 10−6

for six traits and moderate correlation, when all causal variants are rare, 20%/80% causal variants
have negative/positive effects for each of six traits, and 5% variants are causal. The order of B-spline
basis was 4, the number of B-spline basis functions was K = Kβ = 15, and the number of Fourier basis functions
was K = Kβ = 21.
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Supplementary Information: “A Comparison Study of
Multivariate Fixed Models and Gene Association with Multiple

Traits (GAMuT)”

Appendix A Results of European Lipid Studies

A.1 Information Of the Eight European Cohorts

We analyzed lipid traits from eight European cohorts, where five are from Finland [Finland United States Investiga-

tion of NIDDM Genetics (FUSION Stage 2) [Scott et al., 2007], FIN-D2D 2007 (D2d-2007) [Kotronen et al., 2010],

The Finnish Diabetes Prevention Study (DPS) [Tuomilehto et al., 2001], METabolic Syndrome in Men (METSIM)

[Stancakova et al., 2009], and The Dose Responses to Exercise Training Study (DRs EXTRA) [Kouki et al., 2012],

two are from Norway [Nord-Trondelag Health Study 2 and Tromso 4 (HUNT and Tromso) [Holmen et al., 2003;

Jacobsen et al., 2012], and one from Germany [The DIAbetes GENetic Study (DIAGEN)] [Schwarz et al., 2006]. The

two Norwegian cohorts were combined into one study for a joint analysis. The genotype data were from Metabochip

genotyping, which was designed to fine map regions that have been associated with metabolic traits [Altshuler et

al., 2010]. For each cohort, 54,741 genetic variants were genotyped, located in 97 genetic regions across the 22

autosomes. For our analysis, we utilized the existing literature as a reference for gene selection and found that 22

gene regions were fine mapped [Li et al., 2014; Liu et al., 2014; Morris et al., 2012; Scott et al., 2012; Voight et al.,

2010; Zeggini et al., 2008]. We used Builder Mar. 2006 (NCBI36/hg18) to determine gene positions and 5kb was

used to extend the gene region on each side of a gene. The summary of 22 genes and the number of genetic variants

in each gene region are given in Table S.1.

Four lipid traits were analyzed: high-density lipoprotein (HDL) levels, low-density lipoprotein (LDL) levels,

triglycerides (TG), and total cholesterol (CHOL). The sample sizes for each combination of seven studies and four

trait are provided in Table S.2.

A.2 Lipid Traits in Eight European Cohorts

For each trait, inverse normal rank transformation was performed to ensure that the normality assumption was valid.

For all studies except for METSIM, age, sex, and type 2 diabetes status were used as covariates. For METSIM,

age and type 2 diabetes status were used as covariates since no women were included in the study. A significance

threshold of P < 3.1 × 10−6 was taken from Liu et al. [2014] (corresponding to 0.05/16,153 based on the number of

genes tested therein).

Table S.3 reports the results of association analysis of 5 European studies for the combinations in Table 1 by
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using rare variants (MAF ≤ 0.03). Using common variants (MAF > 0.03), Table S.4 reports the results of association

analysis of 5 European studies. The results in Tables S.3 and S.4 show that the gene regions contain both rare and

common variants and the association signals are mainly from common variants.

In Table S.4, the F -approximation tests of MFLM and MANOVA are more sensitive than GAMuT. GAMuT

based on matrix two tentative association signals [p = 9.07×10−5 and p = 2.99×10−5] and GAMuT based on linear

kernel detected one tentative association signal [p = 9.07×10−5] at gene LPL in the FUSION study. In comparison,

the F -approximation tests of MFLM and MANOVA detected much more association signals.

Appendix B Results of The Trinity Students Study

We performed a pleiotropy analysis of 36 SNP variants in one enzyme gene region on three biochemical traits

(denoted by A, B, and C) in a sample of 2232 individuals from the Trinity Students Study. Since the raw traits

were not normally distributed, we transformed the three traits by inverse normal rank transformation. We adjusted

for three factors: gender, another chemical compound known to affect these biochemical traits as a continuous

covariate, and a dichotomous covariate to indicate if supplements containing these biochemical factors was used.

In this report, we analyzed four combinations of the three traits: three bivariate combinations (A, B), (A, C), (B,

C), and one tri-variate combination (A, B, C). We tested the association between the transformed individual traits

and the 36 SNPs by approximate F -test statistics of bivariate and tri-variate linear models and GAMuT. Table

1 presents the p-values of the F -approximation tests based on the Pillai-Bartlett trace and GAMuT for the SNP

data of the enzyme gene of the Trinity Students Study [Table 2 of Wang et al., 2015]. We present the results of

four combinations of the three traits on the bottom of the Table 1: (A, B), (A, C), (B, C), and (A, B, C). The

F -approximation tests provided much stronger results than those of GAMuT since the p-values of the approximate

F -distributed tests in the bottom four columns of Table 1 were much smaller than those of GAMuT.
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Table S.1: Summary of 22 Genes and the Number of Genetic Variants in Each Gene Region by Mar.
2006 (NCBI36/hg18). The number of variants is the number of genetic variants in a region of Start (-5Kb) -
End (+5Kb) Positions. ∗ The gene region of PCSK9 is (55277737, 55303114), and (55271537, 55286109) is the
region in the database. # The length is the length of the region in bp.

