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ABSTRACT 

 

Information processing under physiological pulsatile stimulation in a G-protein 

coupled signaling pathway 

by 

Madhuresh Sumit 

 

Chairs: Jennifer J. Linderman and Shuichi Takayama 

 

The cellular microenvironment is often dynamic, and several physiological ligands are 

released in pulsatile bursts. The main hypothesis driving this study is that cells are able to discern 

these time-varying dynamic inputs and must have evolved to exploit the temporal information 

available in their microenvironment to their advantage. Taking Muscarinic M3 (a G-protein 

coupled receptor)-mediated signaling as an example, this thesis explores how information is 

processed under pulsatile stimulation. Several experimental and computational approaches 

techniques including microfluidics, real-time multi-color fluorescence imaging of single cells, 

reaction kinetics modeling and information and noise analysis are implemented to gain 

mechanistic insights into the signaling circuit architecture.  

A major finding of this thesis is that receptor-mediated signaling forms a low pass filter 

while downstream calcium-induced NFAT (Nuclear Factor of Activated T-Lymphocytes, a 

transcription factor) nuclear translocation forms a high pass filter. The combination acts as a band-

pass filter optimized for intermediate frequencies of stimulation. Sensitivity analysis shows that 

receptor and downstream kinetics determine critical features of the band-pass and that the band-

pass may be shifted for different receptors or NFAT dynamics. Another important finding in this 

thesis is that for weak physiological inputs, cells exhibit apparent stochastic responses that can be 

explained within a deterministic framework. Computational analysis suggests that cells may utilize 
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apparent stochasticity to enhance selectivity in downstream responses. This thesis also 

demonstrates that pulsatile inputs enhance information transfer downstream in noisy biochemical 

pathways. Finally, a microfluidic experimental method is developed to measure two microfluidic 

observables in the same cell, similar to a ‘two-reporter’ system, to estimate biochemical noise. 

Analysis with this method suggests that effect of drug action increases with increasing biochemical 

noise.  

Although this thesis focuses on one particular receptor and ligand, the conclusions from 

this work may be applied to several signaling systems. Investigation of band-pass processing may 

lead to gaining mechanistic insights into hidden or unknown regulatory motifs in several signaling 

pathways that are poorly understood. Using pulsatility to modulate selectivity and sensitivity of 

signaling response amidst biochemical noise provides tools to synthetic biologists and 

pharmacologists for developing enhanced lab-on-chip devices and pharmaceutical interventions.  
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Chapter 1. Introduction 

 

1.1. Motivation 

Communication or transfer of interpretable information is essential for sustenance of every 

form of life. Cellular signal transduction is the chemical form of communication that is utilized by 

cells to access information from their extracellular microenvironment. This allows cells to adjust 

or respond according to a variety of external cues and to bring about physiological or phenotypic 

changes. Signal transduction is carried out through signaling networks. The structures of these 

signaling networks can be difficult to dissect for mammalian pathways due to spatial and temporal 

encoding (Purvis & Lahav, 2013). Often, the cellular microenvironment presents dynamic or time-

varying inputs that need to be decoded downstream by cells to respond appropriately.  

 The main hypothesis driving this study is that cells must be able to discern time-varying 

inputs and must have evolved evolutionarily to exploit temporal information available in their 

microenvironment to their advantage. Several input signals are released in pulsatile bursts under 

physiological conditions, including acetylcholine (Dunant et al, 1974) (seconds to minute scale), 

glutamate (De Pittà et al, 2009) (millisecond to a few second scale) and GnRH (Chappell et al, 

2003) (Gonadotropin releasing hormone) (a few hours). How such rhythmic processes and their 

appropriate timing influence downstream signaling outcomes is fundamentally important to 

biology. Conventional methods of investigating these pathways often fail to provide quantitative 

and mechanistic insights into dynamic nature of information processing in such signaling 

pathways. Despite several interrogations with novel tools such as microfluidics, have elucidated 

circuit architectures of such signaling pathways (Jovic et al, 2010, 2011, 2013; Ashall et al, 2009; 

Dhumpa et al, 2015), little is known about how nature utilizes physiological pulsatile bursts to its 

advantage for processes such as transcriptional activity and temporal selectivity. Taking 

muscarinic M3 receptor (a G-protein coupled receptor or GPCR)-mediated calcium signaling as 

an example, this thesis aims to explain how information is processed in such noisy signaling 

networks under physiological pulsatile stimulations.  
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In this chapter, we discuss how dynamic microenvironment may be able to expand the 

observability of a signaling system. We also discuss the sources of noise that such biochemical 

pathways often suffer from. We describe how microfluidic approach proves to be a great tool for 

not only expanding the observability, but also reducing the noise via synchronized cell responses. 

Taking examples from literature, we discuss how this approach has been implemented in gaining 

mechanistic insights into several signaling pathways. We then discuss our signaling system, and 

outline the goals of this thesis.  

 

1.2. Dynamic microenvironment and observability space 

The microenvironment surrounding cells in tissues of a multi-cellular organism may change 

rapidly due to various metabolic and signalling processes. Cells must be able to discern these 

dynamics to make appropriate decisions. In general, these dynamic patterns include changes in 

amplitude, duration of stimulation, gradients, or periodicity of the input signal (Fig. 1.1. A). 

However, to interpret these dynamic inputs, cells also require complex signaling pathways that 

may enable cells to process these inputs differently.  

Understanding such complex signaling pathways primarily depends on robust discernment of 

signaling circuit architectures. This requires comparing and evaluating multiple response features. 

Ideally, one could observe every signaling node in the network, but this has practical limitations. 

However, we can exploit a cell's ability to discern these dynamics in our experiments, and use the 

information gathered to help understand the circuit architecture that may have a variety of network 

motifs (Uri Alon, 2007) (Fig. 1.1. B). To achieve this, we think about the "observability space" - 

the non-redundant and informative read-outs in the space-time domain. Often, cell signaling 

studies are limited to a single dimension in the observability space, i.e., variation in the input 

concentration and the corresponding downstream read-out. To expand the observability space, we 

need additional inputs that can provide distinct output (downstream) responses. Temporally 

varying stimulation provides this necessary expansion of observability space through additional 

input parameters such as duration of stimulation, rest period between the stimulations, input duty 

cycle etc. (Fig. 1.1. C). This space can be further expanded by introducing other time-dependent 

inputs such as positive and negative gradients, sinusoidal and saw-tooth waveforms. Thus, the 

same read-out can be measured distinctively for several input conditions. Increasing the number 

of read-outs further expands the space with the number of combinatorial investigations possible. 
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These many dynamic read-outs provide a wider window to compare and evaluate the response 

features and figure out the most appropriate circuit architecture, which is quite difficult to 

understand using conventional methods with limited observables under static inputs. Thus, 

multiple observables for the same read-out play an essential role in weeding out the non-

conforming circuit architectures, as well as in gaining mechanistic insights into how temporal 

information is processed in a particular signaling circuit. This thesis is focused on pulsatile input 

because of its physiological relevance to the signaling pathways where input ligand is often 

released in intermittent pulsatile bursts.  

 

1.3.Signal transduction and noise 

Signal processing in temporally encoded networks often suffers from noisy transmission of 

information because of intrinsic and extrinsic factors (Cheong et al, 2011; Selimkhanov et al, 

2014). These factors are broadly classified into two types of noise often present in a biochemical 

signaling network. First is stochastic noise, also termed intrinsic noise, attributed to stochasticity 

in molecular interactions, reactions involving low copy number species, and also to the 

measurement errors such as limited resolution of the measuring instruments. The second type of 

noise is biochemical noise, also termed extrinsic noise or cell-to-cell variability. Biochemical noise 

is attributed to the variability in the molecular abundance of signaling components and is therefore 

‘extrinsic’ to the cell under study. Quantitative and mechanistic understanding of how cells process 

these noisy signals to facilitate reliable transmission of information is essential for developing 

target specific drug interventions, as well as for synthetic biology applications.  

 

1.4. Microfluidic approach to investigation of cellular signaling architectures 

Signaling circuit investigations at the single cell level with pulsed stimulation requires delivery 

of time-dependent ligand or drug molecule input. It is not possible to use macro-scale tools to 

precisely mimic and manipulate the cellular microenvironment. Large fluid volumes in macro-

scale systems prevent rapid changes in concentrations, thus making these systems inaccurate and 

low throughput. To this end, several microsystems, in particular microfluidic devices, have 

recently been designed and developed that can handle microliter and sub-microliter volumes of 

fluids, and can mimic perturbations and measurements in both timescales as well as length scales 

(Duncombe et al, 2015). Depending upon the channel dimension along with the flow velocity, 
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microfluidic devices provide additional advantage of facilitating precise fluid control through 

laminar flow, wherein flow streams move as well-defined ‘lamina’ (or layers) without mixing 

(Takayama et al, 2003), thus allowing generation of precise temporal patterns of fluids.  

 

Microfluidic devices for generating temporal input patterns  

From the fabrication point-of-view, microfluidic devices can be broadly classified into solid-

state devices and PDMS devices. Solid-state fabrication techniques include photolithography, 

glass etching and glass bonding, and the primary substrates include glass or silicon. While these 

techniques have been successful in several biophysical applications, such as capillary 

electrophoresis, cell trapping and cell separation, there are practical limitations with these devices 

in generating temporal microfluidic patterns. In contrast, poly-dimethylsiloxane (PDMS) based 

devices utilize the technique of soft lithography, wherein micron-sized patterns can be molded 

from a hard master template (Whitesides et al, 2001). PDMS is non-toxic, biocompatible and 

almost transparent in the wavelength regime typically used for fluorescence-based studies. Its 

elastic properties allow design of devices with micromechanical membrane valves to allow 

relatively easy control of fluid flow through the channels.  

There are multiple approaches for generating temporal input patterns with PDMS based 

devices, including direct syringe pumping , pulse code modulation (PCM) (Zhang et al, 2010), 

fluidic membrane valves (Melin & Quake, 2007), Braille-pins based platform (Futai et al, 2006; 

Gu et al, 2004), elastomeric oscillators (Mosadegh et al, 2010) and others. While all these methods 

have advantages and disadvantages, the adoption of a method depends upon the requirements of 

the study. Since this thesis focuses on GPCR-mediated calcium signaling which occurs at a time 

scale of a few seconds to several minutes, it would require a microfluidic device that can deliver 

input ligands with temporal patterns in that time scale. To this end, Braille-pin based microfluidic 

devices provide a suitable platform to perform such experiments. A computer-controlled Braille 

pin-based platform was developed by Gu et al (Gu et al, 2004) that uses peristaltic pumping in 

alternate fashion to generate fluid flow. Futai et al (Futai et al, 2006) utilized this platform to 

develop a microfluidic device that allowed portable cell culture and long term monitoring of cells 

under microscope. Jovic et al (Jovic et al, 2010) modified the device design to have channels from 

two input reservoirs merging into a single outlet channel. Both the input channels could be 

controlled by the Braille platform to deliver alternate sequence of fluid from each of the channels 
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into the outlet channel (Fig. 1.2.). When one of the inlet reservoirs is filled with buffer and the 

other with ligand (dissolved in the buffer), the device can deliver pulsed stimulations with various 

durations (D) and rest periods (R) at a temporal resolution of a few seconds. This device has been 

used to investigate phase locked response in GPCR-mediated signaling pathway to elucidate 

circuit architecture and pathway recovery properties (Jovic et al, 2010, 2011, 2013). All the 

experimental data in this thesis are obtained with devices fabricated with the same design as Jovic 

et al (Jovic et al, 2010).  

 

Advantages of microfluidic pulsatile stimulation  

Conventionally, signaling responses are measured for step changes in the concentration of 

a stimulus. Yet, many physiologically relevant stimuli, including neurotransmitters, metabolic 

enzymes, hormones, and growth factors, are released in pulsatile bursts (Fig. 1.3. A) (De Pittà et 

al, 2009; Dyachok et al, 2006; Dunant et al, 1974; Bergendahl et al, 1998; Chappell et al, 2003). 

Time scales vary widely from milliseconds to several hours. Consequently, downstream activation 

of effector molecules may vary significantly for time varying inputs as compared to step changes 

(Sorre et al, 2014; Ryu et al, 2015). Complex time varying patterns such as pulsatile bursts can be 

delivered with high temporal resolution using microfluidic devices, thus mimicking the dynamic 

physiological microenvironment in a controlled fashion. 

Pulsatile microfluidics also provide a tool for externally phase locking or synchronizing a cell 

population to study emergent population behavior in vitro (Fig. 1.3. B). Several physiological 

phenomena, such as hormonal secretion and heart contractions, are rhythmic or oscillatory at the 

tissue/organ scale. Such rhythmic activities indicate synchronization of millions of cells (Dhumpa 

et al, 2015, 2014). Microfluidics allows mimicking these tissue scale conditions in vitro. These 

features have also been explored to develop organ-on-chip and human-on-chip systems (Bhatia & 

Ingber, 2014). 

As discussed in Section 1.3, in vitro cultures are prone to cell-to-cell variability (Snijder & 

Pelkmans, 2011; Ladbury & Arold, 2012; Hughey et al, 2014). Under step stimulation, these cells 

tend to vary widely in their signaling responses (Selimkhanov et al, 2014; Cheong et al, 2011; 

Zambrano et al, 2016). While some cells exhibit oscillatory responses, others may exhibit peak-

and-plateau, single spike or no response (Fig. 1.3. C). Thus, biochemical noise leads to a wide 

range of responses, and makes it difficult to interpret how these responses affect the downstream 
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signal. Under external periodic stimulation, signaling systems may exhibit synchronized or phase 

locked responses (Jovic et al, 2010) that are easier to interpret, and also allow us to investigate 

how downstream responses depend on temporal modulation of the stimulation.  

Several studies have shown that transcription factor activation and gene transcription vary 

significantly between continuous and pulsatile stimulation (Ryu et al, 2015; Tomida et al, 2012; 

Sorre et al, 2014). Rate constants for activation and deactivation of transcription factors, or nuclear 

translocation and back-translocation, may determine whether a continuous or a pulsatile 

stimulation leads to higher activity. Consequently, for two distinct transcription factors (say Z1 

and Z2), the amount of activation may differ for different temporal inputs. This may lead to several 

combinations of gene activation, consequently determining the fate of the physiological or 

phenotypic response (Fig. 1.3. D).  

  

1.5. Mathematical and computational modeling approaches to investigation of cellular signaling 

architectures 

Mathematical  and computational modeling have been used extensively to describe and predict 

dynamical systems in biology, including predator-prey dynamics (Alfred J. Lotka, 1925; Volterra, 

1926), microbial growth (Monod, 1949), embryonic morphogenesis (Turing, 1952), cell cycle 

dynamics (Sible & Tyson, 2007) as well as several cell signaling pathways (Aldridge et al, 2006). 

Investigation of biochemical pathways is aided by quantitative predictions from mathematical and 

computational models that can be tested experimentally, with insights feeding back to improve the 

models. These models can be deterministic such as ordinary differential equations (ODEs), partial 

differential equations (PDEs), delayed differential equations (DDEs), or stochastic such as 

dynamic Monte Carlo method, Gillespie method, and Markov processes. Sometimes, a 

combination of deterministic and stochastic modeling is also used to explain certain phenomena 

observed experimentally (Tay et al, 2010). Other more abstract methods in modeling include fuzzy 

logic, Bayesian networks etc. Appropriate selection of modeling approach depends on the details 

available for that particular dynamical system. For modeling signaling pathways, details such as 

mechanisms, availability of experimentally determined kinetic parameters and capability of getting 

time-dependent read-outs are important (Aldridge et al, 2006). ODEs are frequently used to 

describe signaling pathways when such details are available. These ODEs can be solved to obtain 

time traces of individual signaling components. Modeling a dynamical system wherein spatial 
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dynamics is involved, PDEs with space and time derivatives are frequently used. Sometimes, 

signaling system under study involves compartmentalization of the signaling components. The 

component that translocates from one compartment to other exhibits a lag time before signaling in 

the other compartment. For such processes, DDEs are frequently used to describe the dynamics. 

Although deterministic models have an advantage in terms of the ease with which characteristic 

behaviors can be described and predicted (Scott et al, 2007), Stochastic models are often invoked 

to provide insights where deterministic models fail (Das et al, 2009; Ullah & Wolkenhauer, 2010; 

Tay et al, 2010; Turner et al, 2010). Signaling events that involve discrete and random waiting 

times (such as binding of a transcription factor to a gene sequence or low copy numbers of 

signaling molecules interacting with each other) are best described by stochastic processes.  

In case of GPCR-mediated signaling, integrating modeling approaches with experiments 

has significantly enhanced our understanding of the GPCR-mediate signaling events leading to 

several cellular responses (Omann et al, 1987; Adams et al, 1998; Bhalla & Iyengar, 1999; 

Linderman & Lauffenburger, 1988; Mahama & Linderman, 1994c; Linderman, 2009). Several 

steps in the signaling pathway have been well characterized in terms of mechanistic insights as 

well as availability of kinetic parameters. For this reason, ODEs are frequently used to model 

GPCR-mediated pathways. Additionally, not all of the kinetic parameter values have been 

measured for these pathways. Other measured values may vary over several orders of magnitude. 

Techniques to efficiently sample the parameter space and to determine the correlation of the 

signaling response with each of the parameter varied are helpful (Blower & Dowlatabadi, 1994; 

Saltelli et al, 2002).  Uncertainty and sensitivity analyses are an important aspect of  mathematical 

and computational modeling (Marino et al, 2008; Zak et al, 2005; Saltelli et al, 2005). 

With the advent of time-lapse microscopy with high spatio-temporal resolution, it has been 

possible to measure time traces of signaling components at single cell scale. However, as discussed 

earlier, in vitro cultures are prone to cell-to-cell variability (Snijder & Pelkmans, 2011; Ladbury 

& Arold, 2012; Hughey et al, 2014). Thus, the single cell traces obtained experimentally are often 

noisy and it is difficult to interpret the signaling dynamics. A deterministic model alone may not 

be able to provide the needed insights. For this reason, mathematical and computational models at 

single cell scale may also incorporate extrinsic noise and the signaling components are initialized 

in the model by choosing values from a distribution (Mahama & Linderman, 1994b). To interpret 
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single cell data, information theoretic analysis has recently been utilized to estimate the noise and 

information components in the signal (Cheong et al, 2011; Selimkhanov et al, 2014). This thesis 

aims to utilize these mathematical and computational approaches along with microfluidic 

interrogation of the signaling to obtain quantitative insights that can be validated experimentally.  

1.6. Investigation of oscillatory signaling networks with microfluidics and computational 

modeling 

Investigation of cellular signaling pathways with dynamic inputs using microfluidics is a 

research area that has grown significantly in the recent years. Several mammalian (Jovic et al, 

2010, 2011, 2013; Sorre et al, 2014; Dhumpa et al, 2014; Tay et al, 2010; Kellogg & Tay, 2015; 

Zambrano et al, 2016; Ashall et al, 2009; Ryu et al, 2015; Dhumpa et al, 2015) as well as non-

mammalian systems including bacteria (Prindle et al, 2014; Tsimring et al, 2010; Mondragón-

Palomino et al, 2011), amoeba (Sgro et al, 2015), yeast (Hao et al, 2013; Mitchell et al, 2015),  

and nematodes (Tomida et al, 2012; Kato et al, 2014) have been investigated.  

In mammalian systems, NFκB (nuclear factor κB) signaling is by far the pathway most studied 

using microfluidics and mathematical modeling. The intrinsic oscillatory dynamics of the pathway 

are on the time scale of minutes to hours and can be conveniently investigated for frequency 

modulated signaling (Tay et al, 2010; Zambrano et al, 2016; Kellogg & Tay, 2015; Ashall et al, 

2009). Tumor Necrosis Factor – α (TNF-α) is an inflammatory signal that activates NFkB and 

induces its nuclear translocation via phosphorylation of the upstream IKKs kinases (Hoffmann et 

al, 2002). TNF-α is secreted in pulsatile bursts by cells neighboring to the T-cells, thus making the 

study using pulsatile microfluidics physiologically relevant (Ashall et al, 2009). Mimicking these 

physiological bursts, Ashall et al (Ashall et al, 2009) utilized pulsatile stimulation of TNF-α to 

show that a minimum ‘reset time’ is needed for complete recovery of NFκB amplitude peak. They 

found that the dampening is contributed not only by the negative feedback from NFκB-induced 

IκB expression, but also from A20 expression that inhibits the activation of an intermediate kinase, 

IKK-α. Thus, they utilized pulsing to figure out a hidden regulatory motif that was unknown prior 

to their investigation. Cells utilize pulsatile stimulation to determine the timing and specificity of 

NFκB dependent transcription. In particular, they showed that the four NFκB dependent transcripts 

viz. RANTES, IκBε, IκBα and MCP-1 are expressed in distinct fashion for the various TNF-α 

pulsatile stimulation patterns (Fig. 1.4. A).  
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Extracellular-regulated kinase (ERK) signaling plays an important role in cell fate 

regulation, including differentiation and cell proliferation. Stimulation by growth factors (GFs) 

like EGF (epidermal) and NGF (nerve) leads to the activation of GF receptors that activate a Ras-

GTPase. This triggers the MAP kinase cascade that results in ERK activation (Avraham & Yarden, 

2011; Marshall, 1995). The ligands EGF and NGF are known to have distinct ERK activation 

dynamics that lead to proliferation and differentiation, respectively (Avraham & Yarden, 2011; 

Marshall, 1995). Step stimulation of GFs leads to heterogeneous downstream ERK activation, thus 

complicating the understanding of the circuit architecture that differentiates the two input ligands. 

Ryu et al (Ryu et al, 2015) investigated this pathway in PC-12 cells for neurite growth 

(differentiation) by utilizing pulsatile stimulation to generate synchronized homogenous ERK 

signaling and probing the dynamics under several temporal conditions (Fig. 1.4. B). Sustained 

EGF stimulation led to an undifferentiated state while sustained NGF stimulation led to a 

differentiated state. Pulsatile stimulation of high concentration NGF also led to a differentiated 

state, except for slow stimulations (D = 3 min, R = 60 min). Since low NGF concentrations did 

not induce differentiation, they inferred that high NGF concentrations are required to trigger the 

pathways involved in differentiation other than ERK activation.  

Transforming growth factor β (TGF-β) is a well-known mammalian morphogen that 

conveys positional information and determines cell fate during embryonic development 

(Massagué, 2012). TGF-β mediated signaling involves phosphorylation of a receptor-activated 

Smad (R-Smad) upon its binding to the TGF-β receptor. The phosphorylated R-Smad undergoes 

nuclear translocation, acts as a transcription factor and brings about transcriptional changes. These 

morphogen levels are not static and may present a dynamic (oscillatory or pulsatile) micro-

environment to the developing embryo (Warmflash et al, 2012; Aulehla et al, 2009). To understand 

the implication of temporal encoding of such dynamic morphogenic signals in embryonic 

patterning, Sorre et al (Sorre et al, 2014) probed C2C12 cells using GFP-Smad4 fusion protein in 

a microfluidic cell culture device and live cell imaging. TGF-β stimulation leads to nuclear 

translocation of Smad4-GFP (Fig. 1.4. C), and subsequently to inhibition of myotube formation in 

myoblasts. While step changes in TGF-β concentration led to partial prevention of differentiation, 

pulsatile TGF-β stimulation was more potent in preventing differentiation (Fig. 1.4. C).  

Another example where pulsatile stimulation has provided novel insights is insulin 

secretion from the islets of Langerhans. The islets are mainly composed of pancreatic β-cells. Upon 



10 
 

elevated glucose levels, the rate of glycolysis and consequently the ATP concentration increases 

in the β-cells, thus blocking the potassium channel and opening up of calcium channels. Positive 

feedback from calcium (calcium induced calcium release) raises its level and leads to the secretion 

of insulin granules via exocytosis. Sugar metabolism is oscillatory, and so is insulin secretion, both 

having a period of ~ 5 min. How these islets synchronize to generate oscillations in the insulin 

secretion has remained largely unknown. Dhumpa et al (Dhumpa et al, 2014) used a microfluidic 

device to investigate how step and oscillatory glucose input synchronizes the insulin secretion. 

They showed that under step elevation of glucose level, the calcium and insulin read-outs in the 

islet remained uncorrelated with no entrainment. In contrast, oscillatory glucose input led to 

oscillations in the calcium as well as insulin secretion in an entrained fashion (Fig. 1.4. D). The 

synchronization index increased with increasing periodic glucose amplitude. Mathematical 

modeling of the system revealed that an insulin-dependent negative feedback action of the liver on 

glucose level leads to synchronized oscillations in the islets. In a more recent work (Dhumpa et al, 

2015), they determined the synchronization window by using a chirped waveform of glucose 

stimulation to find that the strongest resonance between the glucose input and calcium oscillations 

was within 2 min of the natural period of oscillation (~5 min) (Fig. 1.4. D). These studies reveal 

how feedback mechanisms may induce synchronized oscillations at tissue scale to give rise to 

emergent behaviors.  

