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Abstract

From trait patterns to species lifetimes:
Effects of niche differentiation on coexistence and community structure

by
Rafael D’Andrea Rocha

Chair: Annette M. Ostling

One of the most enduring questions in ecology is what accounts for coexistence among
trophically similar organisms. Niche differentiation is one answer, but so is neutrality:
species can coexist either because of ecological differences or ecological similarities. Despite
being diametrically opposite, these two theories can be difficult to separate in nature.
Because neutral theory posits that species traits are irrelevant for ecological performance,
trait patterns are commonly used in niche inference, but results are mixed. This dissertation
argues that widely accepted ideas about trait pattern driven by niche differentiation must
be updated in light of recent findings, and takes the first steps in that direction. We
contend that the current theory of trait patterning is incomplete, and progress requires
exploring patterns across a variety of niche models. It emerges from this exploration that
stochastic niche dynamics may result in the spontaneous formation of species clusters,
under the qualification that pattern will not form if idiosyncratic regulation mechanisms
allow arbitrarily similar species to maintain distinct ecological strategies. We provide a
new metric for identifying and quantifying species clusters, which outperforms existing
metrics in rejecting neutrality in our pseudodata. Another major theme is that the null
hypothesis is critical in inference tests. Process-based null models are superior to statistical
null hypotheses based on randomization of data because the latter destroys pattern caused
by forces unrelated to niche differentiation. For example, we show that when species can
randomly mutate into similar species, clusters may occur even in the absence of niche
differentiation. A final key theme is that the effect of niche differentiation on species

xi



dynamics and pattern may be more complex than is currently appreciated when stochastic
dynamics under immigration is considered. Species richness, lifetimes, and extinction
rates in niche-differentiated assemblages may be lower or higher than neutral assemblages,
depending on the ratio between regional diversity and the number of niches available.
The findings of this dissertation contribute to our theoretical understanding of niche
differentiation as an important coexistence mechanism, and to realizing the potential of
trait patterns in assessing its prevalence in nature.
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Chapter 1

Introduction

1.1 Background

Ecology is not a new science, and yet it is still challenged by some of the same
fundamental questions of its infancy. Among them is explaining the great levels of
biodiversity observed in certain ecosystems such as tropical forests. The easy answer is
that local biodiversity at a certain place and time results from a balance between species
introductions via speciation and immigration, and extirpation via drift, overexploitation,
and competitive exclusion. The hard part is explaining why the balance should occur, as
it is entirely within the realm of statistical probability that it may not. Obviously gains
cannot exceed losses forever, as the world is finite, but what stops an imbalance in the
other direction?

Niche theory postulates that species avoid competitive exclusion by differing in
ecological strategies, such as specializing on different resources or lifetime schedules. A
niche-differentiated community is stable because species whose abundances are depressed
tend to bounce back as the niche they occupy is suddenly left open (?). Without stabilization,
local competitive dynamics inevitably leads to monoculture, unless species stocks are
constantly replenished by sufficient immigration (?). Niche differentiation is therefore
a key ingredient of coexistence theory and potentially a major part of the answer to the
biodiversity question.

On the other hand, consider the Darwinian Demon—the super organism that maximizes
all aspects of fitness. It cannot exist, for if it did we would not have biodiversity. The
Darwinian Demon thought experiment proves that species are ecologically identical on
average. Is it possible that they are also ecologically identical all the time—so-called ecological
neutrality?
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The idea that the obvious differences in species morphology, phenology, and behavior
make no difference to their ecological performance defies belief, and yet ? shocked
ecologists by claiming that his neutral theory of biodiversity reproduces patterns of species
abundances and common in nature. Debates ensued over whether neutral theory actually
fared better than process-free statistical theories (???), whether the patterns described by
neutral theory are informative of community assembly process (??), and whether species
coexist because of ecological differences, ecological similarities, or both (??). Some authors
proposed that at the very least, neutrality could replace statistical null hypotheses in
ecology, because it is process-based rather than just a randomization of data, which may
destroy pattern that could be caused by factors unrelated to niche differentiation (??).

These debates have highlighted the need for better tools to distinguish a neutral
community from a niche differentiated one. Experiments are the golden standard for
proving that competition relates to species similarity (???) and that coexistence is stable
(???). However, one often cannot perform experiments at the scale of an entire community,
and even at the individual scale they are typically limited to short-lived species. Among
alternative methods, a particularly practical and hence commonly used one is inference of
process from ecological pattern. Unfortunately, linking pattern to process is complicated
when one process can lead to multiple patterns or when one pattern can be caused by
multiple processes. The latter is often the case in nature (??); in fact, some common
ecological patterns such as log-series species abundance distributions and power laws
in species-area relationships may be common precisely because they arise from many
different processes and not because they reflect some law of species interactions. This is
the basis for statistical theories such as maximum entropy (??).

Cue in traits-based ecology. Trait data can be used to parametrize process-free statistical
theories (??), but have unique potential for process inference: traits can be more revealing
of niche differentiation because neutral theory proposes that traits are irrelevant. Indeed,
trait patterns have been extensively used as an inference tool (e.g. ????). Trait-based
approaches have several advantages over strictly taxonomic approaches in that they
are quantitative, easily generalizable, and have explicit ties to ecological strategy and
performance (??). Furthermore, trait data are relatively cheap and easy to collect compared
with genetic sequencing, and inference based on trait patterns does not require censuses
spanning extended periods of time, which is particularly handy in the study of long-lived
organisms such as trees. However, as we will see in Chapter 1, the theory connecting niche
differentiation with trait patterns, although decades old, is still a work in progress.
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This dissertation is about the connections between niche differentiation, coexistence,
and patterns of community structure, especially as pertaining to species traits. We review
early and recent literature, examine niche models for their ability to explain coexistence
and generate pattern, analyze current inference-based methods, and offer new ones. The
main goal is to advance theory connecting niche differentiation to coexistence and pattern,
and contribute to improving niche inference methods.

1.2 Dissertation structure

In Chapter 1, we review the literature on using traits to infer niche differentiation. We
find that expectations of trait pattern under niche assembly are largely based on the classical
MacArthur-Levins model (?), which ignores the influence of stochasticity and immigration,
and makes restrictive assumptions about the way competitive interactions relate to species
traits. Furthermore, some well-established metrics of trait pattern are founded primarily
on intuitive hypotheses linking niche differentiation and functional overdispersion (??),
which however have not been validated with niche models. Classical predictions such
as limiting similarity have been questioned in the past (?) and some questions remain
unanswered. We argue that progress in the field requires theory development, which
should entail investigating patterns across conceptual and system-specific niche-axis
models. This research program is performed in Chapter 5, but first we reveal in Chapter 2
how a common but unrealistic assumption in niche models leads to inflated estimates of
coexistence and lack of trait pattern. Chapter 3 applies the lessons of Chapter 2 to revise
two prominent niche models, which are then studied for pattern in Chapter 5.

Many niche models assume, either implicitly or explicitly, that factors regulating
species dynamics can be idiosyncratic to species regardless of their traits. For example,
a species-specific parasite that affects a single species host and no other, no matter how
similar the hosts are (??). As pointed out in Chapter 2, this assumption amounts to allowing
clearly distinct ecological strategies between arbitrarily similar species. This seemingly
innocuous “discontinuous strategy” assumption is at once biologically unrealistic and
extremely consequential. For example, these models may predict stable coexistence between
arbitrarily similar species, so-called continuous coexistence. In apparent contradiction with
previous theoretical results (?), continuous coexistence in these models is not destroyed
by small fluctuations in environmental conditions1. This has grave consequences for the

1There is no real contradiction, as such results do not apply to models with non-differentiable kernels.
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prospects of using pattern to infer niches, because if a niche mechanism allows coexistence
regardless of traits, then it cannot be expected to create trait pattern. In Chapter 2 we
mathematically prove the connection between the discontinuous strategy assumption
and robust continuous coexistence, and discuss why such assumption is fundamentally
unrealistic and cannot be expected to be met in any real system.

In Chapter 3, we explore two influential niche models which implicitly make the
discontinuous strategy assumption, namely Muller-Landau’s tolerance-fecundity tradeoff

(?), where there is an inverse relation between species stress tolerance and number of
propagules produced, and Tilman’s competition-colonization tradeoff (?), where species
trade off fecundity with the ability to displace other species. We show that these models
contain strategy discontinuity, which has a very strong impact on predictions of limits
to similarity, species diversity, and trait pattern. In particular, both of these models
predict robust continuous coexistence. We then offer revised formulations where strategy
discontinuity is removed, and show that continuous coexistence disappears. The removal
of strategy discontinuity from these models allows for better informed predictions of
pattern, which will be examined in Chapter 5.

Chapter 4 examines how niche assembly differs from neutral assembly in terms of
species lifetimes, that is, the amount of time between a species introduction to a local
community by immigration, and its extirpation due to drift or competitive exclusion. We
focus on species assemblages where the number of niches available is less than the number
of species immigrating into the community – in other words, when not every species can
occupy their own niche, and some species must therefore compete for the same niche. We
show that, counterintuitively, average lifetimes in the niche-differentiated assemblage are
typically shorter than in neutral assemblages. This occurs because, although some species
are never extirpated as they are optimally adapted to their niche, most are outcompeted
and thus quickly removed. We conclude that niches may lessen extinction rates and raise
richness and mean lifetimes, or they may have the opposite effect, depending on the
number of niches available to species. In particular, in a species assemblage similar to the
tree community on Barro Colorado Island, extinction rates may actually be higher than
neutral expectations if the number of niches is not sufficiently high. The results of this
chapter qualify the sense in which niche differentiation enhances coexistence relative to
neutrality.

Answering the call from Chapter 1, Chapter 5 studies trait pattern in a suite of niche

See Chapter 2.
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models spanning several different niche mechanisms. We explore the recent findings that,
contrary to widespread ideas of limiting similarity and trait spacing between coexisting
species, niche assembly may lead to the spontaneous formation of clusters of similar
species (?). Recognizing that much of existing pattern theory is based on models that
ignore the influence of stochasticity and immigration, we explore trait pattern in stochastic
niche assembly happening in local communities under propagule pressure from a regional
pool. We ask whether clusters are a general phenomenon across niche mechanisms and
can therefore be used to infer niche differentiation in nature. This chapter features the first
use of an abundance-weighted metric for identifying and quantifying species clusters on a
trait axis. We validate our metric by applying it on the MacArhtur-Levins model, where
clusters are known to arise (??). We conclude that clusters are a typical outcome of models
where competition is primarily determined by similarity in species traits, but are more
likely to appear if immigration is low, the ratio between the number of species and niches
is high, and competitive sorting is fast.

Chapter 6 shows that in a context where species may mutate into similar species,
neutrality will also generate clusters, which needs to be accounted for in inference-based
tests. One recent paper in microbiology developed a new test for inferring selection from
abundance structure in microbial communities (?). The test is based on the premise that
selection will cause nonrandom abundance structure among operational taxonomic units
(OTUs, a common proxy for species in microbiology). Specifically, the authors hypothesize
that if some OTUs are favored by selection, there should be a correlation between the
abundance of other OTUs and their genetic distance to those favored OTUs, leading to
clusters in OTU space. This test was used to reject neutrality in vertebrate gut microbiomes.
Chapter 6 shows that neutral mutations acting alone or with immigration can also cause
such clustering, a fact that was not considered by the authors in their null model. We
argue that clustered patterns in OTU space may indeed be revealing of selection, but only
if clustering caused by selection can be distinguished from clustering caused by a neutral
regime where mutation and immigration are considered.

1.3 Publication status

As of August 3 2016, four of this dissertation’s research chapters have been published
in peer-review journals, while the remaining two are at the preparation and review stages
for publication.
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Chapter 1 was published in D’Andrea, R., & Ostling, A. (2016). Challenges in linking
trait patterns to niche differentiation. Oikos.

Chapter 2 was published in Barabás, G., D’Andrea, R., & Ostling, A. M. (2013). Species
packing in nonsmooth competition models. Theoretical Ecology, 6(1), 1-19.

Chapter 3 was published in D’Andrea, R., Barabás, G., & Ostling, A. (2013). Revising
the tolerance-fecundity trade-off; or, on the consequences of discontinuous resource use for
limiting similarity, species diversity, and trait dispersion. The American Naturalist, 181(4),
E91-E101.

Chapter 4 is under review by Ecology.
Chapter 5 is in preparation for submission to Ecology Letters.
Chapter 6 was published in D’Andrea, R., & Ostling, A. (2016). Can Clustering in
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The research described in Chapters 1, 4, 5, and 6 was done in collaboration with Annette

Ostling, and Chapters 2 and 3 were done in collaboration with Gyuri Barabás and Annette
Ostling. In both of the latter two chapters, Gyuri and I took equal part in the research and
development. Gyuri wrote Chapter 2 and I wrote Chapter 3, as well as all other chapters.
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Chapter 2

Challenges in linking trait patterns to niche differentiation

Abstract

Among approaches to establish the importance of niche differentiation for species coexis-
tence, the use of functional traits is attractive for its potential to suggest specific coexistence
mechanisms. Recent studies have looked for trait patterns reflective of niche differentiation,
building on a line of research with a deep but somewhat neglected history. We review
the field from its foundation in limiting similarity theory in the 1960s to its resurgence in
2000s, and find the theory of trait patterning still in a stage of development. Elements still
to be accounted for include environmental fluctuations, multidimensional niche space,
transient dynamics, immigration, intraspecific variation, evolution, and spatial scales.
Recent empirical methods are better than early approaches, but still focus on patterning
arising in simplistic models, and should rigorously link niche space with trait space, use
informative null models, and adopt new metrics of pattern as theory develops. Because
tests based on overly simplistic expectations of trait pattern are of little value, we argue that
progress in the field requires theory development, which should entail exploring patterns
across a set of conceptual and system-specific models of competition along trait axes.

2.1 Introduction

The idea that competition relates to species similarity is central to theoretical community
ecology, and has been verified in experimental studies (???). Its corollary, that coexistence
is predicated on species differences, forms the basis of niche theory. Recent debates over
the importance of niche differentiation (see glossary) for coexistence and community
structure (??) have reignited empirical efforts to parse how strongly niche differentiation
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drives community assembly and maintains biodiversity (?). Key approaches include
direct verification of frequency-dependence (?), experimental removal of stabilization (?),
searching for phylogenetic signatures of niche differentiation, e.g. (?), and examining the
goodness of fit of coexistence models to observed species abundance distributions (?). As
fruitful as these approaches may prove to be, they leave open questions about the specific
niche mechanisms at work, and their role in shaping the presence and relative abundance
of species.

In parallel, there has been a recent drive among ecologists to understand communities
in terms of traits impacting individual fitness via their effects on growth, reproduction
and survival, so-called “functional traits” (?). According to ?, “statements about traits
give generality and predictability, whereas [research based on species identities] tends
towards highly contingent rules and special cases”, because traits are more easily tied to
physical, chemical, and biological processes. Of particular interest has been the use of
trait-based patterns as evidence of niche differentiation: sorting species by their trait value,
one looks for a pattern in species occurrence and/or abundance along the trait axis, (e.g.
?). This approach to establishing niche differentiation could point towards specific niche
mechanisms and a generalizable understanding of their influence on species abundances.

Linking trait patterns to niche differentiation is not new; rather, it represents the return
of a classical line of inquiry dating back to the 1960s. Early research in this area was the
subject of critical reviews highlighting methodological issues and the many simplifications
of models used to derive expectations of pattern (??). In the 2000s, the subject acquired
renewed momentum. A number of studies have reported patterns of trait dispersion that
are interpreted as reflecting niche differentiation, (e.g. ????, etc).

