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A PALEY–WIENER THEOREM FOR BERGMAN SPACES WITH
APPLICATION TO INVARIANT SUBSPACES

PETER DUREN, EVA A. GALLARDO-GUTIÉRREZ,
and ALFONSO MONTES-RODRÍGUEZ

Abstract

An analogue of the Paley–Wiener theorem is developed for weighted Bergman spaces of analytic functions in
the upper half-plane. The result is applied to show that the invariant subspaces of the shift operator on the
standard Bergman space of the unit disk can be identified with those of a convolution Volterra operator on the
space L2(R+, (1/t)dt).

1. Introduction

Let Π+ denote the upper half of the complex plane. Recall that the Hardy space H2(Π+)
consists of the functions F analytic on Π+ with finite norm

‖F‖H2(Π+) =
{

sup
0<y<∞

∫∞

−∞
|F (x + iy)|2 dx

}1/2

.

A classical theorem of Paley and Wiener ([6]; see [8] or [2]) states that H2(Π+) is isometrically
isomorphic under the Fourier transform to L2(R+), the space of functions square-integrable
over the positive real line. In fact, to each function F ∈ H2(Π+) there corresponds a function
f ∈ L2(R+) such that

F (z) =
∫∞

0
f(t)eizt dt , z ∈ Π+ ,

and

‖F‖2
H2(Π+) = 2π

∫∞

0
|f(t)|2 dt .

Moreover, Plancherel’s theorem asserts that the Fourier transform

F̂ (t) =
1
2π

∫∞

−∞
F (x)e−itx dx , t ∈ R ,

coincides with f . In particular, F̂ (t) = 0 for almost every t < 0.
We begin this paper with an analogue of the Paley–Wiener theorem for Bergman spaces,

which will be applied to the shift operator on the standard Bergman space A2(D) over the unit
disk D. Before stating the results, we need to introduce some terminology.

For α > −1, the weighted Bergman space A2
α(Π+) on the upper half plane consists of those

functions F analytic in Π+ for which

‖F‖2
A2

α(Π+) =
∫
Π+

|F (x + iy)|2 yα dx dy < ∞ .
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For β > 0, let L2
β(R+) denote the space of complex-valued measurable functions f on R

+ for
which

‖f‖2
L2

β(R+) =
2π Γ(β)

2β

∫∞

0
|f(t)|2 t−β dt < ∞ .

We can now state the Bergman-space analogue of the Paley–Wiener theorem.

Theorem 1. For each α > −1, the space A2
α(Π+) is isometrically isomorphic under the

Fourier transform to the space L2
α+1(R

+) . More precisely, F ∈ A2
α(Π+) if and only if it is the

Fourier transform

F (z) =
∫∞

0
f(t)eizt dt , z ∈ Π+ , (1)

of some function f ∈ L2
α+1(R

+), in which case ‖F‖A2
α(Π+) = ‖f‖L2

α+1(R+).

The theorem says in particular that the unweighted Bergman space A2(Π+), where α = 0,
is isometrically isomorphic to the space L2

1(R
+) with norm

‖f‖2
L2

1(R+) = π

∫∞

0

|f(t)|2
t

dt .

This correspondence will allow us to view the shift operator as an operator on L2
1(R

+) . The
shift operator S is defined on A2(D) by Sf(w) = wf(w) for w ∈ D.

Theorem 2. The shift operator on the Bergman space A2(D) is unitarily equivalent to the
operator I − 2T on L2

1(R
+), where

Tf(t) = e−t

∫ t

0
esf(s) ds , f ∈ L2

1(R
+) .

Note that T is a convolution operator Tf = h ∗ f with kernel

h(t) =

{
e−t t > 0
0 t < 0 .

(2)

It can also be viewed as a Volterra operator combined with multiplication by e−t.
A subspace M of A2(D) is said to be invariant if S(M) ⊂ M . Beurling [1] showed that

the invariant subspaces of the shift operator on the Hardy space H2(D) have the simple form
ϕH2(D) where ϕ is an inner function. On the other hand, the invariant subspaces of the
Bergman space are much more complicated and have never been completely described (see for
instance [3] for further discussion). Theorem 2 has the following immediate corollary.

Corollary 1. Under the unitary equivalence of Theorem 2, the invariant subspaces of
the shift operator on A2(D) correspond to the invariant subspaces of the operator T on the
space L2

1(R
+).

The correspondence of the corollary will be illustrated by two examples. We will also obtain
an analogue of the Paley–Wiener theorem for weighted Dirichlet spaces.