G-Protein Coupled Receptors (GPCR) are cell surface receptors that primarily signal 

through G-Protein coupling, resulting in various downstream signaling events through second 

messengers such as cytoplasmic calcium and ATP. These second messengers have oscillatory 

dynamics because of positive and negative feedback (Dyachok et al, 2006; Politi et al, 2006). The 

receptor itself may undergo dynamic uncoupling leading to oscillatory dynamics of G-protein 

activation (Dupont et al, 2011b). The oscillatory calcium response is widely studied to understand 

the temporal encoding of calcium-induced transcription factors (Dolmetsch, Ricardo; Lewis, 

Richard; Goodnow, Christopher; Healy, 1997; Tomida et al, 2003; Carcich & Joseph, 2001; 

Dolmetsch et al, 1998). To elucidate signaling circuit architecture, Jovic et al utilized pulsatile 

stimulation of HEK 293 cells stably expressing muscarinic M3 receptor (a GPCR) with carbachol, 

a chemical analog of acetylcholine (a neurotransmitter and physiological ligand for M3 receptor) 

(Jovic et al, 2010, 2011). A measure of response fidelity, defined as the phase locking ratio (PLR, 

ratio of number of calcium responses above a threshold value to the number of input ligand pulse) 
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was shown to change with the stimulation parameters concentration (C), duration (D) and rest 

period (R). The phase-locking analysis provided an expanded observability space to compare 

several models and examine the differences in activation and recovery properties between the 

models, which would otherwise not be possible through conventional methods. Utilizing these 

microfluidic results, several existing models were compared with distinct signaling motifs 

(positive and negative feedbacks) to discover the circuit architecture that best explained the data 

(Fig. 1.5. A). The analysis also revealed the importance of basal levels of PLC in generating 

subthreshold peaks. Pulsatile stimulation was also utilized to understand the pathway recovery 

properties in multiple concentration regimes (Jovic et al, 2013). In particular, the reduction in 

phase-locking at low values of C and D and the reduction in signal amplitude at high values of C 

and D for a fixed R was utilized to dissect the recovery properties of cytoplasmic calcium and 

receptor phosphorylation respectively (Fig. 1.5. B). 

Several non-mammalian systems have also been investigated through temporal modulation of 

input signals using microfluidics and mathematical modeling to elucidate specific signaling 

features. A synthetic oscillatory network inducible with arabinose has been studied in the bacterial 

system using oscillatory arabinose input to quantitatively understand the entrainment of biological 

clocks (Mondragón-Palomino et al, 2011). These bacterial oscillators displayed a wide range of 

tunable frequencies and higher-order resonance. Computational simulation of this system 

indicated that the entrainment robustness of biological clocks may be attributed to the presence of 

a positive-feedback loop. In another work, a social amoeba, Dictyostelium discoideim, was studied 

to understand its coordinated and synchronized cAMP oscillations at population scale under 

starving conditions (Sgro et al, 2015). Using pulsatile microfluidic stimulations and mathematical 

modelling, they showed that the intracellular noise (stochastic heterogeneity) is the key driver of 

the population level behavior and that the biochemical noise (cell-to-cell variability) alone was 

unable to reproduce the results. Hao et al (Hao et al, 2013) studied how transcription factors (TFs) 

process dynamic input to generate diverse range of dynamic responses. Using yeast 

(Saccharomyces cerevisiae) as their model system, they showed that the stress-responsive TF 

Msn2 is able to distinguish various dynamic stress inputs based on upstream kinetics and may 

process it differently as a tracker, as a filter or as a signal integrator. Another group showed that 

the oscillatory stress stimulation in yeast cells results in an intermediate frequency regime for 

which the growth is slowed down significantly (Mitchell et al, 2015). Another model system 
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studied widely with microfluidics is a nematode (Caenorhabditis elegans). Tomida et al (Tomida 

et al, 2012) measured calcium and MAPK activity in sensory neurons of C. elegans under pulsatile 

stimulation of changes in NaCl concentration. The study showed that the stimulation parameters 

(C, D and R) determine the extent of MAPK-1 activation in a non-linear fashion attributed to the 

calcium dynamics, which showed dampening at rapid stimulations. 

 

1.7. Brief description of muscarinic M3-calcium-NFAT signaling  

Muscarinic M3 acetylcholine receptor is a GPCR expressed in many locations including beta 

cells of the pancreas, and is considered a potential target for Type 2 diabetes as well as 

neurodegenerative diseases (Kruse et al, 2014). Physiological ligand for this receptor is 

acetylcholine, a neurotransmitter that has been observed to be released in pulsatile bursts (Fig.1.3. 

A), thus making this signaling pathway ideal for our investigation. Ligand-induced activation of 

the receptor signals through the common G-protein-PLC-IP3 pathway that couples to the calcium-

calcineurin pathway to induce NFAT (Nuclear Factor of Activated T-Lymphocytes) nuclear 

translocation. Calcium-dependent calcineurin-NFAT signaling plays key roles in T-cell activation, 

in insulin secretion (Rodriguez-Diaz et al, 2011; Nilsson et al, 2007) and in regulating neonatal 

beta cell development (Kragl & Lammert, 2012).  

Current understanding of GPCR-calcium signaling model comes from recently published 

studies that are based on a combined experimental and modeling approaches (Jovic et al, 2013; 

Politi et al, 2006). Briefly, carbachol (CCh) binds to M3 muscarinic receptors, promoting G-

protein coupling. Following the exchange of GDP for GTP on the alpha-subunit (Gα), Gα 

dissociates from the receptor and binds to PLC, initiating downstream signaling. GTP on activated 

Gα is rapidly hydrolyzed to GDP, forming inactive Gα-GDP. If Gα is bound to PLC, then this 

hydrolysis reforms inactive PLC as well as inactive Gα. The ligand-receptor complex (L-R) is 

reversibly phosphorylated to form inactive L-R-P state. Gα binding to PLC increases IP3 

production; IP3 binds to the inositol triphosphate receptor (IP3R) on the endoplasmic reticulum 

(ER), triggering the release of Ca2+ from ER into the cytosol. Cytosolic Ca2+ acts both to stimulate 

and to inhibit its release from the ER through multiple pathways. The oscillatory release of Ca2+ 

from the ER is achieved by the SERCA pump, which pumps cytosolic Ca2+ back into the ER. Ca2+ 

can also enter or leave the cell through the plasma membrane (Fig. 1.6.). Calcium release in the 

cytoplasm leads to activation of several downstream calcium-dependent signaling components. 
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One such example is the calcium-mediated NFAT  signaling (Tomida et al, 2003; Dolmetsch et 

al, 1998). Briefly, the rise in cytoplasmic Ca2+ activates calcineurin, which binds to cytoplasmic 

phosphorylated NFAT (NFATcyto-Pi) and leads to dephosphorylation (NFATcyto). The complex 

can either form inactive calcineurin and cytoplasmic NFATcyto-Pi upon rephosphorylation, or the 

calcineurin-dephosphorylated NFAT complex may translocate to the nucleus because of the 

exposure of the nuclear localization signal domain upon dephosphorylation. Nuclear 

dephosphorylated NFAT (NFATnuc) is the active form for NFAT that binds with DNA at specific 

sites and, along with other transcription factors, brings about a variety of physiological responses. 

NFATnuc may then undergo phosphorylation to form inactive nuclear phosphorylated NFAT 

(NFATnuc-Pi) which then translocates back to the cytoplasm (Fig. 1.6.). 

 
1.8. Overview of thesis   

 The ability to stimulate cells with temporally varying inputs has provided insight into how 

cells process and interpret these signals. As discussed in the previous section, several signaling 

pathways have been investigated using this approach in past couple of decades. The approach 

becomes even more relevant in mimicking physiological conditions with pulsatile inputs. With 

growing capabilities of measuring multiple read-outs in single cells, it is becoming increasingly 

evident that individual cells may not behave as expected from their population-averaged 

responses. Often, these signaling networks are non-linear and lead to bifurcation in the response 

which is not evident from population scale measurements (Altschuler & Wu, 2010; Spencer et al, 

2009, 2013). Now that technology has advanced and is capable of addressing such questions, with 

the use of microfluidics and computational modeling, this is an exciting time to study how the 

dynamic cellular micro-environment is utilized by nature to process information at single cell 

level, how information processing is affected by unavoidable noise in the signaling system, 

whether nature utilizes noise to enhance selectivity, and what pharmacological implications 

pulsatile stimulation and noise might have. The results from such studies will take our 

understanding of temporal modulation of signals to a new and detailed level. It will enhance our 

understanding of cellular physiology as well as shed light on the effects of cellular noise and 

variability in dynamic signaling and selectivity. Although this thesis focuses on one particular 

receptor (viz. muscarinic M3 receptor), it endeavors to develop a general understanding about 

temporal information processing that may be applicable to many signaling pathways. These 
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understandings possess immense potential for therapeutic advantages and drug development as 

well as for advanced synthetic biology applications.  

 Within the above contexts, this thesis takes muscarinic M3 (GPCR)-mediated calcium 

signaling as a model signaling system and explores the following questions:  

1. How do pulsatile inputs affect downstream signaling and transcriptional activity, and is there 

a specific circuit architecture to process such signals? (Chapter 2) 

Real-time assessment of cellular calcium levels and nuclear translocation of the calcium-

regulated transcription factors NFAT1 and 4 is done under various pulsatile conditions. We 

obtain counterintuitive results, wherein an intermediate pulsing rate (less overall stimulation) 

elicits a larger response than is obtained by continuous exposure or frequent pulsing (which 

both provide greater overall ligand exposure).  Furthermore, different stimulation frequency 

windows favor activation of the two different transcription factor isoforms. The frequency-

dependence of the responses is consistent with the concept of a band pass filter. Based on 

computational modeling of the experimental data, band pass processing is expected to be a 

general theme that applies to multiple signaling pathways. 

 

2. Do physiologically relevant pulsatile bursts encode information as a deterministic strategy to 

guide cell fate or just lead to random stochastic signaling events? (Chapter 3) 

Physiologically relevant stimulations that are transitory and weak often result in responses 

that appear stochastic. In this chapter, we show that such cases may be well described by 

deterministic processes in which there is a high Hill coefficient step and cell-to-cell 

variability. Additionally, we describe a tractable, rest period-based, two-pulse experimental 

test that can confirm that an apparently stochastic response may have a deterministic basis.  

 

3. How is information transfer capacity of such signaling pathways affected by the presence of 

biochemical noise? (Chapter 3) 

We use pulsed ligand inputs and measure single cell response to quantify information transfer 

via M3 receptor to calcium and NFAT response under step and pulsed conditions. We show 

that the mutual information transfer under pulsed stimulation is not only greater than the step 

changes alone, but also exceeds the maximum information transfer possible under non-
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pulsatile conditions. Focusing on a deterministic model, we show that the extent of biochemical 

noise critically determines the amount of information that can be transferred downstream. We 

also show that the two isoforms of NFAT with different band-pass windows also exhibit 

different levels of information transfer and their mutual information transfer is greater than 

their information transfer capacities alone. 

 

4. What are the implications of biochemical noise in determining drug action at single cell level? 

(Chapter 4) 

In this chapter, we ask how biochemical noise may affect the drug action at single cell level. 

We developed a microfluidic experiment to measure two observables in the same cell, similar 

to a ‘two-reporter’ system to estimate biochemical noise in the system. Our analysis with 

microfluidic experiments and mathematical modeling suggests, counterintuitively, that the 

drug action on rescuing perturbed cells increases with increasing noise. 
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Fig. 1.1. Dynamic microenvironment expands the observability space to investigate complex 
network structures. A. Several dynamic modulations of signaling input observed in biological 
systems that includes modulation in amplitude, duration, gradient, pulsatile frequency, and 
sinusoidal rhythms. B. Examples of network motifs present in transcription networks that can sense 
temporal inputs. C. Temporal modulation expands the observability space by providing additional 
input-output responses and aids in distinguishing the network motifs. 
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Fig. 1.2. Braille-pin based pulsatile microfluidic device allows delivery of temporally 
controlled ligand inputs. A. Braille-pin actuator based PDMS microfluidic device used to 
deliver time varying pulsatile ligand input to cells seeded in the microfluidic channel; image 
obtained from (Jovic et al, 2011). B. The ligand delivery (input) can be controlled in terms of C 
(concentration), D (duration of stimulation) and R (rest period between two consecutive 
stimulations). C. Peristaltic pumping using a Braille-pin based platform (Gu et al, 2004) in 
alternate fashion generates fluid flow. Channels from two input reservoirs merge into a single 
outlet channel to deliver alternate sequence of fluid from each of the channels into the outlet 
channel through the computer-controlled system (left). Pulsatile delivery of input ligand results 
in phase-locked calcium response (right). Image and data from (Jovic et al, 2011).  
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Fig. 1.3. Advantages of pulsatile stimulation over conventional methods. A. Pulsatile 
stimulation can mimic several time-varying ligand secretions that are physiologically more 
relevant e.g. glutamate, acetylcholine, Gonadotropin releasing hormone (GnRH) and Luteinizing 
Hormone (LH) are all known to be secreted in pulsatile fashion. Data adapted from several 
literature sources. B. Pulsatile stimulation results in phase-locking or entrainment in several non-
linear systems thus filters out the temporal variations because of biochemical noise or cell-to-cell 
variability. C. Pulsatile stimulation may also lead to distinct downstream responses, thus regulating 
different fates through the same input. D. Using microfluidics to study behavior of 
entrained/phase-locked cells also provides a platform to study collective population behavior often 
observed physiologically. 
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Fig. 1.4. Investigation of oscillatory signaling networks with microfluidics and computational 
modeling. A. TNFα-NFκB signaling. TNF-α induced NFkB oscillations show differential 
sensitivities of mRNA transcripts towards time-varying inputs. B. Growth factor mediated neurite 
differentiation. Temporally modulated growth factor stimulations, epidermal (EGF) and nerve 
(NGF), lead to distinct fates of neurite differentiation based on temporal regimes. C. TGF-β 
mediated Smad4 activation. Temporally varying inputs show no memory of stimulation and adapts 
to the external pulsing, suggesting an existence of negative feedback (adaptive mechanism). 
Pulsatile stimulation is more efficient is preventing differentiation of myocytes as compared to 
step changes in ligand concentration. D. RTK-Insulin pathway. Calcium and insulin secretion 
show entrainment to synchronize at tissue scale upon periodic glucose stimulation and the extent 
of synchronization increases with increase in periodic glucose amplitude. All figures and data are 
adapted from the articles referenced at appropriate places. 
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Fig. 1.5. Microfluidic phase locking analysis of GPCR-calcium signaling to dissect circuit 
architecture and pathway recovery properties. A. Phase locking properties upon pulsatile 
stimulation vary with stimulation parameters such as input concentration (C), pulse duration (D) 
and rest period between the pulses (R). Existing models, when compared for the phase locking 
properties, lead to identify circuit architecture that can best explain these properties. B. Pulsatile 
stimulations in low and high concentration regimes lead to characteristic signal/beat skipping (in 
low concentration regime) and amplitude reduction (in high concentration regime). These 
observations help understand the pathway recovery properties of the signaling, thus leading to 
model improvisation (Jovic et al, 2010, 2011, 2013).  
 

F  



21 
 

 

 

Fig. 1.6. Schematic of GPCR (muscarinic M3)-calcium-NFAT signaling. Receptor-ligand 
binding leads to G-protein activation and the cascade eventually leads to release of intracellular 
calcium. Calcium mediates dephosphorylation of the cytoplasmic NFAT, which then translocates 
into the nucleus to bring about transcriptional activation. Phosphorylated NFAT translocates back 
into the cytoplasm.  
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Chapter 2. Band-pass processing in a GPCR signaling pathway selects for NFAT 

transcription factor activation  

2.1. Introduction  

 Appropriate timing is crucial for proper development and maintenance of physiological 

functions (Purvis & Lahav, 2013; Toettcher et al, 2013; Paliwal et al, 2008; Fujita et al, 2010; 

Ashall et al, 2009). Timing information is relayed through modular interaction of signaling motifs 

in complex signaling pathways (Lim et al, 2013; Sneppen et al, 2010; Hao et al, 2013). Cellular 

responses are typically studied for step changes in ligand concentrations, although in nature 

stimuli are often periodic or fluctuate over frequencies ranging from milliseconds to days 

(Goldbeter, 1996; Aladjalova, 1957; Walker et al, 2010; Armstrong et al, 2009; Tengholm & 

Gylfe, 2009). A majority of these rhythmic as well as arrhythmic stimuli lead to oscillations in 

second messengers (e.g. calcium, cAMP, PKA, MAPK) (Dupont et al, 2011a; Ni et al, 2011; 

Cheong et al, 2010; Hilioti et al, 2008; Dyachok et al, 2006). Among these, the effect of frequency 

modulation of calcium oscillations on downstream transcription factor activation has been 

extensively studied using calcium-clamped cells (Tomida et al, 2003; Dolmetsch et al, 1998). 

However, the more physiologically relevant ligand-induced calcium oscillations and downstream 

signaling are less well-understood. Using pulsatile ligand stimulation of a G-Protein coupled 

receptor (GPCR), we provide new insights into how cell surface receptor activation leads to 

calcium signaling and activation of a downstream transcription factor, NFAT (Nuclear Factor of 

Activated T-Lymphocytes).  

 The M3 muscarinic acetylcholine receptor is a GPCR expressed in many locations (Kruse et 

al, 2014). Ligand-induced activation of the receptor signals through the common G-protein-PLC-

IP3 pathway that couples to the calcium-calcineurin pathway to induce NFAT nuclear 

translocation (Fig. 2.1. A). Calcium-dependent calcineurin-NFAT signaling plays key roles in T-

cell activation, in insulin secretion (Rodriguez-Diaz et al, 2011; Nilsson et al, 2007) and in 

regulating neonatal beta cell development (Kragl & Lammert, 2012). In this chapter, we employ 
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pulsatile stimulation of M3 receptors and simultaneous measurement of cytoplasmic calcium and 

NFAT nuclear translocation in single cells using a computer-controlled microfluidic device (Gu 

et al, 2004). Using computational modeling, we delineate the temporal modulation of GPCR (M3 

receptor)-induced calcium oscillations and calcium-induced NFAT nuclear localization. 

Microfluidic experiments and mathematical modeling are used in combination to determine the 

model parameters that control the temporal coding of downstream signaling. 

 A common expectation in receptor-mediated signaling is that greater agonist stimulation will 

lead to greater activation of downstream signals until saturation of processes occurs. Indeed, 

ligand stimulation of M3 muscarinic receptor with higher ligand concentrations leads to faster 

calcium oscillations and overall larger calcium release. Here, we demonstrate, however, that 

reduced overall ligand exposure, if delivered as pulses of ligand, can give more efficient 

transcription factor activation. The optimal stimulation timing is achieved when the rest period 

between stimulations is sufficiently long to allow receptors to recover from stimulus-triggered 

desensitization, while being sufficiently short that downstream signaling cascades can be actively 

maintained. We also show that when using pulsatile stimulation, receptor desensitization and the 

dynamics of downstream signaling combine to form a band-pass regime of frequencies for which 

the signaling is significantly enhanced as compared to a step change in ligand stimulation. Critical 

factors that determine this optimal stimulation frequency are the rate constants for receptor 

desensitization and NFAT translocation. As an example, we show that the two NFAT isoforms 

(NFAT4 and NFAT1) have distinguishable band-pass windows for the same receptor. 

2.2. Results  

2.2.1. Simultaneous observation of calcium and NFAT4 dynamics in single cells under step and 

pulsatile ligand stimulation  

 We measured calcium and NFAT4 responses simultaneously in single HEK293 cells for a 

step change or pulsatile ligand stimulation using microfluidics (Fig. 1.2. A) (Jovic et al, 2011). 

Oscillatory cell signaling circuits under external periodic stimulation get entrained to the 

stimulatory input, a phenomenon commonly described as phase locking (Jovic et al, 2011, 2010). 

Using pulsatile ligand inputs with varying concentration (C), pulse duration (D) and pulse rest 

period (R) (Fig. 1.2. B), we tested the hypothesis that different pulsing patterns will alter 

intracellular calcium release and the amount of NFAT4 nuclear translocation. Cytoplasmic 
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calcium was quantified with RGECO1 sensor transiently transfected in stable M3 receptor 

expressing HEK293 cells and responses were induced by the cholinergic agonist carbachol (CCh) 

(Appendix 2 Fig. 2B.1). NFAT4 nuclear localization was quantified in the same cells by 

measuring the ratio of nuclear to cytoplasmic intensities of transiently transfected NFAT4-GFP 

(Appendix 2 Fig. 2B.2). Simultaneous observation of calcium and NFAT4 dynamics under step 

and pulsatile stimulation was performed at the single cell level in microfluidic device that can 

provide time-varying ligand stimulation (Fig. 2.1. B). 

 A step change in ligand stimulation leads to a concentration-dependent calcium frequency 

response in cells exhibiting calcium oscillations, with high cell-to-cell variability (Fig. 2.1. C and 

Appendix 2 Fig. 2B.1). Pulsatile stimulation results in calcium oscillations that are phase-locked 

at the specific frequency of ligand stimulation (Fig. 2.1. C, bottom panel) and are more sustained 

than those elicited by step stimulation. For each of the cells under step or pulsatile stimulation, 

NFAT4 nuclear translocation was observed and quantified amidst cell-to-cell variability (Fig. 2.1. 

C, right panels). Thus our experimental set-up can measure time-resolved phase-locked calcium 

response and corresponding NFAT4 nuclear translocation in single cells.  

2.2.2. Experiments and simulations show distinct GPCR-calcium-NFAT4 pathway dynamics in 

response to step and pulsatile ligand stimulation 

 We performed a frequency response analysis of GPCR-calcium-NFAT4 signaling with 

varying ligand concentration (C) and rest period (R) values and developed our mathematical 

model to capture the characteristic features elicited by both step and pulsatile stimulation (Fig. 

2.2.). The time-dependent responses for cytoplasmic calcium and NFAT4 nuclear translocation 

were generated for step stimulation and for three different pulse stimulation conditions, i.e., fast 

(corresponding to R = 24 s), intermediate (R = 72 s) and slow (R = 144 s) (Fig. 2.2. A). Distinct 

responses were observed for step and various pulsatile stimulations for calcium and NFAT4 (Fig. 

2.2. B). Step simulation with CCh produced strong calcium response at the outset of stimulation, 

resulting in either oscillations (at lower concentrations) or peak-and-plateau responses (at higher 

concentrations), but also resulted in rapid decay of the peak amplitude and/or frequency over 

time. Pulsatile stimulation produced phase-locked calcium responses as expected (Jovic et al, 

2011, 2010). However, calcium oscillations elicited by faster ligand pulses decayed rapidly over 

time, whereas oscillations elicited by slower ligand pulses were more sustained. The 
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corresponding NFAT4 responses exhibited a sustained time course reaching their maxima at 

different time points for step and various pulse conditions. A step change in ligand concentration 

stimulation led to a rapid (~ 500 s) attainment of the maximum NFAT response, followed by a 

slow decay. In contrast, slow pulsatile ligand stimulations led to a gradual accumulation of nuclear 

NFAT4. 

 For a quantitative and mechanistic understanding of the distinct frequency responses of 

calcium and NFAT4 under step and pulsatile conditions, we developed a mathematical model 

based on both literature data and our own microfluidic experiments. Our mathematical model is 

comprised of two modules: GPCR-induced calcium oscillations and calcium-induced NFAT4 

nuclear translocation (Fig. 2.1. A, Appendix 2 Text 2A.1.). Most calcium mathematical models 

exhibit continuous oscillations without decay in frequency or amplitude when subjected to step 

ligand stimulation, in contrast to our own experimental observations and literature data (Kupzig 

et al, 2005; Li et al, 1998; Song et al, 2012). One model that does offer an explanation for 

frequency and amplitude decay (Giri et al, 2014) doesn’t explain the phase locking behavior we 

observe. Building upon Jovic et al (Jovic et al, 2013), we incorporated receptor phosphorylation 

and receptor internalization followed by receptor recycling or degradation to reproduce our 

observed calcium response at various frequencies and concentrations of stimulation (Appendix 2 

Text 2A.2.). Our mathematical model captures characteristic features of the calcium-NFAT4 

signaling under step and pulsatile ligand stimulation (Fig 2.2. C). 

2.2.3. Slower ligand pulses lead to more sustained calcium response, but intermediate frequency 

pulses lead to a maximum NFAT4 response 

 The sustained calcium oscillations and distinct NFAT4 responses that we observed under 

pulsatile ligand input allowed us to determine how calcium and NFAT4 dynamics depend upon 

the input ligand concentration and pulse frequency. We find that fast ligand pulses (R = 24 s) lead 

to less sustained calcium signaling as evident from a faster decay of the calcium duty cycle ratio 

(n), defined here as the ratio of the ‘area under the curve’ (AUC) of the nth calcium pulse to that 

of the first pulse. In contrast, slow ligand pulses lead to more sustained calcium signaling (higher 

duty cycle ratio) (Fig. 2.3. A, Appendix 2 Fig. 2B.3.). Our mathematical model also captures this 

characteristic feature of the calcium response for all ligand concentrations and pulse frequencies 

tested. The measured NFAT4 responses were compared by determining the maximum of the 
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normalized NFAT4 curve of nuclear to cytoplasmic ratio (NFAT4max) that each cell attained 

under various step and pulsatile ligand stimulation conditions. Surprisingly, NFAT4max was 

greater for stimulation at intermediate ligand pulse frequency (R = 72 s) than for a step change in 

ligand concentration for each of the ligand concentrations tested, in experiments and in the model 

(Fig. 2.3. B). Further, NFAT4max for intermediate ligand pulse frequencies was greater than for 

the slow or fast ligand pulse frequencies (Appendix 2 Fig. 2B.4. A). 