Despite the rich literature and existing reviews on related topics (???), there hasn’t been
a synthesis of the theoretical basis for pattern-based trait analysis specifically. Here, we
revisit this science from early work to latest developments, assess how current research
deals with past shortcomings, identify remaining and new issues, and map out next steps
to meet those challenges. The central message of our review is that further theoretical
development is critical for moving forward in this line of research, as current theory of
trait patterning arising from niche differentiation is too rudimentary to inform us of the
pattern we should truly expect in nature.

Section 2 reviews the origins of modern trait-pattern work in the classical limiting
similarity theory of the 1960s and 70s, and describes the methodological and theoretical
criticisms raised at the time. Section 3 considers new insights on the concept of limiting
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similarity, but suggests that this concept is just one element of a more comprehensive
theory of trait patterning arising under niche differentiation. Section 4 argues that new
empirical approaches have met some but not all of the early criticisms. Section 5 describes
new challenges that have come to light as interest in trait pattern research resurged. Section
6 proposes that examining trait pattern across a set of conceptual and system-oriented
niche models can help refine predictions of trait pattern under niche differentiation.

2.2 Early trait pattern research: rise and fall of limiting similarity

The general expectation about species coexisting in the teeth of competition is that
there should be limits to their similarity. This is an old idea in ecology, found in one form
or another in the works of Gause, Hutchinson, and others. In his famous Santa Rosalia
piece, ? proposed heuristically that competition leads to a pattern of regularity in the
body size ratio of trophically similar species, which he backed up with empirical evidence
from waterbugs. A few years later, a similar assembly rule was derived by ?. Using a
simple Lotka-Volterra competition model with species arranged along an axis of resource
preference, and assuming that the strength of competition between species is proportional
to the overlap in resource preference (“niche overlap”), they obtained a quantitative limit
to species similarity consistent with coexistence. In particular, they showed that when
carrying capacities are equal across species, a new species can only invade and coexist
between two residents if it is separated from each by at least one standard deviation of the
resource use curve (Fig. 2.1A). This niche overlap rule marked the beginnings of the theory
of limiting similarity.

? refined the theory by adding considerations of robustness. They showed that
limits to similarity depend on species’ carrying capacities, and that arbitrarily similar
species can stably coexist if those values are just right, but the carrying capacity range
consistent with coexistence decreases drastically with species similarity (Fig. 2.1B). Limiting
similarity occurs because coexistence of very similar competitors depends upon fine-tuned
parameters, whereas in nature those parameters are expected to fluctuate. By that logic,
one could expect limits to similarity to be contingent upon the degree of environmental
variation. However, ? argued that the one-standard-deviation niche overlap rule proposed
by MacArthur and Levins was universal, on two grounds. First, he highlighted that
when distance between resource use curves d is less than one standard deviation σ, only
a small range of carrying capacity parameters allows for coexistence, but once d > σ,
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that range rises sharply (Fig. 2.1B). Second, upon adding white environmental noise to
carrying capacities in the Lotka-Volterra competition model, he found that the rule holds
for species-rich communities regardless of the magnitude of environmental variation, so
long as it is not too large (Fig. 2.1C).

These papers, along with Hutchinson’s original conjectures on coexistence constraints,
triggered extensive empirical exploration focused on specific rules of trait separation,
such as the aforementioned niche overlap rule and Hutchinson’s constant body size
ratios. By the mid-1970s, the literature featured numerous reports of confirmation of
such rules (reviewed in (?)). Later, however, these studies were questioned regarding
the quality and consistency of the results and methodology. ? contended that overlap
in commonly examined traits such as body size and bill dimensions may not be truly
representative of niche overlap, and listed a number of studies where overlap was found to
be in disagreement with the MacArthur-Levins rule. Furthermore, in a series of influential
papers sparking heated debate among community ecologists, Simberloff and co-workers
(??) explained away much of the claimed evidence for limiting similarity as either lacking
statistical rigor or not distinguishable from null expectations. Their relentless campaign
for a Popperian approach to community ecology led to the widespread incorporation of
null models in subsequent studies.

The criticism didn’t stop at the empirical evidence; the theoretical basis for the rules
were questioned as well ?. ? showed that the minimum trait difference between resident
species and a successful invader depends heavily on the shape of the resource use curve.
? contended that the MacArthur-Levins rule and May and MacArthur’s expansion of
it were problematic because they ignored extinction of resources and hinged on the
particular way overlap in resource use translates to Lotka-Volterra competition coefficients
in the model. He emphasized that different assumptions lead to different formulas for the
competition coefficients, which in turn lead to different limiting similarity rules. ? criticized
May’s mathematical approach to environmental stochasticity, and through an alternative
approach concluded that “practical limits to similarity can be obtained by simply ignoring
the stochastic terms” (i.e. by using species’ average carrying capacities). ? used this to
argue that limits to similarity will depend on the system and the species. Further, he
suggested that observed spacing between species may often not conform to its theoretical
minimum, as any such minimal separation would be enlarged by evolutionary character
displacement. Later, he pointed out that theoretical studies that consider coevolution
between competitors often find that the ecological and evolutionary effects of competition
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differ, either increasing or decreasing similarity depending on the circumstances (?).
Given all these issues, one might conclude that limiting similarity is irrelevant to natural

systems. That, however, is unjustified. Abrams did not dismiss limiting similarity as much
as he expanded its meaning and highlighted its system-specific character. “What is needed
instead is a broader definition of limiting similarity. The concept should be represented as
a relationship between the difference in competitive ability and the maximum similarity
that will permit coexistence. Such a relationship has the potential to be different for
every different pair of species and will generally be different for a given pair of species in
different environments” (?). Abrams saw a need for system-specific, field-parameterized
competition models, and comparison of limits to similarity predicted by those models with
similarity observed in nature.

Technically, the principle that limits to similarity always exist is unfalsifiable. One
can always argue that the actual limits are smaller than those probed empirically. But
this is mostly of academic interest, as most ecologists ask not whether limits to similarity
exist, but whether they shape community structure. This can be answered by comparing
observed trait structure with null hypotheses.

The term “limiting similarity” has lost purchase over the past two decades (?). Yet, most
empirical trait-based studies of community assembly still expect biotic (niche) interactions
to lead to trait overdispersion, an expectation that has its basis in limiting similarity theory.

2.3 New perspectives and prospects on limiting similarity

Abrams’s redefinition of the concept of limiting similarity was recast by ? in his
increasingly influential framework for coexistence mechanisms. Chesson introduces fitness-
equalizing forces, which decrease average differences in “fitness” between species, and
stabilizing forces, which allow species to invade each other from low abundance. By “fitness”
Chesson means the maximal population growth rate in the absence of resource limitation,
scaled by the sensitivity of the species growth rate to resource availability. Chesson’s
“stabilizing” forces are those causing species’ competitive influence on themselves to
differ from that on other species and hence leading to species’ population growth rates
to be positive at low abundance. They require niche differentiation between species (?).
Coexistence mechanisms involve one force or the other, or very often both. In fact, Chesson
casts the population growth rate of an invading species as the sum of two terms: one
quantifying the fitness differences between the invader and the residents, and the other

11



quantifying the effect of the stabilizing forces. Chesson revisits limiting similarity by
pointing out that for coexistence to be possible, “the smaller the average fitness differences,
the smaller the stabilizing niche differences can be.”

Chesson’s perspective has had a strong influence on community ecology (?), as it
highlights how species differences can either favor or disfavor coexistence. However one
must be careful in applying it. Chesson’s ideas seem to naturally imply that a) if there are
no fitness differences between species, there are no limits to similarity; b) conversely, if
there are fitness differences, there must be limits to similarity. From a dynamic stability
standpoint, both conclusions turn out to be incorrect for coexistence between more than
two species. In the case of no fitness differences, the niche-axis Lotka-Volterra model
proposed by ? does not allow for stable coexistence between three or more arbitrarily
similar species. It must be the case that Chesson’s stabilization term of the growth rate
of the potential third invader is actually negative unless the two resident species are far
enough apart on the trait axis. On the other hand, some competition coefficient choices in
the same model lead to coexistence of an indefinitely large number of arbitrarily similar
species despite fitness differences caused by differences in carrying capacities (?).

Critically, these instances of stable coexistence of arbitrarily similar competitors do not
warrant the conclusion that there may be systems in nature without limits to similarity,
at least not yet. Limits to similarity pervade all competition models if one considers
robustness to fluctuations in model parameters set by environmental conditions. For
example, it has been shown for a large spectrum of models that small changes in the
carrying capacity of a single species brings extinction to a number of its closest competitors
(???), while changes in the carrying capacities of multiple species throughout the trait axis
lead to spacing between all stably coexisting species (?).

The concept of robustness, or structural stability, has not gained as much traction as the
concept of dynamic stability, even though it may be equally relevant for analysis of model
predictions (?). In a dynamically stable state, species abundances return to their previous
equilibrium values after a perturbation, whereas in a structurally stable state species
equilibrium abundances change little when environmental conditions setting the carrying
capacity are perturbed. Because both abundances and environmental conditions can be
expected to fluctuate in nature, a predicted equilibrium state is arguably not biologically
relevant unless it is both dynamically and structurally stable.

However, there is an unresolved tension between Turelli’s work on environmental
fluctuations, the robustness analysis of Barabás and coworkers, and work by Chesson on
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environmental fluctuations (?). ? concludes that small environmental fluctuations are of
little consequence for limiting similarity theory, whereas Barabás and coworkers ascribe
them primary importance. The latter approach differs from the former by considering
potentially long-term changes in environmental conditions. Chesson suggests environmen-
tal fluctuations can enhance coexistence when species’ responses to them are negatively
correlated, but in this case environmental fluctuations open up new niche axes along which
there will be limits to similarity1. Resolving this tension is needed to achieve a clearer
picture of whether one does expect any special systems where limiting similarity does not
hold, and a more general understanding of the likely role of environmental fluctuations
relative to inherent population dynamics in setting the limits to similarity in nature. Doing
so requires answering the empirical question of whether negatively correlated responses
to the environment are common, and whether environmental fluctuations are fast and
small enough for Turelli’s analysis to apply, or longer term as assumed by the robustness
analysis of Barabás et al.

Yet even once the nature of environmental fluctuations is better known, limiting
similarity theory will be just one ingredient in a comprehensive theory of trait patterning.
Imposing dynamic and structural stability constraints on simple niche models gives
conceptual insight into what competition might do to communities, but it seems unlikely
that it should be able to tell us what trait pattern to actually expect to find in nature, where
so many additional complexities ignored in these models come into play. The next two
sections will discuss the current status of trait pattern research in the context of old and
new challenges to formulating such comprehensive theory and developing better empirical
methods.

2.4 Recent empirical approaches in the context of past criticisms

A variety of recent studies look for patterns of spread and evenness in the distribution of
species along a trait axis (?????—see (?) for a review). The observed distribution of species
traits is compared with a null distribution, typically a random draw from the regional
species pool, often weighted by regional abundance and constrained by the number of
individuals or species in the sample. Analysis focuses on species differences, and in

1The reverse idea, that biodiversity stabilizes community-level responses to environmental fluctuations,
has been borne out empirically (?). This has been theorized to occur if species-level responses to the
environment are asynchronous (?), which presumably requires that species differ sufficiently in traits related
to such responses.
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particular how widely and evenly the observed species are distributed on one or more
trait axes. Box 1 describes common metrics and test statistics used. If niche differences
associated with that particular trait are an important driver of community assembly, or if
evolution has driven niche differences in sympatric species, then species are expected to be
more widely or evenly distributed than in the null models. Filtering of traits best suited
for local abiotic conditions can also influence trait patterns in a local community and is
expected to lead to the opposite patterns. Authors typically look for both processes, and in
some cases factor filtering into the null model for niche differentiation by restricting the
species pool (??), or employ metrics that should have little impact from filtering (see Box 1).

Such current approaches are an improvement over the first wave of empirical efforts of
the 60-70s. Increased trait range and even spacing may arise regardless of the particular
size of the niche spacing between species needed for robust and stable coexistence. Further,
use of null models conferred the statistical rigor lacking in the purely observational studies
that were previously the norm. Still, given the intense past debates in the literature and
mixed results in detecting limiting similarity, careful assessment of recent approaches in
the context of past methodological critiques is warranted.

Some recent empirical trait patterning studies take novel approaches, such as exper-
iments to see how successful invading species impact community trait pattern (?), and
looking at trait patterning along ontogenetic, successional, productivity, and environmen-
tal gradients (????) to gain additional evidence for community assembly processes (e.g.
differences in trait pattern between saplings and adults may reveal processes influenc-
ing organism survival). We do not specifically address these approaches here, but our
assessment of theoretical and methodological issues applies equally well to them.

2.4.1 Is evenness to be expected?

Despite improvements in the pattern expectations of empirical studies, a closer look on
whether limiting similarity theory truly supports those revised expectations quickly turns
up potential issues. In particular there are issues with the expectation of even trait spacing,
which has been the focus of a number of studies due to the potential for this type of pattern
to be indicative of niche differentiation. To our knowledge, ? was the first to explicitly
question even spacing as a general feature of competition, and he had previously argued
that limits to similarity may vary between different species pairs in a single system (?).

The idea that niche assembly leads to even trait spacing follows intuitively if interspecific
competition depends solely on species similarity. Indeed, evenness features strongly in
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the MacArthur-Levins model (Fig. 2.1A). However, that model assumes a great deal of
simplifying symmetry, including uniformity of carrying capacities and resource utilization
function shapes and widths across species. It also assumes competition coefficients that
depend exclusively on trait differences and not the trait value itself, a simplification that
does not hold for traits such as plant size (?). It is also not seen in other models, for instance
models with competitive hierarchies such as the competition-colonization tradeooff (?)
and tolerance-fecundity tradeoff (?).

Simulations of the MacArthur-Levins model in a few example cases with heterogeneous
carrying capacity exhibit even spacing (??), suggesting the effects of fitness differences on
evenness may be small. In contrast, the dependence of competition on trait values can
have large effects, as models with this dependence yield spacing rules that can involve
irregular intervals between species (??). For example, examination of patterns in the
Tilman-May-Nowak hierarchical competition model reveal no obvious signs of evenness
in species placement along the trait axis, cf. figures in (?). Even in models that predict even
spacing, evenness may only be expected when the niche space is full, i.e. when there are
as many species present as can stably and robustly coexist. Lower diversity could allow
for more variation in species spacing, unless fast-acting evolutionary forces drove species
to more even spacing. We know of no multispecies evolutionary studies that investigate
impact on even spacing (or more generally on the distribution of stably coexisting species,
but see (?)), although those would be critical to establish whether evenness is to be expected
at evolutionary time scales.

Some ecologists believe that models based on an indefinite number of consumer species
feeding on a continuum of substitutable resources, such as the ones discussed in the
previous paragraph, have little relevance for expected pattern in nature because most
natural systems have a small number of resources and relatively limited species diversity.
Of course any real system has a finite number of consumers and resources, so the real
question is how large the number of species/resources needs to be for models based on
continuums to be useful (“All models are wrong, but some are useful”). For the purposes
of predicting features of trait pattern among local species sorting from a regional pool
of species, continuum models seem appropriate when the number of species in the pool
and number of potential local resources for them greatly exceeds the number of stably
coexisting species allowed by the model. There are often more potential resources or
“limiting factors” (??) than a first look might reveal. For example, terrestrial plants may be
limited by the availability of patches of different ages since disturbance, as in successional
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niche models (??).
Further exploration is in order before conclusions can be drawn, but if evenness is not a

universal feature of niche differentiation, then empirical studies should shift focus to other
aspects of pattern more robustly suggestive of niche differentiation.

2.4.2 Identifying niche axes and multidimensionality

Two important criticisms leveled at early trait studies continue to be overlooked or
not fully addressed in much of the empirical literature. First, to rigorously connect
trait patterning and niche differentiation, one must establish an explicit link between
candidate niche axes in a given system – i.e. the aspects of organism performance in
which differentiation confers stable coexistence – and the actual traits measured in field
studies. Early trait studies were criticized because it was unclear that axes of variation
being examined actually corresponded to niche differentiation.

