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Abstract

Extending earlier work, we establish the finiteness of the number of two-generator arithmetic Kleinian
groups with one generator parabolic and the other either parabolic or elliptic. We also identify all the
arithmetic Kleinian groups generated by two parabolic elements. Surprisingly, there are exactly 4 of these,
up to conjugacy, and they are all torsion free.

1. Introduction

In earlier work [18], we established the finiteness of the number of two-generator
arithmetic Kleinian groups generated by a pair of elliptic elements, verifying the
conjectured finiteness of the number of such arithmetic generalised triangle groups.
In this note we extend this result by proving the finiteness of the number of two-
generator arithmetic Kleinian groups with one generator parabolic and the other
either parabolic or elliptic. Subsequently, we identify all the arithmetic Kleinian
groups generated by two parabolic elements. Surprisingly, there are exactly 4 of
these, up to conjugacy, and they are all torsion free. In particular, our results
yield an elementary identification of all arithmetic hyperbolic 2-bridge knot and
link complements, since the Wirtinger presentation of such groups consists of two
parabolic elements with one relation.

There is a substantial literature on the topic of discrete groups generated by two
parabolic elements, and in particular the question of when such groups are free.
Numerical studies, particularly those of Riley [26], show that the space of all such
groups (a one-dimensional complex space) is very complicated. It consists of a ‘free’
part with a highly fractal boundary and with numerous isolated points clustering to
this boundary. Among these points are the (infinitely many) hyperbolic 2-bridge knot
and link complements. Our knowledge of this space has been greatly contributed to
by Keen and Series [14, 15] and others. On the arithmetic side of things, perhaps the
most important known related result is that of Reid [25], asserting that the figure-8
knot complement is the only arithmetic knot complement.

Our approach here depends partly on the far less sophisticated results of Lyndon
and Ullman [17] together with some easy number theory, and can therefore be
regarded as elementary.

We begin with a few basic definitions and notations. A Kleinian group is a
discrete subgroup of orientation-preserving isometries of hyperbolic 3-space H3.
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Throughout, we shall consider only non-elementary Kleinian groups, which are those
that do not have an abelian subgroup of finite index. Equivalently, such groups are
identified with (the Poincaré extensions of) discrete groups of Möbius or conformal
transformations of the Riemann sphere C. The orbit spaces of Kleinian groups
are the hyperbolic 3-orbifolds or, if the Kleinian group is torsion free, hyperbolic
3-manifolds. We use [1, 20, 23, 30] as basic references for the theory of discrete
groups and hyperbolic spaces.

The elements of a Kleinian group, other than the identity, are loxodromic (con-
jugate to z 7→ λz, |λ| 6= 1), elliptic (conjugate to z 7→ λz, |λ| = 1) or parabolic
(conjugate to z 7→ z + 1).

We associate with each Möbius transformation

f =
az + b

cz + d
, ad− bc = 1, (1.1)

a matrix

A =

(
a b

c d

)
∈ SL(2,C), (1.2)

and set tr(f) to be the trace of the matrix A, noting that it is defined only up to
multiplication by −1. Let G = 〈f, g〉 be a two-generator subgroup of PSL(2,C). We
associate to each such group three complex numbers called the parameters of G:

par(〈f, g〉) = (γ(f, g), β(f), β(g)), (1.3)

where

β(f) = tr2(f)− 4, β(g) = tr2(g)− 4, γ(f, g) = tr([f, g])− 2, (1.4)

and [f, g] = fgf−1g−1 is the multiplicative commutator. These parameters are
independent of the choice of matrix representatives, and determine the group 〈f, g〉
uniquely up to conjugacy whenever γ(f, g) 6= 0; note that γ(f, g) = 0 implies that f
and g have a common fixed point.