 The non-monotonic dependence of NFAT4 translocation on ligand pulse frequency was 

further explored by calculating NFAT4-AUC for each cell. For a ligand concentration of 40 nM, 

we find that the NFAT4-AUC is maximum for intermediate rest period (R = 72 s) as compared 

to both a shorter and longer rest period (Fig. 2.3. C). When the rest period is fixed and only the 

ligand concentration is varied, we find the NFAT4-AUC significantly increases at high 

concentrations (Appendix 2 Fig. 2B.4. B). The common notion that calcium oscillations are 

frequency modulated leads to the hypothesis that at the same calcium oscillation frequency, 

NFAT4 output should be the same regardless of concentration of ligand used to elicit that 

response. Our results suggest that both the frequency of calcium oscillations and the ligand-

concentration dependent calcium duty cycle play important roles in signal transduction, and hence 

the GPCR-calcium-NFAT4 signaling is both frequency and amplitude modulated. We also 

determined a “ligand efficiency”, or total NFAT4-AUC per unit ligand at intermediate ligand 

pulse frequency.  The ligand efficiency decreases with increasing concentrations of ligand (Fig. 

2.3. D). Taken together, our experiments and model support that although slower ligand pulses 

lead to a high fidelity calcium response, an intermediate frequency range for ligand pulses results 

in maximum NFAT4 activation. 

2.2.4. A modular combination of high-pass and low-pass filter works as a band pass filter in 

GPCR-Calcium-NFAT signalling 

 When NFAT4max is calculated for a range of concentration (C) and rest period (R) values 

using the mathematical model, the greatest value is found for ligand pulses with R values in the 

range of ~ 50 s – 100 s (Fig. 2.4. A). A qualitative approach to delineate this feature is to calculate 

the response fidelity of various signaling modules (output response versus various frequencies or 

rest periods tested, normalized to the maximum of the output), a method adapted from dynamic 

system analysis (Isermann & Münchhof, 2011). Shutting down the receptor desensitization 



27 
 

module (by imposing parameter values to be zero) results in sustained and non-decaying calcium 

oscillations, i.e., the mean calcium duty cycle ratio remains ~ 1 for all R. Under such conditions, 

NFAT4 localization (output) correlates with the input ligand frequencies (Fig 2.4.B, black curve 

and Appendix 2 Fig. 2B.5.). Calcium-NFAT4 signaling thus works as a high pass filter that allows 

faster pulsatile stimulations to be transmitted with high fidelity. In contrast, when the receptor 

dynamics of desensitization, internalization and degradation are included in the mathematical 

model, we observe amplitude and frequency decay of calcium oscillations leading to rapid 

calcium duty cycle decay (output) with fast pulse stimulation (Fig. 2.4. B, red curve). Thus, 

receptor dynamics act as a low-pass filter that allows low frequency ligand pulses to be 

transmitted to NFAT4 responses with higher fidelity. The combination of low pass (receptor 

dynamics) and a high pass (calcium-NFAT signaling) filters acts as a band-pass filter (Fig. 2.4. 

B). The overall fidelity of GPCR-calcium-NFAT4 signaling is estimated by multiplying the 

impact of both low pass and high pass filters (Fig. 2.4. B, blue curve). The signal fidelity is 

maximum at intermediate frequencies of ligand stimulation, as we observe for NFAT4max in our 

experiments. Taken together, our experimentally-validated mathematical model demonstrates 

that the band-pass regime is a result of coupling of a low pass filter imposed by receptor dynamics 

with the high pass filter imposed by calcium-dependent NFAT4 translocation. 

2.2.5. Receptor desensitization and NFAT translocation dynamics are key to the specificity of 

downstream signalling and specific temporal modulation 

 The band-pass nature of signal processing raises questions: can the peak location, height, or 

width of the band-pass curve be modulated?  Might different receptors elicit maximal NFAT4 

responses at different frequencies of ligand stimulation? To address these questions, we 

performed a sensitivity analysis on the mathematical model. Partial-rank correlation coefficients 

(PRCCs) with strong positive or negative correlations were determined for various curve 

characteristics such as peak-shift and height of the band-pass and steepness of the low-pass and 

high-pass filters (Appendix 2 Table 2C.1.). The phosphorylation rate constant of the receptor-

ligand complex strongly correlates with peak-shift (negative, P <10-9) and also with peak-height 

(positive, P <10-9). The rate constant for recycling of the internalized receptor-ligand complex 

also contributes significantly to the peak-shift (positive, P <10-6). Among the parameters linked 

with calcium-NFAT signaling, the rate constants for NFAT nuclear translocation and for 

dissociation of the activated nuclear complex contribute significantly to the peak-shift, suggesting 
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that the characteristics of the band-pass regime are determined by both receptor kinetics and 

NFAT kinetics. Thus the band-pass regime could vary with receptor identity due to different 

phosphorylation and recycling rate constants and also with calcium-dependent transcriptional 

factor identity due to different translocation and dissociation rate constants (Fig. 2.4. C, Appendix 

2 Table 2C.1.). For example, a rapidly translocating transcription factor will require faster ligand 

pulses to sustain the signal as it can move in and move out of the nucleus rapidly, while a slowly 

translocating transcription factor will require slower ligand pulses (Fig. 2.4. D). As an 

experimental demonstration of this concept, we measured NFATmax for another isoform of 

NFAT viz. NFAT1, which is known to have slower nuclear translocation and back-translocation 

rate constants than NFAT4 (Yissachar et al, 2013). When compared (for [CCh] = 80 nM), we 

find that the optimum pulse frequency for NFAT1 shifts towards slower pulsatile stimulation (Fig. 

2.4. E). Taken together, our model sensitivity analysis and pulsatile experiments with NFAT4 and 

NFAT1 demonstrate that both receptor and NFAT dynamics play a significant role in downstream 

signal processing. 

2.3. Discussion 

 A better understanding of how rhythmic processes and their appropriate timing enhances and 

selects for cellular functions is a fundamental problem in biology as well as a practical issue for 

cell culture application. Here we show that the most efficient NFAT nuclear translocation with 

muscarinic M3 receptor stimulation is obtained with “just right” timing of ligand pulses – not too 

slow or too fast. Time-varying ligand stimulation leads to different downstream responses for 

different stimulation conditions via band-pass processing of the signal (Fig. 2.4. D). GPCR-

calcium-NFAT signaling forms a modular combination of low pass (GPCR signaling) and high 

pass (calcium-NFAT signaling) filters. Although GPCR kinetics are well-documented, only a few 

have explored their role as a low pass filter and how they contribute to downstream (Toettcher et 

al, 2013; Fujita et al, 2010; Hersen et al, 2008; Shankaran et al, 2007). Our work provides an 

experimental demonstration of how receptor down-regulation/desensitization may enhance 

information processing ability of the cells, consistent with the theoretical predictions made by 

Shankaran et al (Shankaran et al, 2007).  

 Infra-slow rhythms in the body which take place in the seconds to minutes time scale are an 

emerging area of interest for understanding physiological receptor-mediated signal processing 
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(Aladjalova, 1957; Collin et al, 2009; Ruskin et al, 1999; Linkenkaer-Hansen et al, 2001). The 

natural analog of CCh, acetylcholine (ACh), has been observed to have sustained oscillations in 

the range of ~ 0.2 min – 6 min during nerve stimulation (Dunant et al, 1974). In addition, other 

neurotransmitters like glutamate and dopamine have been shown to have sustained oscillatory 

release (De Pittà et al, 2009; Plaçais et al, 2012). Our work provides an experimental 

demonstration of how such periodic inputs might have an optimum frequency range for 

maximized target cell responsiveness, consistent with the theoretical predictions made by Li and 

Goldbeter (Li & Goldbeter, 1992). An understanding of how such biological rhythms affect 

cellular signal processing may facilitate the design of interventions to rationally modulate 

signaling and may also enable design and use of signaling modules in synthetic biology 

applications. Most studies focus on either longer or shorter timescales(Goldbeter, 1996). Our 

work may motivate investigation into biorhythms at such intermediate timescales. 

 Our work shows that variations in receptor kinetics (i.e., desensitization, internalization, 

degradation and recycling) are capable of generating different features for the low-pass filter and 

thereby affecting the band-pass regime. According to the recent ‘barcode hypothesis’, differences 

in phosphorylation and arrestin binding may encode for different desensitization,  internalization, 

and recycling kinetics (Nobles et al, 2011; Lohse & Hoffmann, 2014); different receptors may 

also have different kinetics. The band-pass concept can be extended to non-GPCR receptors that 

mediate calcium-dependent transcription factor activation. The low pass filter formed by the 

receptor motif can determine whether slow ligand pulses would be most efficient (for rapidly 

down-regulated receptors) or whether fast pulses or a step change of ligand is most efficient (for 

slowly down-regulated receptors). Thus, T-cell receptors, which are slowly internalized and 

rapidly recycled (Liu et al, 2000), may not require ligand pulses for efficient signaling; a step 

change in ligand concentration could be sufficient. In contrast, pulsed stimulation can be more 

efficient than step changes for GPCRs. The band-pass concept might further be applied other 

second messenger systems, such as cyclic AMP, which undergoes oscillations via GPCR-Gs 

signaling and activates PKA that leads to phosphorylation of several downstream transcription 

factors (Ni et al, 2011). Overall, pulsatile microfluidic analyses add temporal dimensions in the 

observability space that, when coupled with computational modeling, can delineate the 

underlying band-pass characteristics of such network motifs. These band-pass characteristics 
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determine ligand pulse frequencies for efficient downstream signaling, and can potentially select 

for particular downstream responses as well. 

2.4. Conclusions 

 Many biological processes are rhythmic and proper timing is increasingly appreciated as 

critical for development and maintenance of physiological functions. Temporal signal processing 

in receptor mediated pathways is increasingly appreciated as a tool that cells utilize to achieve 

enhanced activity and selectivity, and to distinguish signal from noise. Despite a few experimental 

evidences of such signal processing, proper mechanistic understanding based on the underlying 

kinetics remains largely unknown. To understand how temporal modulation of an input signal 

influences downstream responses, we employ microfluidic pulsatile stimulation of a G-Protein 

coupled receptor, the muscarinic M3 receptor, in single cells with simultaneous real-time imaging 

of both intracellular calcium and NFAT nuclear localization. Interestingly, we find that reduced 

stimulation with pulses of ligand can give more efficient transcription factor activation, if stimuli 

are timed appropriately. Our experiments and computational analyses show that M3 receptor-

induced calcium oscillations form a low pass filter while calcium-induced NFAT translocation 

forms a high pass filter. The combination acts as a band-pass filter optimized for intermediate 

frequencies of stimulation. We demonstrate that receptor desensitization and NFAT translocation 

rates determine critical features of the band-pass filter and that the band-pass may be shifted for 

different receptors or NFAT dynamics. As an example, we show that the two NFAT isoforms 

(NFAT4 and NFAT1) have shifted band-pass windows for the same receptor. While we focus 

specifically on the M3 muscarinic receptor and NFAT translocation, band-pass processing is 

expected to be a general theme that applies to multiple signaling pathways.    

 

2.5. Materials and Methods 

Materials 

Materials used for experiments in this Chapter are detailed in Appendix 1.  

Methods 

Methods description about cell culture, seeding cells in microfluidic device and time lapse image 

and analysis are detailed in Appendix 1.  
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Mathematical model development and computational analysis. We developed a mathematical 

model that links step or pulsatile ligand stimulation, receptor/ligand binding, calcium signaling, 

and NFAT translocation illustrated in Fig. 2.1. A. The model description, reactions and parameter 

table are provided in Appendix 2 Text 2A.2. A system of ordinary differential equations (ODEs) 

was generated for the model and solved in MATLAB (MathWorks Incorp) with the ode15s stiff 

solver. 

Characterization of Ca2+ signaling and NFAT4 translocation. Intracellular calcium responses 

were characterized in terms of the varying ligand pulse parameters (Concentration (C) and Rest 

periods (R)). The ligand pulse duration (D) for which each pulse translates into a single calcium 

spike, i.e. without resulting in either no response at all or in multiple peaks, lies in the range ~ 16 

s to ~ 32 s (Jovic et al, 2011). D was kept constant at 24 s in this study. We quantify the oscillation 

decay by defining calcium duty cycle ratio, which is the AUC of each calcium spike relative to 

the first spike and is thus an indicator of how the calcium response decays over time upon various 

pulsatile conditions.  

ሺ݊ሻ	݋݅ݐܴܽ	݈݁ܿݕܥ	ݕݐݑܦ	݉ݑ݈݅ܿܽܥ ൌ 	
݉ݑ݈݅ܿܽܥ െ ݁ݏ݈ݑ݌	݄ݐ݊	݂݋	ܥܷܣ

݉ݑ݈݅ܿܽܥ െ ݁ݏ݈ݑ݌	ݐݏݎ݂݅	݄݁ݐ	݂݋	ܥܷܣ
 

Extent of NFAT nuclear translocation was characterized using a standard procedure described in 

literature35 by determining the maximum of NFAT nuc/cyto ratio (NFATmax) attained under a 

pulsatile condition. MATLAB codes were written to determine the values of CDR(n) and 

NFATmax for both experimental and in silico data. AUC values for the time-course was 

determined for single cell traces by integrating the NFAT nuc/cyto ratio over time as follows: 

ܶܣܨܰ െ ܥܷܣ ൌ 	න ݐሻ݀ݐሺܶܣܨܰ
௧ୀ௧௠௔௫	௦

௧ୀ଴	௦
 

Here, tmax is the time when NFAT nuc/cyto attains its maximum. Nuclear export of NFAT (back-

translocation) follows a first order decay kinetics, consistent with other studies (Yissachar et al, 

2013; Tomida et al, 2003). Therefore, total NFAT-AUC is approximately proportional to the 

AUC calculated up to tmax. Time integrals were determined for the data sets using trapezoidal 

function in MATLAB. Statistical tests for determining the significance of the experimental data 

was performed with t-test for comparison of NFATmax for different pulse conditions.  
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Sensitivity analysis of the model. We used Latin Hypercube Sampling (LHS) and Partial-Ranked 

Correlation Coefficients (PRCC) to explore the mathematical model parameter space and identify 

those parameters which significantly contribute to the particular characteristics of the temporal 

signal processing in GPCR-calcium-NFAT signaling. MATLAB code for LHS-PRCC analysis 

was taken from Marino et al (Marino et al, 2008). Parameters related to GPCR-ligand binding 

kinetics and calcium-NFAT kinetics were varied over two logs by sampling from a uniform 

distribution using LHS. PRCC along with significance value was determined for each parameter 

against particular curve characteristics (Appendix 2 Table 2C.1.).  
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Fig. 2.1. Simultaneous observation of calcium and NFAT4 dynamics in single cells under 
step and pulsatile ligand stimulation. A. GPCR (Muscarinic M3)-calcium-NFAT pathway 
showing calcium oscillations leading to NFAT nuclear localization, as shown in schematic in Fig. 
1.6. The mathematical model incorporates receptor (R) – ligand (L) binding; phosphorylated 
(LRp) and active (LR*) complexes; receptor internalization, recycling and degradation; G-
protein-PLC-IP3 pathway leading to the release of intracellular calcium; and calcium-calcineurin 
pathway for NFAT4 nuclear translocation. Red circle with a line indicates degradation. Some 
important rate constants are shown. Model equations and parameter values are available in the 
Appendix 2 Text 2A.2. B. Simultaneous observation of intracellular calcium concentration and 
NFAT4 in single cells under pulsatile ligand stimulation. C. Calcium and NFAT4 dynamics for a 
population of cells (20 cells) under step and pulsatile ligand stimulation shows signalling amid 
cell-to-cell variability.  
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Fig. 2.2. Calcium and NFAT dynamics under step and pulsatile ligand stimulations. A. Step 
and pulsed stimulation with carbachol (CCh) performed in microfluidic experiments and 
simulations. The concentrations of CCh are as indicated in the color coded key. Pulse duration 
(D) was 24 s.  B. CCh-induced time courses of cytosolic calcium (representative single cell traces) 
and NFAT4 nuclear translocation (population averages) by step (left column) and pulse (fast 
(R=24 s), intermediate (R=72 s) and slow (R=144 s)) stimulation in HEK293 cells stably 
expressing M3 receptor. Population averages are mean +/- S.E.M. for n > 20 cells from 3 sets of 
experiments.  C. CCh-induced calcium and NFAT4 nuclear translocation in the mathematical 
model, which captures the characteristic features of both calcium and NFAT4 translocation 
response. 
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Fig. 2.3. Ligand pulse frequency affects calcium duty cycle and NFAT4 response. A. The 
calcium duty cycle ratio (ratio of the calcium-AUC of the nth pulse to that of the first one) 
decreases with consecutive stimulations. The decay is greater for faster ligand pulses than for 
slower pulses.  Duty cycle in experiments (left) was calculated from population-averaged data for 
each pulse condition, and the mathematical model shows similar trends (right). [CCh] = 40 nM. 
B. Greater NFAT4 translocation under pulsatile stimulation (R = 72 s) for all ligand 
concentrations in the experimental regime (left), with a similar trend predicted by the 
mathematical model (right). C. NFAT4-AUC was calculated from experimental data for three 
pulse frequencies at [CCh] = 40 nM (mean +/- S.E.M., n > 20 single cells for three different sets 
of experiments), and shows that maximum NFAT4 nuclear translocation occurs at an intermediate 
frequency. D. NFAT4-AUC per unit ligand was calculated from experimental data for 
intermediate frequency pulse. Ligand efficiency is greater at low ligand concentrations. Results 
for other pulse frequencies and the model are shown in Appendix 2 Fig. 2B.4. (**: P < 0.01 based 
on t-test for statistical data). 
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Fig. 4. Receptor and NFAT kinetics regulate band-pass behavior in GPCR-calcium-NFAT 
signalling. A. NFAT4max for various rest periods and ligand concentrations calculated from the 
mathematical model shows band-pass behavior. B. Turning off receptor desensitization in the 
model leads to a high-pass calcium-NFAT4 curve (black), while turning it on adds features of 
rapid calcium duty cycle decay with fast pulse stimulation due to desensitization and degradation 
(red). Both signalling fidelity curves are normalized with respect to their maximum value. 
Overall curve (blue) is an empirical multiplication of the two. C. Sensitivity analysis identifies 
parameters that significantly affect the band-pass characteristic features. Rate constants for: 
activated NFAT complex formation (kn1); dissociation of NFATcyto from the complex (kn2); 
nuclear translocation of activated complex (kn3); dissociation of NFATnuc from the activated 
complex (kn4); association of NFATnuc and calcineurin (kn5); and back-translocation of 
NFATnuc (kn6). D. The band-pass regime shows a shift to the left or right for two different 
parameter sets.  Parameter set 1: kn2 = 0.002 s-1; kn4 = 0.000445 s-1; kn6 = 2*10-4 s-1; Parameter 
set 2:  kn2 = 0.02 s-1; kn4 = 0.0013 s-1; kn6 = 0.25 s-1. Other parameters kn1 = 7.7*10-6 (nM-s)-1; 
kn3 = 0.001 s-1; kn5 = 4.7*10-5 (nM-s)-1; C = 20 nM, D = 24 s remain the same. E. Experiment 
demonstrating shift in optimum frequency regime for NFAT1max as compared to NFAT4max (n > 
20 single cells for three different sets of experiments; **:  P <0.01; ***: P <0.005; n.s.: not 
significant based on t-test for statistical data). 
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Chapter 3. Cellular responsiveness to weak physiological stimuli is fate not luck 

3.1. Introduction 

     Fundamental to deciphering receptor-mediated cell signaling processes is to know if the 

processes are stochastic or deterministic (Tay et al, 2010; Zambrano et al, 2014a; Turner et al, 

2010; Keenan et al, 2004; Losick & Desplan, 2008; Bhola & Simon, 2009). Stochastic models 

are often invoked to provide insights where deterministic models fail (Das et al, 2009; Ullah & 

Wolkenhauer, 2010; Tay et al, 2010; Turner et al, 2010). Nonetheless, deterministic models, 

when successful, have an advantage in terms of the ease with which characteristic behaviors can 

be described and predicted (Scott et al, 2007). Physiologically relevant stimulations that are 

transitory and weak often result in responses that appear stochastic. These common observations 

have been difficult to explain with existing deterministic models and have been attributed to 

stochasticity (Tay et al, 2010; Turner et al, 2010). In this chapter, we show that such cases may 

be well described by deterministic processes in which there is a high Hill coefficient step and cell-

to-cell variability. Additionally, we describe a tractable, rest period-based, two-pulse 

experimental test (hereafter referred to as the “rest period test”) that can confirm that an 

apparently stochastic response may have a deterministic basis.   

     Our analysis employs a combined experimental and computational approach. Single HEK-293 

cells stably expressing muscarinic M3 receptors, a G-protein couple receptor (GPCR), were 

stimulated by two consecutive low-concentration pulses of an M3-agonist within a microfluidic 

device. Calcium responses were quantified using live cell imaging as described in Chapter 2 

(Sumit et al, 2015). Building upon our previous deterministic model (Jovic et al, 2010, 2011; 

Sumit et al, 2015), we additionally incorporated cell population heterogeneity (sometimes 

referred to as extrinsic noise). To illustrate broad applicability of our findings beyond the M3 

signaling pathway, we also analyzed published data on the TNFα-NFkB pathway (Zambrano et 

al, 2016, 2014a; Tay et al, 2010), which operates at an entirely different timescale (several 
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minutes to hours), and reveal that its apparently stochastic response can also be explained with a 

deterministic process when cell population heterogeneity is considered.  

 

3.2. Results 

3.2.1. Microfluidic two-pulse experiments show population heterogeneity in calcium response 

upon stimulation in a physiologically relevant concentration regime  

     We designed a microfluidic experiment entailing cell stimulation with two pulses of carbachol 

(CCh), which binds and activates the M3 muscarinic receptor, with concentration (C) and pulse 

duration (D), separated by a rest period (R). The concentration regime chosen (~ 5 - 10 nM CCh) 

was low enough to be insignificant for receptor desensitization and sufficient to generate cell 

populations with wide ranges of activation probability (Jovic et al, 2010, 2011, 2013). We 

measured cytoplasmic calcium as our read-out by transiently transfecting the HEK-293 cells with 

RGECO-1 calcium sensor (Sumit et al, 2015). These cells were stimulated within a microfluidic 

device that can deliver temporal rectangular pulses of ligand as described previously (Gu et al, 

2004; Jovic et al, 2010, 2011; Sumit et al, 2015). For each pulse of ligand, a cell may or may not 

respond with a calcium peak. A full or near-full peak response is designated as output ‘1’ in the 

scheme, while no response or a sub-threshold peak is designated as output ‘0’ (Fig. 3.1. A). Thus, 

for a two-pulse scheme, the four combinatorial responses possible for any cell are: no response 

to both pulses (0,0), a calcium peak response only to the second stimulation pulse (0,1), a calcium 

peak response only to the first stimulation pulse (1,0) or calcium peak responses to both 

stimulation pulses (1,1). Choosing an intermediate concentration in the test regime (C = 7.5 nM) 

and pulse duration that produces non-saturating calcium responses (D = 16 s), we observed 

population heterogeneity in the calcium responses (Fig. 3.1. B), and the responses could be 

separated into the four possible outcomes (Fig. 3.1. C). The existence of (1,1) and (0,0) responses 

is relatively easy to explain within a deterministic framework. However, the explanation for the 

simultaneous existence of (0,1) and (1,0) responses using a deterministic mathematical model has 

not been shown and often leads to the conclusion that the response outcomes have stochastic 

origins. Here, we will refer to the simultaneous presence of such (0,1) and (1,0) responses within 

the cell population as “apparently stochastic” behavior of cells.  

3.2.2. A mathematical model with deterministic reaction kinetics and cell-to-cell variability 

exhibits apparently stochastic responses 
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     We previously reported a deterministic mathematical model that captures most of the 

population scale calcium response characteristics under step and pulsatile stimulation (Sumit et 

al, 2015; Jovic et al, 2011, 2010). To account for heterogeneity in responses at the single cell 

level, we additionally incorporated cell-to-cell variability into our mathematical model. 

Population heterogeneity was introduced in the model by incorporating a uniform distribution in 

the concentration of the three key signaling components of the model (Fig. 3.2. A). The extent of 

extrinsic noise in the signaling pathway was determined experimentally following a method 

described previously (Selimkhanov et al, 2014). Briefly, several hundred single cell calcium time 

traces were recorded for a step change in ligand concentration from C = 0 nM to C = 10, 20, 40 

and 80 nM respectively in order to calculate the signal-to-noise ratio (SNR) and intrinsic-to-

extrinsic noise ratio (IER) for the CCh-induced calcium response, as described in Methods. 

Subsequently, the distribution of the concentration of key signaling components was set such that 

it matches the experimentally observed SNR. Using the updated model, we generated hundreds 

of in silico single cell calcium traces under the two-pulse stimulation scheme (Fig. 3.2. B). These 

calcium traces show features similar to those observed in our microfluidic pulsatile stimulation 

experiments, and we were able to obtain all four possible combinatorial outcomes (Fig. 3.2. C). 