2. Proof of Theorem 1

After discovering Theorem 1 we were informed that it is a ‘folk theorem’, essentially known
although there appears to be no direct proof in the literature. The proof we give here is not
the shortest possible, but it reveals an interesting connection with Laguerre polynomials.
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Let us show first that if F has the form (1) for some function f ∈ L2
α+1(R

+), then F ∈
A2

α(Π+) and the two norms are equal. An application of Morera’s theorem shows that F is
analytic in Π+. Since the function f(t)e−yt belongs to L2(R+) for each y > 0, it follows from
Plancherel’s theorem that

‖F‖2
A2

α(Π+) =
∫∞

0

∫∞

−∞
|F (x + iy)|2 yα dx dy

=
∫∞

0

∫∞

−∞

∣∣∣∣∫∞

0
f(t)eitxe−ty dt

∣∣∣∣2 dx yα dy

=
∫∞

0

∫∞

0

∣∣f(t)e−ty
∣∣2 dt yα dy

=
∫∞

0
|f(t)|2

∫∞

0
e−2ty yα dy dt

= 2π

∫∞

0
|f(t)|2 Γ(α + 1)

(2t)α+1 dt = ‖f‖2
L2

α+1(R+) .

A good reference for basic theory of Fourier transforms is Goldberg’s book [4].
It remains to prove that the isometry f �→ F maps onto the whole space A2

α(Π+). In other
words, we must show that every function F ∈ A2

α(Π+) has a representation of the form (1) for
some function f ∈ L2

α+1(R
+). It will be sufficient to represent every element of an orthogonal

basis in this manner.
Recall first that the weighted Bergman space A2

α(D) of the unit disk D consists of all analytic
functions g for which the integral

‖g‖2
A2

α(D) =
∫

D

|g(w)|2(1 − |w|2)α du dv , w = u + iv ,

is finite. A change of variables shows that g ∈ A2
α(D) if and only if

G(z) = g

(
z − i

z + i

)
2α+1

(z + i)α+2

belongs to A2
α(Π+). In fact, the linear map that takes g ∈ A2

α(D) onto G ∈ A2
α(Π+) is an

isometric isomorphism. Such an isometry preserves inner products and therefore carries any
orthogonal basis of A2

α(D) to an orthogonal basis of A2
α(Π+).

Since the polynomials are dense in A2
α(D) (see for instance [3]), the monomials wn with

n = 0, 1, 2, . . . form an orthogonal basis for A2
α(D). As a consequence, the functions

Gn(z) =
(

z − i

z + i

)n 2α+1

(z + i)α+2 , n = 0, 1, 2, . . . ,

form an orthogonal basis for A2
α(Π+). The proof of Theorem 1 reduces to showing that each

basis element Gn is the image of some function fn ∈ L2
α+1(R

+) under the mapping defined by
(1). For this purpose we need to compute the the Fourier transform

Ĝn(t) =
1
2π

∫∞

−∞
e−itxGn(x) dx =

1
2π

∫∞

−∞
e−itx

(
x − i

x + i

)n 2α+1

(x + i)α+2 dx .

The calculation of Ĝn(t) will require some labor. We state the result as a lemma.

Lemma 1. The Fourier transform of Gn is

Ĝn(t) =

⎧⎨⎩
n! (2t)α+1e−t

iα+2Γ(n + α + 2)
L

(α+1)
n (2t) , t > 0

0 , t < 0 ,

(3)

where L
(α)
n (t) denotes the Laguerre polynomial of degree n and index α.
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The proof of Lemma 1 is deferred to Section 5, where we will say more about Laguerre
polynomials. It is clear from formula (3) that Ĝn ∈ L2

α+1(R
+), and it also belongs to L1(R).

Therefore, inversion of the Fourier transform yields a representation

Gn(z) =
∫∞

0
eiztĜn(t) dt , z ∈ Π+ ,

of the form (1). Thus Theorem 1 will be proved once Lemma 1 is established.

3. Proof of Theorem 2

The linear mapping from f ∈ A2(D) to the function

F (z) = f

(
z − i

z + i

)
2

(z + i)2
, z ∈ Π+ , (4)

is an isometry of A2(D) onto A2(Π+) that carries the function Sf(w) = wf(w) to
z − i

z + i
F (z) = S̃F (z) .

This shows that the shift operator in A2(D) is unitarily equivalent to the operator S̃ of
multiplication by (z − i)/(z + i) in A2(Π+).

Now recall that the functions

Gn(z) =
(

z − i

z + i

)n 2
(z + i)2

, n = 0, 1, 2, . . . ,

form an orthogonal basis of A2(Π+), and observe that S̃Gn = Gn+1. Therefore, the Fourier
transform of Gn+1 has the form

Ĝn+1(t) =
1
2π

∫∞

−∞
e−itx x − i

x + i
Gn(x) dx .

Write
x − i

x + i
= 1 − 2

1 − ix

and note that the function h given by (2) has the form

h(t) =
1
2π

∫∞

−∞
e−itx 1

1 − ix
dx ,

since ∫∞

−∞
eixt h(t) dt =

∫∞

0
e−(1−ix)t dt =

1
1 − ix

.

