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1. Introduction. In this paper we study what happens to the Hausdorff dimension
of a set A, denoted by H-dim A, under an rc-dimensional quasiconformal mapping
f:D-+D' with Ac: D. It is clear that

H-dim f [A] = H-dim A (1)

if/is a diffeomorphism or, more generally, i f / and / " 1 are locally Lipschitzian. We
show first, however, that (1) need not hold if/is a general quasiconformal mapping.
Next we give bounds for H-dim / [A] in terms of H-dim A, n, and the maximal
dilatation of/. In particular, we prove that H-dim A = 0 implies H-dim / [A] = 0,
and we conjecture that H-dim A = n implies H-dim / [A] = n, or equivalently that
H-dim A < n implies H-dim / [A] < n. We establish this conjecture for the case
where n = 2 and then prove that, for general n, H-dim f [A] < n whenever A is
contained in an m-dimensional hyperplane with m <n. An example shows that
H-dim / [A] can be arbitrarily close to n, even when A is a 1-dimensional segment.

2. Notation. We shall use the terminology and notation for quasiconformal
mappings given in [16]. Moreover, since we are concerned only with local properties
which are invariant under Mobius transformations, we shall consider only quasi-
conformal mappings /:£>->£>' where D and D' are domains in the non-compact
H-dimensional Euclidean space R".

For a 6 (0, oo), the Hausdorff a-dimensional outer measure of a set A c R" is
defined as

Ha(A)= lim(infldia(^)a), (2)

where the infimum is taken over all countable coverings of A by sets At with
dia (.4,) < d. The Hausdorff dimension of A is then given by

H-dim A = inf {a : Ha(A) = 0}- (3)

Clearly 0 < H-dim A < n.

3. We shall need the following generalization of a result due to Mori [13; Lemma 4],

LEMMA. Suppose that f: D -*• D' is an n-dimensional K-quasiconformal mapping,
that U is a bounded domain with U <=. D, and that xeU. Let

M = max |j;-x|, m = min \y-x\, L = max \f(y)-f(x)\, I = min |/(}>)-/(*)| .
yedV yedU y e dU yeSU

Received 4 November, 1971.

t This research was supported in part by the National Science Foundation, Contracts GP 7041X
and GP 28115.

[J. LONDON MATH. SOC. (2), 6 (1973), 504-512]



HAUSDORFF DIMENSION AND QUASICONFORMAL MAPPINGS 505

/ / the ball B"(f(x), L) is contained in £>', then

L < Cl, (4)

where C is a finite constant which depends only on n, K, and M/m.

Proof. Suppose that / < L and let R denote the image u n d e r / " 1 of the spherical
ring

R' = {y:l<\y-f(x)\<L}<zD'.

Then R is a ring which separates x and a point yedU from oo and a point zedU.
Hence if T is the family of arcs joining the components of C(R) in i?, it follows from
the extremal property of the Teichmiiller ring in JR"[4 and 14], or from [16; 11.9] that

where hn: (0, oo) -> (0, oo) is positive and decreasing. Then since/is .K-quasiconformal

M(T) < KM(f [T]) = K(on.t (log-t-J*~", (6)

and (4) follows from (5) and (6).

4. The Cantor sets C". For each integer n ̂  1 and each se(0,$) we define a
family of Cantor sets C" as follows. Let Q denote the closed unit cube

Q = {x = (xu...,xn):0^xl^ I},

choose a collection of 2" disjoint closed cubes Qt of side s in int Q, 1 ̂  i ^ 2", oriented
so that for each i there exists a similarity mapping

which maps Q onto Qt. Such collections of cubes Qt obviously exist for each
s G (0, £). Next for each ; ^ 1 let

FJ= U
M *j = 1

Then {FJ} is a decreasing sequence of compact sets, and each set Fj is the union of
2J" disjoint closed cubes of side sJ. Hence

is a compact set, and

H-dimCs" = « ^ ^ (7)
log s

by, for example, [1; Theorem 3] or [12; Theorem III]. In particular,

0 < H-dim C " < n
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and

lim H-dim Cs
n = 0, lim H-dim Cs" = n. (8)

s •* 0 s -*i

5. THEOREM. For each integer n ^ 2 and each pair of such Cantor sets C" and
C" there exists aquasiconformal mappingf:Rn -> Rn which maps C" onto C".