We determined how individual components in the signaling pathway determine the fate of cells 

in terms of one of the four possibilities. While the biochemical variability in each of the signaling 

components affected the responses, an overall cumulative parameter Q (calculated by multiplying 

together the concentrations of the three major components in the pathway that vary from cell-to-

cell) clearly distinguishes the four outcomes indicating that the biochemical noise cumulatively 

may affect the downstream cell fates (Appendix 3 Fig. 3A.1.). Taken together, our deterministic 

mathematical model with added cell-to-cell variability captures the population heterogeneity and 

all four possible outcomes under the two-pulse scheme, including (0,1) and (1,0) responses, as 

observed experimentally. 

3.2.3. Rest period reveals deterministic basis for ‘apparent stochasticity’ responses 

     The existence of all four possible outcomes for the two-pulse test (both in model and in 

experiment) raises an interesting question: is the subpopulation composition, i.e. the fraction of 

cells responding in each way, related to the rest period R between the pulses? In the case of 

deterministic origins, increasing R should allow better uncoupling of the two responses. In 

particular, for longer rest periods, the second response should look more like the first response, 
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i.e., majority of cells should behave either in (0,0) or in (1,1) fashion. Thus, the subpopulation 

composition should change with R. This is unlike the stochastic case, where one would not expect 

any relationship between R and the cellular responses. We tested this hypothesis with two widely 

separated rest periods (R = 24 sec and R = 120 sec, C = 7.5 nM), both in silico and with 

microfluidic experiments (Fig. 3.3.). For three different durations of pulsed stimulation (D = 8, 

16 and 24 sec) the ‘apparently stochastic response’, denoted by the summation of (0,1) and (1,0) 

responses, decreases with increasing R (Fig. 3.3. A) while the repeated response denoted by the 

summation of (0,0) and (1,1) responses, increases with increasing R (Fig. 3.3. B). Our 

deterministic model and microfluidic experiments also predict that the effect of R on each 

subpopulation in GPCR-calcium signaling is monotonic and predictable for various pulse 

concentrations and durations in the tested regime (Appendix 3 Fig. 3A.2 and 3A.3.). When the 

‘rest period test’ was extended to three pulses in the model, we observed a similar effect of rest 

period, i.e., with increasing R, the system tends to either respond completely (1,1,1) or not at all 

(0,0,0), thus showing better uncoupling as R is increased (Fig 3A.4.). Taken together, we find that 

the rest period determines the extent of apparent stochasticity in the response.  

3.2.4. Rest period test reveals deterministic basis for apparent stochasticity in another signaling 

system (TNF-α -NFkB signaling) 

     Our model and experiments support a deterministic origin for the apparently stochastic 

behavior we observed in the GPCR-calcium signaling pathway.  Next, we asked whether the same 

might be true for another oscillatory system with different components that signals at a different 

time scale. NFκB (Nuclear Factor κB) oscillations are observed upon TNF-α (Tumor Necrosis 

Factor-α) stimulation in majority of immune cells. The time scale of TNF-α induced NFkB 

signaling is from several minutes to hours, unlike the GPCR-calcium system where signaling is 

in the order of seconds to minutes. Briefly, nuclear localization and transcriptional activity of 

NFκB upon stimulation of TNF-receptor is regulated through negative feedbacks by A20 and 

IκBα at different levels of signaling. The activation of IKK-α is modeled as a high Hill coefficient 

pathway (Fig. 3.4. A). Model equations and parameters can be found in (Tay et al, 2010). Using 

microfluidic two-pulse stimulation of TNF-α in 3T3 mouse fibroblasts and measuring nuclear 

localization of NFkB, Tay et al (Tay et al, 2010) showed the existence all four possible signaling 

outcomes in the cell population, i.e., (0,0), (0,1), (1,0) and (1,1) responses. They suggested that 

the single peak responses (i.e., (0,1) and (1,0)) were stochastic in origin and developed a stochastic 
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model based on a previously existing deterministic model (Ashall et al, 2009). We hypothesized 

that their deterministic model alone may be able to generate all four possible outcomes upon 

incorporation of cell-to-cell variability and performed a sensitivity analysis of the entire parameter 

set of their model to identify parameters that significantly influence peak height (Marino et al, 

2008). We limited exploration of the parameter space such that the parameters were of the same 

order of magnitude as reported in Tay et al. Table 3B.1. lists parameters significantly correlated 

with first and second peak responses (Appendix 3). We generated cell-to-cell variability by 

sampling from a uniform distribution of the sensitive parameters. Under the same stimulation 

conditions used by Tay et al, we found that a modification of their deterministic model that 

incorporates cell-to-cell variability in the sensitive parameters exhibits all four outcomes of the 

two-pulse experiment with sub-population compositions similar to the reported experimental 

values (Fig. 3.4. B, C). Moreover, the effect of increasing concentration and pulse duration in the 

NFkB model are similar to our GPCR model (Appendix 3 Fig. 3A.5.). With increasing R, the 

subpopulation (1,1) increases while (0,1) decreases, similar to the trends observed in the GPCR 

model (Appendix 3 Fig. 3A.6.). The (0,0) response increases while (1,0) decreases with increasing 

R, similar to the trend we observe in GPCR signaling, although these are somewhat non-

monotonic around R ~ 200 min. We also applied the “rest period test” to recently reported 

experimental data for pulsatile stimulation with low concentration TNF-α (0.1 ng/ml) (Zambrano 

et al, 2016). We found that the ‘apparently stochastic response’ denoted by the summation of 

(0,1) and (1,0) responses is reduced at a longer rest period (R = 150 min) as compared to a shorter 

rest period (R = 22.5 min) while the repeated response (summation of (0,0) and (1,1) fractions) 

increases at longer R, similar to what we observe for the GPCR-calcium experiments (Fig 3.4. 

D). These computational and experimental findings suggest that the apparently stochastic NFκB 

signaling is more consistent with a deterministic process rather than the previously proposed 

stochastic mechanism. 

3.2.5. A high Hill-coefficient process and pathway recovery properties govern the apparent 

stochastic responses 

     The results above raise interesting questions about the internal mechanism of the signaling 

pathway that leads to such apparently stochastic responses. We analyzed our GPCR-calcium 

model for each node in the signaling pathway for the two subpopulations (0,0) and (1,1). While 

the two subpopulations differed slightly in the concentrations of activated receptor complex, total 
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G-protein and activated PLC, a much greater difference was seen downstream of PLC, i.e., at IP3, 

leading to a seemingly bifurcated downstream response (Appendix 3 Fig. 3A.7.). This is due to 

the high Hill coefficient step (H~3) at this point in the signaling pathway. We also tested the 

deterministic NFkB model. Similar to our GPCR model, we found that the bifurcation is a result 

of a high Hill coefficient step (H~2) in the signaling pathway, in this case in the generation of 

active IKK, a major component in TNFα-NFkB signaling (Appendix 3 Fig. 3A.8.). Interestingly, 

in both the models, a (1,0) response gradually changes to a (1,1) response and a (0,1) response to 

a (0,0) response with increasing R so that the sum of (1,0) and (1,1) subpopulations, as well as 

the sum of (0,0) and (0,1) subpopulations, remains constant (Appendix 3 Fig. 3A.9.). While the 

former change is generally observed in signaling pathways where increasing R increases the 

response fidelity (Jovic et al, 2011), the latter is less intuitive. We investigated this by performing 

a component-wise analysis of the GPCR model for three different R values (R = 120 s, 200 s and 

300 s) (Appendix 3 Fig. 3A.10.). We find that although a ‘0’ or sub-threshold calcium response 

occurs for a sub-population of cells for the first stimulation, it does create a short-term memory 

of the stimulation in the ER because calcium is pumped into the ER upon stimulation. This 

calcium gradually leaks out of the ER reservoir. An early second stimulation helps the ER reach 

its threshold to release the calcium and hence the cell responds; a delayed second stimulation does 

not have this advantage (Appendix 3 Fig. 3A.10.) (Jovic et al, 2013). Similarly, we find that, in 

the TNF-α-NFκB model, receptor activation creates a short memory of the stimulation through 

IKK kinase signaling. For shorter R, the active IKK kinase level increases more upon a second 

stimulation despite a ‘0’ NFkB response against the first stimulation. This increase in IKK kinase 

gets amplified via a high Hill coefficient pathway downstream (Appendix 3 Fig. 3A.11.), thus 

making the ‘apparently stochastic response’ sensitive to R. Taken together, the apparently 

stochastic response varies with the duration of the rest period (R) due to slower recovery of 

intermediate signaling processes.  

3.3. Discussion 

     Physiologically relevant weak stimulations, often low concentration pulsatile bursts, can lead 

to downstream responses that appear stochastic. A better understanding of how stimulation 

parameters govern response patterns and overall response fidelity in a signaling system is 

fundamental to biology, and will be useful to pharmacological, in vitro culture and synthetic 

biology applications. A simple illustration is a two pulse stimulation for which there are four 
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possible outcomes i.e., (0,0), (0,1), (1,0) and (1,1). The simultaneous observation of (0,1) and 

(1,0) responses is often interpreted to indicate stochastic origins. Here, we show instead that such 

responses can have a deterministic origin. To summarize our understanding from the 

computational and experimental results in the previous sections, we assign single peak responses 

(i.e., (0,1) and (1,0)) as ‘apparently’ stochastic events, and define ‘apparent stochasticity’ as 

follows:  

ݕݐ݅ܿ݅ݐݏ݄ܽܿ݋ݐݏ	ݐ݊݁ݎܽ݌݌ܣ ൌ ሼ ሺ݂଴,ଵሻ൅	 ሺ݂ଵ,଴ሻሽ 

 

where, ሺ݂଴,ଵሻ and ሺ݂ଵ,଴ሻ are the fractions of (0,1) and (1,0) subpopulations respectively. Analysis 

of our GPCR-calcium model showed that the apparent stochasticity decreases with C*D and R 

(Fig 3.5. A). While it is known that the fractions of cells responding to a pair of ligand pulses are 

governed by concentration C and stimulation duration D, we newly show that the role of rest 

period R is equally important in determining the distribution of possible outcomes. We found 

similar trends for an NFkB deterministic model, wherein a low C*D and R regime resulted in 

maximum apparent stochastic response (Fig 3.5. B). Importantly, the stochastic model reported 

in Tay et al (Tay et al, 2010) did not exhibit any significant changes in the fraction of (0,1) and 

(1,0) subpopulations and consequently the apparent stochasticity { ሺ݂଴,ଵሻ൅	 ሺ݂ଵ,଴ሻ}, with changes in 

R (Fig. 3.5. C). This difference in subpopulation shifts between the stochastic and deterministic 

mechanisms allow a tractable, two-pulse, rest period test to distinguish between the two 

mechanisms. We find that increasing R results in a reduction of apparent stochasticity under 

conditions when ‘true stochastic responses’ should remain unchanged (Fig. 3.5.). Because our 

system is consistent with a deterministic framework of ‘apparent stochastic responses’, cell 

responsiveness can be tuned with stimulation parameters C, D and R.  This has relevance to in 

vitro cell culture protocols in lab-on-a-chip devices with dynamic input to enhance downstream 

signaling (Yum et al, 2014) as well as in the design of pharmacological interventions that consider 

both responsive and non-responsive cells within a population. 

 An important consideration in this study is to distinguish ‘apparent’ stochastic events from 

‘true’ stochastic responses. At very low concentrations of components (such as low number of 

ligand molecules ~ 100 – 102 per cell), true stochastic behavior is expected. However, for the 

microfluidic devices commonly used in pulsatile stimulation experiments, the response is 
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integrated over the pulse duration and the ligand is periodically or continuously replenished. Thus, 

the total number of ligand molecules exposed to the cells is in the order of ~106 (for carbachol) 

and ~104 (for TNF-α) (Appendix 3 Text 3C.1.). These relatively high levels of exposure to ligands 

are consistent with an apparent stochastic response rather than a true stochastic response. 

Similarly, the likelihood of intracellular stochasticity is quite low as the number of molecules at 

each step is estimated to be greater than 103 per cell for NFκB models (Zambrano et al, 2014b; 

Tay et al, 2010).   

 Most cell studies focus on high concentration stimulation to determine the minimum ‘reset’ 

time a signaling system might require to recover between stimulation events. Observables like 

peak amplitude are often used to assess this reset time, by monitoring the amount of time needed 

between stimulation events that results in signaling responses of equal peak amplitudes. It is often 

assumed that reset times that are assessed at high stimulation concentrations are sufficient for 

resetting the signaling system upon exposure to low concentrations (Tay et al, 2010). However, 

our work provides new insights into how this assumption could be problematic and suggests that 

low concentration regimes, in which receptor desensitization does not dominate in determining 

recovery time, should be treated differently. Rather, the positive and negative feedback 

mechanisms and high Hill coefficient processes in the downstream signal play crucial roles, along 

with cell-to-cell variability, in determining the downstream response.  

 Most analyses of single cell responses discard data from non-responding cells and use data 

only from responsive cells (Thurley et al, 2014; Dhumpa et al, 2014; Jovic et al, 2011). Others 

stimulate cells at a very high concentration of ligand to avoid this non-responsive regime (Ashall 

et al, 2009). Such analyses could miss the overall picture of signaling architecture and the role of 

cell-to-cell variability in governing the population response. Our results suggest that non-

responding cells represent a legitimate response under a deterministic framework. More broadly, 

our results suggest that physiological, low concentration pulsing of signals is a deterministic 

strategy for the body to guide distinct subsets of cells to their appropriate fate rather than a 

stochastic process that leaves outcomes to chance.  

3.4. Conclusion  

 Physiological stimulations that are transitory and weak, such as low concentrations of 

acetylcholine present for just tens of seconds or TNF for just tens of minutes, lead to irregular 
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downstream responses that are often interpreted as stochastic. Here, we provide a deterministic 

explanation for this behavior that is based on cell-to-cell variability, a short-term memory of 

stimulation, and high Hill coefficient processes, providing data on muscarinic M3 receptor-

induced calcium signaling as an example. Furthermore, we provide a tractable, two-pulse 

experimental test that utilizes different rest periods between the stimulation pulses to determine 

if an apparently stochastic response in a dynamic signaling process has a deterministic basis. 

These analyses reveal that the seemingly random responses of cells to weak stimuli are 

determined by the signaling capacity of cells and the stimulation timing. The results suggest that 

physiological, low concentration pulsing of signals is a deterministic strategy for the body to 

guide distinct subsets of cells to their appropriate fate rather than a stochastic process that leaves 

outcomes to chance. 

3.5. Materials and Methods 

Materials 

Materials used for experiments in this Chapter are detailed in Appendix 1.  

Methods 

Methods description about cell culture, seeding cells in microfluidic device and time lapse image 

and analysis are detailed in Appendix 1.  

Calculating signal-to-noise ratio (SNR) and intrinsic-to-extrinsic noise ratio (IER). We adapted 

the method for experimental noise analysis provided in the supplementary section of a recent 

article (Selimkhanov et al, 2014). We first calculate the signal magnitude σ2
r (variance of average 

responses over all m input concentrations) as:  
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Noise magnitude σ2
n is calculated as the average of the variances of ni responses to a single input 

level as:  
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The signal-to-noise ratio (SNR) is then defined as the ratio, ߪ௥ଶ/ߪ௡ଶ. 
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To calculate intrinsic-to-extrinsic noise ratio (IER), we used the portion of calcium traces from 

step changes where the intensity did not change significantly. Intrinsic noise ሺߪక
ଶሻ was estimated 

as the variance of the differences in RGECO intensities between successive time points. Total 

noise ሺߪ௧ଶሻ was calculate similar to the noise magnitude, ߪ௡ଶ, but taking only the static region of 

the calcium traces. Extrinsic noise is then calculated as ߪ௘ଶ ൌ ௧ଶߪ	 െ	ߪక
ଶ. The ratio ߪ௜

ଶ/ߪ௘ଶ is IER.  

Based on the noise analysis, we incorporated cell-to-cell variability in the form of a uniform 

distribution of +/- 20% in the model parameters viz. the receptor, total G-protein and the PLC 

concentration. The intrinsic noise (+/- 5%, normally distributed throughout the dynamic data was 

minimal and did not affect the calculation for ‘0’ (non-responding) and ‘1’ (responding) cells. 

Mathematical model and computational analysis 

GPCR-calcium model with extrinsic noise. Previously, we developed a mathematical model that 

links step/pulsatile ligand stimulation, receptor/ligand binding, calcium signaling and captures 

the characteristic features of the microfluidic pulsatile experiments (Jovic et al, 2010, 2011; Sumit 

et al, 2015). The model description, reactions and parameter values are as detailed in our previous 

work (Sumit et al, 2015) as well as in Appendix 2 Text 2A.1-2. To incorporate extrinsic noise, 

the values for three major nodes in the pathway, the receptor, G-protein and PLC concentrations, 

were chosen from a uniform distribution around the mean value so that the SNR matches with the 

experimentally calculated value. 

Computational analysis. A system of ordinary differential equations (ODEs) was generated for 

the model and solved in MATLAB (MathWorks Inc., Natick, MA) with the ode15s stiff solver. 

Experimental data for more than 1000 cells under pulsatile stimulation conditions for various 

concentrations (C = 10 nM, 20 nM, 40 nM, and 80 nM) were analyzed to determine Signal-to-

Noise Ratio (SNR) and Intrinsic-to-Extrinsic Noise Ratio (IER) following a method described in 

Selimkhanov et al (Selimkhanov et al, 2014). These quantities provided an estimate of plausible 

range of extrinsic noise in our signaling system. Based on the noise analysis of experimental data, 

the initial values for core signaling components i.e., GPCR, G-protein and PLC were chosen from 

a 20% uniform distribution around the mean value using latin hypercube sampling (LHS) (Marino 

et al, 2008). Thus, in silico cell-to-cell variability was generated for three independent runs each 

consisting 250 LHS parameter sets. Analysis of the individual traces for peak finding and 
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determining fraction of subpopulations of (0,0), (0,1), (1, 0) and (1,1) was done by writing script 

files in MATLAB. 

TNFα-NFkB deterministic model with extrinsic noise. We used the deterministic as well as the 

stochastic version of the TNFα-NFkB model from (Tay et al, 2010). We performed sensitivity 

analysis of all the parameters used in the model to determine the parameters sensitive to both first 

and second peak in the in silico two pulse experiment (Appendix Table S1). Subsequently, cell-

to-cell variability was incorporated in the deterministic model using similar method as described 

in the previous section by generating a distribution in sensitive parameters limited within the same 

log scale. The rest of the analyses were done similar to that for the GPCR model. 
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Fig. 3.1. Two pulse experiments: experimental design and data. A. Design of pulsatile 
stimulation experiments, in which two outcomes are possible for each stimulation (0 and 1), 
leading to four possibilities for two-pulse experiments. B. Cells are stimulated twice with 
carbachol, a muscarinic-M3 agonist, for short pulse durations D (sec) at concentration C (nM) 
with in-between rest period R (sec) as shown in (A) to yield digital yes/no responses against 
each pulse. C. Responses vary from cell to cell and can be (i) no response, (ii) only second peak 
response, (iii) only first peak response, or (iv) both peak responses. Sub-threshold peaks (peaks 
< 0.3 times the maximum) are not counted as responses. C = 7.5 nM, D = 16 s, R = 200 s, for a 
total of 90 cells from 3 different experiments. 
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Fig. 3.2. Deterministic mathematical model with cell-to-cell variability exhibits all four 
possible outcomes. A. Model Schematic. Ligand (L) binds to receptor (R) to form LR complex 
which initiates G-protein mediated PLC activation and IP3 generation, ultimately leading to the 
observed calcium responses. The nodes shaded in red indicate where cell to cell variability is 
introduced in the model. PIP2 to IP3 pathway activated by PLC (shaded in light green) denotes 
a high Hill coefficient pathway.  Model equations can be found in Appendix to Chapter 2 as 
well as in (Sumit et al, 2015). B. In silico ligand stimulation, generated with the model with 
cell-to-cell variability (extrinsic noise) of +/- 20 % in [GPCR], [G]tot and [PLC]tot.  C. Model 
calcium traces showing the four possible outcomes similar to the experimental data, i.e., (i) no 
response, (ii) only second peak response, (iii) only first peak response, or (iv) both peaks. Sub-
threshold peaks (defined here as peaks < 0.3 times the maximum) are not counted as responses. 
C = 7.5 nM, D = 16 s, R = 120 s. 
 

  



50 
 

 

Fig. 3.3. Rest period determines subpopulation composition and apparent stochasticity. 
Microfluidic two-pulse test with widely separated rest periods (R = 24 s and R = 120 s) shows 
that subpopulation composition changes with R in a predictable fashion for different pulse 
durations tested (D = 8 s, 16 s and 24 s; C = 7.5 nM). A. The ‘apparently stochastic’ response 
denoted by the summation of (0,1) and (1,0) subpopulations (i.e., [0,1] U [1,0]) decreases with 
increasing R for all the pulse duration tested. B. The response denoted by the summation of 
(0,0) and (1,1) subpopulations (i.e., [0,0] U [1,1]) increases with increasing R, indicating greater 
uncoupling of responses at longer rest periods. Experimental results are shown as bars, and 
simulation results are shown as blue scatter points. Data information: In (A-B), experimental 
data (bars) are presented as mean +/- standard deviation (s.d.) for three sets of experiments, with 
~ 50 cells in each set. 
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Fig. 3.4. TNF-α-NFkB signaling model also shows apparent stochastic behavior under low 
concentration pulsatile stimulation, similar to the GPCR-calcium signaling. A. Brief 
schematic of TNF-α-NFκB signaling. Nuclear localization and transcriptional activity of NFκB 
upon stimulation of TNF-receptor is regulated through negative feedbacks by A20 and IκBα at 
different levels of signaling. The activation of IKK-α is modeled as a high Hill coefficient 
pathway. Model equations and parameters can be found in (Tay et al, 2010). B. Using 
sensitivity analysis to determine parameters affecting the first and second peaks differentially 
and then imposing a small cell-to-cell variability in the parameters, the deterministic NFkB 
model can produce the four subpopulation outcomes, including apparently stochastic responses. 
C. Representative in silico single cell traces of nuclear NFkB, showing all the four possible 
outcomes in a two pulse test using a deterministic model with cell to cell variability. D. Rest 
period test of NFκB signaling. Experimental data from (Zambrano et al, 2016) was examined by 
calculating the fraction of apparently stochastic response (0,1) and (1,0) and the rest of the sub-
population (0,0) and (1,1) at low TNF-α stimulation (0.1 ng/ml).  A shorter rest period (Tf = 90 
min, D = 45 min, and R = 45 min) and a longer rest period (Tf = 180 min, D = 30 min, R = 150 
min) were compared to find that the apparent stochastic response decreases with longer rest 
periods, similar to our experimental data for calcium response. The modified deterministic 
NFkB model also predicted similar results.   
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Fig. 3.5. Components that constitute an apparent stochastic cell signaling response. A. 
Analysis of our GPCR-calcium deterministic model reveals that the apparent stochasticity forms 
a hill-top in the low C-D-R regime and decreases with increasing R. B. Analysis of the TNF-α-
NFκB deterministic model shows similar trend, with apparent stochasticity forming a hill-top in 
the low C-D-R regime and decreases with increasing R. C. TNF-α-NFκB stochastic model with 
no cell-to-cell variability shows an almost flat surface for apparent stochasticity, indicating that 
the rest period test would show no significant trend in the ‘apparently stochastic response’ in 
such models and experimental systems. D. Apparently stochastic signaling is a result of 
deterministic reaction kinetics with a high Hill coefficient pathway in a population with cell-to-
cell variability, and is prominent in the low C-D-R regime, tractable by the rest period test. 
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Chapter 4. Pulsatile input enhances information transfer and downstream NFAT isoform 

sensitivity in a noisy GPCR-mediated pathway 

4.1. Introduction 

 A primary role of biochemical signaling pathways is to communicate or access information 

from the extracellular micro-environment. This allows cells to respond to a variety of external 

cues and to bring about physiological or phenotypic changes. However, variability in the 

molecular abundance of signaling components (extrinsic noise) and inherent stochasticity in 

molecular interactions (intrinsic noise) often contribute to noisy transmission of signal 

information (Cheong et al, 2011). How cells process these noisy signals to facilitate reliable 

transmission of information is a fundamental question.  

 Of course, cells can respond to both step changes in signal as well as time-varying signals. In 

this chapter, we ask whether pulsed inputs facilitate information transfer in such noisy 

biochemical pathways. Taking muscarinic M3 receptor mediated signaling as an example, we 

employ information theoretic analysis to show that the pulsed input not only enhances information 

transfer to the downstream effectors, but also increases informational sensitivity towards 

topologically similar transcription factor isoforms.  

 Although a century old field of study (Nyquist, 1924; Hartley, 1928; Shannon, 1948, 1998), 

information theory has recently been applied to explore several biochemical pathways and motifs, 

as it provides a quantitative tool to estimate the maximum possible information transfer 

(Levchenko & Nemenman, 2014; Rhee et al, 2012; Cheong et al, 2011; Selimkhanov et al, 2014). 

These studies suggest that cells may not be capable of discerning very many ligand concentrations 

under noisy transmission and that the signaling dynamics may be playing a key role in partially 

mitigating the loss of information in a noisy pathway (Selimkhanov et al, 2014). Often, input to 

these biochemical pathways are not constant concentrations of ligands. They are rather pulsatile 

bursts of chemical release from neighboring tissue sources (and sometimes even paracrine), and 

are therefore time-varying (or dynamic) inputs (De Pittà et al, 2009; Chappell et al, 2003; 

Dyachok et al, 2006; Dunant et al, 1974; Bergendahl et al, 1998). To our knowledge, information 
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theoretic analyses of noisy signaling pathways have been limited to step changes in the input and 

do not account for the dynamic changes in the micro-environment, which seems more 

physiologically relevant in certain signaling networks, and should be able to provide better 

insights into temporally modulated signaling circuits. 