Gene
Chromosome Gene Start (-5Kb) - End (+5Kb) Number of

Region Positions (bp) Positions (Length#) Variants

PCSK9∗ 1 55277737 - 55303114 55271537 - 55286109 (14572) 74

APOB 2 21077806 - 21120450 21072806 - 21125450 (52644) 223

IGF2BP2 3 186844221 - 187025521 186839221 - 187030521 (191300) 231

CDKAL1 6 20642667 - 21340613 20637667 - 21345613 (707946) 560

JAZF1 7 27836718 - 28186962 27831718 - 28191962 (360244) 384

LPL 8 19840862 - 19869050 19835862 - 19874050 (38188) 212

CDKN2B 9 21992902 - 21999312 21987902 - 22004312 (16410) 64

CDC123 10 12277971 - 12332593 12272971 - 12337593 (64622) 265

IDE 10 94201421 - 94323832 94196421 - 94328832 (132411) 327

KIF11 10 94342805 - 94405132 94337805 - 94410132 (72327) 216

HHEX 10 94439661 - 94445388 94434661 - 94450388 (15727) 30

TCF7L2 10 114699999 - 114917426 114694999 - 114922426 (227427) 258

KCNQ1 11 2422797 - 2826916 2417797 - 2831916 (414119) 660

MTNR1B 11 92342437 - 92355596 92337437 - 92360596 (23159) 106

HMGA2 12 64504507 - 64646338 64499507 - 64651338 (151831) 214

TSPAN8 12 69805144 - 69838046 69800144 - 69843046 (42902) 54

HNF1A 12 119900932 - 119924697 119895932 - 119929697 (33765) 71

OASL 12 119942478 - 119961428 119937478 - 119966428 (28950) 108

FTO 16 52295376 - 52705882 52290376 - 52710882 (420506) 191

LDLR 19 11061038 - 11105505 11056038 - 11110505 (54467) 43

APOE 19 50100879 - 50104490 50095879 - 50109490 (13611) 35

GIPR 19 50863342 - 50877557 50858342 - 50882557 (24215) 37

Table S.2: Sample Sizes of the Four Lipid Traits for Each of the Seven Studies.

Study HDL LDL TG CHOL

D2d-2007 2075 2074 2075 2075

DIAGEN 1470 1454 1470 1471

DPS 412 410 412 412

DRs EXTRA 1157 1157 1157 1157

FUSION
2496 1892 2062 2500

Stage 2

METSIM 1346 1345 1346 1346

Norway 2484 2320 2487 2476
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Appendix C Power Comparison of Six Traits When the Correlations are Low
and High

In Figures S.1 and S.2, the empirical power levels are plotted when the residual correlations are low. In Figures S.3

and S.4, the empirical power levels are plotted when the residual correlations are high.
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Figure S.1: The empirical power of the approximate F -distributed tests of the additive models of
MANOVA (1) and MFLM (5) and (7) based on Pillai-Bartlett trace and GAMuT at α = 2.5 × 10−6

for six traits and low correlation, when some causal variants are rare and some are common, 20%/80%
causal variants have negative/positive effects for each of six traits, and 5% variants are causal. The
order of B-spline basis was 4, the number of B-spline basis functions was K = Kβ = 15, and the number of Fourier
basis functions was K = Kβ = 21.
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Figure S.2: The empirical power of the approximate F -distributed tests of the additive models of
MANOVA (1) and MFLM (5) and (7) based on Pillai-Bartlett trace and GAMuT at α = 2.5 × 10−6

for six traits and low correlation, when all causal variants are rare, 20%/80% causal variants have
negative/positive effects for each of six traits, and 5% variants are causal. The order of B-spline basis
was 4, the number of B-spline basis functions was K = Kβ = 15, and the number of Fourier basis functions was
K = Kβ = 21.
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Figure S.3: The empirical power of the approximate F -distributed tests of the additive models of
MANOVA (1) and MFLM (5) and (7) based on Pillai-Bartlett trace and GAMuT at α = 2.5×10−6 for
six traits and high correlation, when some causal variants are rare and some are common, 20%/80%
causal variants have negative/positive effects for each of six traits, and 5% variants are causal. The
order of B-spline basis was 4, the number of B-spline basis functions was K = Kβ = 15, and the number of Fourier
basis functions was K = Kβ = 21.
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Figure S.4: The empirical power of the approximate F -distributed tests of the additive models of
MANOVA (1) and MFLM (5) and (7) based on Pillai-Bartlett trace and GAMuT at α = 2.5 × 10−6

for six traits and high correlation, when all causal variants are rare, 20%/80% causal variants have
negative/positive effects for each of six traits, and 5% variants are causal. The order of B-spline basis
was 4, the number of B-spline basis functions was K = Kβ = 15, and the number of Fourier basis functions was
K = Kβ = 21.
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