Proof. Let gt and Fj} g{ and F/ denote respectively the similarity mappings and
sets corresponding to the constructions for Cs

n, C" given in §4. Then it is not difficult
to see that there exists a piecewise linear homeomorphism / x :/?"-> Rn such that
fi(x) = x if xG Rn ~ Q and such that for each i

if xegi[Q]. Then/i is ^f-quasiconformal for some K a n d / J F J = F^. Next define
f2:R

n-* Rn by setting f2(x) = f^x) if x e Rn ~ FY and

if ATG^[Q]. Then/2 is a piecewise linear .K-quasiconformal mapping, f2 [F2] = F2)

and for each i and ;

if AregjOgj-tQ], Continuing in this way, we obtain a sequence of piecewise linear
X-quasiconformal mappings fi: R" -> R" such that fJ+1(x) =fj(x) in K" ~ Fy and
fj[Fj\ = F / . This sequence converges to a iC-quasiconformal mapping f:Rn-+ R"
which maps Fj onto Fy' for each;. Hence/maps C" onto Ct".

6. COROLLARY. For each integer n ^ 2 a«d eflcA ̂ flir of numbers a, /? e (0,«), /Aere
ex/5/s a quasiconformal mapping f:R" -> /?" a«(/ a compact set A c K" swc/? f/?a/

H-dim X = a, H-dim/[4] = /?. (9)

Proo/. By (7) and (8) we can choose s, t G (0, £) so that for any of the corresponding
Cantor sets C", Ct

n,

H-dim Cs
n = a, H-dim Ct" = p.

Theorem 5 then yields a quasiconformal mapping / : R" -> R" which maps Cs
n onto

Ct", and (9) follows with A = Cs".

7. Remark. The above proof shows that for each a G (0, n) there exists a set
Ac Rn with H-dim /I = a such that

inf H-dim/ [A] = 0, sup H-dim/ [A] = n, (10)

where the infimum and supremum are taken over all quasiconformal mappings
/ : £ ) - > £ ) ' with A cr D. We consider next what can be said if we take the infimum
and supremum in (10) over the subclass of mappings f:D->D' which are K-
quasiconformal for some fixed K.

8. THEOREM. / / / : D -*• D' is an n-dimensional K-quasiconformal mapping and if
A <=. D with H-dim A ^ a > 0, then H-dim/ [A] ^ ft > 0, where

P = ocKi/ii-n)^a/K. (11)

Proof. Since A is the countable union of sets with compact closure in D, we may
assume that A is contained in a compact subset of D. Then s i n c e / " 1 is locally
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Holder continuous with exponent Kl/(1~n) in £>' ([5; Corollary 6] or [10; 3.2]), there
exists a positive constant c such that

c\x-y\KWln-l) (12)

for all x,yeA. If b > H-dim f [A], then (2), (3), and (12) imply that Ha(A) = 0,
where a = bK11^'^. Hence a ^ a and (11) follows.

9. COROLLARY. / / / : D -> D' is an n-dimensional quasiconformal mapping and if
Ac: D with H-dim A = 0, then H-dim/[/I] = 0.

10. CONJECTURE. Iff:D-*D' is an n-dimensional K-quasiconformal mapping
and i/AaD with H-dim A < a < n, then H-dim/[^4] < ft < n, where 0 depends only
on a, n, and K.

11. We shall establish this conjecture for the case where n = 2. The proof is
based on the following important result due to Bojarski [7; p. 226].

THEOREM. Iffis a 2-dimensional K-quasiconformal mapping, then its Jacobian Jf

is locally U-integrable for q e [l,p(K)], where p(K) > 1 depends only on K.

It is easy to see that p(K) < K/(K — 1), and it has been conjectured that Theorem 11
holds with p(K) = K/(K-1).

12. THEOREM. / / / : D -* D' is a 2-dimensional K-quasiconformal mapping and if
A c D with H-dim A s$ a < 2, then H-dim f[A] < /? < 2, where

2p(K)«

and p(K) is the constant given in Theorem 11.