Attempts at making such linkages have certainly been made, but there are stumbling
blocks. Consider plant traits such as maximum height, seed size, and specific leaf area.
These are known to influence species’ distributions along abiotic gradients (?), but they are
also thought to be proxies for species’ positioning on life history axes (?) and to enable
coexistence through a successional niche tradeoff (??). Many studies have connected these
traits to demographic performance (e.g. seed output, or growth or mortality at various life
stages); however, due to limitations in the prevalence of different light conditions in forests,
what is typically considered is performance in full sun or in the understory, and not the
demographic response to shading that is critical to successional niche differentiation (e.g.
??, but see ?). Beyond tree traits, theory is still developing regarding which types of trait
variation and tradeoffs are related to stabilization and which are simply related to fitness
differences and/or fitness equalization (?).

Another problem is that it is much easier to associate traits with individual performance
than with population growth rates, but it is their effect on the latter that matters for niche
differentiation. Very few studies have tried to verify that connection empirically (but see
?). Considering competition models formulated in terms of individual performance, e.g.
?’s (?) model of size-structured competition in forests, or even more detailed models like
individual-based forest simulators (?), may aid this process. These hurdles have recently
been circumvented in annual plant systems, where manipulative experiments can get at
population dynamics and be used to parameterize competition models, to provide what
seems at least compelling evidence of which trait differences contribute to stabilization
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(??). But such manipulation is not always possible.
? provide a useful road map to the broad types of niche axes – spatial and temporal

heterogeneity, natural enemies, and resource partitioning – that could be considered in
forming linkages between traits and performance more informative of potential niche
mechanisms. The next step is to develop mechanistic competition models geared to specific
example systems, (e.g. ?), in order to get a detailed sense of the candidate niche axes
there, and then link traits to these niche axes through both empirical correlations and
physiological theory, (e.g. ?). ? suggest that ecologists abandon pattern-based analysis
altogether in favor of establishing trait-niche axis relationships. However, showing that
trait variation drives variation along a viable niche axis does not in itself indicate that it is
substantial enough, or of the right nature, to enable stable coexistence. Pattern-based trait
analysis, when coupled with the establishment of trait-niche axis relationships, provides a
means to gain suggestive evidence that the trait variation is actually enabling coexistence.

The second issue is that the niche space in most cases likely involves many dimensions.
There is a dearth of models providing predictions for trait patterning caused by niche
interactions mediated by multiple traits. Multidimensionality means more niche space,
and hence more potential for empty niche space in low-diversity systems, and for trait
patterns to be more complex or random-looking as a result. In addition, the number
of dimensions of niche space can have effects on limits to similarity. For example, the
minimum multidimensional spacing required for coexistence can be lower than the
one-dimensional limit (?). Multidimensionality can also lead to greater sensitivity to
environmental noise (May 1973, p. 164). Finally, perfectly even niche segregation occurring
in multiple dimensions can elude detection on individual trait axes. For example, if the
niche space is two-dimensional and niche axes are not parallel to measured trait axes,
species that are evenly distributed in the full niche space might seem unevenly distributed
when examined on a single trait axis. (Fig. 2.2).

Empirical trait studies typically deal with this by calculating distances in multidimen-
sional trait space (?????) or performing a principal-component analysis to determine the
axes where trait segregation is strongest, (e.g. ?). Those are not without issues, though.
Most of these multivariate metrics are direct extensions of their single-trait cousins (see
Box 1), and therefore inherit the same limitations: namely, they are based on the idea
that niche differentiation will lead to high trait dispersion and/or evenness, which may
not always be justified. Furthermore, there are multiple ways to calculate distance in
multidimensional space (?), and without some guiding theory one is left with finding
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whatever leads to the strongest signal. Similarly, with PCA one heuristically finds which
axes give the strongest pattern, and must interpret the result after the fact. The problem
then is analogous to the Texas sharpshooter fallacy: by looking everywhere, one is bound
to find pattern somewhere, but its meaning may be lost. Such heuristic measures may
thus fail to identify combinations of traits from which the niche mechanisms involved
can be surmised. An alternative approach is to develop and ground-truth system-specific
mechanistic models to identify candidate niche axes, and then identify the multiple traits
that may be driving them using physiological theory and phenomenology.

2.4.3 The null model

Trait studies may have universally accepted the importance of comparisons with a
null model, but not enough attention has been given to what exactly the null model
is supposed to represent. In recent trait studies, null assemblages normally consist of
abundance-weighted random draws of a fixed number of species or individuals from the
regional pool, or some related form of randomization of the observed data. Some authors
use more sophisticated randomized statistical null models that, for instance, account for
habitat filtering by selecting only species that have been observed to survive in the local
environment (??). But are randomized null models our best option? Many ecologists
say yes. ?, citing ?, argue that null expectations intrinsically involve randomizations of
observed patterns. To them, null models should function as “a standard statistical null
hypotheses, in contrast to a scientific hypothesis, which is a mechanism to explain the
pattern”.

Others disagree. Some authors, (e.g. ???) argue that null models should, as far as
possible, represent explicit ecological processes by which the community would have been
assembled in the absence of the process of interest. In other words, process-based null
models are preferable to statistical null models. For example, ? incorporate historical
processes of speciation and extinction ignored by statistical null models, and show that the
latter may lead to false detection of limits to phylogenetic relatedness.

? pointed out that “fabricating random communities [. . . ] does not bear the relationship
to ecology that the neutrality hypothesis does to population genetics.” However, little
resulted from this insight because at the time there was no framework in community
ecology comparable to neutral theory in population genetics. Yet the past fifteen years
have seen the development of a neutral theory for community ecology (??), and we believe
trait patterning studies should move towards using it. Indeed one study suggests the use
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of a neutral model instead of a purely random null can lead to different results regarding
patterns of species co-occurrence (?).

The idea of neutral theory as a null model in community ecology is not new, and has its
opponents. Interestingly, while ? reject it because neutral models are mechanistic rather
than purely statistic, ? rejects it because to him they are not mechanistic enough. Our
perspective is that neutral theory presents some difficulties. First, it may require quite a bit
of information about a system, and the formulation of complex neutral models accounting
for that information. For example, details regarding the nature of dispersal limitation (?),
size or age dependence of reproduction and death (?), and the spatial distribution of species
in the regional pool, may all have important consequences for expected distributions in the
absence of niche differentiation. However, less sensitivity to at least some of these details
might be achieved by shifting focus from traditional species abundance distributions to
distributions of species abundance in trait space, where more specific types of departures
from neutral expectations might be expected. Power analyses and theoretical exploration
of example tests could indicate what information is most vital, and in what situations the
use of a neutral model rather than a pure random model is particularly important. Another
issue is scale. It is very hard to get good information on the nature of neutral processes
operating at the regional scale, such as speciation, and this makes it difficult to build a
good neutral model at that scale. However, if data on current regional abundances are
available and can be used to make adequate predictions of expected local abundances
based on dispersal alone, one can test for non-neutral dynamics at the local scale without
needing to make assumptions about neutrality at the regional scale.

It should be noted that alternative methods that do not use null models are also possible.
For example, approximate Bayesian computation algorithms (?) have been used to estimate
the relative importance of different community assembly processes in shaping trait patterns
by comparing trait-based summary statistics produced under different model assumptions
about process with summary statistics from the data (?).

2.5 Further elements to be considered in trait research

In addition to the classical methodological and conceptual issues discussed in the
previous section, new challenges have come to light as interest in trait pattern research
has resurged. As will be seen below, emergent clusters arising from classical niche
models offer fresh perspectives on expectations of trait dispersion. Intraspecific variation
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presents challenges in the degree of sampling needed to discern pattern, and could impact
coexistence and hence trait patterning predictions. The spatial scale of both the mechanisms
of niche differentiation and the sampling design impact the likelihood of detecting pattern
and the nature of the pattern to be expected.

2.5.1 Emergent clusters

?’s (?) study and much subsequent work focus on system equilibria, as nonlinear models
typically cannot be solved but their equilibria can often be found analytically. However,
there is no guarantee that time to reach these equilibria is short enough that real-world
communities can be expected to be at equilibrium. Advances in computer power have
opened the door to simulations of model dynamics that were unavailable in the 1960s, and
such simulations reveal that transient regimes may be in striking contrast to expectations
from equilibria. Key among newly discovered phenomena is the spontaneous emergence
of groups of similar species under competition. In simulations of the MacArthur-Levins
model, starting with a large number of species randomly placed on a trait axis, ? found a
transient regime composed of clusters of similar species with high abundance, separated
by sparsely populated regions on the axis (Fig. 2.3A).

The appearance of transient clusters in the competitive context can be informally
understood as follows. Because competition increases with similarity, minimal interspecific
competition is achieved by partitioning the trait axis into evenly spaced spots (determined
by any small initial heterogeneity in species abundances). Species located at those spots
will face the lowest competition and thus thrive, while all others are eventually excluded.
This arrangement is the final equilibrium to which the system eventually converges. On
the other hand, species close together on the trait axis are similar to one another in the
competition they experience from other species. Transient clustering arises because it takes
time for the species at the favored spots to exclude their slightly inferior neighbors. One
can interpret the region surrounding each spot as a niche, and describe the dynamics as
a two-stage process, the first characterized by species being sorted into niches, and the
second characterized by within-niche competition leading to the exclusion of all but one
species per niche.

We note that fitness differences (sensu Chesson 2000) play no necessary role in the
formation of these clusters. In Scheffer and van Nes’s (2006) model, all species have
equal intrinsic growth rates and carrying capacities, and can be distinguished only by
their position on the niche axis; yet, clusters arise spontaneously. Transient clusters could
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also arise from fitness differences (?) and/or habitat filtering, but those would differ in
trait space from Scheffer and van Nes’s clusters: unless there were some substructure of
resource availability driving a multimodal fitness curve, fitness differences would cause a
single cluster around the fittest species. In contrast, the emergent clusters in discussion
here consist of multiple regions on the trait axis—as many as the number of species that
would stably coexist at equilibrium.

Scheffer and van Nes showed clustering patterns for a limited parameter range in one
simple model, but clusters have since been seen in many studies. ? verified the robustness
of the clustering pattern in Lotka-Volterra niche overlap models with finite niche axes
by showing that it arises as a transient under a variety of niche dimensions, competition
functions, niche boundary conditions, species initial abundances, species intrinsic growth
rates, and carrying capacities. Furthermore, Scheffer et al. showed that the addition of a
stabilizing term to the population dynamical equations of the MacArthur-Levins model
leads to permanent rather than just transient clusters (??, but see ?). Further, clusters are
permanent in niche models that include the effects of frequent environmental variation (?),
mutation (?), and immigration (?)—see Fig. 2.3B. Lastly, Scheffer and van Nes found that
implementing evolution by allowing species to move along the trait axis makes clusters
more robust to variations in species carrying capacities (?). Indeed, clusters are no strangers
to the evolution literature: it has been shown that phenotypic clustering can appear due to
selection (???), or simply due to mutation in mutation-drift processes (??).

In nature, clustering in the positioning of species on trait axes has been seen in European
aquatic beetles, Dutch freshwater algae, American prairie birds (?), marine and saline
lagoon phytoplankton (??), and alpine woody plants (?). Some of the evidence is simply in
the form of visually apparent modes in histograms of species counts along discrete portions
of body size axes (?), but other studies used quantitative metrics such as looking for peaks
in the curve of species density on the trait axis (?), or looking for a larger coefficient of
variation in nearest neighbor distances than expected by chance (?). In addition to local
peaks in richness on the trait axis, ? and ? also found evidence of local peaks in abundance,
like those predicted in Lotka-Volterra models, using an abundance-weighted trait distance
metric and a test looking for peaks in Shannon-Weaver diversity respectively.

In sum, clusters appear in nature and feature in Lotka-Volterra competition models, as
well as evolutionary models. It seems reasonable to expect clusters to arise in a wide range
of models of ecoevolutionary dynamics. More thorough examination using system-specific
ground-truthed models is needed, in particular regarding whether clusters will arise
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for realistic levels of environmental variation, mutation, and immigration. If clusters
prove to be a general feature of niche models, this will have profound implications for
trait-patterning studies, as a clustered community is the exact opposite of the type of trait
dispersion generally associated with niche differentiation. Future metric development
should take this into account (see Box 1).

2.5.2 Spatial scales

Spatial scales have been brought to bear extensively on examinations of community
assembly patterns and ecosystem processes (see ? and citing works), with focus on scale-
dependence of species diversity, composition and spatial distribution, (e.g. ?), phylogenetic
relatedness, (e.g. ??), and ecosystem function (?). Here, we highlight the relevance of scales
to patterns of trait dispersion in the context of how niche mechanisms relate to scales of
species dispersal and environmental heterogeneity.

Consider terrestrial plants. It may appear at first that competition occurs primarily
among neighboring individuals, so niche patterns should occur at the neighborhood scale
(??). But in reality, all individuals sending propagules to a location potentially compete
with one another. Therefore, expectations of niche differentiation must encompass more
than just local resource competition (??). In addition, niche mechanisms often require
spatial variation in the environment to enable coexistence. For example, species may
simply differ in habitat preference, so that variation in the conditions of local habitat are
required for coexistence. At a small spatial scale encompassing a limited range of habitats,
one would tend to find trait filtering, reflecting selection for tolerance to those habitats. At
a larger scale, one would expect niche differentiation (Fig. 2.4; ??). Appendix A describes
how patterning across spatial scales might similarly emerge for niche mechanisms based
on life history tradeoffs, and discusses some examples of traits and the respective scales at
which niche patterning is expected.

Once one considers a variety of types of niche mechanisms, it becomes clear that the
spatial scale at which trait-based niche patterns will be found depends on the particular
niche mechanism. If trait variation stabilizes coexistence through spatial heterogeneity in
the environment, then the grain of environmental heterogeneity will affect the expected
scale of trait dispersion. This scenario presents a logistical hurdle for trait-based analyses
that may be difficult to overcome: data may be needed from large swaths of land, and
power issues may ensue (?).

Spatially explicit population dynamic models should be applied to more rigorously
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derive and refine predictions of pattern. But, save for a few cases (??), this path remains
essentially unexplored. Such studies must account for the potential interactions of
organismal dispersal limitation and the scale of the niche mechanism. For instance, ?
showed that the degree to which Janzen-Connell effects maintain diversity in trees depends
on the relative scales of dispersal limitation and enemy-mediated density dependence.

2.5.3 Intraspecific variation

Substantial trait diversity within populations is common in nature, and the subject has
received extensive coverage in the past few years. Recent reviews have discussed potential
implications for functional diversity, population productivity and stability, coexistence,
and ecosystem processes (????). However, less is known about the potential implications
for trait patterning.

Intraspecific variation raises obvious issues. For example, the common practice of
using trait means to represent a species has been criticized for inaccurately representing
resource use and strength of competition (?, Fig. 2.5). Indeed, empirical studies have found
that considering intraspecific variation may reveal otherwise obscure pattern (???). For
example, ? found that detection of habitat filtering and niche differentiation is stronger
when considering variation in trait expression within populations at the plot level and
especially at the individual level, compared to using species means at the regional level.

Sampling effort is also a concern. Plant studies looking for niche differentiation rarely
sample more than ten individuals per species, premised on the idea that trait variation
is substantially larger across than within species. However, given observed levels of
variation within populations, more recent studies suggest that sample sizes of 10 to 20
individuals are needed to reliably distinguish between species (?). Potential consequences
of undersampling include false indication of the degree of trait spacing between species (?)
and missing spatial structure in trait expression that is critical for niche differentiation. A
sampling theory to guide empirical work on the appropriate sample size for estimating
species means could be helpful, but one may ultimately need to move from using species
means to indices of functional diversity designed with intraspecific variation in mind
(????), or to grouping individuals by trait values rather than by species.