If f is parabolic, then β(f) = 0, while if g is elliptic, then we can replace it by a
suitable power which is primitive, and so we can assume that β(g) = −4 sin2(π/n),
where n is the order of g. Thus if G = 〈f, g〉 is a Kleinian group generated by two
parabolics or an elliptic of order n and a parabolic, then we have

par(G) = (γ, 0,−4 sin2(π/n)), (1.5)

where we allow the possibility n = ∞ if g is parabolic. Thus, up to conjugacy,
the space of all such discrete groups is determined uniquely by the one complex
parameter γ(f, g).

Note that if n = 2, then the subgroup 〈f, gfg〉 is generated by a pair of
parabolics and has parameters (γ(f, g)2, 0, 0). Conversely, if the non-elementary
group G = 〈f, f′〉 is generated by a pair of parabolics, then G is of index 2 in a
group H = 〈f, h〉, where h has order 2 and γ(f, h)2 = γ(f, f′). For the above results,
see [9].

2. Arithmetic Kleinian groups

In this section we recall some further notation and basic results from [7]. Let
G be a finitely generated subgroup of PSL(2,C). The trace field of G is the field
generated over Q by the set tr(G) = {±tr(g) : g ∈ G}. Since G is finitely generated,
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the subgroup G(2) = 〈g2 : g ∈ G〉 is a normal subgroup of finite index with quotient
group a finite abelian 2-group. Following [21], we call

kG = Q(tr(G(2))) (2.1)

the invariant trace-field of G. For any finite-index subgroup G1 of a non-elementary
group G, one can show that Q(tr(G(2))) ⊂ Q(tr(G1)); in [24] it is shown that kG is
an invariant of the commensurability class. Furthermore, if we define

AG =
{∑

aiγi | ai ∈ kG, γi ∈ G(2)
}
, (2.2)

then AG is a quaternion algebra over kG and is also an invariant of the commensu-
rability class of G [21].

We next recall some facts about quaternion algebras; see [31] for details. Let k
be a number field, let ν be a place of k, that is, an equivalence class of valuations
on k, and denote by kν the completion of k at ν. If B is a quaternion algebra over
k, then we say that B is ramified at ν if B ⊗k kν is a division algebra of quaternions.
Otherwise, ν is unramified.

In case ν is a place associated to a real embedding of k, B is ramified if and only
if B ⊗k kν ∼=H, where H is the Hamiltonian division algebra of quaternions.

We now give the definition of an arithmetic Kleinian group. Let k be a number
field with one complex place, and let A be a quaternion algebra over k ramified at
all real places. Next let ρ be an embedding of A into M(2,C), let O be an order of
A, and let O1 be the elements of norm 1 in O. Then ρ(O1) is a discrete subgroup
of SL(2,C), and its projection to PSL(2,C), Pρ(O1), is an arithmetic Kleinian
group. The commensurability classes of arithmetic Kleinian groups are obtained by
considering all such Pρ(O1). Indeed, if G is an arithmetic Kleinian group, then G(2)

is a subgroup of some such Pρ(O1). See [2] for further details.
For an arithmetic Kleinian group G, the arithmetic structure is recovered from

G, as the defining field is the invariant trace field kG, and the defining quaternion
algebra is the invariant quaternion algebra AG. Thus two arithmetic Kleinian groups
are commensurable if and only if the quaternion algebras are isomorphic (see [19]).
Thus kG, AG can be used to characterise arithmetic Kleinian groups, and this can
be refined for subgroups of arithmetic Kleinian groups to obtain the following (see
[7]).

Theorem 2.1. Let G be a finitely generated non-elementary Kleinian subgroup of
the group PSL(2,C). Then G is a subgroup of an arithmetic Kleinian group if and
only if

(i) kG has exactly one complex place or is totally real,
(ii) tr(G) consists of algebraic integers,

(iii) AG is ramified at all Archimedean places other than the place corresponding
to the identity embedding of kG.

Following [18], we define a Kleinian group G to be nearly arithmetic if G is a
non-elementary Kleinian subgroup of an arithmetic Kleinian group and G does not
split as a non-trivial free product. Of course, an arithmetic Kleinian group is nearly
arithmetic.