 To test the hypothesis that dynamic changes in the ligand input may contribute towards 

enhanced information transfer as compared to step stimulations, we performed information 

analysis of a mathematical model and single-cell measurements of M3-mediated calcium and 

NFAT (Nuclear Factor of Activated T-Lymphocytes) response under pulsatile ligand stimulation. 

The term ‘information transfer capacity’ or simply ‘information’ that we use in this chapter is the 

Shannon information which is concerned with statistical properties of a given system and 

correlation between the states of the two systems. A mathematical description of information 

transfer capacity is provided in Methods section. We define mutual information (MI) as the 

information transfer capacity for a given set of inputs (or even outputs). First, we utilize a 

computational model for GPCR-calcium-NFAT signaling to validate that our information 

theoretic analysis is able to discriminate the dynamic response from scalar responses 

(Selimkhanov et al, 2014). Second, we utilize a microfluidic platform to deliver rapid pulsed 

stimulations (Gu et al, 2004) and record thousands of single cell calcium and NFAT traces. These 

data were analyzed to show that dynamic input enhances information transfer of the signaling 

responses. Additionally, we show that pulsed input increases the information transfer of two 

widely occurring isoforms of the NFAT transcription factor, viz. NFAT1 and NFAT4, as 

compared to their information transfer capacity alone.  

 

4.2. Results 

4.2.1. A deterministic approach to modeling a noisy GPCR signaling pathway 

 For any noisy biochemical pathway, it is important to know how many input ligand 

concentrations can be distinguished by the pathway and how noise affects this sensitivity. To 

analyze this with our information theoretic approach, we first took our deterministic model for 

GPCR-calcium-NFAT signaling that we developed in Chapter 2. Briefly, ligand-receptor binding 

(here muscarinic M3 receptor) leads to calcium response via G-protein activation. Cytoplasmic 

calcium dephosphorylates cytoplasmic NFAT that leads to its nuclear localization and subsequent 

transcriptional activation (Fig. 4.1. A). In Chapter 3, we have shown that noisy downstream 
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responses observed at the single cell level may be attributed to a deterministic framework with 

high cell-to-cell variability (extrinsic noise) coupled with stimulation and pathway properties such 

as a high Hill coefficient pathway and low concentration-duration stimulations. Here, we 

introduced various levels of extrinsic and intrinsic noise in our deterministic model in the form 

of cell-to-cell variability in the signaling components and white Gaussian noise in the output 

response, respectively. The deterministic model yields solutions (calcium responses) to each step 

change input (Fig. 4.1. B). However, it is well established that cells have biochemical variability 

in the concentrations of their signaling components (Bowsher & Swain, 2012; Cohen-Saidon et 

al, 2009; Voliotis et al, 2014). We added this variability by choosing the initial values for the 

concentrations of three major signaling components, GPCR, total G-protein and PLC, from a 

uniform or a normal distribution. The values were sampled using Latin Hypercube sampling 

(LHS) to minimize any correlation among them. Sampling from such a distribution (for example 

+/-15%, uniform) leads to highly variable signaling response wherein it is difficult to relate the 

response to the input concentrations (Fig. 4.1. C). In addition to extrinsic noise, the signaling 

system may also be prone to intrinsic noise such as stochastic errors in signal measurement and 

errors from the limited resolution of the measurement setup. We further added empirically 2% 

Gaussian noise normalized to the signal value and additional 2% white Gaussian noise to account 

for such intrinsic variability (Fig. 4.1. D). The signaling responses generated by including noise 

are less distinguishable in terms of the concentration input than purely deterministic solutions, 

and thus carry less information. We also used an intentiometric calcium fluorescence sensor 

RGECO1 transiently transfected in the M3 receptor expressing HEK293 cells. Cells were 

stimulated with carbachol (CCh), a chemical analog of acetylcholine (natural ligand for M3 

receptors). Experimental data for carbachol stimulation for the same concentration regime for a 

population of cells also shows similar non-distinguishability (Fig. 4.1. E). Taken together, we find 

that adding extrinsic and intrinsic noise within a deterministic framework decreases 

distinguishability of calcium response and its informational content but mimic experimental data. 

Next, we determine how information transfer to the downstream NFAT response is affected by 

increasing levels of noise. 

4.2.2. Noise limits the information transfer downstream to NFAT dynamics  

 Adding noise in model and finding that both model and experiments exhibit noisy calcium 

responses, it is interesting to understand how noise affects the downstream response such as 
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calcium-mediated NFAT activation. We investigated the effects of extrinsic noise (cell-to-cell 

variability) on the extent of information transfer at NFAT level in our model (Fig. 4.2. A). For 

two different levels of extrinsic noise (2% and 15%), we predict that the NFAT signaling 

responses vary widely and it becomes increasingly less discernible as to which response came 

from which ligand input (Fig. 4.2. B). We used a recently developed approach to calculate 

information transfer capacity of a dynamic response using k-nearest neighbor (knn) search 

algorithm (Kraskov et al, 2004; Selimkhanov et al, 2014) (see Methods and Materials) to quantify 

entropy and mutual information transfer capacity (MI) for each level of noise in the model. There 

are two approaches available for MI calculation. The scalar measurement simply considers a 

single time-point value of response such as the response after a fixed time, or the response at mid-

point, or maximum of the response curve. In contrast, the dynamic or vector measurement 

considers ‘d’ equi-spaced time-points in the dynamic part of the response. As expected, we find 

that for our model, the dynamic response (red curve, d = 5) always contains more information 

than the scalar response (black curve) (Fig. 4.2. C, D). With increasing number of input 

concentrations, the mutual information transfer increases until a plateau. As expected, we also 

find that with increasing levels of extrinsic noise, the mutual information capacity decreases (Fig. 

4.2. C). This is true regardless of the type of distribution we choose to sample the initial values 

(concentrations of GPCR, total G-protein and PLC) from. However, a uniform distribution 

exhibits less informational loss as compared to a normal distribution (Fig. 4.2. D). We also 

calculated the signal-to-noise ratio (SNR) of the response using a method provided in 

(Selimkhanov et al, 2014), and found that it follows similar logarithmic relationship as their 

theoretical prediction (Fig. 4.2. E). Taken together, these results suggest that our approach of 

quantifying information is able to delineate the essential features predicted theoretically for such 

noisy biochemical pathways. In the following sections, we transition to real experimental data, 

and apply our approach to quantify MI for step and pulsatile ligand stimulation. 

4.2.3. Dynamic calcium response partially mitigates informational loss  

 Single cell calcium traces were recorded for several step and pulsed input concentrations 

in multiple sets of experiments to collect > 200 single cell calcium traces for each stimulation 

condition. Under step stimulation, cells tend to respond in a wide range of calcium dynamics that 

includes oscillations, peak-and-plateau and single spikes (Fig. 4.3. A). Overall, the response 

traces appear asynchronous and highly noisy. Responses at each concentration are compared to a 
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no stimulation condition (control, 0nM CCh) to determine the information capacity of stimulation 

(Fig. 4.3. B). Since the input information is of 1 bit (0 nM or X nM), the maximum output 

information under ideal conditions would be 1 bit. We find that the information transferred under 

scalar read-out ranges from ~ 0.7-0.8 bit, which suggests partial loss of information during signal 

transduction. For all the concentrations tested, the dynamic or vector response were found to 

transfer more information as compared to the scalar response (~ 0.9 - 0.96 bit). We also calculated 

the mutual information (MI) transferred when all the input concentrations are considered together. 

Since our model predicted that the maximum information transfer plateaus out at ~ 4 

concentrations, we chose 4 input concentrations (equivalent to 2 bits of input information) to 

calculate the maximum mutual information the system can transfer downstream to calcium. MI 

for calcium response increased with increasing dimension of the vector response. While the scalar 

response yields the least mutual information (~ 0.97 bit), the vector measurements yield more MI 

(~ 1.15 bits for d = 3, and ~ 1.3 bits for d = 5) (Fig. 4.3. C). The vector dimension, d (or the 

number of time-points) up to which we can calculate the MI depends on the sample size (Cheong 

et al, 2011; Selimkhanov et al, 2014) and therefore we restricted our analysis to d = 5 which gives 

a good estimate of information for the sample size we have in our experiments (~200). It is also 

worth noticing that this method may overestimate the information content, and the estimation can 

be corrected by plotting information (in bits) against 1/sample-size (‘n’) (by randomly dividing 

the samples in halves and three parts) and extrapolating the curve for an infinitely large sample 

size for which 1/n ~ 0 (Appendix 4 Fig. 4A.1.). The trends for information transfer, however, 

remains the same. Our analysis of determining the maximum information capacity also optimizes 

the probability distribution (or contribution) of each of the concentrations to the maximum mutual 

information possible. We find that with increasing the dimension of response dynamics, the 

distribution becomes more uniform (Fig. 4.3. D). This suggests that the information content in 

scalar response (d = 0) is primarily contributed by the low (0 nM) and the high (80 nM) 

concentration stimulations and cells may not be able to sense intermediate concentrations (such 

as 10 nM and 40 nM) as well, despite being able to yield a response upon stimulation. In contrast, 

the uniformity in the distribution increases with increasing vector dimension of the read-outs, 

which suggests that the dynamic part of the response is crucial in discerning more number of 

input ligand concentrations. 
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4.2.4. Pulsed (or dynamic) ligand input together with dynamic response enhances information 

transfer 

 To test the hypothesis that pulsed input may enhance information transfer, hundreds of 

single cell calcium traces were recorded for various pulsatile stimulation conditions. 

Concentration and duration of the stimulation were fixed at 80 nM and 24 s, respectively. The 

rest period was set at R = 24 s, 72 s or 144 s (Fig. 4.4. A). These calcium responses were compared 

with the control ‘no stimulation’ (0 nM) traces. In the event that cells were not sensitive to the 

frequency of input, the upper limit of information transfer under dynamic response would be 1 

bit (for two concentrations 0 and 80 nM). In contrast, if the cells were highly sensitive to input 

frequency, four distinct inputs would have a maximum information transfer of 2 bits. In our case, 

we find that the maximum information output ranges between ~ 0.9 bits – 1.5 bits (Fig. 4.4. B), 

suggesting that the cells are not only sensitive to the input concentration but are also sensitive to 

the input frequency. The mutual information for pulsatile input (~ 1.5 bits) is thus not only greater 

than for step changes, but also exceeds the maximum information transfer possible under non-

pulsatile conditions (1 bit). Similar to the previous section where we varied input concentrations 

(Section 4.2.3.), the informational content increases with increasing dimension of the dynamic 

response. We also find that the probability distribution of information for varying rest period 

becomes more uniform as the vector dimension increases (Fig. 4.4. C). This suggests that the 

dynamics of the response is essential for frequency sensitivity. Taken together, we show that 

dynamic input (e.g. pulsatile ligand stimulation) combined with vector measurements (i.e., 

multiple time-point measurements) maximizes the amount of information that can be transferred 

downstream amidst a highly noisy biochemical network. 

4.2.5. NFAT isoforms exhibit enhanced mutual information transfer with pulsed input than alone 

 Enhanced information transfer under pulsed ligand input raises an interesting question: 

how do cells utilize this additional information that may be coming from the dynamic 

microenvironment, for example via pulsatile release of stimulants? To address this question, we 

seek insights from Chapter 2, where we showed that the two NFAT transcription factor isoforms 

have slightly different band-pass windows. We hypothesize that the excess information in the 

form of pulsed ligand dynamics may be sensed by the two NFAT isoforms somewhat 

distinctively. We recorded single cell traces for NFAT1 and NFAT4 nuclear translocation for two 

stimulation conditions: step change (black bar) and pulsed stimulation with R = 72 s (red bar) 
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with concentration (80 nM) and pulse duration (24 s) remaining the same (Fig. 4.5. A). We then 

calculated the information capacity of each of the isoforms alone as well as the mutual 

information between the two isoforms (Fig. 4.5. B-D). Multi-dimensional responses (d = 5) 

yielded more information as compared to scalar (d = 0) for each of the conditions. Interestingly, 

the mutual information between NFAT1 and NFAT4 is greater than the individual transcription 

factors alone. This suggests that the two isoforms sense the extracellular dynamics information 

differently and together process more information than alone. Taken together, these results show 

that existence of two different isoforms may complicate the signaling network, but it also utilizes 

the additional temporal information present in the cellular micro-environment. 

4.3. Discussions 

 In this chapter, using information theory, we investigated the hypothesis that cells can sense 

the dynamics in the external micro-environment and transfer the information downstream up to 

transcription factor activation. Based on Chapter 3, we used a deterministic framework to 

introduce cell-to-cell variability for generating noisy downstream response, and showed that the 

levels of extrinsic noise directly affects the information transfer at transcription factor activation 

(Fig. 4.2.). These conclusions about the relationship between signal-to-noise ratio and information 

capacity drawn from our model are consistent with the theoretical predictions of (Selimkhanov et 

al, 2014), validating that the approach works for non-linear systems such as GPCR-calcium 

signaling. In non-linear signaling pathways, extrinsic noise may give rise to a wide range of 

behavior such as oscillations, peak-and-plateau and single spikes, thus making the system appear 

highly noisy at population level. However, such systems have also been shown to phase-lock 

based on external frequencies (Jovic et al, 2010, 2011; Sumit et al, 2015; Jovic et al, 2013). Phase-

locked systems respond with high synchrony, and although the exact peak amplitudes may differ 

from cell to cell, it partially eliminates the noise generated by the cell-to-cell variability. Here we 

show that pulsed stimulations that result in phase locked responses increase the information 

transfer capacity of such noisy signaling pathways (Fig. 4.4.). We also notice that the information 

transfer capacity decreases from the calcium to the NFAT response. The reason for this is 

cumulative addition of noise for the downstream signals. While we used a minimal model in 

Chapter 2 to explain frequency modulation, the exact mechanism of calcium-induced NFAT 

activation is still debated and several kinases and phosphatases maybe involved in the pathway 

(Fisher et al, 2006). Their variability would add more extrinsic noise to the NFAT response, 
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further decreasing the overall information capacity. It also suggests that with increasing network 

complexity, cells tend to have decreased information capacity as they accrue more extrinsic noise. 

However, with pulsed/dynamic input as well as with dynamic output, cells may be able to mitigate 

the effects of extrinsic noise and may be able to optimize information transfer (Fig. 4.6.). It may 

be inferred that with increasing complexity in the signaling network, although the cumulative 

noise levels may increase, the system may be able to mitigate the noise by processing more 

information by utilizing the dynamics of the inputs and the output. We also found that the mutual 

information between NFAT1 and NFAT4 is greater than that of the individual transcription 

factors alone, suggesting that the two isoforms sense the extracellular dynamics information 

differently and together process more information than alone. This enables cells to utilize the 

same ligand input in two different temporal regimes to elicit different downstream responses 

(Sumit et al, 2015). We speculate that, in future, several other network motifs such as linear and 

oscillatory motifs with multiple feedback and feedforward loops will be investigated in order to 

thoroughly understand the effects of noise and advantages of using pulsed stimulation in 

mitigating the noise in that particular signaling network. 

 

4.4. Conclusions  

 We used pulsed and step ligand inputs and measured single cell responses to quantify 

information transfer via M3 receptor to calcium and NFAT responses. We show that the mutual 

information for pulsatile input is not only greater than for step changes, but also exceeds the 

maximum information transfer possible under non-pulsatile conditions. Focusing on the 

deterministic model, we show that the extent of cell-to-cell variability critically determines the 

amount of information that can be transferred downstream. We also show that the two isoforms 

of NFAT with different band-pass windows also exhibit different levels of information transfer 

and their mutual information transfer is greater than their information transfer capacities alone. 

Additionally, we show that the dynamic output (vector measurement) enhances the information 

transfer in all the cases. Taken together, we conclude that the pulsed dynamic input from the 

micro-environment combined with vector measurements (i.e., multiple time-point measurements) 

enable cells to maximize the information transfer downstream, despite the inevitable cell-to-cell 

variability present in the system.  
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4.5. Materials and Methods 

Materials 

Materials used for experiments in this Chapter are detailed in Appendix 1.  

Methods 

Methods description about cell culture, seeding cells in microfluidic device and time lapse image 

and analysis are detailed in Appendix 1.  

GPCR-calcium-NFAT model. We used our previously developed mathematical model that links 

step/pulsatile ligand stimulation, receptor/ligand binding, calcium and NFAT signaling and 

captures the characteristic features of the microfluidic pulsatile experiments described in Chapter 

2 (Jovic et al, 2010, 2011; Sumit et al, 2015). The model description, reactions and parameter 

values are as detailed in our previous work (Sumit et al, 2015) and Appendix 2 Text 2A.1-2., 

except for the initial values of the total GPCR, G-protein and PLC concentrations. The initial 

values for these components were selected from either a uniform or a normal distribution with 

varying width. The parameter selected was done using Latin hypercube sampling (LHS) to 

minimize any correlation between the initial value selections (Marino et al, 2008). A system of 

ordinary differential equations (ODEs) was generated for the model and solved in MATLAB 

(MathWorks Inc., Natick, MA) with the ode15s stiff solver.  

Calculation of information capacity (info), mutual information (MI) and signal-to-noise ratio 

(SNR). We adapted the method for information and noise analysis provided in (Selimkhanov et 

al, 2014). Briefly, for input signal S with ‘m’ discrete levels of ligand concentrations (S = [s1, s2, 

s3, …, sm]), we have output response trajectories (Ri = [ri1, ri2, …r1ni] corresponding to each input 

si. Each trajectory occupies a single point in continuous Euclidean space of dimension ‘d’, where 

‘d’ is the number of time-points in the output trajectory. The information transfer (I) is estimated 

by:  

;ሺܴܫ ܵሻ ൌ ሺܴሻܪ െ  ሺܴ|ܵሻܪ

Here, H(R) and H(R|S) are the Shannon entropies. This method uses k-nearest neighbor estimator 

to determine the probability of existence of a point xj in X as: 
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Here, Vd is the volume of a unit sphere of dimension d, Nx is the number of xj in X, and ݖሺݔ௝|ܺሻ௞
ௗ 

is the Euclidean distance to the kth nearest neighbor in X from xj (Kraskov et al, 2004). Applying 

this estimation, the Shannon entropies can be given by: 
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Without prior knowledge of the probability distribution coefficient, qi, the information transfer I 

cannot be estimated. However, the maximum information capacity can be estimated as  

;ሺܴܥ ܵሻ ൌ ;ሺܴܫொሼݔܽ݉ ܵሻሽ 

Calculation of signal-to-noise ratio (SNR):  

The method for estimation of SNR is adapted from (Selimkhanov et al, 2014). We calculate the 

signal magnitude σ2
r (variance of average responses over all m input concentrations) as:  
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Noise magnitude σ2
n is calculated as the average of the variances of ni responses to a single input 

level as:  
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The signal-to-noise ratio (SNR) is then defined as the ratio, ߪ௥ଶ/ߪ௡ଶ. 

To calculate intrinsic-to-extrinsic noise ratio (IER), we used the portion of calcium traces 

following step changes in ligand concentration where the intensity did not change significantly. 

Intrinsic noise ሺߪక
ଶሻ was estimated as the variance of the differences in RGECO intensities 
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between successive time points. Total noise ሺߪ௧ଶሻ was calculated similarly to the noise magnitude, 

 ௡ଶ, but taking only the static region of the calcium traces. Extrinsic noise is then calculated asߪ

௘ଶߪ ൌ ௧ଶߪ	 െ	ߪక
ଶ. The ratio ߪ௜

ଶ/ߪ௘ଶ is IER. Codes for these analyses were written and executed in 

MATLAB (MathWorks Inc., Natick, MA). 
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Fig. 4.1. A deterministic approach to modeling a noisy GPCR signaling pathway. A. 
Deterministic GPCR-calcium-NFAT model schematic. All the equations and parameters are as 
described in Chapter 2. B. Without any additional noise in the system, the calcium time traces 
from the deterministic model are easily distinguishable from each other. C. Deterministic model 
with added extrinsic noise (i.e., cell-to cell variability) introduced as initial values for major 
signaling nodes) yields a range of solutions. D. Adding intrinsic noise (white Gaussian) to 
account for measurement errors and stochasticity in the molecular activity, in addition to 
extrinsic noise, leads to an even noisier output. E. Experimental measurement of cytoplasmic 
calcium using RGECO intentiometric sensor (C = 10 nM, 40 nM, 100 nM all plotted together) 
is quite similar to a deterministic model with extrinsic and intrinsic noise. 
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Fig. 4.2. Biochemical noise limits the information transfer to downstream NFAT dynamics. 
A. Model approach to calculate mutual information. Time traces for cytoplasmic calcium and 
NFAT are obtained for the deterministic model (Fig. 4.1. A), with added extrinsic noise to calculate 
the mutual information. B. Representative in silico single cell NFAT traces for two different levels 
of noise (i) low noise: mean+/- 2% and (ii) high noise: mean +/- 15%. C-D. Mutual information 
(MI) transferred to NFAT is calculated for the deterministic model with intrinsic and extrinsic 
noise. The number of input concentrations as well as the extent of extrinsic noise is varied. 
Extrinsic noise is sampled either from uniform distribution (C) or normal distribution (D). In all 
cases, multiple time-point or vector measurements yield more information. MI decreases with 
increasing noise in the system. Uniform distribution yields greater information transfer as 
compared to normal distribution, with all other characteristic features remaining the same. E. Plots 
of information transfer vs signal-to-noise ratio (SNR) shows that information transfer increases 
with increasing SNR, and seems to follows a logarithmic relationship as predicted theoretically. N 
= 400 in silico time traces for each input obtained from the deterministic model with extrinsic 
noise sampled using Latin hypercube sampling method.   
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Fig. 4.3. Dynamics of calcium response partially mitigates informational loss. A. Cytoplasmic 
calcium time traces for a population of cells up on CCh step stimulation with various 
concentrations: (i) 10 nM, (ii) 40 nM, and (iii) 80 nM. B. Information transfer for each 
concentration when compared to no (0 nM) stimulation for scalar (single-point) and dynamic 
(multi-point) measurements. Dynamics of calcium response increases the information transfer in 
each case. C. Mutual information transferred from input through all the concentrations tested 
shows that with increasing number of time-point measurement, MI also increases. D. Contribution 
of each input in the maximum mutual information transfer (Fig. 4.3. C) as depicted by the input 
probability distribution. More and more intermediate concentrations contribute when d (number 
of time-points in the measurement) increases. N > 200 cells for each input obtained from several 
sets of microfluidic experiments.   
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Fig. 4.4. Pulsed ligand input together with dynamics of the response enhances information 
transfer. A. Cytoplasmic calcium time traces for a population of cells up on CCh pulsed 
stimulation (C = 80 nM) with various rest periods: (i) 24 s, (ii) 72 s, and (iii) 144 s. B. Mutual 
information transferred from input through all the rest periods tested shows that with increasing 
number of time-point measurement, MI also increases. C. Comparison of MI calculated using 
various scalar and vector methods such as NFATmax measurement, NFATmean measurement and 
dynamic (equispaced multiple time-point) measurement, shows that dynamic vector yields 
maximum information transfer in case of pulsed stimulation. D. Contribution of each rest period 
input in the maximum mutual information transfer (Fig. 4.4. B) as depicted by the input probability 
distribution. More and more intermediate rest periods contribute when d (number of time-points 
in the measurement) increases.  N > 200 cells for each input obtained from several sets of 
microfluidic experiments. 
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Fig. 4.5. NFAT isoforms exhibit enhanced mutual information transfer than alone for both 
step and pulsed stimulation under vector measurements. A. NFAT nuclear translocation time 
traces for a population of cells up on CCh pulsed stimulation (C = 80 nM, D = 24 s, and R = 72 
s) for (i) NFAT1 and (ii) NFAT4. B-D. Comparison of information transfer under step and pulsed 
ligand input for scalar (d = 1) and vector (d = 5) measurements. In all cases, pulsed stimulation 
with vector measurement results in maximum information transfer. Also, mutual information 
transfer when NFAT1 and NFAT4 are taken together is more than their individual capacity. For 
step stimulation, C= 80 nM. For pulsed stimulation, C = 80 nM, D = 24 s, and R = 72 s. N > 200 
cells for each input obtained from several sets of microfluidic experiments. 
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Fig. 4.6. Information transfer capacity increases with dynamicity for noisy signaling 
networks. Scalar measurement with step stimulation yields the least information while dynamic 
or vector measurement with pulsed stimulation provides maximum information transfer. 
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Chapter 5. Biochemical noise affects the rescuing capacity of drug action at single cell level 

in a GPCR-mediated signaling pathway 

5.1. Introduction 

G-protein coupled receptors (GPCRs) are the major pharmaceutical drug targets 

accounting for more than a third of the available pharmaceutical drugs (David, 2004). Drug 

responses for cell signaling pathways such as GPCR-mediated signaling pathways are generally 

studied by measuring population-averaged responses of genetically identical cells against step 

changes in ligand concentration. However, averaging over a population of cells occludes the 

behavior of individual cells which may vary distinctively in response to drugs or ligand inputs 

(Altschuler & Wu, 2010; Spencer et al, 2009, 2013). Yet, as described in Chapter 4, single cell 

measurements with step changes in ligand stimulation have limitations as they generate widely 

varying sets of response, owing to both intrinsic as well as extrinsic noise (Elowitz et al, 2002; 

Raser, 2004; Newman et al, 2006). Experimental measurements are often limited by the sample 

size, and information theoretic analysis may not be applied in such cases. To address this, other 

methods of noise or variability estimation have been developed over past decade (Rhee et al, 2014; 

Elowitz et al, 2002; Raser, 2004). Although noise at gene expression level has been well 

characterized (Elowitz et al, 2002; Raser, 2004; Newman et al, 2006), it remains challenging to 

quantify the biochemical noise, which is essential for understanding cellular heterogeneity and its 

implications for drug action (Rhee et al, 2014; Cheong et al, 2011).  