In addition to issues with sampling, likely impacts of intraspecific variation on trait
patterning depend on how it affects coexistence (we discuss recent research on this
question in Appendix B). For example, if intraspecific variation facilitates coexistence by
slowing down competitive exclusion, then transient patterns such as emergent clusters

23



can be expected to be persistent and easily maintained by immigration. Alternatively, if
intraspecific variation enables coexistence by allowing species to occupy more than one
viable niche, then coexistence between species with any trait means is possible. Any trait
mean in a particular range can be achieved by having some individuals at a viable niche on
one end of that range and some at the other. Thus one would expect weak to no patterning
in species mean traits. In contrast, abundance patterns of individuals grouped by trait
values rather than species would be preserved.

Very few theoretical studies have tried to verify how intraspecific variation affects trait
distribution between coexisting species (but see ?). In simulations of the competition-
colonization model, ? found that the addition of intraspecific variation changes the region
of trait space that allows for coexistence between two species. In particular, a species with
intermediate fecundity and mean growth rate can coexist with another very similar species
only if intraspecific variation is present. The authors conclude that intraspecific variation
in that model leads to the disappearance of limits to similarity. (Importantly, robustness
to parameter changes was not examined. Indeed, it seems that a slight variation in mean
growth of a coexisting competitor could result in exclusion.) Moving forward, theoretical
studies of the impact of intraspecific variation on coexistence and trait patterning should
model intraspecific variation not just as a fixed parameter, as is often done, but as a
dynamical quantity shaped by a combination of selection and the genetic details of trait
inheritance.

2.6 Toward a theory of trait patterning under niche differentiation

The primary challenge in linking trait patterns with niche differentiation is gaps in the
theoretical foundation from which empirical expectations are derived. Theoretical progress
can be made by exploring a spectrum of niche-axis coexistence models for insight on the
types of patterns to be found under different biological conditions. We suggest a two-
pronged approach with analyses of both conceptual and ground-truthed system-specific
models.

Simple conceptual models allow exploration of the impact of the most salient features
of competitive interactions commonly found in nature. In the MacArthur-Levins model,
competition strength depends strictly on trait differences. This is a common feature of
nature (???) and the defining property of a niche mechanism. The pattern arising from
the model can be taken to represent the effect of niche differentiation on trait distribution
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when acting alone. The competition-colonization and tolerance-fecundity tradeoffs (??)
are simple representations of competitive hierarchies that may be prevalent in nature (?)
but do not fit into the MacArthur-Levins framework due to the dependence of competition
on traits as well as trait differences. We suggest that the MacArthur-Levins model and
simple hierarchical tradeoff models are a good starting point for developing trait pattern
theory. This review discussed natural phenomena likely to contribute to pattern which are
absent in these models, such as environmental fluctuations, multidimensional niche space,
immigration, intraspecific variation, evolution, and spatial scale-dependent interactions.
A systematic approach starting with these conceptual models and adding in simple
representations of each of these additional factors in turn could provide insight into the
separate and combined effects of different processes on trait dispersion.

Examining this spectrum of models will no doubt be revealing. Yet it does not
exhaust the complexity of competitive interactions in nature. For example, competition
between neighboring trees in forests is size-structured, and it is unclear how this local
scale complexity translates into population-level competition. Hence to complement
study of conceptual models, we suggest that a suite of system-specific models also be
developed and studied for trait pattern predictions. Such models would be built on
empirical measurements of how traits determine an individual’s response to resources and
other individuals in the system of interest. Here we envision models with a level of detail
similar to the forest architecture hypothesis model (?). Additional phenomena like those
mentioned above (environmental fluctuations, immigration, etc) can be incorporated to
the degree to which measurements suggest they are prevalent in the system of interest.

These model-based studies will give insight into the range of trait patterns reflecting
niche differentiation in species assemblages, and culminate in more sophisticated pre-
dictions for trait pattern and new metrics designed to better handle potentially complex
pattern than the ones currently available (see Box 1). That said, it is entirely possible
that no distinguishable pattern will be observed under some circumstances, such as high
immigration and severe competitive asymmetries that depart from the distance-based
MacArthur-Levins competition. In that case, trait-pattern analysis will probably be of little
avail, and more data-heavy methods such as experiments to directly verify stable dynamics
would be required. When trait pattern is distinctive, analysis of pattern across spatial scales
and environmental gradients could lead to hypotheses about the predominant community
assembly processes, to be then further tested with experiments or observational studies.

25



2.7 Conclusions

Empirical efforts should be informed by theory, and recent modeling results regarding
the distribution of species along trait axes depart from classical expectations of overdisper-
sion and even spacing in trait space. Recent field studies look for a less restrictive signature
of niche differentiation than earlier ones, but continue to focus on patterns arising in overly
simplistic models. Most still fall short of establishing firm links between trait axes and
niche axes, and use null models that may not accurately represent expected background
processes. The next generation of field studies should be founded on expectations that
contemplate patterns coming out of more realistic implementations of niche models.

The theory of trait patterning is itself still a work in progress. Particularly needed are
exploring more complex niche mechanisms than the distance-dependent interactions in
the MacArthur-Levins model, elucidating the influence of environmental fluctuations on
pattern, incorporating intraspecific variation and explicit spatial structure in models, and
extending our purview to out-of-equilibrium phenomena such as transients and factors
that interact with such dynamics, such as immigration and evolution. Further work on
conceptual models may shed light on how different assembly processes shape communities,
while system-specific models may clarify the range of patterns to be expected in nature.
Ultimately, trait pattern analysis is but one tool in the toolbox of inference methods. There
are of course many complementary empirical approaches to infer niche differentiation from
a wide array of observational or experimental data, including phylogenetic dispersion
(?), variations in species composition through time (?), direct measurement of frequency-
dependent competition (?), etc. As trait patterning research matures, it can be used in
tandem with other methods to paint a more complete picture of community assembly than
currently available.
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2.8 Glossary

Cluster: a set of species with similar trait values and relatively high abundance, separated
from other such sets by sparsely populated regions on the trait axis.
Community-wide character displacement: the idea that species coexisting within a
community will differ from each other more than expected by chance, which will be
reflected as trait overdispersion.
Competition function, (competition kernel): function describing the competitive suppres-
sion of a species’ per capita growth rate caused by one individual of the same or another
species. In trait-based models, it is often a function of species traits. It is the extension of
the community matrix in the limit of a continuum of species.
Expected scale of trait dispersion/Scale of the niche mechanism: The spatial scale of
sampling required to observe trait pattern. Different niche mechanisms lead to trait
patterning at different spatial scales. For example, Janzen-Connell effects are expected to
lead to overdispersion at spatial scales within the range of interactions between individuals,
whereas niche mechanisms that rely on habitat heterogeneity are expected to lead to
overdispersion at scales commensurate with the grain of the environment.
Fitness (sensu Chesson, 2000): in the context of a consumer-resource model, it is the mean
per capita growth rate of the species in the absence of resource limitation, scaled by the rate
at which the per capita growth rate declines as resource abundance declines. For stable
coexistence, fitness differences must be compensated by the stabilization term.
Limiting similarity: has taken on multiple meanings over time. In the 1960s it was
understood as a rule for coexistence that imposed a specific minimum limit to the similarity
of two coexisting species, namely the distance between two consumers’ resource use curves
could not be smaller than one standard deviation of those curves. Later, it was redefined
more generally by ? as the recognition that limits to the similarity of coexisting competitors
always exist, but their value depends on the species/system involved. It is also sometimes
equated with community-wide character displacement.
Niche axis: the axis of variation involved in a niche mechanism, if that variation can
be sensibly arranged on an axis. For a successional niche tradeoff, the axis runs from
gap-specialist to shade-tolerant species.
Niche differences/differentiation: species differences that lessen competition between
them. As argued by ?, these are necessary for stable coexistence. Niche differences will
involve one or more niche mechanisms and may or may not fall on a one-dimensional
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niche axis.
Niche mechanism: a process or set of circumstances whereby variation across species can
lessen competition between them. In a niche mechanism, the nature of species interactions,
plus sometimes the presence of tradeoffs, lead to opportunities for species to differ in their
interaction with limiting factors (Levin 1970). Examples include enemy specialization,
variation in resource use, and the successional niche tradeoff, where plant species differ by
age of patches exploited. Resource use curve: specifies a consumer’s preferences among a
large array of substitutable resources. In the MacArthur-Levins 1967 paper, it describes the
probability of use of a given resource in a unit time by an individual.
Robust coexistence: an equilibrium state that resists changes in parameters that regulate
dynamics. For example, a species is robustly coexisting if it is still able to coexist upon a
(small) reduction in its carrying capacity due to removal of nesting sites.
Stabilization: in Chesson’s formalism, it is the contribution to the invasion growth rate
from differences between species competitive influence on themselves and their competitive
influence on other species. It contains the frequency-dependent part of a species’ growth
rate, and can enable stable coexistence by causing a negative correlation between a species’
abundance and its growth rate.
Stable coexistence: an equilibrium state that resists (small) changes in species abundances.
For example, if some individuals from one of the species are removed, the species will tend
to bounce back towards higher abundance.
Trait: any measurable feature of an organism’s physiology/ morphology/ behavior/ phe-
nology, such as a canine’s tooth size, or a plant’s specific leaf area. Often “traits” is used
implying specifically “functional traits”, meaning those that impact individual fitness via
their effects on growth, reproduction and/or survival.
Trait pattern: non-random distribution of species along a one-dimensional trait axis. This
distribution may be based on presence-absence or weighed by species abundances.
Trait-niche axis relationships: niche differences are not necessarily available for easy
measurement, so variation in more accessible traits are often used as proxy for niche
differentiation. However, a relationship needs to be established between a species’
placement on the niche axis and the trait axis before overdispersion in the latter can be
taken as indication of niche differentiation.
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2.9 Box 1: Trait-based metrics

A variety of trait metrics have been used to detect niche differentiation. Here we
describe key metrics used in empirical studies, which can be presence-absence or abundance-
weighted, one-dimensional or multivariate. Multivariate metrics tend to be direct analogues
of one-dimensional metrics. In common, almost have been applied with the expectation
that niche differentiation will lead to high trait dispersion and/or high evenness in the
distribution of species across trait space. As discussed in the main text, this is problematic
because more complex niche differentiation mechanisms (e.g. hierarchical tradeoffs) do not
necessarily predict even spacing nor overdispersion (see Section 4), and emergent clusters
may occur (see Section 5). We also describe some metrics that have been proposed to look
for patterns of clustering, and offer suggestions for further metric development.

Presence-absence metrics

Trait range. If strength of competition declines as species differ, species traits should
spread over a wider range than could be expected by chance (?). However, trait range is
impacted in the opposite direction by habitat filtering (?), making it difficult to parse the
influences of filtering and limiting similarity that may act on the same trait simultaneously.
It is also sensitive to outliers (?), and does not incorporate abundance.
Minimum distance between nearest neighbors. This offers a direct measure of the
potential limits to similarity, which would be reflected as larger-than-random minimum
separation between species (?).
Mean distance between nearest neighbors. A larger value than expected by chance could
be indicative of competition dependent on trait differences (?). Mean distance is not
independent of trait range and hence subject to the same confounding influence of habitat
filtering.
Trait evenness. Measures variation in trait differences between adjacent species on the
trait axis. Like the mean, the standard deviation of nearest neighbor distances scales
with trait range and hence is subject to the confounding effects of habitat filtering, see
e.g. ?. Normalized measures such as the coefficient of variation and the ratio between the
standard deviation and the range are used to account for that effect (?). Limiting similarity
is expected to be expressed as excess evenness and thus low coefficient of variation. For
related metrics, see e.g. ?.
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Abundance-weighted metrics

Functional regularity index (FRO). An abundance-weighted measure of trait evenness,
based on trait differences between adjacent species on the trait axis scaled by the total
abundance of the pair (?).
Functional divergence (FDvar). Measures the abundance-weighted mean of the deviation
of species traits from the mean species trait. A high functional divergence signals high
niche differentiation (?).
Community-wide abundance-weighted distance.

∑
all pairs di jnin j, where i and j represent

two species, n is their abundance, and d is the absolute value of the trait difference (?). This
index should be higher in communities driven by niche differentiation than in communities
where trait value are unrelated to abundance. A similar metric, Rao’s quadratic diversity, is
defined as

∑
all pairs di jpip j, where p is the relative species abundance, pi = ni/

∑
k nk. It is the

expected dissimilarity between two individuals randomly sampled from the community
(?).

Multidimensional metrics

Functional richness (FRic), or convex hull volume. The hypervolume spanned by the trait
means of observed species in multidimensional trait space (??). It is the multidimensional
equivalent of the trait range, and hence suffers from the same problems as a metric for
niche differentiation.
Minimum spanning tree. A measure of the functional diversity spanned by the species in
a community. Essentially collapses multidimensional trait space into a one-dimensional
space. It is constructed by joining all species together in a tree, with branches weighed by
Euclidean distances in multidimensional trait space. Large trees and even spacing within
trees are indicative of niche differentiation (?).
Functional evenness (FEve). Measures the regularity with which species abundances are
distributed across the minimum spanning tree (?). It is a multivariate extension of the
functional regularity index (see above).
Multivariate functional divergence (FDiv). Multivariate analogue of FDvar. Calculates
the abundance-weighted deviations between species traits and the trait center of gravity in
multidimensional trait space (?).
Functional dispersion (FDis). The abundance-weighted mean distance between species
and their abundance-weighted centroid (?). It is related to Rao’s quadratic diversity, which
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expresses the mean Euclidean distance between two randomly selected individuals.

Metrics proposed to detect clustering on the trait axis

Trait clustering. Variation in trait differences between adjacent species on the trait axis
can reflect clustering if it is higher than expectations from a null (?). It should be noted
that many of the metrics listed above would work equally well to detect clustering, as that
would be reflected as the opposite direction from overdispersion in the metric.
Distribution of species richness along the trait axis. Based on the idea that similarity in
fitness between similar species, coupled with partitioning of the trait axis into niches, may
lead to an uneven distribution of species along the axis (?).
Distribution of distance to nearest abundant species. Proposed by ? for genetic se-
quences2 of gastrointestinal organisms as an alternative to rank-abundance plots. A
proportion of the sequences is arbitrarily selected as modal (highly abundant), and the
distribution of distances of all other sequences to their nearest modal sequence (the most
similar modal sequence) is obtained and compared with the expected distribution from a
neutral community. However, appropriate null models must be used so that clustering
from mutation alone can be discarded, see ? (Chapter 6).