Proof. As in the proof of Theorem 8, we may assume that A is contained in an
open set with compact closure F in D. Then for each ae (a, 2) and each q e (1, p(K))
we must show that Hb(f [A]) = 0, where

2(q-\) + a

Choose e > 0 and d > 0. Then Ha(A) = 0 and by [8; Lemma 1] we can choose a
covering of A by non-overlapping squares Q( of side s, such that Qt c F,

and 5 s,fl < e. (14)
i

Let x,- denote the centre of Q, and set

L{ = max | /G0-/(*i) l , h = min | / G 0 - / ( * , ) | .
dQ ye dQ,

By choosing d sufficiently small, we may assume that the disks B2(f(xi),Li) all lie
in £>'. Then Lemma 3 implies that Lt ^ Clh where C is a finite constant which
depends only on K. Hence

< 2L.X ^ 2Clt ^ CMf[Qi])1'2,



508 F. W. GEHRING AND J. VAISALA

where Cx = 2Cn~1/2. On the other hand,

m(f[Qi\) - I Jfdm

by Holder's inequality. Thus

i

and a second application of Holder's inequality yields

f (15)

V I
Finally, since d can be chosen arbitrarily small, (14) and (15) imply that

( \b/(2q)

J Jf"dm\ eb«-m<">\

and letting £ -* 0 yields Hb(f [A]) = 0.

13. COROLLARY. If f: D -> D' is a 2-dimensional quasiconformal mapping and if
Ac D with H-dim A = 2, then H-dim/[4] = 2.

14. Remark. If the conjecture that Theorem 11 holds with p(K) = K/(K—\) is
correct, then Theorem 12 would imply that

2<X H-di
2K-(K-\)<x ' l " J ^ 2 + (K-l)oc

for each 2-dimensional ^-quasiconformal mapping f\D-+D' and each set A <=. D
with H-dim A = a. These bounds are asymptotic to those implied by Theorem 8 as
a - • 0.

15. Suppose that /:£>->£)' is an ^-dimensional quasiconformal mapping and
that Jf is locally Z/Mntegrable for q e [l,p) where p > 1. Then the proof for Theorem
12 shows that

H-dim/[il] ^ fi = W|" < n
«( /7 l ) + a

for each A <= D with H-dim >4 ^ a < n. Unfortunately it is not known whether the
analogue of Theorem 11 holds in higher dimensions, and hence we cannot use this
argument to establish Conjecture 10 for general n.

We can, however, establish a weaker form of Conjecture 10 for general n by a
different method. We require some additional notation. Suppose that / : D -* D' is
an H-dimensional homeomorphism. If Bn(x, r) c D, we set

L(x,f,r)= max \f(y)-f(x)\, l(x,ftr) = min \f(y)-f(x)\ .
\y-x\=r \y-x\=r

Next we say that a closed cube Q cz £>' is f-admissible if for each xef~l[Q],

B%x,d) c D, B"(f(x),L(x,f,d)) c D'
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where d = dia (/"^[Q]). Since/is a homeomorphism, each point of D' is contained
in the interior of some/-admissible cube Q.

16. LEMMA. Suppose that f:D-+D' is an n-dimensional K-quasiconformal
mapping, that T is an (n-l)-plane in R", and that Q is an f-admissible closed cube of
side s in D'. Then there exists an integer p ^ 2, which depends only on n and K, such
that the subdivision ofQ into p" congruent closed cubes of side s/p contains a cube which
does not meet f[D n T ].

Proof. Let C = C (n, K) denote the number given by Lemma 3 when M/m = 1.
We shall show that the assertion is true for p > max (6, 3Cn1/2).

Fix such an integer p, let Qo denote a cube of the corresponding subdivision which
contains the centre of Q, and let S =f[D n T]. If S n Qo = 0, we are finished.
Otherwise choose a point z e S n Qo, let y = / ~ l(z), and let e denote a unit normal to
T. Then B = B"(z, s/3) <= Q and we can choose r > 0 so that

Since Q is/-admissible, Lemma 3 implies that

Next since T is an (n - l)-plane, Bn(x, r)nT = 0 while

2T(/(*),5/(3C)) c/[£"(*, r)].

Hence the ball B"(f(x), s/(3C)) does not meet <S, and since this ball contains a cube
of the subdivision, the proof is complete.