Prior studies of biochemical noise in signaling networks have been focused on 

development of two-reporter techniques (Rhee et al, 2014; Elowitz et al, 2002; Raser, 2004). This 

involves intensity measurement of two downstream fluorescent reporter proteins that are activated 

by the same upstream signaling node. The upstream node thus becomes the source of extrinsic 

noise, whereas the two parallel downstream pathways become the source of intrinsic noise in the 

system. However, this technique is limited to linear signaling motifs as well as by the availability 

of multiple fluorescent reporters, and may also be difficult to measure noise for signaling pathways 
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that respond at shorter timescales. Here, we develop a simple microfluidic pulsing technique with 

single fluorescence read-out under two different pulsatile stimulation regimes to estimate 

biochemical noise and to understand its implications in drug action. Quantification of biochemical 

variability and how it changes under perturbations such as overexpression of a signaling node or 

after applying a drug inhibitor. Combining the microfluidic technique with computational 

approaches developed in Chapters 3 and 4, we show that the biochemical noise in a GPCR-

mediated calcium signaling does affect drug action at the single cell level. Population-averaged 

responses may not be able to provide us these insights for use in pharmacology and synthetic 

biology applications.  

Major modulators of downstream of GPCR signaling are the RGS (Regulators of G-protein 

Signaling) proteins, which catalyze deactivation of Gαi and Gαq family G-proteins (Neubig & 

Siderovski, 2002). The cell line HEK 293 M3R4 used in our experiments stably expresses 

muscarinic M3 receptors (a GPCR) and also expresses one of the RGS proteins (RGS4) upon 12-

24 h induction with doxycycline (DOX) (Bodenstein et al, 2007). RGS4 increases the hydrolysis 

of activated G-protein and thus reduces calcium signaling. Thus, in our experiments, DOX-

induction is equivalent to a perturbation that reduces G-protein activity due to the presence of 

RGS4. We also use a recently discovered drug molecule (CCG-203769) that is shown to have 

Anti-Parkinson’s potential. It reversibly inhibits RGS4 activity and enhances the G-protein activity 

and, thus rescues the cells from the lowered response (Storaska et al, 2013; Blazer et al, 2015).  

Study of a drug response behavior often involves comparing the output response upon 

stimulation in the presence or absence of drugs. A more detailed method to study targeted response 

is to overexpress (or sometimes knockdown) a protein that is known to be targeted by the drug, 

thus altering its normal output response. Thus, overexpression of the target protein such as DOX-

induced RSG4 expression acts as a ‘perturbation’ in the system (denoted by ‘perturbation 

experiment’ in this chapter), and the application of target-specific drug such as RGS4 inhibitor 

CCG-203769, should be able to ‘rescue’ the cells from such perturbations (denoted by ‘rescue 

experiment’). A downstream read-out is used to quantify how the perturbed and drug-treated cells 

respond to that particular read-out as compared to control cells (Fig. 5.1. A). Although this 

approach is frequently used for pharmacological studies, the single cell response may vary quite 

widely and may even overlap for the three conditions (Fig. 5.1. A (ii)). Thus, the probability 
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distributions of output responses at the single cell level may overlap and may not be able to provide 

insights into several cell-specific response characteristics such as non-linear and bifurcated 

responses (Fig. 5.1. B). In this chapter, we investigate single cell characteristics of drug response 

in the GPCR-mediated signaling under normal, perturbation, and rescue conditions.  

5.2. Results 

5.2.1. Population scale measurements obscures drug response behavior at single cell level 

We measured cytoplasmic calcium response downstream of G-proteins, in single HEK293 

M3R4 cells transiently transfected with RGECO plasmid (an intentiometric calcium sensor) upon 

carbachol (CCh) ligand stimulation under control, perturbation, and rescue conditions (Fig. 5.1. 

C). Calcium response upon carbachol stimulation is significantly lowered in case of DOX-treated 

cells that express RGS4, as compared to the control set. Stimulation of cellular population that was 

induced by DOX but was also treated with the RGS4 inhibitor resulted in slight recovery of the 

calcium response. Although, maximum of RGECO intensity of the calcium response for the three 

conditions showed that drug treated cells responded better than those treated with DOX alone, a 

similar overlap of response is observed for the three conditions as schematized earlier (Fig. 5.1. 

D). Population scale measurements may not be sufficient to gain mechanistic insights into drug 

action when there is significant amount of noise or variability in the signaling pathway as 

suggested by the overlap in responses. To address this, we exploited an interesting observation 

made with microfluidic pulsatile stimulation.  

Cells under step stimulation with CCh exhibit distinct calcium responses in low and high 

concentration regimes. Low concentration stimulations result in oscillatory response, whereas high 

concentration stimulations result in peak-and-plateau response (Appendix 5 Fig. 5A.1. A-B). On 

the other hand, pulsatile stimulation of cells results in phase locking of the calcium response (Jovic 

et al, 2010). Interestingly, these phase locked responses have characteristic features in the two 

concentration regimes. Low concentration pulses (~10 nM CCh) result in complete amplitude 

recovery but partial frequency recovery (beat skipping) (Appendix 5 Fig. 5A.1. C). High 

concentration pulses (~100 nM CCh) result in complete frequency recovery but partial amplitude 

recovery (Appendix 5 Fig. 5A.1. D). We define two microfluidic observables, viz. frequency 

recovery index (FRI) and amplitude recovery index (ARI) such that FRI varies in the low 

concentration regime while ARI varies in the high concentration regime (Materials and Methods, 
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section 5.5.). Additionally, FRI and ARI increase with increasing rest period in the respective 

regimes (Appendix 5 Fig. 5A.1. E-F). Because the two observables are measured for same 

stimulation conditions, we hypothesized that these observables can be used as “two-reporter 

system” to explore biochemical noise and how it affects drug action at single cell level.  

5.2.2. Two regime pulsed stimulation (TRePS) shows correlation between the microfluidic 

observables that can be attributed to biochemical variability in a deterministic model 

To delineate the relationship of biochemical variability with output response, we designed 

an experimental scheme in which cells are stimulated with low concentration (C1) ligand pulses 

followed by stimulation with high concentration (C2) ligand pulses, with a sufficiently long 

recovery period (R0) in between (Fig. 5.2 A, Appendix 5 Fig. 5A.2. A). Rest periods were 

determined for the two concentrations such that the average FRI and ARI values in C1 and C2 are 

greater than 0.95. R0 was chosen to be much greater than those rest periods (~ 8 min). Under such 

conditions, the stimulation scheme would provide two readouts for the same cell at same node 

(calcium). This experimental system is analogous to the two reporter system mentioned earlier, 

and these two microfluidic observables (viz. FRI and ARI) are read-outs that depend on 

biochemical state of the cell. The idea of this scheme is to use these two-readouts in perturbation 

and rescue experiments to quantify how biochemical noise behaves under the three conditions at 

single cell level, and use the computational model developed in Chapter 3 and 4 to determine how 

changing biochemical noise levels would affect drug action (Fig. 5.2. A). Since this scheme 

involves testing in two concentration regimes, we term it as ‘Two Regime Pulsed Stimulation’ or 

TRePS, wherein we measure FRI in C1 regime and ARI in C2 regime in single cells.  

We measured calcium responses for cells stimulated under the TRePS scheme, and 

calculated FRI and ARI for each cell. Thus, each cell could be represent by a single dot in the FRI-

ARI plot (Fig. 5.2. B). Similar to the ‘two-fluorophore’ method, we find an interesting correlation 

between the two microfluidic observables. Cells exhibiting high amplitude recovery index in C2 

also exhibit high frequency index in C1 (Fig. 5.2. B). To visualize how cell are distributed along 

this correlation, the results were also plotted as a contour histogram (Fig. 5.2. C). The histogram 

indicates that the cells that have not been treated with any drug or vehicle are mostly evenly 

distributed along the correlation.  
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Assuming that the genetic composition remains unperturbed during the experimental 

timescale (a few minutes), we hypothesize that cells only vary in terms of the biochemical 

composition such as receptor density, total G-protein and PLC concentration, and is reflected in 

the FRI-ARI correlation. Cellular responses may also vary because of intrinsic noise. However, 

based on our analysis in Chapters 3 and 4, we ignore the contribution of intrinsic noise in this 

study. We used our existing mathematical model for GPCR-mediated calcium signaling (Chapter 

2 and Fig. 5.2. D). We varied the initial values for the major biochemical nodes in our deterministic 

model to see the effects on FRI and ARI (Fig. 5.2. E). Our model analysis suggests that varying 

each of the node, viz. GPCR concentration, RGS4 activity (indicated by a parameter k4) and total 

G-protein concentration, results in FRI-ARI correlation. Thus, our hypothesis can at least be 

validated mathematically that the correlation is an indication of biochemical noise, and is 

contributing to the scatter along the correlation. The scatter across the correlation may be attributed 

to intrinsic factors as well as errors in the quantification technique. Since we are interested in the 

correlated biochemical noise, we may ignore the scatter across the correlation in this study. Taken 

together, we find an interesting correlation between the two microfluidic observables in the TRePS 

experiments that can be attributed to biochemical variability in a deterministic model, similar to a 

two reporter system for the estimation of noise/variability in a signaling pathway. Next, we exploit 

this correlation, both in experiments as well as in simulation, to determine the effects of 

biochemical noise in perturbation experiments and understand its implications in drug action.  

5.2.3. Perturbation and rescue experiments shift the distribution of cells along the amplitude-

frequency correlation in a noise dependent fashion 

We performed TRePS experiments on single cells under with various conditions and 

determined how cells are distributed along the frequency-amplitude correlation (Fig. 5.3. A-D). 

The distribution for control cells that are treated overnight with DMSO (vehicle) was found similar 

to the non-treated cells (Fig. 5.3. A). Cells treated with a high concentration of trypsin (0.25% 

Trypsin in EDTA) exhibit reduction in their surface receptor density (Zhang et al, 2012). TRePS 

analysis of trypsin-treated cells (negative control) shows that almost all the cells shift to the low 

FRI-ARI regime (Fig. 5.3. B). Next, we performed TRePS experiments on doxycycline-induced 

HEK293 M3R4 cells that express RGS4 proteins. These cells showed a similar (and a rather mild) 

reversal in the calcium response, i.e., majority of the cell exhibited a low values for FRI and ARI 

(Fig. 5.3. C). When doxycycline induced cells were stimulated in the presence of RGS4 inhibitor 



75 
 

CCG-203769, we observe a partial shift of low responding cells to high responding regime (Fig. 

5.3. D). There are two possibilities of rescue by drug action. First is that all the cells might have 

moved a little up. Because a sub-population of cells with low values of FRI and ARI (< 0.5) still 

exist after the treatment, it rules out the possibility that every cell moved along the correlation. 

This leaves us with the second possibility that the drug treatment rescues a sub-population from 

low response to high response. Thus, these results suggest that the perturbation of key components 

in the signaling pathway may lead to a shift of a sub-population of cells from high responding to 

low responding and vice versa.  

To gain quantitative insights, we next used our mathematical model to introduce 

biochemical noise, and performed in silico TRePS experiments to simulate the microfluidic 

experimental observations (Appendix 5 Fig. 5A.3.). Population scale comparison of amplitude and 

frequency recovery indices in experiments and simulation indicates that apart from generating 

varied responses from cell-to-cell, our model also qualitatively captures the overall population 

scale features (Appendix 5 Fig. 5A.4.). For different levels of biochemical noise (depicted by the 

width of uniform distribution from which initial values of the signaling nodes are selected), 

frequency and amplitude recovery indices were measured for a sample size of 400 in silico cells 

in each case (Fig. 5.3. E-P). While the trends for low receptor density, RGS4 expression and drug 

inhibition for all the noise levels remain similar to the experimental data, the distribution of cells 

along the correlation varies significantly with noise. For low levels of biochemical noise (µ +/- σ, 

σ = 0.05µ, µ= mean value), most of the cells in the non-perturbed set remain localized to high FRI-

ARI regime (Fig. 5.3. E), that appears less physiological when compared to experimental data (Fig. 

5.3. A). When the experimental data is compared to the model data for the three noise levels tested, 

we find that high noise levels better mimic the experimental data (Fig. 5.3. I-P). In summary, the 

results suggest that perturbation and rescue experiments lead to a shift in the distribution of cells 

along the amplitude-frequency correlation in a noise dependent fashion. 

5.2.4. Biochemical noise affects the rescuing capacity of drug action at single cell level in a 

GPCR-mediated signaling pathway 

Next, we calculate the fraction of high fidelity responses for the cell population in each 

case depicted in Fig. 5.3. We define cells to have high signaling fidelity if ARI and FRI are both 

greater than 0.5 and low fidelity if either is less than 0.5. As expected, for all the noise conditions 
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tested, as well as for the experimental data, the control cells (non-perturbed) exhibit greater fraction 

of high fidelity responses (Fig. 5.4. A). However, the fraction decreases with increasing noise 

levels. Thus, biochemical noise limits the fraction of cells that can respond with high fidelity. 

Interestingly, for the same rescue conditions (RGS4 expression and drug inhibition), the fraction 

of cells that could be rescued from low fidelity response to high fidelity response increases with 

increasing noise levels. We define ‘drug rescue coefficient’ as the fraction of cells that could be 

rescued from low fidelity response after drug treatment divided by the fraction of cells high fidelity 

response without any treatment, to estimate how drug action can be affected by noise levels. 

Interestingly, the rescue coefficient increases with increasing noise levels (Fig. 5.4. B). This 

suggests that biochemical noise enhances the chances of a cell to be rescued upon drug action from 

a low fidelity response. Taken together, we find that increasing biochemical noise indeed helps 

more number of cells rescue back to high-fidelity response.  

5.3. Discussions 

Understanding how individual cells process temporal signals and respond to external 

perturbations such as overexpression of a signaling protein or drug inhibition, amid population 

heterogeneity is a major challenge in biology. The aim of the work presented in this chapter is to 

develop a simple method that can assess cellular heterogeneity in drug response and to understand 

how biochemical noise affects that response. Taking advantage of the fact that phase locked signals 

generated through pulsatile microfluidics can provide two observables for the same cell, we 

eliminated the tedious task of developing a ‘two fluorescence reporter’ (Rhee et al, 2014; Raser, 

2004; Elowitz et al, 2002) and still be able to estimate biochemical noise for drug study purposes. 

Since our technique is based on pulsatile phase locked stimulations, the time scale of measurement 

matches well with the time scale of signaling and is independent of the gene expression of a 

particular fluorophore. Our technique (TRePS method) is, however, an indirect method of 

measuring biochemical correlations, and is therefore prone to additional intrinsic (stochastic) noise 

and may not be used to estimate exact amount of noise in the system. The other limitation is that 

the method can only be used for signaling systems that are inherently oscillatory and exhibit phase 

locked responses. Regardless of these limitations, when this method is used along with 

computational modeling of noise, it may provide valuable insights into mechanisms of how noise 

affects certain physiological or pharmacological responses in that particular signaling system. We 

also speculate that with the advent of better spatio-temporal resolution and imaging techniques 
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coupled with microfluidics, better observables can be defined and tested to estimate biochemical 

noise in the system. 

Our results from the TRePS analysis raise a few essential questions regarding 

pharmacological studies done with cell population alone, such as: (1) Are overexpression and 

knockdown methods to study drug action sufficient? (2) Does the quantification of drug action on 

cell population really mirror what happens at single cell level? Overexpression or knockdown of 

signaling components may shift the response regime where a potential drug is sensitive enough to 

bring (on an average) the response back to normal from perturbed or pathological conditions. 

However, under physiological conditions, the sensitivity may be lost. Similarly, with biochemical 

noise existing in the system, the drug may be able to partially rescue the perturbed condition at 

population-averaged level, and still not be able to rescue a subpopulation of cells if the signaling 

exhibits bifurcation in the cellular response as we observed in Chapter 3. Thus, a drug may appear 

to be having an effect in laboratory conditions (under population scale measurements), and may 

still fail during clinical trials, which happens to a majority of potential drugs. Our results in section 

5.2.4 suggest that biochemical noise plays a role of a dual-sword in signaling pathways. On one 

hand, it limits the fraction of high-fidelity cells. On the other hand, it also facilitates a sub-

population of cells to be rescued back by potential drug action. Thus, based on our results, we 

speculate that, although noise costs efficiency (or fidelity) in the signal transduction, it also makes 

the system more robust to be brought back from perturbed conditions. A better understanding of 

noise and how we can exploit it for our advantage will bring a great stride in the drug discovery 

protocols. 

5.4. Conclusions 

 In this chapter, we asked how biochemical noise may affect the drug action at single cell level. 

We showed that population averaged response with step stimulation of ligand may occlude the 

single cell response behavior, and there may be overlap between the response of population of 

perturbed cells and the cells rescued by the drug action. We explored the reason for this overlap 

and how it may impact drug action. To address this, we developed a microfluidic experiment to 

measure two observables in the same cell, similar to a ‘two-reporter’ system to estimate 

biochemical noise in the system. Our analysis with microfluidic experiments and mathematical 
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modeling suggests that the drug action on rescuing perturbed cells increases with increasing noise. 

Appropriate exploration of biochemical noise may be used to our advantage in drug discovery.  

 

5.5. Materials and Methods  

Materials 

Materials used for experiments in this Chapter are detailed in Appendix 1.  

Methods 

Cell culture. HEK293 M3R4 cells stably expressing human muscarinic acetylcholine receptor 

M3 and doxycycline inducible RGS4 were cultured in DMEM with 10% FBS, geneticin G418 

(400 μg/ml), hygromycin (200 μg/ml) and blasticidin (15 μg/ml) in T-25 flasks (Bodenstein et al, 

2007). Transient transfection with R-GECO1 plasmid was carried out using Lipofectamine 3000 

following the protocol prescribed. 

Methods description about seeding cells in microfluidic device and time lapse image and analysis 

are detailed in Appendix 1.  

Calculation of frequency and amplitude recovery indices. In the low concentration regime (C1), 

Frequency Recovery Index is defined as the number of phase-locked calcium peaks above a 

threshold value divided by the total number of pulsed stimulations: 

ሻܫܴܨሺ	ݔ݁݀݊ܫ	ݕݎ݁ݒ݋ܴܿ݁	ݕܿ݊݁ݑݍ݁ݎܨ ൌ
݁ݑ݈ܽݒ	݈݀݋݄ݏ݁ݎ݄ݐ	ܽ	݁ݒ݋ܾܽ	ݏ݇ܽ݁݌	݉ݑ݈݅ܿܽܿ	݂݋	#

ݏ݊݋݅ݐ݈ܽݑ݉݅ݐݏ	݀݁ݏ݈ݑ݌	ݐݑ݌݊݅	݂݋	#	݈ܽݐ݋ܶ
 

Similarly, in the high concentration regime (C2), Amplitude Recovery Index is defined as the ratio 

of calcium amplitude of the ‘mth’ pulse to the first pulsed stimulation: 

ሻܫܴܣሺ	ݔ݁݀݊ܫ	ݕݎ݁ݒ݋ܴܿ݁	݁݀ݑݐ݈݅݌݉ܣ ൌ
݇ܽ݁݌	݉ݑ݈݅ܿܽܿ	݄ݐ݉	݂݋	݁݀ݑݐ݈݅݌݉ܣ
݇ܽ݁݌	݉ݑ݈݅ܿܽܿ	ݐݏݎ݂݅	݂݋	݁݀ݑݐ݈݅݌݉ܣ

 

Note: The threshold in calculating FRI is empirically taken as one-sixth of the maximum 

amplitude. Similarly m is taken as 8 in case of calculating ARI.  

Mathematical model and computational analysis 
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GPCR-calcium model with extrinsic noise. The mathematical model for GPCR-calcium signaling 

used in this work is taken from our previously published articles (Jovic et al, 2010, 2011; Sumit 

et al, 2015). The model description, reactions and parameter values are as detailed in our previous 

work in Chapter 2 (Sumit et al, 2015).   

Computational analysis. A system of ordinary differential equations (ODEs) was generated for 

the model and solved in MATLAB (MathWorks Inc., Natick, MA) with the ode15s stiff solver. 

The initial concentrations of three critical signaling components, GPCR, G-protein and PLC, were 

chosen from uniform distributions around the mean value using Latin hypercube sampling (LHS) 

(Marino et al, 2008). Thus, in silico cell-to-cell variability was generated for 400 LHS parameter 

sets. Analysis of the individual traces to identify peaks and determine frequency and amplitude 

recovery indices were done using script files written in MATLAB. 
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Fig. 5.1. Population scale measurements obscure drug response behavior at single cell level. 
While population-averaged behavior may show a change in the response upon perturbation and 
drug treatment (A), single cell measurements may be highly noisy and partially overlapping (B). 
The overlap in single cell measurements can be shown as a probability distribution of the 
maximum response (C). C. Single cell traces for RGECO-calcium response up on step stimulation 
for three different conditions: (i) control: M3R4 HEK 293 cells treated with DMSO (vehicle) and 
stimulated with 10 nM carbachol; (ii) perturbed cells: cells treated with 1 μg/mL doxycycline 
overnight to induce RGS4 expression, and stimulated with 10 nM carbachol; (iii) perturbed cells 
with drug treatment: cells treated with 1 μg/mL doxycycline overnight to induce RGS4 expression, 
and stimulated with 10 nM carbachol along with treatment with 3 μM of RGS4 inhibitor CCG-
203769. D. Maximum RGECO response for the three conditions shown as box-plot, indicating 
overlap of response between perturbed cells and cells treated with the drug. 
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Fig. 5.2. Two regime pulsed stimulation (TRePS) shows correlation between two microfluidic 
observables that can be attributed to biochemical variability. A. Schematic outlining single 
cell TRePS method. The same cell is stimulated with pulses of ligands in two different regimes C1 
and C2, to yield the values R1 and R2, corresponding to the two microfluidic observables. Similar 
to the “two reporter system”, correlation between R1 and R2 can be related to the biochemical noise 
exhibited by the signaling nodes. The method is applied to microfluidic experiments as well as in 
silico testing of deterministic model with varying amount of biochemical noise to understand the 
effects of perturbations and drug response at single cell scale. B. The observables, frequency and 
amplitude recovery indices, show a positive correlation for the TRePS experiment. C1 = 10 nM, 
C2 = 100 nM, D = 24 s, R0 = 8 min, and R varied from 90 s – 200 s to explore the correlation space. 
C. Contour histogram of the amplitude and frequency indices correlation space showing cells with 
better frequency recovery also exhibit a better amplitude recovery. D. A deterministic model for 
GPCR-calcium signaling, developed in Chapter 2 that captures several characteristic features of 
pulsed stimulation. The signaling nodes are with possible biochemical variations are GPCR, G-
protein and PLC. The remaining nodes, IP3, calcium and calcium-ER equilibrate based on the 
initial conditions of previously mentioned nodes. E. Variation in the initial value of nodes in the 
deterministic model gives similar positive correlation between amplitude and frequency indices.  
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Fig. 5.3. Perturbation and rescue experiments shift the distribution along the amplitude-
frequency correlation in a noise dependent fashion. A-D. Contour histograms of amplitude and 
frequency indices for microfluidic TRePS experiments with various perturbations: (A) control: 
M3R4 HEK 293 cells treated with DMSO (vehicle) and stimulated with 10 nM carbachol; (B) 
0.25% Trypsin treated cells stimulated with 10 nM carbachol; (C) perturbed cells: cells treated 
with 1 μg/mL doxycycline overnight to induce RGS4 expression, and stimulated with 10 nM 
carbachol; (D) perturbed cells with drug treatment: cells treated with 1 μg/mL doxycycline 
overnight to induce RGS4 expression, and stimulated with 10 nM carbachol along with treatment 
with 3 μM of RGS4 inhibitor CCG-203769. E-P. Contour histograms of amplitude and frequency 
indices for in silico TRePS experiments with various perturbations: relative fraction of receptor 
density (kp; 1 or 0.3) and relative fraction of G-protein deactivation based on RGS4 activity and 
drug inhibition (k4; 1, 1.3 and 1.2 respectively). Experimental data (A-D) from > 60 cells from 
three sets of experiments. Simulation data from 400 in silico traces in each case, generated from 
uniform distribution of initial values of the signaling nodes with Latin hypercube sampling 
method. 
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Fig. 5.4. Biochemical noise affects the rescuing capacity of drug action at single cell level in 
a GPCR-mediated signaling pathway. A. Fraction of high fidelity response (frequency and 
amplitude recovery indices > 0.5) for control (black bars) and DOX+CCG treated (gray bars) 
cells as a measure of the drug efficacy. B. Drug rescue coefficient (defined as the fraction of high 
fidelity cells after perturbation divided by the fraction of high fidelity cells in the control sets of 
experiments) increases with increases the biochemical noise. 
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Chapter 6. Conclusions and future directions  

6.1. Conclusions  

In this thesis, I use both experimental and computational approaches to explore how 

information is processed in a GPCR signaling pathway under physiological pulsatile stimulations. 