Potential sources for further metric development

Time series analysis. Species abundances on a trait axis can be taken as a time series,
with the trait axis being time and the abundances being the signal. Fourier and wavelet
analysis can be run to look for periodic waves of high and low abundance on the axis,
corresponding to the emergent groups (niches) found by ?.
Spatial descriptive statistics. Spatial descriptive statistics that are normally used in
geographic information systems (GIS), such as Ripley’s K, could be used to measure the
degree of clustering in the distribution of species trait values in trait space. Clustering in
trait space, as determined by such metrics, would indicate filtering, while overdispersion
would indicate niche differentiation. This would be especially useful in multivariate
analyses.
Trends in abundance as a function of distance to niche centers. Based on the idea
that niche differentiation will lead to clustering, metrics focusing on patterns of species
abundances as a function of the position of a species in relation to others within a cluster

2Specifically, operational taxonomic units, a commonly used proxy for species in microbiology.
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could prove useful. To our knowledge, this has not been investigated yet, and remains a
promising line of research.
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2.10 Figures

Figure 2.1: The niche overlap rule.A. MacArthur and Levins (1967) concluded that if the
separation d between nearest-neighbors were much smaller than the standard deviation
w in resource use curves, coexistence would not be possible. B. The range of parameters
allowing 3-species equilibrium (“coexistence bandwidth”), as a function of niche overlap,
d/w. For simplicity, resident species 1 and 3 are chosen to have the same carrying capacity,
K1 = K3. The bandwidth (shaded area) is narrow for similar species (0 < d/w � 1),
and disappears as d/w approaches zero (adapted from May 1973). C. “The closest niche
overlap d/w consistent with community stability in a randomly varying environment with
fluctuations characterized by variance σ2/K. Over a wide range, the variance has little
influence on the species packing distance for a number of surviving species n > 2” (from ?).
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Figure 2.2: When separation between species is defined in multidimensional space, limiting
similarity may be hidden from the viewpoint of a single axis. Here, even though species
are evenly distributed when the full 2-dimensional trait space is considered, such structure
is lost when we take a projection onto a single axis. For example, the coefficient of variation
(CV) of the adjacent-neighbor distances between the projections on the axis shown above is
0.9. In contrast, the CV in 2-D is 0. When compared with 10,000 null distributions with the
same number of species and same first and last positions but random positions in between,
almost half of the null CVs are found to be lower than 0.9. Thus the assemblage above, as
seen from that axis, would be indistinguishable from random. Note that different angles
between the orientation of the lattice and the axis will lead to different CVs and p-values.
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Figure 2.3: Emergent clusters. A. Transient regime in the MacArthur-Levins model. The
community is initially packed with species lined along the trait axis. Before the final state
of species at their limits to similarity is reached, clusters are formed around the favored
sites on the axis. B. Outcome when immigration is added to the MacArthur-Levins model.
The clusters differ from A in that they are maintained by immigration, and are thus a
permanent feature of the community. This pattern was highlighted in (?) (Chapter 2).
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Figure 2.4: Niche mechanisms and spatial scales. Top panels: representation of niche
assembly operating at different spatial scales. Different symbols represent individuals from
different species distributed spatially. A: Case where coexistence relies on a heterogeneous
environment. Species traits associate with environmental condition (represented by
shading color). In this scenario, evidence of niche assembly is stronger at intermediate or
large scales rather than the neighborhood scale. B: Case where the coexistence mechanism
acts at the smallest scale, such as Janzen-Connell effects. In that case, evidence for trait
dispersion is strongest at the neighborhood scale. Three sampling scales are shown in
each scenario (dashed squares). C: Compared to a null assemblage, dispersion in local
samples can be expected to decrease from small to intermediate or large scales if assembly
mechanisms operate at the immediate vicinity of individuals (grey curves), but increase if
assembly mechanisms rely on environmental heterogeneity (black curves).
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Figure 2.5: Effect of intraspecific variation on competition. We consider competition
between individuals with traits x1 and x2 following α(x1, x2) = exp[−(x1 − x2)2]], as in ?, and
compare the strength of competition estimated from species mean trait values, α(x̄1, x̄2) to
the average strength of competition between pairs of non-conspecific individuals, α(x1, x2).
A and B: Consider two species whose trait distribution and means are shown in the black
and grey curves and lines, respectively. If intraspecific variation is neglected, competition
is overestimated when the two species have the same means (A), but underestimated
when the distance between the species means is large compared to the trait spread (B). C:
The ratio α(x1, x2)/α(x̄1, x̄2) increases from lower to higher than 1 with distance between
species means. For comparison, if competition depends linearly on species positions (black
curve), intraspecific variation brings no difference, on average, to the competition between
homogeneous species.
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Chapter 3

Species packing in nonsmooth competition models

Abstract

Despite the theoretical possibility for competitive dynamics to allow coexistence of species
with arbitrarily similar traits, prior work has shown that this should not occur in nature.
A key reason is that known instances of continuous coexistence are fragile, requiring
environmental conditions to be just right: a small fluctuation leads back to the classical
limiting similarity predictions. Here we present and refute a potential challenge to limiting
similarity. Robust continuous coexistence can arise if competition between species is
modeled as a nonsmooth function of their differences—specifically, if the competition
kernel (differential response of species’ growth rates to changes in the density of other
species along the trait axis) has a nondifferentiable sharp peak—a “kink”—at zero trait
difference. The difference in predicted behavior stems from the fact that when the kernel
is smooth, competition declines only to second order with species trait differences when
those differences are small, creating strong competitive interactions between very similar
species. Kinked kernels, on the other hand, decrease linearly, which dramatically relieves
interspecific competition even between extremely similar species. We investigate what
mechanisms lead to kinked kernels and find that they are created by discontinuities in
resource utilization. We argue that such sudden jumps in the utilization of resources are
unrealistic and all but logically inconsistent, and therefore one should expect kernels to be
smooth in reality.
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3.1 Introduction

The Darwinian view of life can be summarized as follows: 1) competition between
similars is too strong for coexistence to happen, and the ensuing competitive exclusion
favors the more fit type, thus driving natural selection and the evolution of all the marvelous
adaptations on our planet; and 2) competition between sufficiently dissimilars can be
reduced to a level where there is no competitive exclusion, leading to coexistence and
the fantastic diversity of life we see around us. Darwin’s insight does lead to some
natural questions: what do species have to be different in to coexist, and just how much
dissimilarity is sufficient to avoid competitive exclusion?

The first question was the main focus of early competition theory (???). The conclusion
was that at equilibrium, no two species may consume the same resources. Later ? noticed
that, from a mathematical point of view, there is no essential difference between what we
would call a “resource” and all other possible things that provide a negative feedback loop
between growth rates and densities. These generalized resources (called limiting factors by
Levin, and regulating factors by ?, p. 288 and ?, p. 146) are the things then that species have
to utilize differently in order to coexist. Hence, traits associated with resource consumption
(or, more generally, population regulation) are expected to differ among coexisting species:
if bird populations are limited by seeds of various sizes, then differences in beak size would
indicate specialization to different resources and therefore ecological differentiation.

The second question, how much interspecific dissimilarity is needed for coexistence,
becomes important if there are infinitely many resource variables, as, e.g., in the case of a
seed size continuum. The most important early result concerning this problem is by ?, who
demonstrated that limiting similarity (i.e., a tendency towards the spacing of phenotypes
along the trait axis with exclusion zones in between) is the expected equilibrium behavior.
However, their conclusions came into doubt when later work (???) demonstrated that
not only are there no strict limits to similarity, but it is even possible for a continuum of
species to stably coexist. These results lead to the paradoxical situation where, on the one
hand, competitive exclusion seemed to be an irrelevant idea for ecology, but on the other
hand nobody ever questioned the reality of Darwinian natural selection, which is strictly
dependent on the ecological process of competitive exclusion between similar heritable
phenotypes.

However, later it has been observed that while there are no formal limits to similarity,
the more tightly packed a community is, the less robust it is against perturbations of model
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parameters (???). In particular, it has been shown (?) that robustness (i.e., the volume in
parameter space allowing for stable coexistence) always decays to zero with increasing
similarity in any model of coexistence. Analogously, ? proved an important theorem,
demonstrating that if a continuum of species coexist, there always exists a perturbation
of arbitrarily small amplitude that would destroy that coexistence. The extreme fragility
of tightly packed communities leads to a reinterpretation of the old limiting similarity
principle. Instead of asking how similar the species may be, we ask how robust any given
coexistence pattern is. Since tightly packed species are so fragile, and random parameter
variation is inevitable in a noisy environment, the default expectation for model behavior
and empirical observations will still be limiting similarity — although the precise limits
emerging will depend on model details. Thus, the apparent paradox of how natural
selection could be a driving force in biology when there are no formal limits to similarity
has been resolved by shifting the focus from the stability of coexistence to its robustness.

Here we show that there is another potential theoretical challenge to the expectation of
limiting similarity. We demonstrate through numerical calculations that there are several
cases where, though perturbations of arbitrarily small amplitude may still lead to the
extinction of certain species (as is guaranteed by the Gyllenberg-Meszéna theorem), the
general pattern of continuous coexistence is in fact quite robust. We will call situations
where continuous coexistence is not entirely destroyed by perturbations robust continuous
coexistence. What the models producing robust continuous coexistence have in common is
that their competition kernels, defined as the differential response of the growth rate of the
species with trait x to a change in the density of the species with trait y, is nondifferentiable
whenever x = y, i.e., the kernel possesses a sharp peak or even a discontinuity at zero
trait difference. This is in contrast with the classical practice of modeling the competition
kernel as a strictly smooth function (and by smooth we will mean “differentiable at least
once” throughout the chapter), usually of Gaussian form (but see ??). We will say that
such kernels possess a “kink” at the point of self-competition. We then further motivate
our hypothesis that the property of possessing a kink is the key to robust continuous
coexistence through two analytical arguments. The first one is based on a two-species
coexistence scenario: we show that under this property of the competition kernel, limits to
the similarity of two species disappear as long as certain (not very restrictive) conditions are
satisfied. The second argument is based on the asymptotic properties of Fourier transforms,
showing that models with smooth kernels tend to be more fragile than models with kinked
ones. Finally, we discuss the mechanisms that lead to kinked kernels in the first place.
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However, in light of these mechanisms, we argue that nonsmooth competition is
unrealistic, i.e., it is not an accurate representation of competition that is expected to occur
in nature. We base this argument on a demonstration that kinked kernels will not occur
in the presence of intraspecific variation. Even in the absence of intraspecific variation,
environmental variation would still lead to the smoothing out of kinked kernels. Therefore,
we argue that one in fact should not expect kernels to be kinked, and therefore limiting
similarity is still the expected behavior for stably coexisting species.

Competition kernels which are kinked according to our definition have been used in
the context of the competition-colonization model (??), the competition-mortality tradeoff

model (?), a model of seed size evolution (?), models of superinfection (?), the Lotka-
Volterra competition model (???), and the tolerance-fecundity tradeoff model (?). Some
of these studies (???) point out that sharply asymmetric competition (in which the better
competitors have a much larger influence on the poorer competitor than vice versa) may
lead to higher diversity and therefore tighter species packing along the trait axis, and ? and ?
also emphasize the compromised realism of the assumption of sharp asymmetry. However,
none of this prior work has studied the robustness of coexistence patterns predicted by
these kernels, or identified the key property of the competition kernel influencing predicted
patterns and their robustness. Our results here suggest that for considering the question of
how much coexistence can be robustly generated by a given mechanism, the model of that
mechanism should be constructed with care. In particular, although kinked kernels can
provide a simpler, more analytically tractable description of competition mechanisms (as
in, e.g., the competition-colonization tradeoff model), they lead to a vastly different answer
to how much coexistence is to be expected. Note however that a key theme emerging
from prior work is unchanged: some system-specific limits to the similarity of species
along trait axes should be expected in practice, i.e., there should exist a minimum trait
distance between stably coexisting species in any model, but this minimum distance will be
different from model to model. Hence our work here provides development of the theory
supporting the search for patterns of dispersion in trait-based community ecology (?????).

The chapter is structured as follows. After building the model framework and reviewing
some of the better-known results emerging from it in Section 3.2, we go on to show examples
of the model with kinked kernels (Section 3.3), which invariably produce robust continuous
coexistence. Next, in Section 3.4 we give some mathematical arguments for why kinked
kernels would have this property, but not smooth ones. Finally, in Section 3.5 we derive the
conditions that lead to kinked kernels, and demonstrate that under realistic circumstances
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one should always expect kernels to be smooth.

3.2 Background

3.2.1 Models of competition around equilibria

We wish to study the equilibrium patterns of competing organisms that vary in a single
quantitative trait x. This trait parameter may assume any value within certain limits:
x ∈ [x0, xm] ⊆ R. We call the set of possible trait values x the trait axis. The canonical
example for such a system is a community of birds with beak size x whose competition is
mediated by the consumption of seeds of various sizes: this example is good to keep in
mind, though our treatment will not be system specific. The most general continuous time,
continuous density model within this framework reads

dn(x)
dt

= n(x) r(n,E). (3.1)

Here n(x) is the abundance distribution of traits, n(x) dx measuring the number (or density)
of individuals with trait values between x and x + dx. While we write down differential
equations to describe how n(x) evolves as a function of time, we are primarily interested
in n(x) under equilibrium conditions — consequently, we simply write n(x) instead of
n(x, t). The symbol r is the per-capita growth rate, which is a functional of the densities
and all density-independent parameters, denoted by E (which could also depend on trait
value). In principle, this equation could still produce arbitrarily complicated behavior.
Therefore from here on we make the assumption that the system converges to some fixed
point attractor. Then the per capita growth rates may be linearized around the fixed points.
Denoting the equilibrium density distribution by n∗, we get

dn(x)
dt
≈ n(x)

(
r(n∗,E)︸ ︷︷ ︸

0

+δr(n,E)
)

= n(x)
(∫ xm

x0

δr(x)
δE(y)

δE(y) dy +

∫ xm

x0

δr(x)
δn(y)

δn(y) dy
)
,

(3.2)
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where r(x) is shorthand for r (n(x),E(x)) and the δ denotes functional differentiation (for
those unfamiliar with functional derivatives, note that the expression

δr(x) =

∫
δr(x)
δn(y)

δn(y) dy,

where x and y are continuous variables, is precisely analogous to the formula dri =∑
j(∂ri/∂n j)dn j where i and j are discrete indices; see, e.g., ? for the precise definition).

Denoting the first term of the expansion by c(x) and the functional derivative δr(x)/δn(y)
by −a(x, y), this may be rewritten as

dn(x)
dt

= n(x)
(
c(x) −

∫ xm

x0

a(x, y)δn(y) dy
)
. (3.3)

Using the fact that δn(x) = n(x)− n∗(x), this dynamical equation can be brought to the usual
Lotka–Volterra form:

dn(x)
dt

= n(x)
(
c(x) −

∫ xm

x0

a(x, y)
(
n(x) − n∗(x)

)
dy

)
, (3.4)

or
dn(x)

dt
= n(x)

(
c(x) +

∫ xm

x0

a(x, y)n∗(y) dy︸                          ︷︷                          ︸
r0(x)

−

∫ xm

x0

a(x, y)n(y) dy
)
, (3.5)

and so
dn(x)

dt
= n(x)

(
r0(x) −

∫ xm

x0

a(x, y)n(y) dy
)
, (3.6)

where r0(x) is an effective density-independent growth term. (Note that the form of the
equation preferred by most textbooks is recovered through the definitions r(x) = r0(x),
K(x) = r0(x)/a(x, x), α(x, y) = a(x, y)/a(x, x)). This equation applies around any fixed point
equilibrium; the linearity of the approximation ensures equivalence with the Lotka–Volterra
equations.

The function a(x, y) is called the competition kernel. It measures the effect of a change
in the abundance of species y on the growth rate of species x. In general it may be an
arbitrary function of its arguments, but since we are interested in competitive systems,
we shall make two assumptions. First, the kernel has to be nonnegative; this means that
the growth of any one species necessarily inhibits the growth of the others and so there
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are no mutualistic and/or exploitative interactions present. Second, the kernel should
decrease with increasing |x − y|: competition is assumed to be stronger between more
similar phenotypes. Without this assumption, being sufficiently different in phenotype
would not confer an advantage and so there would not be any interesting coexistence
patterns to analyze in the first place.