17. Definition. A set S c R" is said to be a K-quasiconformal m-ball if there is a
neighbourhood D of S and an ^-dimensional .K-quasiconformal mapping f:D-*D'
such that/[S] is an ordinary w-dimensional (open or closed) ball. When m = 1,
S is also said to be a .K-quasiconformal arc. Finally S is said to be a quasiconformal
m-ball if it is a K-quasiconformal w-ball for some K.

18. THEOREM. IfS is a K-quasiconformal m-ball in Rn and ifm<n, then

m < H-dim S ^ p < n, (16)

where $ depends only on n and K.

Proof. Since S is homeomorphic to an ordinary m-ball, S has topological dimen-
sion m, and the lower bound in (16) follows from [6; p. 107].

For the upper bound, there exists, by hypothesis, an w-dimensional .K-quasi-
conformal mapping / : D -*• D' such that S af[D n T] for some (n— l)-plane
T a R". Choose p = p(n, K) as in Lemma 16 and set

a= ( i -p -») 1 /2 < im

Then
ap" > a2p" = p"-l,

and we may choose /? e (0, n) so that app = p" — 1. Then jff depends only on n and K,
and it suffices to show th&tHp (S) = 0. Moreover since S can be covered by a countable
collection of /-admissible cubes, it suffices to prove that Hp (S nQ) = 0 for each
/-admissible closed cube Q <=. D'.

Let Q denote such a cube with side s, subdivide Q into p" congruent closed cubes
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of side s/p, and let Qu ..., Qq denote the cubes of this subdivision which meet S.
Since Q is/-admissible, Lemma 16 implies thatg ^ p n - \ and hence that

£ dia (Qty = q((s/p) nl<y^ a(sn^2f .

Next subdivide each cube Qt into pn congruent closed cubes of side s/p2, and let
Qn> •••> Qiqt denote the cubes of this subdivision which meet S. Then since each Qt is
/-admissible, Lemma 16 implies thatg,- ^ pn-1 for each i and hence that

= £ q{{s^)n^ ^ a2 (a*1'2/.

Continuing in this way, we see that for each integer; ^ 1, S n Q can be covered by a
finite number of closed cubes Q{ of side sfpj such that

Then letting; -> oo we conclude that if̂  (S n g) = 0.

19. COROLLARY. / / / : D -* D' is an n-dimensional K-quasiconformal mapping and
if A <=. D is contained in a countable union of K-quasiconformal (n—l)-balls, then
H-dim/ [A] ^ ft < n, where fl depends only on n and K.

Proof. Since / is .K-quasiconformal, / [A] is contained in a countable union of
iC2-quasiconformal (n—l)-balls, and the conclusion follows from Theorem 18.

20. THEOREM. For each pair of integers n ^ 2 and m e [1, n— 1] and each number
P e [m,«), there exists a quasiconformal m-ball S cr R" with H-dim S = fi.

Proof. Let A = Q n T, where Q is the closed unit cube and T is the /w-plane

T = {x= (xu ...,xn):xm+1 = ... = xn = i}, (17)

and set s = (4"+1)~1. Then we can find 2" disjoint oriented closed cubes Q, of side
s in int Q with centres in A. Following the construction in §4 for the corresponding
Cantor set Cs

n, we see that for each j , the 2J" disjoint closed cubes of side sj in Fj all
have their centres in A. Hence

Cs" = ()Fjc:A. (18)
j = i

Now choose * e (0,i) and a Cantor set C," so that H-dim Ct" = 0, l e t / : £" -• R"
be the quasiconformal mapping given in the proof of Theorem 5 which maps C" onto
C", and set S =f[A]. Since A is obviously a quasiconformal m-ball, so is S. Then
(18) implies that

A= { \J(A ~ Fj)) u Cs
n, (19)

and hence that
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From the construction in the proof of Theorem 5, we see for each j that/(A') = fj(x)
in JR" ~ Fj and hence that/K-R" ~ Fj) is piecewise linear. Thus

H-dimf[A~ Fj] = m < )8

for each j and H-dim S = H-dim C" = 0.

21. Remarks. Theorem 20 shows that the upper bound /? in Theorem 18 and
Corollary 19 cannot be chosen so that it depends only on n.