If the nearly arithmetic group G contains a parabolic element p, then AG cannot
be a division algebra, as p2 − I is nilpotent. But then, by Wedderburn’s Structure
Theorem, AG must be isomorphic to the matrix algebra M2(kG). But M2(kG) is not
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ramified at any places, so kG must be Q or Q(
√
−d). In the case where kG = Q, G

will be commensurable with a subgroup of the classical modular group and cannot
then be an arithmetic Kleinian group as it will not have finite covolume. Recall
that if Od is the ring of integers in the imaginary quadratic field Q(

√
−d), then the

arithmetic Kleinian groups Gd = PSL(2, Od) are known as the Bianchi groups. Thus
from the remarks above we have the following.

Theorem 2.2. If G is an arithmetic Kleinian group which contains a parabolic
element, then G is commensurable with a Bianchi group Gd. In particular, the invariant
trace field is a complex quadratic extension of Q.

3. Two-generator groups

Next we specialise to the case where G is a two-generator group and, in particular,
where one generator is parabolic and the other is elliptic. In these cases, both the
invariant field and the invariant quaternion algebra will be readily described in
terms of the parameters of the group.

It is shown in [24] that the field kG coincides with the field

Q({tr2(g) : g ∈ G}) = Q({β(g) : g ∈ G})

(see also [12]). For two-generator groups, this has the following consequence [7].

Lemma 3.1. Let G = 〈f, g〉 be a Kleinian group with β(f) 6= −4 and β(g) 6= −4.
Then

kG = Q(β(f), β(g), β(fg−1)− γ(f, g)). (3.1)

Corollary 3.2. Let G = 〈f, g〉 be a Kleinian group with β(f) 6= −4 and γ(f, g)
6= 0, β(f). If G1 = 〈f, gfg−1〉, then

kG1 = Q(β(f), γ(f, g)). (3.2)

Proof. Apply Lemma 3.1 with the generators f and gfg−1 to find

kG1 = Q(β(f), β(fgf−1g−1)− γ(f, gfg−1)). (3.3)

Next

β(fgf−1g−1)− γ(f, gfg−1) = γ(f, g)(β(f) + 4),

and the hypotheses on β(f) and γ(f, g) imply that f and gfg−1 have no common
fixed point. Thus kG1 = Q(γ(f, g), β(f)).

Corollary 3.3. Let G = 〈f, g〉 be a Kleinian group with β(f) 6= −4, β(g) = −4
and γ(f, g) 6= 0, β(f). Then

kG = Q(γ(f, g), β(f)).

Proof. As g has order two, G1 = 〈f, gfg−1〉 has index two in 〈f, g〉. Thus
kG1 = kG, being an invariant of the commensurability class.

Theorem 3.4. Let G = 〈f, g〉 be a nearly arithmetic Kleinian group with f

parabolic and g either parabolic or elliptic of order n. Then we have the following.
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• n = 2, 3, 4, 6.

• γ = γ(f, g) is an algebraic integer.

• If γ is complex, then kG = Q(γ) = Q(
√
−d).

• kG is real if and only if n = 2 and γ ∈ Z. In this case, kG = Q and G contains
a Fuchsian subgroup of index 2 which is a free product of cyclics.

• If n 6= 2 and γ is real, then γ is a negative integer and kG = Q(
√
tnγ), where

tn = 1, 2, 3, 4 for n = 3, 4, 6,∞ (that is, g is parabolic), respectively.

Proof. Let G ⊂ ∆, where ∆ is an arithmetic Kleinian group. Since ∆ contains
parabolic elements, k∆ = Q(

√
−d), by Theorem 2.2, so kG = Q or Q(

√
−d). Since

tr2g ∈ kG, 2 cos 2π/n ∈ kG. Thus n = 2, 3, 4, 6.