3.2.2 The fragility of continuous coexistence solutions

As mentioned in the Introduction, the original idea of strict limits to similarity had
to be abandoned when it was demonstrated that even in the original Lotka–Volterra
model (where the idea was first proposed) it is possible to have the stable coexistence of a
continuum of species (?). However, such coexistence is extremely sensitive to perturbations
of model parameters and is therefore not expected to occur under realistic circumstances.
Let us investigate the original example of Roughgarden and its behavior under model
perturbations. From Eq. (3.6), the equilibrium condition reads

r0(x) =

∫ xm

x0

a(x, y)n(y) dy (3.7)

for any species with positive density. Assuming x0 = −∞, xm = ∞, and the functional forms

r0(x) = exp
(
−

(x − x∗)2

2w2

)
, (3.8)

a(x, y) = exp
(
−

(x − y)2

2σ2

)
(3.9)

for the parameters, it can be shown that the solution n(x) will also assume the Gaussian
form

n(x) =
w

σ
√

w2 − σ2
exp

(
−

(x − x∗)2

2(w2 − σ2)

)
(3.10)

as long as w > σ.
This solution is structurally unstable, i.e., a perturbation of arbitrarily small amplitude

may destroy it (?). Fig. 3.1 shows an example where the continuous coexistence pattern
collapses completely, even though the perturbation amplitude is small. Note that the
spacing between surviving species is almost perfectly even, as expected in this model for
the type of perturbation we employed (?).
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It is instructive to look at these results in light of the Gyllenberg-Meszéna theorem
(?). As a matter of fact, this theorem is a collection of several related results. But, for
our purposes, we only need to distinguish between two cases. The first one concerns
the equilibrium condition Eq. (3.7) in its full generality. It first assumes that, given the
continuous parameters r0(x) and a(x, y), an equilibrium solution n(x) is produced whose
support (i.e., values of x for which n(x) is nonzero) includes a domain of continuous
coexistence. Then the theorem states that there exists a positive function η(x) such that for
an arbitrarily small ε, if one replaces r0(x) by r0(x) + εη(x), the resulting perturbed solution
n̂(x) will not have the same support as n(x). In other words, some species are bound to go
extinct, no matter how small the disturbance is: continuous coexistence is, in this sense,
fragile. Notice that the theorem does not say that continuous coexistence as a whole is
going to collapse, merely that certain species will go extinct. However, a stronger version
of the theorem, guaranteeing that an arbitrarily small perturbation can break down all
continuous coexistence and lead to strict spacing can be proven for the special case of
a(x, y) = a(x − y), where a(x − y) and r0(x) are analytic functions of their arguments.

This second, stronger theorem applies to the example in Fig. 3.1, since the parameters
are all analytic. Therefore it is no surprise that continuous coexistence is completely
destroyed. The next section will explore what happens if the parameters are not chosen
to be analytic. It will be shown that spacing is still expected for kernels that are smooth,
i.e., differentiable at least once: though technically speaking the stronger version of the
Gyllenberg-Meszéna theorem does not apply, the results look as if it did. However,
when the kernel becomes nondifferentiable at zero trait difference, the situation changes
drastically.

3.3 Demonstrating robust continuous coexistence under kinked ker-

nels

Fig. 3.2 presents several examples of smooth nonanalytic kernels (column 1) that
support continuous coexistence (column 2). Our method for generating these solutions
was to first choose a positive a(x, y) and n(x) arbitrarily, then use the equilibium condition
Eq. (3.7) to obtain the corresponding r0(x) by performing the integration. Then the function
r0(x) was perturbed and we obtained the solution to the perturbed problem by numerically
integrating Eq. (3.6) (column 3). The four examples presented differ in whether the kernel
is a function of trait diference only (a(x, y) = a(x − y), rows 1 and 2, or a(x, y) , a(x − y),
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rows 3 and 4), and in whether the kernel is symmetric or not (a(x, y) = a(y, x), rows 1 and 3,
or a(x, y) , a(y, x), rows 2 and 4).

In all cases, continuous coexistence is completely lost following the perturbation, and
only a finite number of phenotypes persist, more-or-less evenly spaced out. The behavior
of these models is therefore indistinguishable from the one we expect when the kernel
a(x, y) = a(x− y) is analytic (to which the strong version of the Gyllenberg-Meszéna theorem
applies). We did not prove it mathematically, but based on our simulation results we will
take it for granted that in all cases when the competition kernel is a smooth function of
its arguments continuous coexistence collapses after perturbation and limiting similarity
is recovered. In other words, a tightly packed community is extremely fragile to model
perturbations, both with smooth and analytic kernels.

The situation is entirely different if the kernels are kinked (nondifferentiable at zero
trait difference). Fig. 3.3 is analogous to Fig. 3.2, except that all kernels are kinked, which
is evident from their graphs in column 1 (they all possess a sharp peak at each point where
x = y). In these examples, though a few species do go extinct after perturbation, continuous
coexistence itself is not eliminated: most regions on the trait axis still have arbitrarily similar
species coexisting. This is exactly the situation we called robust continuous coexistence in
the Introduction. Nondifferentiability at zero trait difference therefore has a tremendous
impact on the robustness of the coexistence of similar species.

The perturbed densities in column 3 of Fig. 3.3 are not very different from their
unperturbed counterparts (column 2), except in the direct vicinity of the perturbation. The
effects of the perturbation therefore seem to be very local: beyond a certain distance, the
coexistence pattern behaves as if no perturbation would have occurred at all. This distance
depends on perturbation size, as Fig. 3.4 demonstrates: the larger the perturbation, the
larger the exclusion zone in which species are driven extinct. Beyond that zone, however,
coexistence is unaffected.

3.4 Kinked kernels and robust continuous coexistence

Why do kinked kernels lead to robust continuous coexistence while smooth kernels do
not? We present two mathematical arguments why this is so: a two-species coexistence
analysis and a multispecies one based on simple properties of Fourier transforms.

Consider two species that are extremely similar along the trait axis. The difference in
their r0(x) values may then be expanded to linear order in the trait difference, neglecting
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higher order terms. If the competition kernel is smooth, then the smallest nontrivial order
of expansion of the kernel around zero trait difference is quadratic, since the kernel has a
maximum there. Hence, to first order, the competitive effect of one species on itself is equal
to its effect on the other and vice versa. Competition is therefore not reduced between the
species: coexistence will in general not be possible (??). On the other hand, if the kernel is
kinked, the linear-order decrease in competition is not zero anymore and so competition
may immediately be reduced to tolerable levels where the two species can coexist, even for
arbitrarily similar trait values. The abrupt decrease in competition in the case of kinked
kernels brings about the possibility of the competitive coexistence of arbitrarily similar
species. The precise, quantitative form of this argument is found in Appendix C.

Suggestive as it is, this result only applies for two competing species. We know and
have seen in Sections 3.2 and 3.3 that smooth kernels do sometimes allow for continuous
coexistence, so the limiting similarity condition obtained for the two-species case does
not directly apply. However, the extreme fragility of such solutions signals that limiting
similarity is still to be expected in all cases where the parameters have not been precisely
fine-tuned. No such fine-tuning is required for retaining continuous coexistence in the case
of kinked kernels. In the remainder of this section we demonstrate the extra fragility of
continuous coexistence with smooth kernels via an argument based on Fourier transforms.
This comes at a price though: only the a(x, y) = a(x − y) homogeneous case may be treated
in this manner.

For the special case a(x, y) = a(x − y), the equilibrium condition Eq. (3.7) reads

r0(x) =

∫
∞

−∞

a(x − y)n(y) dy, (3.11)

where the limits of integration have been extended from minus to plus infinity for future
convenience (since r0(x) can be arbitrarily small outside a relevant domain of trait values,
this assumption is not really restrictive). Assume the equation has a positive solution n0(x).
Now we perturb the left hand side with the arbitrary function η(x), multiplied by the small
parameter ε:

r0(x) + εη(x) =

∫
∞

−∞

a(x − y)n(y) dy. (3.12)

This equation can be solved via Fourier transforms, invoking the convolution theorem.
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Defining the transform of a function f (x) as F
(

f
)

=
∫
∞

−∞
f (x) exp(−iωx) dx, we get

F (r0) + εF (η) = F (a)F (n), (3.13)

which yields the solution

n(x) = F −1

(
F (r0)
F (a)

)
+ εF −1

(
F (η)
F (a)

)
= n0(x) + εF −1

(
F (η)
F (a)

)
. (3.14)

The new solution is the sum of the unperturbed densities plus a perturbing term. As a side
note, the solution is clearly unstable if the transform of the kernel is zero for any given
frequency. This, however, will not happen if the kernel is chosen to be positive definite, i.e.,!

f (x)a(x − y) f (y) dx dy > 0 for all functions f , a simple consequence of which is that the
Fourier transform of the kernel is strictly positive (??). Therefore we assume now that the
kernel a(x − y) is indeed positive definite.

The ratio F (η)/F (a) is therefore finite for any given frequency, but might increase
without bounds as frequencies go to infinity. If the Fourier transform of the kernel decays
faster asymptotically than the transform of η(x), then no matter how small ε is, there will
always exist some frequency for which the ratio F (η)/F (a) is large enough to make the
solution n(x) nonpositive for certain x values, destroying the original coexistence pattern.

We are going to use the following simple property of the Fourier transform (e.g., ?).
A function proportional to a Dirac delta has a transform which does not decay to zero
asymptotically for large frequencies. A function with a finite jump (discontinuity) has
a transform that decays asymptotically to zero as ω−1. A continuous nondifferentiable
function’s transform decays as ω−2, a function which is differentiable once has a transform
decaying as ω−3, and so on: the Fourier transform of a k-differentiable function decays
asymptotically as ωk−2.

Returning to the ratio F (η)/F (a): due to the above property of the Fourier transform, if
the kernel is differentiable k times, then the perturbing function η(x) has to be differentiable
j > k times, otherwise the perturbing term in Eq. (3.14) will grow arbitrarily large,
irrespective of the value of ε.

To give a specific example, let us define the perturbing function as

η(x) =

∫
∞

−∞

u(x − z)u(−z)∫
∞

−∞
u(y)u(y) dy

dz, (3.15)
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where u(x) = 1 − |x/σ| for |x| ≤ σ and zero otherwise (the general shape of u(x) is given in
the top left corner of Fig. 3.2). It is easily seen that η(x) is differentiable twice, therefore we
expect its Fourier transform to decay asymptotically as ω−4. This is indeed the case, since
the transform of η(x) is

F (η) =
3e−2iωσ(eiωσ

− 1)4

2σ3ω4 . (3.16)

Now we choose a competition kernel that is differentiable more than twice, e.g., a Gaussian
one:

a(x − y) = exp
(
−

(x − y)2

2σ2

)
. (3.17)

Its Fourier transform is also Gaussian:

F (a) = σ
√

2π exp
(
−
ω2σ2

2

)
. (3.18)

The ratio F (η)/F (a) is
F (η)
F (a)

= e
1
2σ

2ω2 3e−2iωσ(eiωσ
− 1)4

2
√

2πσ4ω4
, (3.19)

which clearly gets larger and larger for high frequencies. Therefore the solution cannot
remain positive for all x: the perturbation will break the coexistence pattern, no matter
how small ε is.

If, on the other hand, we assume a different form of the competition kernel, one that is
kinked:

a(x − y) = exp
(
−
|x − y|
σ

)
, (3.20)

then η(x) will never be able to break the coexistence pattern for ε sufficiently small. The
Fourier transform of this kernel is

F (a) =
2σ

1 + σ2ω2 , (3.21)

decaying asymptotically as ω−2, as it should (since this kernel is continuous nondifferen-
tiable); F (a) therefore decays more slowly than F (η). Their ratio is

F (η)
F (a)

=
3e−2iωσ(eiωσ

− 1)4(1 + σ2ω2)
4σ4ω4 , (3.22)

asymptotically decaying as ω−2. It is well-behaved, its inverse Fourier transform will be
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finite — and therefore there exists a sufficiently small ε such that the original coexistence
pattern is unaffected.

Our result says that the more differentiable the competition kernel is, the larger the
class of perturbations that can break the continuous coexistence pattern it generates. More
specifically, if the kernel is differentiable k times, then a perturbation differentiable j < k
times will destroy the coexistence for any value of ε. Kinked kernels are nondifferentiable
and so the patterns they generate cannot be broken for an arbitrarily small ε by differentiable
perturbations: only nondifferentiable or discontinuous perturbations will be able to do
that.

3.5 How do kinked competition kernels emerge?

3.5.1 Discontinuous utilization curves lead to kinked kernels

So far we have been discussing the impact of kinked kernels on the outcome of
competition models. What biological factors would lead to such kernels in the first place
is a question that remains to be answered. In this section we answer the question in the
context of resource overlap models, i.e., we assume that if u(x, z) is the rate at which a
resource item of size z is consumed by a member of the species with trait x, then the kernel
will read

a(x, y) =

∫ zm

z0

u(x, z)u(y, z) dz, (3.23)

where z0 and zm are the maximum and minimum resource size, respectively (???). We
also assume that the utilization function is bounded and only depends on the difference
between resource type and trait: u(x, z) = u(x− z). Then the competition kernel will also be
a function of only the trait difference, since the amount of overlap depends only on how
far the two traits are from each other, not on their absolute positions along the trait axis.
(Appendix D generalizes the overlap picture to arbitrary ecological models, where it turns
out that it is always possible to write the kernel as the overlap of two different functions,
called the sensitivity and the impact; see also ?).

With these assumptions we show that simple jump discontinuities in the resource
utilization function are responsible for generating kinked kernels. The general analysis,
not dependent on any of these assumptions about a(x, y), is found in Appendix E, yielding
very similar results and interpretation.

A kinked kernel is nondifferentiable at zero trait difference, therefore its second
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derivative at that point is infinite. Our strategy is to take the second derivative of the
kernel and determine the conditions under which it would be infinitely large. First we fix
the trait value y to be zero without loss of generality, so that a(x − y) = a(x) is a function of
a single variable. The second derivative will read

a′′(x) =

∫ zm

z0

u′′(x − z)u(−z) dz, (3.24)

where the prime denotes differentiation with respect to the argument. Now let us fix x to
be zero as well:

a′′(0) =

∫ zm

z0

u′′(−z)u(−z) dz = −

∫ zm

z0

u′′(z)u(z) dz (3.25)

after a convenient change of variables z→ −z. Since in general the integral of the second
derivative of a function is finite if the function is continuous but infinite if it possesses a
jump discontinuity, we can already see that such discontinuities in u will make the kernel
kinked. Let us assume now that the function u is continuous except at a point z∗. This
means that u can be written as

u(z) = αΘ(z − z∗) + η(z), (3.26)

where Θ is the Heaviside unit step function, α is a constant and η(z) is a continuous function.
Substituting this form into Eq. (3.25) we get

a′′(0) = −α

∫ zm

z0

δ′(z − z∗)u(z) dz + . . . , (3.27)

where δ′ is the derivative of the Dirac delta function, and the ellipsis means all other terms
the derivative produces that have not been written out. (The derivative of a Dirac delta
might seem like a strange construct, but not only is well defined, it also behaves in exactly
the way one would intuitively expect, i.e.,

∫
δ′(x− y)u(y) dy = −u′(x); see ? for the rigorous

definition.) The integral of these other terms denoted by the ellipsis is necessarily finite and
so they cannot contribute to the nonsmoothness of the kernel. Performing the integration
with the help of the δ′ function yields

a′′(0) = −αu′(z∗) + . . . = −α2δ(0) + . . . , (3.28)

which is infinitely large. Note that if u has more than one discontinuity, a′′(0) will be a sum
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of similar terms, i.e., each discontinuity contributes minus infinity times a constant squared
to the expression above. Thus we have shown that the competition kernel is kinked if the
utilization function has one or more discontinuities somewhere in its domain. Since we
assumed u to be bounded, the converse will also be true (the most singular way a bounded
function may behave is to be discontinuous, and the integral of a continuous function is
differentiable). We therefore conclude that the competition kernel is kinked if and only if u
has discontinuities. Finally, note that this result applies even if u is not a function of the
difference of its arguments, and holds even if the kernel is not expressible via the overlap
of utilization functions; see Appendix E for the generalization.