Various techniques including pulsatile stimulation using microfluidics, single cell analysis, 

mathematical modeling, and information and noise analysis have been implemented to understand 

information processing in such signaling pathways. The main hypothesis driving this work is that 

cells must be able to discern time-varying inputs and must have evolved evolutionarily to exploit 

temporal information available in their microenvironment to their advantage. Although this thesis 

focuses on one particular receptor (viz. muscarinic M3 receptor), it endeavors to develop a general 

understanding about temporal information processing that may be applicable to many signaling 

pathways. Understanding the signaling circuit architectures that drive temporal information 

processing through noisy transduction pathways will provide mechanistic insights into several 

biological processes that are poorly understood, such as achieving selective downstream responses, 

epigenetic selectivity and robustness in signaling response. It will also provide tools to synthetic 

biologists interested in manipulating cellular responses for in vitro applications including lab-on-

chip development. Moreover, understanding how biochemical noise may affect drug action will 

facilitate development of drugs that are more potent, despite the presence of biochemical 

variability in the cells they are meant to target. 

 

Band-pass processing selects for downstream transcription factor activation  

Temporal signal processing in receptor-mediated pathways is increasingly appreciated as a tool 

that cells utilize to achieve enhanced activity and selectivity, and to distinguish signal from noise. 

To understand how temporal modulation of an input signal influences downstream responses, we 

employed microfluidic pulsatile stimulation of a G-Protein coupled receptor, the muscarinic M3 

receptor, in single cells with simultaneous real-time imaging of both intracellular calcium and 

NFAT nuclear localization. Interestingly, we find that reduced stimulation with pulses of ligand 
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can give more efficient transcription factor activation, if stimuli are timed appropriately. Our 

experiments and computational analyses show that M3 receptor-induced calcium oscillations form 

a low pass filter while calcium-induced NFAT translocation forms a high pass filter. The 

combination acts as a band-pass filter optimized for intermediate frequencies of stimulation. We 

demonstrate that receptor desensitization and NFAT translocation rates determine critical features 

of the band-pass filter and that the band-pass may be shifted for different receptors or NFAT 

dynamics. As an example, we show that the two NFAT isoforms (NFAT4 and NFAT1) have 

shifted band-pass windows for the same receptor. While we focus specifically on the M3 

muscarinic receptor and NFAT translocation, band-pass processing is expected to be a general 

theme that applies to multiple signaling pathways.  

 

Cellular responsiveness to weak physiological stimuli is fate not luck 

Physiological stimulations that are transitory and weak, such as low concentrations of 

acetylcholine present for just tens of seconds or TNF for just tens of minutes, lead to irregular 

downstream responses that are often interpreted as stochastic. In Chapter 3, we provide a 

deterministic explanation for this behavior that is based on cell-to-cell variability, a short-term 

memory of stimulation, and high Hill coefficient processes, providing data on muscarinic M3 

receptor-induced calcium signaling as an example. Furthermore, we provide a tractable, two-

pulse experimental test that utilizes different rest periods between the stimulation pulses to 

determine if an apparently stochastic response in a dynamic signaling process has a deterministic 

basis. These analyses reveal that the seemingly random responses of cells to weak stimuli are 

determined by the signaling capacity of cells and the stimulation timing. The results suggest that 

physiological, low concentration pulsing of signals is a deterministic strategy for the body to 

guide distinct subsets of cells to their appropriate fate rather than a stochastic process that leaves 

outcomes to chance. 

Pulsatile input enhances information transfer in a noisy biochemical pathway  

In Chapter 4, we measured single cell response to quantify information transfer via M3 receptor 

to calcium and NFAT response under step and pulsed conditions. We showed that the mutual 

information transfer for pulsed stimulation is not only greater than that for the step changes alone, 

but also exceeds the maximum information transfer possible under non-pulsatile conditions. 



86 
 

Focusing on the deterministic model, we show that the extent of cell-to-cell variability critically 

determines the amount of information that can be transferred downstream. We also show that the 

two isoforms of NFAT with different band-pass windows exhibit different levels of information 

transfer and their mutual information transfer is greater than their information transfer capacities 

alone. Additionally, we show that the dynamic output (vector measurement) enhances the 

information transfer in all the cases. Taken together, Chapter 4 concludes that pulsed input from 

the micro-environment along with the dynamics of the output enable cells to maximize the 

information transfer downstream, despite the presence of cell-to-cell variability in the system.  

 

Biochemical noise affects the rescuing capacity of drug action at single cell level  

In this chapter, we asked how biochemical noise may affect the drug action at single cell level. 

We showed that population averaged response with step stimulation of ligand may obscure the 

single cell response behavior, and there may be overlap between the response of population of 

perturbed cells and the cells rescued by drug action. We explored the reason for this overlap and 

how it may impact drug action. To address this, we developed a microfluidic experiment to 

measure two observables in the same cell, similar to a ‘two-reporter’ system to estimate 

biochemical noise in the system. Our analysis with microfluidic experiments and mathematical 

modeling suggests that the drug action on rescuing perturbed cells increases with increasing noise. 

Appropriate exploration of biochemical noise may be used to our advantage in drug discovery.  

 

6.2. Insights and perspectives 

Investigation of cellular signaling dynamics using microfluidics and 

mathematical/computational modeling possesses unique advantages in dissecting signaling 

circuitry by utilizing a wide observability space while reducing response heterogeneity through 

phase locking and/or entrainment. Several insights are possible from this study, including: 

 

Multi-tasking through temporal compartmentalization  

Components of signal transduction pathways are often involved in multi-tasking. One of the best 

examples is calcium, which is involved as a second messenger in several signaling pathways. For 

such multi-tasking components, it is essential to decide which downstream signal to elicit and 

which not to. One way these signaling components evolved for multi-tasking is through the 
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compartmentalization of space. It is now known that life evolved towards spatial 

compartmentalization to facilitate more complex tasks that a non-compartmentalized living system 

may be unable to perform. However, compartmentalization within the temporal regime is much 

less understood. In Chapter 2, we found that cells prefer timings that are “just right” – not too fast, 

not too slow. Analogous to the concept of space, we may conceptualize ‘time’ to be 

compartmentalized as well. In different ‘temporal compartments’ the same signaling molecule 

may be involved in a different task. The findings in Chapter 2 that the same spatially confined 

calcium may be able to activate two distinct isoforms of a transcription factor in two different 

‘temporal compartments’ is a working proof of the same.  

 

Band-pass analysis to dissect hidden/unknown temporal signaling motifs  

We speculate that the band-pass concept should be applicable to several other signaling pathways 

and it can help understand the circuit architecture and hidden/unknown motifs. Recent findings of 

Ryu et al (Ryu et al, 2015) about ERK activation (Section 1.5) suggests that the two growth factors 

(EGF and NGF) generate different band-pass windows for ERK signaling and subsequent 

differentiation of neurite cells, consistent with our findings in GPCR-calcium-NFAT signaling. 

While the EGF acts in a narrow intermediate regime window (R = 10 min – 20 min), NGF acts in 

a much wider window, almost as a high pass filter. Thus, EGF signaling must comprise of 

additional low pass filter along with the downstream high pass amplification. This conclusion 

based on the band-pass concept is consistent with the predictions of Ryu et al that EGF may be 

inducing a fast negative feedback through the channels yet unknown. Additionally, the high pass 

filtering properties of NGF that works only with high dosage can be attributed to a positive 

feedback speculated to be present in the NGF signaling network, but not in the EGF signaling 

network. Similarly, in TGFβ signaling (Sorre et al, 2014), the existence of negative feedback and 

lowering of Smad4 amplitude upon rapid stimulation also suggests that the system works in a 

band-pass manner similar to GPCR-mediated NFAT translocation and EGF mediated 

differentiation (Ryu et al, 2015). This negative feedback under spatial constraints gives rise to an 

“adaptive mechanism” for embryonic development that is predicted to be more robust pattern as 

compared to the linear model without any negative feedback. Even in non-mammalian systems 

such as yeast, researchers have showed that the oscillatory stress stimulation results in an 

intermediate frequency regime for which the growth is slowed down significantly (Mitchell et al, 
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2015). While they attribute this regime to be non-natural and interpret this as a hidden sensitivity 

of cellular regulatory networks, it may be possible that the regime ~ 8 min period for which the 

MAPK activation is maximized may have some physiological relevance that is yet unknown. 

These observations strengthen our argument that band-pass processing of temporal information 

may exist in a variety of signaling pathways. Thus, band-pass processing appears to a general 

theme of how temporal information is processed and can be utilized to discover hidden/unknown 

motifs in similar signaling pathways.  

 

Temporal selectivity through biochemical noise  

A fundamental problem in biology is to understand how selectivity is achieved in a cell 

population. In case of spatial selectivity (such as cellular differentiation during embryonic 

development), several experimental and mathematical insights are available (Kholodenko, 2006). 

However, mechanisms for temporal selectivity, wherein timing alone may be able to segregate 

responsive and non-responsive cells, remains largely unknown. In Chapter 3, we showed that 

cellular responsiveness may significantly depend on biochemical content and non-linearity in the 

system. The biochemical variability along with pulsed stimulation may lead to selective activation 

and deactivation of a cellular sub-population. Thus, one way to achieve temporal selectivity may 

be through the pulsatile stimulation of cellular population with inherent biochemical variability 

and non-linearity in the signaling pathway. Apart from selectivity, another arena where insights 

from biochemical noise analysis can be of great importance is in the field of drug development, 

particularly in developing personalized medicines. In Chapter 5, we showed that the drug action 

can be altered based on biochemical variability. Under pathological conditions, protein 

expressions may vary for person-to-person. A drug may be effective in overcoming the pathology 

for one patient, while it may not be able to do so for another. Slight variability may result in 

drastic alterations in the effectiveness of a drug. Development of drugs that are not only potent 

towards pathology, but also robust against variability is essential, and will help avoid clinical trial 

failures to some extent. 

 

6.3. Future directions  

 As an emerging field of investigation that incorporates quantitative experiments and 

modeling, microfluidic pulsatile stimulation approach possesses immense opportunities to seek 
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answers to scientific problems that may not be possible to get using conventional methods. As 

the microfabrication technology becomes more accessible and affordable, we speculate that 

investigating the band-pass regime for additional signaling pathways will uncover hidden or 

unknown motifs. Immense opportunities lie in investigating signaling pathways where external 

fluctuations and dynamics in the micro-environment may be playing a critical role. Advancements 

in biochemistry and genetics in the past century have provided us with plethora of information 

and understanding of complex signaling pathways in bits and pieces. Approaches that involve 

spatio-temporal interrogation will prove to be a great tool for integrating that information and 

understanding the signaling behavior at systems scale. From theoretical aspects, it will be 

interesting to investigate whether a signaling pathway can be predicted for its range of temporal 

modulation and also to determine if the existence of such patterns make systems more robust.  

There are several future directions possible based on the study in thesis, including:  

Distinct downstream responses for metabotropic glutamate receptors  

In Chapter 2, we predicted that band-pass regimes will differ for different receptors and calcium-

regulated transcription factors. Two of the metabotropic glutamate receptors, mGlu1 and mGlu5 

have been shown to have distinct functional roles (Kotlinska & Bochenski, 2007; Bradley & 

Challiss, 2012; Mannaioni et al, 2001; Sun & Neugebauer, 2011; Pietraszek et al, 2005; Gubellini 

et al, 2003). It remains largely unknown how same signaling circuitry functionally diverges into 

two distinct downstream responses for these two receptor subtypes. While the known mechanism 

through which they signal remains the same, they do possess distinct receptor regulation kinetics 

(Bradley & Challiss, 2012). Upon stimulation, mGlu1 receptor desensitizes rapidly and recovers 

slowly, leading to single peak-and-plateau type calcium response. In contrast, mGlu5 receptor 

gets phosphorylated and dephosphorylated rapidly (also known as “dynamic uncoupling”) 

(Dupont et al, 2011b). This results in robust calcium oscillations. It can be inferred that mGlu5 

receptor can elicit downstream response for fast pulsed stimulations and even step stimulations 

by producing rapid calcium oscillations. In contrast, mGlu1 receptor would require intermittent, 

slow stimulations that would provide the receptor sufficient time to recover from desensitization. 

Thus, mGlu1 and mGlu5 receptors are expected to have different band-pass regimes. It would be 

interesting to explore how the same receptor-mediated calcium response may lead to two different 

outcomes downstream simply on the basis of receptor desensitization.  
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Exploring frequency modulated signaling mediated by Luteinizing hormone (LH)   

LH is produced by gonadotropic cells and is involved in triggering ovulation in females, and in 

stimulating cells that produce testosterone in males. Additionally, studies on LH dependent 

oocyte maturation suggest its link to protein kinase C and calcium oscillation (Woods & Johnson, 

2007; Fan, 2003; Robinson et al, 2012; Hsieh et al, 2011). It is known that LH is secreted in 

pulsatile bursts with time period ~2 h (Santen & Bardin, 1973; Bergendahl et al, 1998). 

Interestingly, the time period of secretion increases during the menstrual cycle. The shift in LH 

pulse frequency is expected to be the key to transition from ovulation to menstruation. It would 

be interesting as well as medically important to explore how different LH frequencies may alter 

the downstream response. Understanding such mechanisms will help develop drugs targeted to 

regulate the LH oscillation frequency in females with abnormal menstrual cycles or issues with 

oocyte maturation.  

Understanding mechanobiology of receptor signaling  

Recent evidence suggests that surface stiffness and other mechanical properties (such as geometry 

and shear) activate receptor regulatory kinases (Lembong et al, 2015; Kim et al, 2009). 

Preliminary data on phase locking experiments on soft PDMS devices indicates decreased 

calcium response across cell population. This relates well with the current understanding of 

increased G-protein regulatory kinase (GRK) activity on soft surfaces (Gurevich et al, 2012; 

Freeman et al, 1998; Luo et al, 2008; Goldberg et al, 2010). Pulsatile stimulation provides a 

quantitative platform to explore how mechanical properties of the cellular microenvironment 

affect downstream response at single cell level, and also to compare mathematical models to 

develop deeper insights into mechanobiology of receptor signaling, in particular, GPCR-mediated 

downstream responses.  

Neuronal stimulation for eliciting immunological responses   

Recent studies in neuroscience and immunology suggest links between neural reflexes and 

immune responses (Abboud et al, 2012; Sternberg, 2006). Even our study suggests that 

neurotransmitters such as acetylcholine can induce NFAT activation. Our band-pass analysis also 

predicts that at a longer (and rather more sustained) rest periods, calcium oscillations may elicit 

NFκB response (Xu et al, 2014). Both NFAT and NFκB play crucial roles in immune response. 

It would be interesting to explore how different rest periods (and also different ligand) may elicit 
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immune response upon pulsatile stimulation of cells. This study will not only provide scientific 

insights into mechanisms of immune response, but also aid development of relevant and more 

potent therapeutics. 

Information analysis of signaling motifs to build ‘cellular lasers’  

Results in Chapter 2 demonstrate that phase-locked responses under a particular stimulation 

frequency window lead to maximum downstream response. Moreover, we also found that 

incoherent behavior in signaling pathways may be due to cell-to-cell variability or biochemical 

noise (Chapter 3-5). Taking these two results together, we hypothesize that by minimizing cell-

to-cell variability using genetic tools and stimulating cells in pulsatile fashion using automated 

microfluidic oscillators, we should be able to get coherent downstream response in a cell 

population, analogous to the concept of lasers in optics. ‘Cellular lasers’ would greatly enhance 

desired output in biotechnology-related applications. 

Novel methods for investigating noisy and complex circuit architectures   

There are multiple new methods and techniques that have been developed recently or are being 

developed that can be used for investigating noisy and complex circuit architectures. In the future, 

they can be used together to address some of the important questions in the field. Advancements 

in microfluidic technology to enhance temporal and spatial resolution with high throughput 

analysis of signaling dynamics in live single cells with multiple read-outs (multiple probes) will 

further expand the observability space (Kilinc et al, 2015; Siltanen et al, 2016; Hansen et al, 2015; 

Frank & Tay, 2015; He et al, 2015). Simultaneously, the large amount of single cell data from 

noisy biochemical pathways requires advanced data analysis tools (Tseng et al, 2014). Utilizing 

information theory to analyze the signal and noise in the data is an example of how we can address 

important questions (Selimkhanov et al, 2014). Advancements in the field of mathematical and 

computational modeling such as multi-scale modeling and agent-based modeling for systems 

pharmacology will further push the investigation at systems scale (Cilfone et al, 2015; Behar et 

al, 2013). With the advent of tools like optogenetics (Toettcher et al, 2013) and high resolution 

imaging, we speculate that the investigation will expand from temporal modulation to 

spatiotemporal modulation and mathematical modeling to further elucidate how spatiotemporal 

constraints (Warmflash et al, 2014; Kar & Parekh, 2015) modulate the signaling dynamics. Thus, 

a deeper understanding of signal transduction pathways using these tools will provide us 
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opportunity to utilize this approach for synthetic biology applications, designing novel 

pharmaceutical interventions, as well as understanding fundamentals of spatio-temporal 

coordination. 
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Appendix 1. Materials and Methods common to Chapter 2-5 

 

Materials 

High glucose Dulbecco’s Modified Eagle’s Medium (DMEM) with phenol red, 0.05% Trypsin, 

10X HBSS (with Ca2+ and Mg2+), HEPES buffer (1 M), Geneticin and OPTIMEM were obtained 

from Gibco (life technologies, Grand Island, NY), Fetal Bovine Serum (FBS) was obtained from 

Gemini Bioproduct (West Sacramento, CA), Lipofectamine 3000 was obtained from Invitrogen 

(life technologies, Carlsbad, CA), D-Glucose 10% (w/v) from Sigma (St. Louis, MO), Carbachol 

from Calbiochem (EMD Biosciences, La Jolla, CA), PDMS and curing agent from Dow Corning 

(Midland, MI). Imaging media (1X HHBSS, pH 7.4) was prepared as described in (Palmer & 

Tsien, 2006). CMV-R-GECO1 was a gift from Robert Campbell (Addgene plasmid # 32444) 

(Zhang et al, 2015). HA-NFAT4-GFP and HA-NFAT1-GFP were a gift from Anjana Rao 

(Addgene plasmid # 21664) (Aramburu et al, 1999). 

Methods 

Cell culture. HEK293 cells stably transfected with human muscarinic acetylcholine M3 receptor 

described previously (Bodenstein et al, 2007) were cultured in DMEM with 10% FBS and 

Geneticin (400 μg ml-1) in T-25 flasks (Jovic et al, 2011). Transient transfection with R-GECO1 

and NFAT4-GFP or NFAT1-GFP was carried out using Lipofectamine 3000 following prescribed 

protocol. 

Microfluidic device. The devices were fabricated based on the computerized microfluidic cell 

culture system using Braille display as described in (Gu et al, 2004). The chips were filled with 

laminin (100 μg/ml) and incubated overnight. Subsequently, the chips were washed and incubated 

with DMEM/10% FBS under sterilized conditions. Cells were seeded in the outlet channel of the 

device as described in (Jovic et al, 2010, 2011). The microfluidic setup was used to deliver 

periodic and step stimulation of carbachol controlled by a custom written software as described 

in (Gu et al, 2004). 
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Time lapse imaging and analysis. Cells were imaged with a TE-2000 U Nikon microscope using 

a 20X Flour objective illuminated by a 100W Hg lamp. Sequential acquisition of R-GECO1 and 

NFAT-GFP fluorescence was carried out every 5 s using ET572/35 (ex), ET630/50 (em), 

ET490/20 (ex) and ET535/50 (em) filters respectively (Chroma Technology Corp, Rockingham, 

VT). The excitation and emission filters were equipped in filter wheels controlled by a Lambda 

10-3 Shutter Controller (Sutter Instruments, Novato, CA). MetaFluor Software (Molecular 

Devices, Downington, PA) was used to select regions of interest (ROIs) in single cells and to 

determine the area-averaged intensity I(t) both in cytoplasmic region (I(t)cyto) and in the nuclear 

region (I(t)nuc). Calcium response was measured by the ratio I(t)cyto/I0 where I0 corresponds to 

the basal RGECO1 intensity in the cytoplasmic ROI (Appendix 2 Fig. 2B.1). NFAT translocation 

was quantified by determining I(t)nuc/I(t)cyto ratio from the GFP fluorescence data (Appendix 2 

Fig. 2B.2). 
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Appendix 2. Supplementary to Chapter 2 

 

Text 2A.1. Brief description of the model development  

The mathematical model for GPCR-calcium-NFAT signaling can be described in two modules: 

A. GPCR-calcium signaling and B. Calcium-NFAT signaling. The model has been described in 

Section 1.6. In Chapter 2, based on the calcium data obtained for various step and pulsatile 

stimulation, we modified the receptor regulatory mechanism in the existing model (Jovic et al, 

2013; Politi et al, 2006), to explain the calcium duty cycle ratio decay (Fig. 2.3. A). In the earlier 

version, the ligand-receptor complex (L-R) reversibly phosphorylates to form inactive L-R-P 

state. To this, we added receptor internalization, partial degradation and recycling via endosomal 

sorting i.e., the inactive complex can be dephosphorylated to reform the free receptor or can be 

internalized and either degraded or recycled back to the surface (French & Lauffenburger, 1996). 

The calcium-NFAT module remains the same, except the parameters values were adjusted to fit 

experimental data for NFAT4 and NFAT1.   

 

Text 2A.2. Variables, Parameters and Equations for GPCR-Calcium-NFAT4 model 

Variable Initial 
Value 

Units^ Description 

 0.114  Free M3 receptors 
L  Input  Extracellular carbachol (ligand) 
C 0 M  Ligand/receptor complex 
C p  0 M  Phosphorylated C 

ܴ௜௡௧ 0 M  Internalized Receptor 
G 0.2  Inactive G-protein 
GGTP  0  GTP-bound alpha-subunit 
GGDP  0  GDP-bound alpha-subunit 
  0  Beta-gamma dimer subunit 
βγint 0  Beta-gamma subunit internalized  

 0.25  Inactive PLC 
* 0  Activated PLC (bound to GGTP) 

 0.03  Inositol trisphosphate 

R M
M

M
M
M
M
M

PLC M
PLC M
IP3 M
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f IP 3 R a
 0.9 Fraction Fraction of active IP3R vs total 
 2.9  Calcium in endoplasmic reticulum 

 0.03  Calcium in cytosol 

௖௬௧௢݅݌ܶܣܨܰ 1.22 nM Cytoplasmic phosphorylated NFAT 

ܣܨܰ ௖ܶ௬௧௢ 0.01 nM Cytoplasmic dephosphorylated NFAT 

ܣܨܰ ௡ܶ௨௖ 0.25 nM Nuclear dephosphorylated NFAT 

௡௨௖݅݌ܶܣܨܰ 0.0035 nM Nuclear phosphorylated NFAT 

 
Ligand-binding and G-protein kinetics 

Parameter Model 
Value 

Units Description Literature 
Value* 

Ref. 

k f ,L
 2.27 M 1s 1

 

Rate constant for 
binding of L  to R 

0.8 – 5.1 (Schreiber et 
al, 1985; 
Dowling & 
Charlton, 
2006; Sykes 
et al, 2009; 
Jovic et al, 
2011) 

kr,L 0.07  Rate constant for 
dissociation of L  
from C  

0.01  – 0.11 (Schreiber et 
al, 1985; 
Dowling & 
Charlton, 
2006; Sykes 
et al, 2009; 
Jovic et al, 
2011) 

 0.0077  Exchange rate 
constant of GDP 
for GTP 

0.005 – 0.05 (Chay & 
Lee, 1995; 
Jovic et al, 
2011) 

 1.9  Hydrolysis rate 
constant of GTP 
to GDP 

0.100 – 2.00 (Thomsen & 
Neubig, 
1989; Jovic 
et al, 2011) 

 2.0*10-5 Encounter rate of  
C  and G  

2*10-5 (Thomsen & 
Neubig, 
1989; Jovic 
et al, 2011) 

 2.0*10-5 Encounter rate of 
 and GGTP  

2.0*10-5 (Jovic et al, 
2011) 

 1.0*10-5 Encounter rate of 
GGDP  and   

10-5 – 10-4 (Mahama & 
Linderman, 

CaER M
Cacytosol M

s1

k3 s1

k4 s1

k5 (# /cell)1s

k6 (# /cell)1s

PLC
k7 (# /cell)1s


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1994a; Jovic 
et al, 2011) 

 

Receptor desensitization kinetics adapted from (Vayttaden et al, 2010) modeled for a different  
GPCR (Beta Adrenergic Receptor) && 

Parameter Model 
Value 

Units Description 

 0.029  Phosphorylation rate constant for C  
 3.6*10-3  Dephosphorylation rate constant forC p

 

kint
 0.0037  Rate constant for internalization of C p

kdeg
 0.0004  Rate constant for degradation of 

internalized receptors 
krec

 0.001  Receptor recycle rate constant 
 

Calcium and IP3 kinetics adapted from (Politi et al, 2006) &&  

Parameter Model 
Value 

Units Description 

 0.267 M 1s 1

 
Maximal SERCA pump rate 

 0.076  Half-activation constant of SERCA pump 
 0.0138 M 1s 1

 
Maximal PMCA pump rate 

 0.0756  Half-activation constant of PMCA pump 
 10-4 M 1s 1

 
Basal calcium flux into cell 

 0.0024 Stimulant-dependent calcium flux into cell 
 3 a.u. Calcium flux strength 

 0.185 a.u. Ratio of effective volume of endoplasmic 
reticulum to cytosol 

p 1.7 a.u. Hill coefficient for PLC-Calcium binding 
kca 950 s1 Activated rate constant of IP3synthesis per 

molecule of PLC 
 0.3 M 1s 1

 
Rate constant for basal  synthesis 

 0 Phosphorylation rate of IP3 
 0.465  Half activation constant of -kinase 
 0.56  Dephosphorylation rate of IP3 
 0.213  Half-activation constant of  

 0.85  Maximal rate constant of calcium release 
through  

kgrk ,1, f s1

kgrk ,1,r s1

s1

s1

s1

Vserca

Kserca M
Vpm

K pm M
v0

 s1


beta

kbasal IP3

k3k s1

K3k M IP3

k5 p s1

K plc M PLC
k1 s1

IP3R
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 0.014  Rate constant for calcium leak through 
 

 0.059  Equilibrium constant of calcium binding to 
activating site on  

 0.47  Equilibrium constant of calcium binding to 
inhibiting site on  

 0.13  Equilibrium constant of  binding to 
 

 7 Characteristic time of  inactivation 
 

Calcium-NFAT dynamics adapted from (Cooling et al, 2009) && 

kd1 1760 nM Calcineurin-Calmodulin dissociation 
constant 

kn1 7.7*10-6 (nM-s)-1 Rate constant for association of activated 
calcineurin and NFATpicyto 

kn2 0.002 s-1 Rate constant for dissociation of 
NFATpicyto from Calcineurin-NFATcyto 
complex  

kn3 1.0*10-3 s-1 Rate constant for nuclear translocation of 
activated NFAT & 

kn4 4.45*10-4 s-1 Dissociation rate of activated nuclear 
NFAT  

kn5 4.71*10-5 (nM-s)-1 Rate constant for association of nuclear 
NFAT and Calcineurin  

kn6 0.003 - 
0.0003 

s-1 Rate constant for back-translocation of 
nuclear NFAT to the cytoplasm & 

KmN 535 nM Half-maximal activation coefficient of 
calcium 

M 6000 nM Calmodulin concentration 

Ntot 2000 nM Total Calcineurin concentration 

n 2.92 a.u. Calcineurin hill coefficient 

C_cn 8 a.u. Scaling to adjust  cytoplasmic versus 
nuclear volume  

Ca_basal 100 nM Basal bound cytoplasmic calcium 
& parameter values vary for different NFAT isoforms; adjusted and optimized based on 
determined experimental values in (Yissachar et al, 2013; Tomida et al, 2003).  