Note that Q(γ) ⊂ kG and that γ is an algebraic integer by Theorem 2.1. If γ is
complex, then Q(γ) = kG = Q(

√
−d).

If kG is real, then G(2) is Fuchsian. But any non-elementary Fuchsian subgroup
of an arithmetic Kleinian group is a subgroup of an arithmetic Fuchsian group [19].
In addition, any non-compact Fuchsian group of finite covolume is a free product
of cyclics, and the same is true of any finitely generated subgroup of such a group.
Since G(2) is normal in G, G will leave a circle or straight line in C invariant. Thus
either G is a Fuchsian group itself, or G contains a Fuchsian subgroup H of index
2. The first case cannot arise, as then G would be a free product of cyclics. In
the second case, the parabolic element f will lie in H since f2 does, and since the
element g cannot lie in H , but preserves the H-invariant hyperbolic plane, g must
have order 2. If n = 2, then kG = Q(γ). Thus if kG is real, γ ∈ Z, and conversely.

If n 6= 2, then kG = Q(λ), where λ = β(fg−1)− γ(f, g), by Lemma 3.1. From the
trace identity

γ = tr2f + tr2g + tr2fg−1 − tr(f)tr(g)tr(fg−1)− 4,

it can be shown that λ satisfies a quadratic equation over Q(γ) with discriminant
16tnγ, with tn as given in the statement. See, for example, [18]. Thus if γ is real, then
kG is the non-real field Q(

√
tnγ).

4. Finiteness

The finiteness up to conjugacy of the number of 2-generator arithmetic Kleinian
groups we are discussing is now an easy consequence of the following elementary
discreteness result of [6].

Theorem 4.1. Let G be a Kleinian group with

par(G) = (γ, 0,−4 sin2(π/n)). (4.1)

If γ lies outside the disk

|z| < 4(1 + cos(π/n))2, (4.2)

then G is discrete and isomorphic to the free product of cyclics 〈f〉 ∗ 〈g〉.

Theorem 4.2. Up to conjugacy, there are only finitely many nearly arithmetic
Kleinian groups (and hence finitely many arithmetic Kleinian groups) generated by a
parabolic and an elliptic element or by a pair of parabolic elements.
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Proof. Let G = 〈f, g〉 be such a group. We may assume that g is a primitive
elliptic. Then par(G) = (γ, 0,−4 sin2(π/n)), n 6 6 and γ is a rational or quadratic
integer. Moreover, since G does not split as the free product of cyclics, γ lies within
the disk |z| < 4(1 + cos(π/6))2 < 16. There are only finitely many such γ, and
therefore up to conjugacy at most finitely many such groups.

We note that one can obtain a bound on the number of such groups, since it is
easy to enumerate the possibilities for γ. However, we believe that there are rather
fewer groups than these estimates might suggest. The identification of exactly which
possibilities occur awaits a rather more precise description of the free part of the
appropriate spaces, and methods for identifying infinite-index subgroups of Bianchi
groups. We return to this in a subsequent note [5].

5. Freeness and arithmeticity

We now determine all nearly arithmetic groups with two parabolic generators.
Recall that any Kleinian group with two parabolic generators is a subgroup of index
2 in a group 〈f, g〉 where f is parabolic and g has order 2.

We make use of a nice result of Lyndon and Ullman [17] ((i) and (ii) in the
theorem below), extended by a result of Ignatov [13] ((iii) in the theorem).

Theorem 5.1. Let f be parabolic and let g be elliptic of order 2.

(i) Let K1 be the convex hull of the set consisting of the disk centre the origin
of radius 2 together with the two points ±4. If γ(f, g) 6∈ K1, then 〈f, g〉 is
discrete and isomorphic to the free product Z ∗ Z2.

(ii) Let K2 be the four disks |z ± i| < 1 and |z ± 2| < 2. If γ(f, g) 6∈ K2, then
〈f, g〉 is discrete and isomorphic to the free product Z ∗ Z2.