3.5.2 Mechanisms inhibiting discontinuous resource utilization

How is this result to be interpreted? A discontinuity in the resource utilization function
means a species utilizing a certain resource is suddenly incapable of utilizing another,
arbitrarily similar resource with similar efficiency. Expanding on the example of the
competing bird species, one might imagine that each species has a box-like utilization
curve: within a certain range σ of the beak size, all seeds are equally consumable, but
outside of that limit, none at all (u(x − z) = u0 if |x − z| ≤ σ and zero otherwise). Then, no
matter how similar two species are, one will have access to seeds of certain sizes that the
other does not, and vice versa (Fig. 3.5). Thinking of the various resources as the factors
regulating the populations, this means that no matter how similar, the two species will
still be independently regulated, which is the key to species coexistence in general (??).
It follows that two species very similar along the trait axis are not really similar in the
relevant sense of the word: no matter how close they are in their traits, their way of relating
to the available regulating factors will be different, meaning that they are ecologically
differentiated and thus can coexist.

This simple interpretation is not quite watertight because any discontinuity will lead
to kinked kernels and therefore robust coexistence of arbitrarily similar species, not just
those discontinuities that occur between some finite value and zero. Still, even if the
jump occurs between two nonzero values, one can say that the species relate to arbitrarily
similar resources in a qualitatively different way, bringing about their automatic ecological
differentiation.

Natura non facit saltus — or does it? The question remains: what biological mechanisms
would lead to sharp discontinuities in the resource utilization curves of species? Although
one should not take the old Leibnitzian principle for granted (at least not in ecology), the
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question raised by ? is still a serious challenge: what qualitative difference could there
be between two bird species which only differ in that one has a beak 1µm larger than the
other, when clearly no one would even notice that there are two separate species to begin
with? The question may be analyzed more clearly if, instead of asking whether nature
exhibits jumps, we ask whether the kinds of models we use would exhibit them. Here we
give two arguments supporting the assertion that sudden jumps will in fact never occur in
the kinds of deterministic competition models we have been considering.

The first thing that has a smoothing effect is intraspecific variation in traits. Even if
the utilization function of an individual with a given trait is discontinuous, one must not
forget that not all individuals of a species are alike: as with all quantitative traits, there is
some variation around a mean trait value. Let the “raw” utilization function be u(x − z),
assumed to be discontinuous, and let the trait distribution within a species be p(x, x), where
x is the mean trait value. Then the species-level utilization function us(x, z) will be the sum
of the contributions of all individuals to consuming the resources, i.e.,

us(x, z) =

∫ xm

x0

p(x, x)u(x − z) dx. (3.29)

This function is continuous even if the trait distribution p(x, x) is not, since the integral
of a bounded discontinuous function is continuous. The only case when the original
discontinuities in u(x − z) are retained is when p(x, x) = δ(x − x), i.e., when all individuals
are exactly the same. In reality, most quantitative traits follow a normal distribution (e.g.,
?), where the variance may depend on the mean trait x:

p(x, x) =
1√

2πσ2(x)
exp

(
−

(x − x)2

2σ2(x)

)
. (3.30)

The effective, species-level utilization function is then given by

us(x, z) =

∫ xm

x0

u(x − z)√
2πσ2(x)

exp
(
−

(x − x)2

2σ2(x)

)
dx, (3.31)

which is continuous even if σ(x) is not.
The second smoothing mechanism comes from environmental variability. Even if all

members of a given species are perfectly identical, there is an inherent randomness in their
individual fates due to the unpredictability of their surroundings. Just as individuals of a
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species are not exactly identical, no two seeds of the same size are identical either: one may
be a little softer and thus may be opened by a bird with a slightly smaller beak, to give
an example. Then, even if for the time being we do assume all individuals of the species
to be identical, the discontinuity of the utilization curve will disappear, for the following
reason. Let us denote the “raw” utilization function, which now becomes a function of the
environment, by u(x − z,E), where E specifies the state of the environment. Moreover, let
us assume, as a worst-case scenario, that all individuals are perfectly identical: everyone
has trait x. But, since each individual experiences a given environment, the species-level
utilization curve will be the normalized sum of the raw curves over all individuals. Since
continuous-density models inherently assume very large population sizes, the sum may
be thought of as an integral over the probability distribution of E — which, by the logic of
the previous paragraph, will smooth out any discontinuities in resource utilization.

Consequently, discontinuous utilization curves are not to be expected in any realistic
ecological scenario. Since the emergence of kinked competition kernels is conditional
on those discontinuities, it follows that in reality competition kernels are always smooth.
kinked kernels emerge when model assumptions are too idealized or simplified. As we
have seen, there is a major difference between the behavior of smooth versus nonsmooth
models, which suggests siding with the more realistic smooth models when applying
ecological theory.

3.6 Discussion

We have considered the effects of kinked competition kernels on species packing and
coexistence along a trait axis. Kernels possess a “kink” if they are nondifferentiable when
two species have the exact same trait value. It turns out that such kernels are able to produce
patterns of continuous coexistence that are not entirely destroyed by model perturbations,
in contrast to what one would expect based on limiting similarity arguments. The intuitive
explanation for this behavior is the rapid decrease in competition between similar species:
nondifferentiability at zero trait difference means that a small change in the trait of one
of the species will lead to an immediate linear decrease in competition between them,
as opposed to the much slower quadratic decrease of smooth kernels. The mechanism
that produces kinked kernels to begin with is the sudden, discontinuous change in the
resource utilization functions of the species. We also concluded that such discontinuities
are unrealistic and that any real ecological situation would lead to continuous utilization
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functions and therefore smooth competition kernels.
Our treatment relied heavily on the Lotka–Volterra equations. Though Lotka–Volterra

models have mostly fallen out of favor and have been replaced by more mechanistic models
in modern ecological literature, one must not forget that any model may be linearized and
brought to a form equivalent to a Lotka–Volterra system near a fixed point equilibrium.
Then, as long as the system does not exhibit cycles, chaos, or other complex dynamics,
local analysis of the fixed points will lead to the understanding of the global behavior of
the model. This justifies having restricted our attention to Lotka–Volterra-type equations.

The argument that kernels decreasing faster around zero niche difference will lead to
more coexistence than smooth ones is the generalization of the intuitive argument given by
?, who were comparing the diversity predicted by a restricted set of kernels. In particular,
they were considering the class of kernels a(x− y) ∼ exp(|x− y|p), which is smooth for p ≥ 2
but kinked for 0 < p < 2. In their simulations 200 species were randomly thrown onto a
niche axis with fully periodic boundary conditions, then their dynamics was simulated
assuming Lotka–Volterra competition. What they found was that, for 0 < p < 2, species
thrown arbitrarily closely on the niche axis could stably coexist, while for p > 2 there
were always zones of exclusion between prevailing species, i.e., limiting similarity was
recovered. This result was interpreted in light of the fact that p > 2 kernels are more
box-like than 0 < p < 2 ones, and therefore competition between similars is stronger. The
authors’ main concern was the analysis of the limiting case p = 2 (Gaussian kernel), which
lies on the borderline between box-like and peaked kernels. In our parlance, p ≥ 2 kernels
are a subcategory of smooth kernels, while 0 < p < 2 ones are kinked. Work by the same
authors determined that positive definiteness of the kernel is required for the stability of
continuous coexistence solutions (?), and it so happens that for p < 0 ≤ 2 the kernel is
positive definite, but not for p > 2.

Similarly, ? analyzed the existence and stability of fixed point solutions in the
competition-mortality tradeoff model. They pointed out that the competition kernel’s
discontinuity allows for the coexistence of a continuum of species, but when the kernel
is smoothed out, continuous coexistence is impossible. They correctly identified the
discontinuity of the kernel as the key property generating continuous coexistence, and
also argued that in reality the kernel should be smooth.

These results are all in agreement with ours, but are not the same. We were investigating
robustness, not stability: what happens to a given solution if model parameters are
perturbed? In the work of ? robustness of continuous coexistence solutions with the
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smooth kernel did not even come up, as they demonstrated that such a solution does not
exist in the first place. However, they did not analyze the robustness of the continuous
coexistence solution when the kernel is unsmoothed and therefore kinked. In light of our
work, they would have found that continuous coexistence is robust (see also ?). In the case
of the work of ?, they assigned the same r0 value for all species and stuck to that choice,
so the issue of robustness was not investigated. We can now say that they would have
found robust continuous coexistence for 0 < p < 2 kernels and unrobust one for p = 2, the
Gaussian case. For p > 2 the fixed point is unstable and so the issue of robustness does not
even arise.

The difference in behavior between smooth and kinked kernels is relevant in the context
of the debate over the relative importance of stabilizing vs. equalizing mechanisms (?). ?
showed that the invasion growth rate of a species can be approximated as a sum of two
terms, as long as the interactions within the community are purely competitive and all
species but the invader are at their stationary equilibria. The first (“equalizing”) term is
always proportional to the difference (or ratio, in discrete time) of the intrinsic rates of
growth, while the second (“stabilizing”) term depends on the equilibrium densities of
the resident species. Without stabilization, two species may only coexist if their intrinsic
growth rates are exactly equal under all circumstances — a nongeneric scenario. However,
as ? pointed out, if the intrinsic rates are nearly equal, then even a very slight amount of
stabilization will be enough to guarantee long-term coexistence. This seems to suggest
that coexistence by virtue of species similarities, as opposed to differences, could lead to
stable coexistence: although similar species would only have very weak stabilizing terms,
their intrinsic growth rates will also be very similar and so the weak stabilization will still
be enough to ensure a positive invasion growth rate for all species. This idea has spurred a
body of literature on the coexistence and evolutionary emergence of similar species (????).

The concept that species with almost-equal intrinsic growth rates can coexist via
relatively weak stabilization is surely uncontroversial. However, the situation is not
that simple when the trait-dependence of the two terms is considered. We have seen in
Section 3.4 (with the mathematical underpinning in Appendix C) that the equalizing term
(difference in r0) and the stabilizing, frequency dependent term do not approach zero at the
same rate in general: the former is proportional to the difference in trait, while the latter
is proportional to the square of the difference in trait. The stabilizing term is therefore
incapable of overcoming differences in r0 if the species are too similar — except when the
competition kernel is kinked. For kinked kernels the stabilizing term changes linearly with
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trait difference, just like the equalizing term, and so it can compensate for differences in r0.
In conclusion, only models with kinked kernels can allow for the robust coexistence of
similar species; for instance, in the work of ?, only transient coexistence of similar species
was possible with a Gaussian competition kernel, but stable coexistence was observed
when an extra term was added to the equations that rendered the kernel kinked.

Does the conclusion that models should be smooth mean one should avoid models
possessing kinked kernels? As mentioned before, several well-known models exhibit
this property, e.g., the hierarchical competition-colonization tradeoff model (??), the
competition-mortality tradeoff model (?), a model of superinfection (?; in these three
models the kernel is not even continuous), and the tolerance-fecundity tradeoff model
(??). Despite their nonsmoothness, they do capture important features of the world. In
particular, they drive attention to potential coexistence-enhancing tradeoffs which could
operate in smooth models as well, although the precise amount of diversity predicted by
the two approaches will be different. Smooth versions of these models, along with some
consequences of the smoothing (in agreement with our results) are given in ?. It turns out
that the smoothed models are somewhat more inconvenient to handle, both analytically
and numerically. Therefore even if nonsmooth models are less realistic, they could be
good as a first proxy to assess the consequences of certain assumptions because they are
simpler to solve. Perhaps the main lesson to be learned is not that kinked models should be
eschewed, but rather that one should be careful not to push the simplifying assumptions
too far: when a model like the competition-colonization tradeoff model produces arbitrarily
tight species packing (?) and even robust continuous coexistence (?), we know that this
result is just an artifact produced by the kernel and that in reality the kernel is smooth and
no robust continuous coexistence is expected.

Of course it is possible to have kernels which, though not kinked in the technical sense,
are “very peaked”, meaning that their second derivative at zero trait difference is large.
Continuous coexistence would be unrobust with these kernels, but still, we would expect
their behavior to approach that of kinked kernels. Although we have not looked into the
implications of such kernels in a rigorous way, both past results and common sense suggest
that the more peaked the kernel is, the tighter species packing it will allow for. For instance,
in the case of Gaussian kernels, tightness of packing depends on the competition width
(???), which in turn is proportional to the kernel’s second derivative at zero trait difference.
In this way, one would expect the spacing between species to shrink as the kernel gets
more and more peaked. Finally, in the limit where the second derivative of the kernel goes
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to infinity, the nearest-neighbor distances shrink to zero, i.e., robust continuous coexistence
is recovered. Thus, though kinked kernels are unrealistic, it might still be possible to have
fairly tight species packing via kernels that are close to being kinked.

Needless to say, the theoretical expectation of limits to similarity may be violated in
particular cases for several reasons. One obvious possibility is that the system has not yet
reached its equilibrium and so some of the species are still on their way to extinction. Also,
it might be that coexistence is maintained through multiple trait axes. If there are several
important axes and we concentrate on only one of them, what we see is the projection of
all species onto a single axis and depending on how traits map onto regulating factors the
distribution of species expected along one trait axis may differ from a spaced pattern. Yet
another reason why spacing could be obscured is that metacommunity processes may play
a role as well: there is a constant stream of immigrants to a particular site, replenishing
those species that are on their way to extinction (?). In this case the spatial scale at which the
observation is carried out could be too small to see the effects of competition on community
structure as a whole. Finally, it is certainly possible that the trait under consideration does
not map onto any niche axis, i.e., a linear array of regulating entities. We usually think
that the beak size of Darwin’s finches corresponds to the size of the food they eat, and
since we think of food of a certain size as providing potentially independent regulation
from all the other types of food, we may justifiably claim that beak size as a trait is an
indicator for niche differentiation. But in other cases such trait differences might not be
indicative of adaptation to different regulating factors. The drought-tolerance of plant
species coexisting in arid regions does not display limiting similarity, because drought
acts as an environmental filtering agent and not as a regulating factor, let alone a whole
continuum of them.