&& parameter values optimized using Latin Hypercube Sampling. The values are either same or 
lie in the same order of magnitude as the reference. 

^ conv  = 3.1725 106 M

# /cell
, used to convert units  

Model Reactions Description 

k2 s1

IP3R
Ka M

IP3R
Ki M

IP3R
K p M IP3

IP3R
 r s IP3R
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Ligand-Receptor kinetics 
v1  k f ,L [L][R]  kr,L [C ]   Rate of ligand binding free 

receptor M / s  
v 2  kgrk1, f [C ]  kgrk1,r[CP ]  conv  Rate of phosphorylation of C  

M / s  
௜௡௧ݒ ൌ ݇௜௡௧ሾܥ௣ሿ Rate of receptor internalization 
ௗ௘௚ݒ ൌ ݇ௗ௘௚ሾܴ௜௡௧ሿ			
 

Rate of degradation of 
internalized receptors  

௥௘௖ݒ ൌ ݇௥௘௖ሾܴ௜௡௧ሿ Rate of receptor recycling 
G-protein kinetics and PLC activation 
v5  k3[G] Exchange rate of GTP for GDP 

on alpha subunit of G  M / s  

v 6 
k 5

conv
[G ][ C ]  Encounter rate of G  with C  to 

form GGTP M / s  

v 7 
k 6

conv
[GGTP ][ PLC ]  Encounter rate of GGTP with PLC  

to form PLC* M / s  
v8  k4[GGTP] Rate of hydrolysis of GGTP to 

GGDP  M / s  
v9  k4[PLC*] Rate of inactivation of PLC* to 

PLC  M / s  

]][[7
10 GDPG

conv

k
v   Encounter rate of GGDP  with   

M / s  
IP3-calcium kinetics 













 p

plc
p

cyt

p
cyt

basalca
KCa

Ca
kPLCkv

][

][
)*][(11

 
Rate of IP3 synthesis M / s  

][
][

][
352

3
2

2

312 IPk
KCa

Ca
kv p

kcyt

cyt
k 


























  Rate of IP3 degradation M / s  

v13  k1 fIP3Ra

[Cacyt ]

[Cacyt ]Ka











[IP3]

[IP3]Kp





















3

 k2















[CaER ] [Cacyt ]  
Rate of Ca ER  release into cytosol 
M / s  

v14 Vserca

[Cacty ]2

[Cacty ]2 Kserca
2









 

Rate of pumpingCacty
 back into 

ER M / s  

v15   v0    kca[PLC*] kbasal 
1

k3k  k5 p

Vpm

[Cacyt ]
2

[Cacyt ]
2 K pm

2





















 

Flux of calcium into and out of 
cell across plasma membrane 
M / s  

v16 
1

R

 Recovery of inactivated IP3R 1/ s  

v17 
fIP3Ra

R

Ki

[Cacyt ]Ki









 

Inactivation of IP3R 1/ s  

Calcium-NFAT kinetics 
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ܽܥ ൌ ௕௔௦௔௟ܽܥ ൅ ሾܽܥ௖௬௧ሿ Total cytoplasmic calcium 
available for NFAT activation 

ܰݐܿܽ ൌ
ସܽܥ

ସܽܥ ൅ ସܰ݉ܭ ∗ ሺ1 ൅ ሻܯ/1݀ܭ
 

Fraction of activated calcineurin  

1ܬ ൌ ௖௬௧௢൧݅݌ܶܣܨ1ൣܰ݊݇ ௧ܰ௢௧ ∗ ܰݐܿܽ െ ݇݊2ሾܰܣܨ ௖ܶ௬௧௢ሿ(1-
  (ܰݐܿܽ	

Flux of Activated NFAT 
complex formation 

2ܬ ൌ ݇݊3 ∗ ሾܰܣܨ ௖ܶ௬௧௢ሿ Flux of nuclear import of 
activated NFAT 

3ܬ ൌ ݇݊4ሾܰܣܨ ௡ܶ௨௖ሿሺ1 െ ሻܰݐܿܽ െ
݇݊5ሾܰ݅݌ܶܣܨ௡௨௖ሿ ௧ܰ௢௧ ∗  (ܰݐܿܽ

Flux of Activated NFAT 
complex dissociation in the 
nucleus 

4ܬ  ൌ ݇݊6ሾܰ݅݌ܶܣܨ௡௨௖ሿ Flux of nuclear export of 
phosphorylated NFAT 

 

Model Equations 
[G]  [GT ]  [GGTP ]  [PLC*]  [GGDP  [௜௡௧ߛߚ] - [
[PLC ]  [PLC T ]  [PLC*]  
[ ]  [GGTP ] [PLC*] [GGDP ] 
d[C]

dt
 v1  v2 

int
2

][
v

conv

v

dt

Cd p   

ܴ݀௜௡௧
ݐ݀

ൌ ௜௡௧ݒ െ	ݒௗ௘௚ െ	ݒ௥௘௖	 

ܴ݀
ݐ݀

ൌ െ	ݒଵ ൅ ݒ݊݋ܿ ∗  ௥௘௖ݒ

d[GGTP ]

dt
 v5  v6  v7  v8  

d[PLC*]

dt
 v7 v9 

vvvv
dt

Gd GDP  1098

][  




v
dt

d


][ int  

d[IP3]

dt
 v11  v12 

d[Cacyt ]

dt
 v13  v14  v15  

d[CaER ]

dt

v13  v14


 

d[ f IP3R a
]

dt
 v16  v17  
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݀ሾܰ݅݌ܶܣܨ௖௬௧௢ሿ
ݐ݀

ൌ െ1ܬ ൅  ݊ܿ_ܥ/4ܬ

݀ሾܰܣܨ ௖ܶ௬௧ሿ
ݐ݀

ൌ 1ܬ െ  2ܬ

ܣܨܰ݀ ௡ܶ௨௖ሿ
ݐ݀

ൌ 2ܬ ∗ ݊ܿ_ܥ െ  3ܬ	

௡௨௖ሿ݅݌ܶܣܨܰ݀
ݐ݀

ൌ 3ܬ െ  4ܬ
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Fig. 2B.1. Quantification of oscillatory calcium responses using RGECO calcium sensor in 
HEK 293 cells. A. Cells stimulated 5 μM with carbachol show increase in RGECO1 intensity. B. 
Amidst cell-to-cell variability, ligand stimulation leads to calcium response (oscillatory and/or 
peak and plateau). C. The frequency of calcium oscillation in cells eliciting oscillatory response 
is dose dependent. Error bars are +/- S.E.M., n > 20 each case.  
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Fig. 2B.2. Carbachol-induced GPCR activation leads to increase in cytoplasmic calcium and 
subsequently leads to nuclear translocation of NFAT4. A. NFAT4 is primarily localized in the 
cytoplasm (arrows pointing to the nuclei show relatively much less NFAT4-GFP intensity before 
carbachol treatment). Upon treatment with 500 nM carbachol, the nuclear intensity gradually 
increases, indicating nuclear translocation of cytoplasmic NFAT4-GFP. B. Time-resolved 
dynamics of cytoplasmic calcium and NFAT translocation upon carbachol treatment. Error bars 
are +/- S.E.M., n>20.  
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Fig. 2B.3. Calcium Duty Cycle Ratio decays over time upon pulsatile ligand stimulation. A. 
The calcium duty cycle ratio for the population-averaged calcium response decays faster for fast 
pulse and vice versa (top panel) indicating frequency modulation. Higher concentrations (left to 
right: 10 nM, 20 nM, 40 nM and 80 nM respectively) lead to greater extent of decay indicating 
amplitude modulation. B. Our mathematical model captures both the frequency and amplitude 
modulation features as observed experimentally.  
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Fig. 2B.4. Nuclear translocation of NFAT4 depends upon pulse frequency as well as 
amplitude (concentration) of the ligand. A. NFAT4max response is greater for intermediate 
pulse when compared to slow pulse or fast pulse or step change (left). Our mathematical model 
captures similar trend as observed experimentally (right). B. Time-dependent NFAT4-AUC 
response at different concentrations shows amplitude (concentration) dependence of NFAT4 
translocation (left). Mathematical model captures similar trend as observed experimentally 
(right). C. NFAT4-AUC response is greater for intermediate pulse when compared to either slow 
pulse or fast pulse, similar to NFAT4max response. D. Total NFAT4 response per unit ligand is 
greater for lower ligand concentrations with slower pulse stimulations. Error bars are +/- S.E.M., 
n>20.  
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Fig. 2B.5. Analysis of the mathematical model: Turning off receptor regulation modules by 
setting the corresponding parameter values to zero.  A. Turning off desensitization shoots off 
the calcium response1 and also the corresponding NFAT response indicating the receptor 
desensitization is essential for controlled transcription factor activation. B. Receptor 
phosphorylation but no receptor internalization leads to calcium oscillations ad infinitum, and 
consequently a high pass bound NFAT4 response. C. Complete recycling of internalized receptors 
without ligand mediated receptor degradation shows similar calcium-NFAT response as in (B). 
D. – E. Complete internalization of phosphorylated receptors without any recycling doesn’t 
produce band-pass response for different pulse frequencies. F. Ligand-mediated endosomal 
sorting of receptors towards partial degradation and recycling leads to the band-pass response as 
we observe in the microfluidic experiments. For all cases of simulations, C = 40 nM, and D = 24 
s for pulsed stimulations, R = 24 s (fast), 72 s (int.) and 144s (slow).  
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Table 2C.1. Sensitivity analysis of the GPCR-calcium-NFAT model. PRCC results (positive 
and negative correlations) for the receptor parameters$ (top) and NFAT parameters$ (bottom) 
show strong correlations of receptor and NFAT kinetics to the band-pass characteristics ( +/-: 
p<10-3, ++/--: p<10-6, +++/---: p<10-9 with positive or negative correlation).  

 Band-pass feature kgrk1f kgrk1r Kint kdeg krec 

NFAT_max peak shift ---     ++ 

NFAT_max peak height ---  +++ ---  --- +++ 

Low pass steepness --- +++ ---  --- +++  

High pass steepness ---  +++ ---  --- +++ 

 

 Band-pass feature kn1 kn2 kn3 kn4 kn5 kn6 

NFAT_max peak shift - -- ---   ---  --  

NFAT_max peak height --- +++  +++  +++ +++  ---  

Low pass steepness   +++   +++ +++ +  -  

High pass steepness     +++  +++     

$Abbreviations: kgrk1f: phosphorylation rate constant of the L-R complex; kgrk1r: 
dephosphorylation rate constant of phosphorylated L-R complex; kint: rate constant for 
internalization of the phosphorylated L-R complex; kdeg: rate constant for degradation of 
internalized L-R-p; krec: rate constant for receptor recycling of internalized L-R-p; kn1: rate 
constant for association of activated calcineurin and NFAT4cyto; kn2: rate constant for dissociation 
of NFAT4cyto from Calcineurin-NFATcyto complex; kn3: rate constant for nuclear translocation of 
activated NFAT; kn4: rate constant for dissociation of activated nuclear NFAT; kn5: rate constant 
for association of nuclear NFAT and Calcineurin ; kn6: rate constant for back-translocation of 
nuclear NFAT.  
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Appendix 3. Supplementary to Chapter 3 

 

 

Fig. 3A.1. Distribution of the initial value of the signaling components in the deterministic 
model that distinguish the four responses in a two-pulse test. A - C. Box plots showing 
distribution of individual components in the GPCR model: total receptor [GPCR], total G-protein 
[GT] and total PLC [PLC]. The individual components may not be able to discern the four 
outcomes. D - E. A cumulative distribution of components, defined by Q (Q = 
[GPCR]*[G]*[PLC]) is able to discern the four outcomes. Data-set and statistical test method 
remain the same as above. Data information: In (A-E), data are presented as box plot for n = 750 
in silico single cell time traces. ***: p < 0.001; n.s.: not significant, p > 0.05 (Student’s t-test).
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Fig. 3A.2. Effect of rest period on subpopulation composition in a 2-pulse in silico 
experiment with GPCR-calcium model. Two sets of stimulation parameters were tested in 
silico: A. C = 5 nM, D = 20 s and B. C = 10 nM, D = 10 s. The model suggests that the (0,0) and 
(1,1) sub-populations gradually increase with increasing R, while the (0,1) and (1,0) sub-
populations decrease with increasing R.  
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Fig. 3A.3. Rest period test suggests a deterministic framework for apparent stochastic 
calcium responses. A. Increasing rest period between two consecutive pulsed stimulations results 
in increase in (0,0) and (1,1) sub-population, while a decrease in (0,1) and (1,0) sub-populations. 
Three sets of two-pulse microfluidic experiments with ~ 50 cells/set were obtained to calculate 
the sub-populations. Error bars are standard errors of the mean. B. Simulation data of the above 
experimental scheme, showing an increase of responding (1,1) cells with increasing D. However, 
for each D, the sub-populations (0,1) and (1,0) decrease with increasing R. Three sets of two-
pulse in silico experiments with 250 cells/set were obtained to calculate the sub-populations. Error 
bars are standard deviations. 
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Fig. 3A.4. A three-pulse in silico experiment with GPCR-calcium model. For a three-pulse 
stimulation, there are eight possible outcomes as shown in the graph. Increasing rest period leads 
to either (0,0,0) response (black squares) or a (1,1,1) response (red circles).  
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Fig. 3A.5. Effect of pulse duration on subpopulation composition under two-pulse test for 
GPCR-calcium model. A. In GPCR-calcium model, increasing D increases the (1,1) sub-
population (green lower triangles) and decreases the (0,0) sub-population (black squares). The 
other two responses increase and then decrease with increasing D. C = 5 nM, R = 120 s. Three 
sets of two-pulse in silico experiments with 250 cells/set were obtained to calculate the sub-
populations. Error bars are standard deviations. B. Similar trends can be observed in a TNF-α 
NFκB signaling pathway that acts at an entirely different timescale. TNF input = 0.1 ng, R = 180 
min. Data obtained from two-pulse in silico experiments with 1000 cells/set to calculate the sub-
populations.  
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Fig. 3A.6. Effect of rest period on subpopulation composition under two-pulse test for 
TNFα-NFκB model. C = 0.1 ng/ml, D = 20 min. Similar to our GPCR-calcium model, this model 
also suggests that the sub-population composition changes with increasing R, and the apparent 
stochastic responses i.e., (0,1) and (1,0) vanish at sufficiently long rest period.   

 

  



115 
 

 

Fig. 3A.7. Component-wise model analysis of the two sub-populations (0,0) vs (1,1) reveal a 
high hill-coefficient reaction kinetics leads to amplification of the difference. Basal PLC 
activity brings about the major difference leading to either (0,0) or (1,1) response (a node of high 
hill coefficient (h ~ 3)) 
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Fig. 3A.8. Component-wise analysis of (0,0) and (1,1) sub-populations in NFkB model. Basal 
IKK kinase activity brings about the major difference leading to either (0,0) or (1,1) response 
(also a node of high hill coefficient (h = 2)) 
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Fig. 3A.9. Deterministic models predict that subpopulation composition changes with rest 
periods in a two-pulse test. A. The sum of (1,0) and (1,1) subpopulations, as well as the sum of 
(0,0) and (0,1) subpopulations remain constant for both the models. B. Same plot with a different 
C,D value. C. Similar conclusions can be drawn for the deterministic NFkB model operating at 
an entirely different time scale. 
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Fig. 3A.10. Component-wise analysis of why (0,1) changes to (0,0) response upon increasing 
rest periods in GPCR-calcium model. Although a 0 or sub-threshold calcium response occurs 
for some cells for the first stimulation and the cells appear to be not responding, it does create a 
short memory of the stimulation in ER calcium reserve which pumps in some extra calcium from 
extracellular matrix. This calcium gradually leaks out in the context of no response to maintain 
equilibrium. However, an early second stimulation helps ER reach its threshold to release the 
calcium and hence respond.  
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Fig. 3A.11. Component-wise analysis of why (0,1) changes to (0,0) response upon increasing 
rest periods in TNFα-NFkB model. Although a 0 or sub-threshold NFkB response occurs for 
some cells for the first stimulation and the cells appear to be not responding, the receptor 
activation does create a short memory of the stimulation at IKKK kinase level. For shorter R, the 
active IKKK Kinase level shoots up more than that for a longer R upon second stimulation, which 
in turn gets amplified via a high Hill coefficient pathway. 
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Table 3B.1. Sensitivity analysis of TNF- NFkB deterministic model. LHS-PRCC analysis of 
deterministic model for TNF-NFkB signaling (Tay et al, 2010). + and – show positive and 
negative correlation of the parameter with the peak amplitude. The p-value of correlation is 
indicated by number of signs, i.e., ++++/----- : p < 10-12; +++/---- : p < 10-9; ++/--- : p < 10-6; ++/-
-- : p < 10-3; n.s.: not significant. Abbreviations remain the same as in the source code provided 
with Tay et al, 2010.  
 

LHS parameter          Sensitivity to 1st 
k

Sensitivity to 2nd 
k

NFkB ---- n.s. 

TNFR ++++ ++++ 

IKK n.s. n.s. 

A20 n.s. n.s. 

k1 ++++ ++ 

k2 +++ n.s. 

k3 ---- ---- 

k4 n.s. n.s. 

Ka ++++ ++++ 

ka20 + n.s. 

KN ++++ ++++ 

KNN ++++ ++++ 

Ki ---- ---- 

c1 ---- -- 

c3 + +++ 

c4 --- --- 

c5 ++++ +++ 

a1 n.s. n.s. 

A20 n.s. n.s. 

a3 ++++ + 

c1a ++ n.s. 

c5a n.s. n.s. 

c6a ---- n.s. 

Kb ++++ +++ 

Kf ---- --- 
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Text 3C.1. Calculation of order of magnitude for number of ligand molecules interacting 
with single cells for single pulse stimulation under constant flow and diffusion limited cases 

Case 1. Calculation of order of magnitude for ligand exposure during a single pulsed stimulation. 
Suppose the ligand concentration is x M. Let the cell volume be V m3. The, total number of 
molecules in volume V is given by:  
# of molecules (static) = x*NA*V*1000 
This will be the average number of molecules the cells would be exposed to for a static 
stimulation.  
Now, suppose we have a microfluidic flow of ligand exposure, wherein the fluid flow is v m/s. 
And the average characteristic length for cells is assume l m. Then, number of molecules exposed 
to cells per second is given by: 
# of molecules/s = x*NA*V*1000*l/v 
If the duration of stimulation is D s, then total number of agonist exposed per stimulation is: 
# of molecules per stimulation = D*x*NA*V*1000*l/v 
Parameters: Average cell-volume of HeLa cells/HEK cells is taken as 2000 um3.  
Therefore, V = 2000*10-18. Characteristic length for cells is taken as 20 μm. Hence, l = 20*10-6. 
Concentrations: x = 10*10-9 (for carbachol), x = 2*10-12 (for TNF-α). D = 10 s (for carbachol), D 
= 20 min = 20*60 s. NA: Avogadro number: ~ 1024. Using the above parameters, 
# of molecules per stimulation ~ 106 (for carbachol)  
# of molecules per stimulation ~ 105 (for TNF-α) 
We assume that during a continuous flow stimulation, the role of diffusion may be neglected. 
 
Case 2. Calculation for TNF-α when replenishment is hourly (not continuous), i.e., under 
diffusion limited condition (Stimulation method in Tay et al, 2010) 
Volume of the chamber = 35 nl;  
Concentration of TNF- α = 2 pM; 
Total # of molecules present in the chamber = 35*2* 10-21 * 1024 = ~ 104 

Diffusion constant for TNF- α ~ 0.5 – 1.0 *10-6 cm2/s;  
Length scale to traverse = 0.3 mm (35nl chamber); 
Time scale to traverse diffusively ~ 450 s = 8 min (t ~ x2/2D) 
Therefore, a stimulation of ~ 20 min should be sufficient to allow TNF-α molecules in the same 
order of magnitude to be able to bind to the receptors, which is ~ 104.  
Note: V = 35*10-12 m3 implies that length scale for the microfluidic chamber can be estimated as 
~ 3*10-4 m = 0.3 mm 
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Appendix 4. Supplementary to Chapter 4 

 

 

 

 

 

Fig. 4A.1. Information capacity is over-estimated with decreasing sample size. Our method 
(adapted from Selimkhanov et al, 2014) of estimating information using knn search algorithm for 
multi-point measurements over-estimates the information transfer. A linear extrapolation of the 
data can provide the estimate of an infinitely large sample size. 
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Appendix 5. Supplementary to Chapter 5 

 

 

 

Fig. 5A.1. Pulsatile stimulation leads to phase-locked responses with distinct calcium features 
in low and high concentration regimes. A. Representative single traces of cytoplasmic calcium 
from single HEK293 cells stimulated with low concentrations of carbachol (5nm – 25nM) leads 
primarily to oscillatory response. B. At higher ligand concentrations (50 nM- 10 μM), the response 
is primarily peak-and-plateau type. C. Pulsatile stimulation in low concentration regime leads to 
complete recovery of the oscillation amplitude, but may lead to beat skipping. D. Pulsatile 
stimulation in high concentration regime leads to complete recovery beats, but may lead to 
amplitude decay. E. The extent of frequency recovery in low concentration regime increases with 
increase in the rest period between the pulses, as depicted by the increasing frequency recovery 
index. F. Similarly, the extent of amplitude recovery in high concentration regime increases with 
increase in the rest period between the pulses, as depicted by the increasing amplitude recovery 
index.  
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Fig. 5A.2. Two regime pulsed stimulation (TRePS) experiment. A. Microfluidic scheme of 
two-regime pulsatile stimulation in single cells (TRePS) wherein cells are stimulation by a set of 
low concentration pulses (C1) followed by a sufficiently long rest period (R0) which is followed 
by a set of high concentration pulses (C2). B. Representative single cell traces from TRePS 
experiment shows that cells vary in their extent of frequency and amplitude recovery in the two 
regimes. C. High PLR in oscillatory regime also leads to high PRR in peak-and-plateau regime 
and vice versa. 

 

   



125 
 

 

Fig. 5A.3. In silico two regime pulsed stimulation (TRePS) experiment. A-B. Representative 
single cell traces from in silico TRePS experiment shows that cells vary in their extent of frequency 
and amplitude recovery in the two regimes when the initial values of major nodes in the 
deterministic model sampled from a distribution. Data shown for two different duration ‘D’ 
periods: (A) 8s and (B) 24 s. C. Frequency and amplitude recovery indices show a positive 
correlation in the simulation with increasing D. 
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Fig. 5A.4. Population scale comparison of amplitude and frequency recovery indices in 
experiments and simulation. Both frequency and amplitude recovery indices are affected by 
RGS4 expression and subsequent CCG-769 drug treatment in experiment as well as in the 
simulation at population scale.  
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