(iii) Let K3 be the disk |z| 6 2 together with the region |=(z)| < 1. If γ(f, g) 6∈ K3,

then 〈f, g〉 is discrete and isomorphic to the free product Z ∗ Z2.

Corollary 5.2. Let f be parabolic, let g be elliptic of order 2, and let γ = γ(f, g).
If one of the following conditions holds, then 〈f, g〉 is discrete and isomorphic to the
free product Z ∗ Z2.

(i) γ = λi, λ > 2 (ii) γ = 1/2 + λi, λ > (2 +
√

3)/2

(iii) γ = 1 + λi, λ >
√

3 (iv) γ = 3/2 + λi, λ >
√

7/2

(v) γ = 2 + λi, λ > 1 (vi) γ = 5/2 + λi, λ >
√

3/2

(vii) γ = 3 + λi, λ > 1/
√

3 (viii) γ = 7/2 + λi, λ > 1/2
√

3
(ix) γ = 4 + λi, λ > 0 (x) <(γ) > 4

We now recall the following symmetries of the space of these 2-generator discrete
groups. Namely, if γ = γ(f, g) and (γ, 0,−4) are the parameters of a discrete group,
then so are (±γ, 0,−4) and (±γ, 0,−4). All of these groups are isomorphic (in fact
conjugate); this is a relatively straightforward observation, which we leave to the
reader [9]. In particular, this observation enables us to restrict our attention to the
positive quadrant, <(γ) > 0 and =(γ) > 0.

Now suppose that the parameter γ gives rise to a nearly arithmetic Kleinian
group generated by two parabolics. Then, by Theorem 3.4, γ is a complex quadratic
algebraic integer. Thus there are integers b and c such that γ2 + bγ + c = 0, and we
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may assume b2 − 4c < 0. Therefore −7 6 b 6 0, and Corollary 5.2 leaves us with
the following possibilities for γ, listed in terms of increasing real part:

i, i
√

2, i
√

3, (1 + i
√

3)/2, (1 + i
√

7)/2, (1 + i
√

11)/2,

1 + i, 1 + i
√

2, (3 + i
√

3)/2.

Next, Riley’s calculations concerning the moduli space of discrete groups generated
by two parabolics [26] show that the points (1 + i

√
11)/2 and 1 + i

√
2 are well inside

the ‘free’ part. His program ‘Poincaré’ therefore shows that these groups are discrete
and free on their generators. We wish to make two comments about the application
of this computer program. First, discreteness is not an issue: we already know that
each group in question is discrete [9]. Secondly, numerical or round-off error is not
an issue, since we are presented in each case with a subgroup of Gd = PSL(2, Od),
and thus the numerical calculations can be done using exact arithmetic (though we
have not done this).

There is an alternative approach, which we outline here. We do not give too
many details, since we have adopted this approach in the paper [5] and more details
are given there. The groups Gd are finitely presented [10, 28], and it is not a difficult
matter to find the matrices in question inside this group and to use a computational
algebra package such as CAYLEY to verify that the subgroup in question is of
infinite index (and therefore not arithmetic). For instance, for the value 1 +

√
2i, we

find that the Bianchi group in question is G2 with the presentation

G2 = 〈a, b, c : b2 = (ab)3 = [a, c] = [b, c]2 = 1〉.

A matrix representation for this group in PSL(2,C) is given in [10]. There we find
that the group we are interested in is the subgroup H = 〈a, bacb〉. We look for an
intermediate subgroup K with H < K < G2 whose abelianisation has more than 2
independent infinite cyclic summands. If such a subgroup exists, then H cannot be
of finite index in K , and is therefore not of finite index in G2. In the case outlined
above, there is a subgroup of index 8 in G2 which has this property. We thank M.
D. E. Conder for help with CAYLEY in following this approach.