It follows that the Fourier transform of S̃Gn is

Ĝn+1(t) = Ĝn(t) − 2
2π

∫∞

−∞
e−itx 1

1 − ix
Gn(x) dx

= Ĝn(t) − 2(h ∗ Ĝn)(t) ,

where

(h ∗ Ĝn)(t) =
∫∞

−∞
h(t − s)Ĝn(s) ds = e−t

∫ t

0
esĜn(s) ds .

Here we have used the fact that the Fourier transform of a convolution is the product of Fourier
transforms.

We have shown that the multiplication operator S̃, acting on a basis element Gn of A2(Π+), is
unitarily equivalent under the Fourier transform to the operator I − 2T acting on Ĝn ∈ L2

1(R
+).
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By Theorem 1, the Fourier transform is an isometric isomorphism from A2(Π+) onto the space
L2

1(R
+), so this unitary equivalence extends to the full spaces. This completes the proof of

Theorem 2.

4. Invariant subspaces of the Bergman shift

By Corollary 1, the invariant subspaces of the shift operator on A2(D) correspond, under
the specified unitary equivalence, to the invariant subspaces of the operator T in the space
L2

1(R
+). We now give two explicit examples of this correspondence.

Example 1. For any number a > 0, the closed subspace of L2
1(R

+) consisting of functions
that vanish on [0, a] is invariant under T . It is not hard to see that it corresponds to the
subspace

Ma = exp
{

−a
1 + w

1 − w

}
A2(D)

generated in the Bergman space by an atomic singular inner function. In particular, this
confirms the known fact that Ma is a proper invariant subspace of A2(D). It also demonstrates
the strict inclusion Mb ⊂ Ma for 0 < a < b.

Example 2. Let Nω be the subspace of functions in A2(D) that vanish at a specified point
ω ∈ D. Then f ∈ Nω if and only if 〈f, kω〉 = 0, where

kω(w) =
1

(1 − ωw)2
, w ∈ D ,

is the reproducing kernel at ω for the space A2(D). The isometric isomorphism (4) from A2(D)
onto A2(Π+) is found to map the function kω to

Kω(z) =
2(

(z + i) − ω(z − i)
)2 , z ∈ Π+ ,

and Nω corresponds to the subspace of functions F ∈ A2(Π+) with 〈F, Kω〉 = 0. A calculation
shows that the Fourier transform

K̂ω(t) =
1
2π

∫∞

−∞
e−itx Kω(x) dx

has the form K̂ω(t) = tfω(t), where

fω(t) =
4π

(1 − ω)2
exp

{
ω + 1
ω − 1

t

}
for t > 0

and fω(t) = 0 for t < 0. To see this, write λ = (ω + 1)/(ω − 1) and observe that Re{λ} < 0
since |ω| < 1, so that

Fω(x) =
∫∞

−∞
eixt fω(t) dt =

2
(1 − ω)2

∫∞

0
e(λ+ix)t dt =

2
(1 − ω)2

1
λ + ix

has Fourier transform F̂ω(t) = fω(t). However F ′
ω(x) = iKω(x) and F̂ ′

ω(t) = itF̂ω(t), so it
follows that K̂ω(t) = tfω(t), as claimed.

Under the isometric isomorphism (4), the subspace Nω in A2(D) was seen to correspond to
the orthocomplement 〈Kω〉⊥ of the subspace 〈Kω〉 generated in A2(Π+) by the function Kω.
By Theorem 1 the space A2(Π+) is isometrically isomorphic under the Fourier transform to
the weighted space L2

1(R
+), with inner product

〈f, g〉 = π

∫∞

0
f(t) g(t)

1
t

dt .
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In particular, the subspace 〈Kω〉⊥ of A2(Π+) corresponds to the subspace 〈K̂ω〉⊥ of L2
1(R

+)
under the Fourier transform. Since K̂ω(t) = tfω(t), we see that f ∈ 〈K̂ω〉⊥ if and only if∫∞

0
f(t) exp

{
ω + 1
ω − 1

t

}
dt = 0 .

This subspace 〈K̂ω〉⊥ of L2
1(R

+) corresponds to the invariant subspace Nω of the Bergman
shift and is invariant under the operator T defined in Theorem 2.

More generally, for any simple zero-set Ω, the invariant subspace of functions in A2(D) that
vanish on Ω corresponds to the intersection of the subspaces 〈K̂ω〉⊥ for all ω ∈ Ω.

5. Laguerre polynomials

We now turn to a proof of Lemma 1, which evaluates the Fourier transforms of basis elements
Gn in terms of Laguerre polynomials. We begin by recording some facts about Laguerre
polynomials.