We can also apply Theorem 20 to the theory of quasiregular mappings. Suppose
that f:D-*Rn is a quasiregular mapping, and let Bf denote the branch set of / .
Then Bf and f[Bf] are of ^-dimensional measure zero [9; 2.27 and 8.3]. Suppose
next that Bf # 0. Then from [11; 3.4] it follows that Hn.2(f[Bf]) > 0. Hence in
this case

n-2 < H-dim/[By] < n.

On the other hand, by a result of Cernavskii [2] (see also [15]), the topological
dimension of By is at most n — 2, and the same is true for/[By] by [3; 2.2].

22. COROLLARY. For each integer n ^ 3 and each pair* of numbers a, /? e [n — 2, n),
there exists a quasiregular mapping f:Rn -> R" such that

H-dim By = a, H-dim/[By] = 0.

Proof. Set m = n-2 and let T be the («-2)-plane in (17). Since (19) holds with
A replaced by T, the proof of Theorem 20 shows that we can construct quasiconformal
mappings gt : R" -> Rn and g2 : R

n -* Rn such that

H-dimgl[T] = a, H-dimg2[T] = p.

Next define as in [11; 3.19] a quasiregular winding mapping h:Rn-+R" with
Bh = h[Bh] = T, and set / = g2 oh o ^ " 1 . Then f:R"-+Rn is quasiregular and

23. Final remarks. The argument in the proof of Theorem 5 can be used to show
that the lower bound in Theorem 8 is asymptotically sharp for sets of small Hausdorff
dimension. More precisely, given Ke(l, oo), one can construct for each <xe(0, ri) a
K-quasiconformal mapping/,: Rn -> Rn and a compact set Aa c Rn with

H-dim Aa = oc
such that

a-»O a

This argument also can be used to show that for each Ke (1, oo) there exists a
K-quasiconformal mapping/: Rn -• R" and a compact set A c R" with H-dim A = n
such that/is differentiable with a vanishing Jacobian at each point of A.

References

1. A. F. Beardon, " On the Hausdorff dimension of general Cantor sets ", Proc. Cambridge Philos.
Soc, 61 (1965), 679-694.

2. A. V. Cernavskii, " Finite to one open mappings of manifolds", Mat. Sbornik, 65 (1964), 357-369.
(Russian.)



512 HAUSDORFF DIMENSION AND QUASICONFORMAL MAPPINGS

3. P. T. Church and E. Hemmingsen, " Light open maps on /i-manifolds ", Duke Math. J., 27
(1960), 527-536.

4. F. W. Gehring, " Symmetrization of rings in space", Trans. Amer. Math. Soc, 101 (1961),
499-519.

5. , " Rings and quasiconformal mappings in space ", Trans. Amer. Math. Soc, 103 (1962),
353-393.

6. W. Hurewicz and H. Wallman, Dimension theory (Princeton Univ. Piess, 1941).
7. O. Lehto and K. I. Virtanen, Quasikonforme Abbildungen (Springer Verlag, 1965).
8. J. M. Marstrand, " The dimension of Cartesian product sets ", Proc. Cambridge Philos. Soc, 50

(1954), 198-202.
9. O. Martio, S. Rickman and J. Vaisiila, " Definitions for quasiregular mappings ", Ann. Acad.

Sci. Fenn. A I, 448 (1969), 1-40.
10. , and , " Distortion and singularities of quasiregular mappings ", Ann.

Acad. Sci. Fenn. A I, 465 (1970), 1-13.
11. , and , " Topological and metric properties of quasiregular mappings ",

Ann. Acad. Sci. Fenn. A I, 488 (1971), 1-31.
12. P. A. P. Moran, " Additive functions of intervals and Hausdorff measure ", Proc Cambridge

Philos. Soc, 42 (1946), 15-23.
13. A. Mori, " On quasi-conformality and pseudo-analyticity ", Trans. Amer. Math. Soc, 84 (1957),

56-77.
14. G. D. Mostow, " Quasi-conformal mappings in n-space and the rigidity of hyperbolic space

forms ", Inst. Hautes £tudes Sci. Publ. Math., 34 (1968), 53-104.
15. J. Vaisala, " Discrete open mappings on manifolds", Ann. Acad. Sci. Fenn. A I, 392 (1966), 1-10.
16. , " Lectures on /i-dimensional quasiconformal mappings ", Lecture notes in mathematics

229 (Springer Verlag, 1971).

University of Michigan

University of Minnesota
University of Helsinki