We are now left with 7 possible γ values, and therefore there are at most 7
nearly arithmetic Kleinian groups generated by two parabolics, up to conjugacy. In
fact, all these values do give rise to nearly arithmetic groups. We should also like to
specifically identify the arithmetic groups. Thus let G = 〈f, g〉 be a Kleinian group
with

par(G) = (γ, 0,−4),

and set Gγ = 〈f, gfg〉 as the subgroup of index two generated by two parabolics
with parameters

par(Gγ) = (γ2, 0, 0).

The cases γ = i, i
√

2, i
√

3. Each of these three groups is nearly arithmetic, but
not arithmetic. To see this, note that γ(f, gfg) = −1,−2,−3, respectively. Therefore
[f, gfg] is elliptic of order 3 in the first and last cases, and elliptic of order 2 in
the second case. This shows that the groups are not free. When γ(f, gfg) = −2,−3,
the group 〈f, gfg〉 is the generalised triangle group of type (∞,∞; 2) or (∞,∞; 3),
respectively. These groups are discrete and faithful representations of the groups
〈u, v : u∞ = v∞ = [u, v]p = 1〉, where p = 2 or 3. Further information about these
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and related groups can be found in [11]. In particular, neither of these groups is
arithmetic. The value γ(f, gfg) = −1 corresponds to a subgroup of infinite index in
the index-two orientation-preserving subgroup of the group of reflections in a doubly
truncated tetrahedron. These groups are discussed in [8] and have presentation

G+
∞,∞;3

∼= 〈u, v, w, s, t : v2 = w2 = u3 = (uv)∞ = (uw)∞ = s2 = t2

= (su)2 = (ut)2 = (uwv)2 = (wt)2 = (suv)2 = 1〉,

and 〈f, gfg〉 is conjugate to the subgroup generated by the parabolics uv and uw.
This subgroup is easily seen to be of infinite index, and is therefore not arithmetic.

The cases γ = (1 + i
√

3)/2, (1 + i
√

7)/2, 1 + i, (3 + i
√

3)/2. These four cases all
correspond to arithmetic groups. The resulting cusped manifolds are two-bridge knot
and link complements. It is conjectured that any finite-volume hyperbolic manifold
whose fundamental group is generated by two parabolics is such a knot or link [16].
Recall that a non-elementary Kleinian group G generated by two non-commuting
parabolic elements can be normalised such that the generators have the form

f =

(
1 1
0 1

)
, h =

(
1 0
z 1

)
.

Then γ(f, h) = z2, and the extension H of G by an element g of order 2 such that
H = 〈f, g〉 has γ(f, g) = z. Using the standard notation (p/q) for two-bridge knots
or links, and the standard presentation for their groups [4], we find the value for z
in the following cases.

A.
(

5
3

)
z = 1+i

√
3

2
B.

(
8
3

)
z = 1 + i

C.
(

10
3

)
z = 3+i

√
3

2
D.

(
12
5

)
z = 1+i

√
7

2

Note that from the normalisation given above, each of these groups will be a
subgroup of the corresponding Bianchi group Gd.

A. This two-bridge knot is the figure-8 knot, and the corresponding group is a
subgroup of index 12 in G3. It is known to be the only arithmetic knot [25].

B. This is the Whitehead link complement, which is also known to have index
12 in the Picard group G1 (see, for example, [21]).

C. This is the link 62
2 in the tables in [27]. It can be shown that the complement

of this link can be obtained by suitably identifying faces of four ideal tetrahedra so
that the uniformising group has index 24 in G3.

D. This is the link 62
3 in the tables in [27]. Also, the once-punctured torus bundle

with monodromy L2R with generators a, b, t as described in [3] has a subgroup of

index 2 generated by parabolics t, ata−1. Now γ(t, a)2 = γ(t, ata−1) = 1+i
√

7
2

. Thus
the link complement is a 2-sheeted cover of the once-punctured torus bundle with
monodromy L2R.
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