The Laguerre polynomials L
(α)
n (t) arise from the generating relation

1
(1 − z)α+1 exp

{
− tz

1 − z

}
=

∞∑
n=0

L(α)
n (t)zn . (5)

For α > −1 they have the orthogonality property∫∞

0
e−ttαL(α)

n (t) L(α)
m (t) dx = Γ(α + 1)

(
n + α

n

)
δmn, n, m = 0, 1, 2, . . . (6)

They also have the explicit representation

L(α)
n (t) =

n∑
j=0

(
n + α

n − j

)
(−t)j

j!
=

Γ(n + α + 1)
n!

n∑
j=0

(
n

j

)
(−t)j

Γ(α + j + 1)
. (7)

Further information may be found in the books by Szegő [9] or Rainville [7].
Although Fourier transforms of the Laguerre functions can be deduced from available

formulas for their Laplace transforms, we carry out a proof of Lemma 1 for the sake of
completeness. We will need another lemma.

Lemma 2. For β > −1 and x ∈ R,∫∞

0
tβ e−t eixt dt =

Γ(β + 1)
(1 − ix)β+1 .

Lemma 2 follows from a simple property of the gamma function. The proof is omitted.

Proof of Lemma 1. By the identity
x − i

x + i
= 1 − 2i

x + i
= 1 − 2

1 − ix

and the binomial formula, we have

Ĝn(t) =
1

4π iα+1

n∑
j=0

(
n

j

)
(−1)j

∫∞

−∞
e−itx

(
2

1 − ix

)j+α+2

dx .

Inversion of the Fourier transform of Lemma 2 shows that

1
2π

∫∞

−∞
e−itx

(
2

1 − ix

)j+α+2

dx =

⎧⎨⎩
2j+α+2

Γ(j + α + 2)
tj+α+1 e−t , t > 0

0 , t < 0 .



A PALEY–WIENER THEOREM FOR BERGMAN SPACES 465

This gives Ĝn(t) = 0 for t < 0. For t > 0 it gives

iα+1 Ĝn(t) = (2t)α+1e−t
n∑

j=0

(
n

j

)
(−2t)j

Γ(j + α + 2)

=
n!

Γ(n + α + 2)
(2t)α+1e−t L(α+1)

n (2t) ,

by comparison with the explicit representation (7) of the Laguerre polynomials. This completes
the proof of Lemma 1.

We remark that the same method can be applied to prove the classical Paley–Wiener theorem
for the Hardy space of the upper half-plane.

6. Weighted Dirichlet spaces

As a direct corollary of Theorem 1, we can now formulate a Paley–Wiener theorem for
weighted Dirichlet spaces of the upper half-plane. For α > −1, a function F analytic in Π+ is
said to belong to the weighted Dirichlet space Dα(Π+) if its derivative F ′ is in the weighted
Bergman space A2

α(Π+). Upon identifying functions that differ by a constant, the space Dα(Π+)
becomes a Hilbert space with norm

‖F‖Dα(Π+) =
{∫

Π+
|F ′(x + iy)|2yα dx dy

}1/2

.

For α = 0, it is not hard to see that the space D0(Π+) = D(Π+) is isometrically isomorphic to
the Dirichlet space D(D) on the unit disk modulo constant functions. In fact, the composition
operator Cσ induced by σ(z) = (z − i)/(z + i), z ∈ Π+, is an isometric isomorphism from D(D)
onto D(Π+).

Here is the Paley–Wiener theorem for weighted Dirichlet spaces.

Theorem 3. For each α > −1, a function F analytic in Π+ belongs to the space Dα(Π+)
if and only if it has the form

F (z) =
∫∞

0
eizt f(t) dt , z ∈ Π+ ,

up to an additive constant, where f is a measurable function on R
+ with∫∞

0
|f(t)|2 t1−α dt < ∞ .

Moreover,

‖F‖2
Dα(Π+) =

Γ(α + 1)
2α

∫∞

0
|f(t)|2 t1−α dt .

The unweighted case of the theorem (α = 0) was previously proved by Higdon [5], using
the fact that Cσ is a unitary operator from D(D) onto D(Π+), together with the classical
Paley–Wiener theorem for H2(Π+).

Proof of Theorem 3. If F ∈ Dα(Π+), then F ′ ∈ A2
α(Π+) and therefore, Theorem 1 provides

us with a function g ∈ L2
α+1(R

+) such that

F ′(z) =
∫∞

0
eizt g(t) dt , z ∈ Π+ .



466 A PALEY–WIENER THEOREM FOR BERGMAN SPACES

It follows that, up to an additive constant,

F (z) =
∫∞

0
eizt f(t) dt , z ∈ Π+ ,

where it f(t) = g(t). The remaining assertions follow directly from Theorem 1.

It may be remarked that this function F , represented by a Fourier transform, is the unique
member of its equivalence class with the property that F (x + iy) → 0 as y → ∞.
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