Despite these caveats, if spacing is always expected in competitive guilds then work
aimed at discovering spacing patterns in data could lead to a better understanding of
which trait differences allow for niche differentiation. Apart from the difficulties already
mentioned, the problem of discerning limiting similarity from data is complicated by
the fact that there are no universal, system-independent limits to similarity (??) and that
even when one has limiting similarity the spacing between adjacent species need not be
uniform (??). Discussion of the methodological tools needed to overcome these problems
is beyond the scope of this chapter. Empirical as well as methodological research of limits
to similarity, however, remains an important direction within community ecology (?????),
and should remain so in the future.
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3.7 Figures

Figure 3.1: Equilibrium patterns produced by a Gaussian competition kernel. The first
panel shows the equation and the graph of the competition kernel used; ∆x = x − y. The
second panel gives the formula for n(x) and the curves of n(x) and r0(x) (which can be
obtained by substituting the given forms of a(x − y) and n(x) into Eq. (3.7) and performing
the integration). The third panel presents what happens to the equilibrium state when r0(x)
is perturbed. We obtained the perturbed equilibrium n̂(x) by first adding a small perturbing
function η(x) to the original r0(x) to obtain the perturbed intrinsic rates r̂0(x) = r0(x) + η(x),
then simulating the dynamics via Eq. (3.6) until it reached its stable equilibrium. The
function Λ(x) involved in the perturbation in panel 3 is defined as 400(1− |x|) for −1 < x < 1
and zero otherwise. The argument is multiplied by 400 since this was the number of bins
the trait axis was divided into in our simulations — this way the perturbation is effectively
point-like, i.e., zero everywhere except at x = 0.5. In panels 2 and 3, r0(x) and r̂0(x) have
been scaled so they would fit on the same plot as the densities.
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Figure 3.2: Equilibrium patterns produced by smooth nonanalytic competition kernels.
Layout and notation and methods as in Fig. 3.1, with four rows instead of one; u(x) =
1 − |x/0.1| if |x| ≤ 0.1 and zero otherwise; Θ(x) is the Heaviside unit step function. The four
rows present four different examples of continuous coexistence and the coexistence pattern
obtained by slightly perturbing the intrinsic rates of growth. Continuous coexistence
collapses in all cases following perturbation.
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Figure 3.3: Equilibrium patterns produced by kinked competition kernels. Layout, methods,
and notation as in Fig. 3.2. Although certain species go extinct following perturbation in
all cases, continuous coexistence does not disappear.
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Figure 3.4: The effects of increasing perturbation size on a model with a kinked kernel. The
kernel used is a(∆x) = exp(−|x|/(2 · 0.12)) (its general shape is given by the top left corner of
Fig 3.3), and the unperturbed densities are n(x) = exp(−(x − 1/2)10/(2 · 0.00832)). Notation
is as in the previous figures. Panel A depicts the unperturbed solution. For sufficiently
small perturbations (panel B) the equilibrium abundances are altered but no extinctions
occur. For larger perturbations (panels C, D and E), some species go extinct, but beyond a
well-defined exclusion zone coexistence is just like it was without the perturbation. As the
perturbation size increases, the exclusion zone progressively increases until all but one
single species are excluded (panel F). Note that this happens when the perturbation size is
approximately 1010 larger than the original function, i.e., the perturbation is astronomically
large compared to the original r0(x).
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Figure 3.5: Utilization curves of two species with traits x1 (solid line) and x2 (dashed line),
respectively. For the given box-like utilization function u(x − z), no matter how similar the
two species are, there will always be a range of resources (shaded in gray) that are utilized
exclusively by only one of them. This leads to the independent regulation of the species
and therefore to their coexistence, regardless of how close x1 is to x2.
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Chapter 4

Revising the tolerance-fecundity tradeoff; or On the

consequences of discontinuous resource use for limiting

similarity, species diversity, and trait dispersion

Abstract

The recently proposed tolerance-fecundity tradeoff model represents a step forward in the
study of seed size diversity in plant communities. However, it uses a oversimplified picture
of seed tolerance, with an infinitely sharp threshold: the probability that a seed tolerate
a given stress level is either 1 or 0. This invites a revision of the model, presented here.
We demonstrate that this simplification has large impacts on model behavior, including
altering predictions regarding limiting similarity, raising expected diversity levels, and
lessening expected spacing between species along the trait axis. Such dramatic impacts
ultimately stem from the fact that a discontinuity in the probability of tolerating a site
drastically reduces competition between similar species. This is one example of a class
of models with a non-differentiable peak in the competition kernel, which we recently
showed is produced by resource use unrealistically modeled as discontinuous, and affects
fundamental predictions regarding limiting similarity. This paper illustrates those general
results, and offers a revised model of the tolerance-fecundity tradeoff.

4.1 Introduction

In ecologists’ never-ending quest to understand coexistence of competing species,
tradeoffs are often assumed to be key (???). In the context of competition in plant
communities mediated by seed size, the most commonly used approach is to postulate
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an exchange between competitive ability and fecundity (or colonization ability): smaller
seeds are cheap and thus produced in great numbers, whereas larger seeds provide for
stronger competitive ability and thus the capacity to displace weaker individuals (???).
This competition-colonization tradeoff idea has been utilized by several authors since at
least the 70s (see ? and their references). However, the assumption that larger seeds have a
fixed competitive advantage over smaller seeds regardless of environmental conditions
lacks empirical support (???). Motivated by this mismatch between theory and empirical
observation, ? proposed a novel type of tradeoff model of seed size diversity, according to
which a tradeoff between fecundity (as measured by number of seeds) and tolerance to
stressful conditions such as drought and shade guarantee coexistence of species with seeds
of different sizes. Here, the advantage of the large seed over its lower-sized competitor is
contingent upon the stress level of the particular site they land on: the big seed is favored
only if the stress level is beyond the tolerance threshold of the small seed.

Although representing an improvement over competition-colonization models of seed
size diversity that did not contain an empirically supported element of contingency to
competitive advantage, the TFM as proposed by Muller-Landau is based on a highly
simplified picture of seed tolerance, and effectively, species’ use of habitat. In the model,
the size of a seed is associated with a tolerance threshold that defines its ability to survive
in a given patch: if the stress level in the patch is below that threshold, the seed can fully
tolerate the conditions in that patch, and its survival is limited only by competition with
other seeds; otherwise, the seed is simply unable to recruit. In other words, each species’
seed tolerance switches from 100% to 0% as stress increases past a threshold value, with
nothing in between. It is highly unlikely such an infinitely sharp transition would occur
in nature, where immanent small amounts of variation in phenotype or environmental
conditions experienced within a species would suffice to smooth out the transition.

Muller-Landau acknowledges this simplifying assumption and argues that it would
likely be of little consequence for the fundamental coexistence-generating nature of the
tradeoff described by the model (?). We agree. However, we point out that the assumption
has potential consequences to the level of coexistence that is possible. In this scenario,
no matter how similar the seed sizes of two given species, there will always be patches
perfectly accessible to species A, but utterly out of reach for species B. In other words,
niche overlap between two species is always limited, however similar they may be. Thus,
though the assumption may not be essential to guarantee coexistence per se, it may have
significant impacts on how much coexistence is allowed, and hence may impact how much
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diversity can be explained in practice by the tolerance-fecundity tradeoff.
It is the purpose of this article to demonstrate the strong implications of the discontinuity

in the tolerance function onto the tolerance-fecundity tradeoff model. First, we highlight
the implications of this assumption for predictions regarding coexistence of a continuum of
arbitrarily similar species (continuous coexistence, or tight packing in the real-world case of a
finite number of species) and the related concept of limits to similarity, which itself has had
a broad influence in ecology and evolution (?????). We then examine how this assumption
bears on predicted levels of diversity and trait dispersion. To do so, we develop a revised
model where the assumption is dropped, and examine how predictions are affected by this
change.

The notion that continuous coexistence is not possible in nature began with the work
of MacArthur and Levins (1967), who showed that, in a simple model of Lotka-Volterra
competition, stable coexistence of a set of three species requires some minimum spacing
between them on a trait axis. Despite later work showing that in fact continuous coexistence
can be produced in that simple model (?), ultimately it was proven that, for a wide class of
competition models, any possible continuous coexistence is not robust to small changes
in parameters, and in this sense these models always predict system-specific limits to the
similarity of stably and robustly coexisting species (?). Although technically possible given
that the proof does not extend to all possible competition models, examples of models that
actually predict robust tight packing have not been presented previously.

Here we show that Muller-Landau’s tolerance-fecundity tradeoff model predicts robust
continuous coexistence. Upon removal of the discontinuity in the model, however, the
model no longer admits continuous coexistence at all. Hence the original version sees no
fundamental limits to the similarity of species coexisting through this mechanism, whereas
the revised version predicts such limits. Further, we find that the revised model predicts
lower diversity and more detectable even spacing among species. Our demonstration
that the shape of the tolerance function, a central feature of the model, has a profound
and consistent influence on predicted levels of diversity and trait dispersion adds to
Muller-Landau’s contribution, and provides guidance to future empirical work regarding
the link between this shape and the degree to which maintenance of observed diversity
and dispersion in seed size can actually be attributed to the tolerance-fecundity tradeoff.

We note that the considerable differences in predictions found here are an example
of more general results from our recent work on the relationship between continuity in
resource use and robust continuous coexistence (?). We thus argue that our results extend
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to any model with this offending property, of which Muller-Landau’s model is by no means
the sole example. The general results we illustrate here using the tolerance-fecundity
tradeoff model as an example suggest caution when constructing models to study limiting
similarity, diversity, and patterns of trait dispersion.

4.2 The tolerance-fecundity tradeoff model

4.2.1 Original formulation

The dynamics of the tolerance-fecundity tradeoff model (?) are as follows. The
community is assumed to be saturated with adult individuals which pre-empt establishment
of propagules. Every time step, however, some individuals die, making sites available
to propagules and enabling competition among them – in fact, in this model competition
only occurs at the establishment phase. The number of seeds of a given species landing
on a site is assumed to be proportional to the product of the fraction of sites occupied
by that species, pk, and its fecundity, fk (i.e., no dispersal limitation is being considered –
Muller-Landau also examined chance dispersal limitation through a Poisson-distributed
seed rain and found no qualitative change in model behavior). Species are ordered by
fecundity level from f1 to fn, with species 1 being the least fecund (and most tolerant) and
species n being the most fecund (and least tolerant). In a fraction hk of the sites, species
k can fully tolerate the stress level, and in the remaining fraction it cannot tolerate it at
all. Then given all the seeds that reach and tolerate the same site, a lottery decides which
seed eventually recruits into an adult (Fig. 4.1A). Given those conditions, the population
growth rate of species k can be written as

dpk

dt
= m

 fk

n∑
i=k

hi − hi+1∑i
j=1 f jp j

− 1

 pk. (4.1)

The first term on the right-hand side corresponds to recruitment of new individuals,
and the second term reflects mortality. Both terms are proportional to species abundance pk

and mortality rate m (assumed constant across species for simplicity). The recruitment term
is proportional to the species’ fecundity fk, and total recruitment is a sum over recruitment
in colonizable patches, which include all the patches colonizable by species coming further
down the hierarchy. For each fraction of patches colonizable by one species i (i > k) but
not the subsequent species, hi − hi+1, recruitment there is weighted by the total number of
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seeds that could potentially colonize, Σ f jp j. Notice that hn < hn−1 < · · · < h1 and hk>n = 0
are assumed.

Note that Muller-Landau postulated an unambiguous association between a given
fecundity value (defined as the number of seeds produced by each individual of a certain
species) and a unique seed size. In other words, she assumed no noise in the relationship
between seed size and species fecundity. This enabled her to focus on fecundity as the trait
axis but draw from it conclusions about maintenance of seed size diversity. We will keep
this simplified scenario, and regard the fecundity axis as the trait axis for the remainder of
this article.

As just described, in Eq. 4.1 the recruitment term is a sum over the prevalence of
different types of sites, categorized by the number of species that can tolerate them. The
fact that the recruitment term can even be organized this way is the telltale sign of the
simplified picture of seed tolerance used in the model. Note that no matter how similar
two species i and i + 1 are in their seed size and fecundity, species i has unfettered access
to a proportion of the sites that species i + 1 has no access whatever, namely hi − hi+1 of
them. If seeds have some likelihood of tolerance of a given stress level other than 100%
or 0%, then that must be factored into a species’ probability to colonize a given site, and
subsequently sites cannot be sorted by who can or cannot tolerate them as above; instead
the stress level at each site must be considered.

4.2.2 Revised formulation

We now describe our revised version of the tolerance-fecundity tradeoff model. We
rewrite the model from first principles, maintaining the same basic dynamics as Muller-
Landau’s model, except that we now allow for species’ tolerance of a site to be a continuous
function of the stress level at that site (Fig. 4.1B).

We first note that for mathematical convenience we consider a pool of species forming
a continuum, with all possible fecundity values in the range [ f0, fm] represented, because
we will later study the potential for coexistence of arbitrarily similar species (‘continuous
coexistence’). Although such continuum is a mathematical abstraction that can’t occur in
nature, where only a finite number of species are available, we want to know how tightly
packed that finite number of species can be, or correspondingly whether there are limits to
the similarity of a finite set of coexisting species. Considering the possibility of continuous
coexistence enables us to see whether such limits exist.

Let us divide our total area into sites (each colonizable by at most one individual),
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characterized by their stress level σ. Let c be the total number of sites. Let n( f ) be the
number of individuals with fecundity f . Then

dn
dt

( f ) = (# of seeds that recruit)︸                        ︷︷                        ︸
f n( f )

∫
Q(σ, f ) dσ

− (death)︸  ︷︷  ︸
m( f ) n( f )

. (4.2)

Here m( f ) is the mortality rate, and Q(σ, f ) is the probability that a given seed from an
individual of fecundity f germinates in a site of stress level σ. Following Muller-Landau,
we do not include displacement terms: once an individual occupies a site, it cannot be
displaced by another until it dies. This reflects the assumption that competition occurs
only at the seed stage.

To determine Q(σ, f ), we need to examine the probability of a given seed to arrive at an
available site, and then consider its probability of successfully recruiting. Let T(σ, f ) denote
the probability that a seed produced by an individual of fecundity f arriving at a site of
stress σ successfully recruits there. Let c(σ) be the number of sites of stress level σ (thus
c =

∫
c(σ)dσ). The total number of colonizable sites of stress σ is equal to c(σ) minus the

number of occupied sites, or (c(σ)−
∫

n(σ, f ) d f ), where n(σ, f ) is the number of individuals
of fecundity f occupying sites of stress σ (note that n( f ) =

∫
n(σ, f )dσ). Therefore, the a

priori probability of a given seed landing on any of the empty sites of stress level σ per unit
time is (c(σ) −

∫
n(σ, f ) d f )/c. However, the seed has to survive the stress level of the site,

so this has to be weighted by T(σ, f ). Additionally, we need to consider the probability
that, once this seed gets there and is able to survive the local stress level, it wins over the
competition with rival seeds. This probability is just the inverse of the total number of
seeds arriving at the site and able to recruit there as well, namely (

∫
f n( f )T(σ, f ) d f )/c. We

therefore arrive at the stress-dependent probability of colonization:

Q(σ, f ) =
T(σ, f )

(
c(σ) −

∫ fm
f0

n(σ, x) dx
)
/c( ∫ fm

f0
y n(y)T(σ, y) dy

)
/c

=
T(σ, f )

(
c(σ) −

∫ fm
f0

n(σ, x) dx
)

∫ fm
f0

y n(y)T(σ, y) dy
,

where f0 and fm are, respectively, the minimum and maximum fecundity within the
community.

We should have an intuitive idea of the functional form of the function T(σ, f ): the
species with fecundity f should be able to tolerate stress levels below a certain threshold
s( f ) fairly well, but should be less successful at levels above that threshold. T(σ, f ) should
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tend to one at low σ and zero at high σ, and the transition between these extremes should
center at s( f ).

Putting together what we have so far, our model reads

dn
dt

( f ) =

(
f
∫ σm

σ0

T(σ, f )(c(σ) −
∫ fm

f0
n(σ, x) dx)∫ fm

f0
y n(y)T(σ, y) dy

dσ −m( f )
)
n( f ), (4.3)

where σ0 and σm are respectively the lowest and highest stress levels in the patch. It is
convenient to convert the absolute population abundances to proportions. This is done by
defining p( f ) = n( f )/c, so that

∫
p( f ) ≤ 1. Eq. 4.3 becomes

dp
dt

( f ) =

(
f
∫ σm

σ0

T(σ, f )(c(σ)/c −
∫ fm

f0
p(σ, x) dx)∫ fm

f0
y p(y)T(σ, y) dy

dσ −m( f )
)
p( f ). (4.4)

The model can be simplified by assuming saturation: each site is occupied and will only
become available through deaths. In this case, the proportion of sites of stress σ being
made available at any moment, c(σ)/c −

∫
p(σ, x) dx, is expressible as the number of deaths

that occurred,
∫

p(σ, x)m(x) dx. In the saturated case, therefore, we have

dp
dt

( f ) =

 f
∫ σm

σ0

T(σ, f )
∫

p(σ, x)m(x)dx∫ fm
f0

y p(y)T(σ, y) dy
dσ −m( f )

 p( f ). (4.5)

We can further simplify things by assuming uniform mortality across species: m( f ) = m.
We then get

dp
dt

( f ) = m

 f
∫ σm

σ0

r(σ)T(σ, f )∫ fm
f0

y p(y)T(σ, y) dy
dσ − 1

 p( f ), (4.6)

where r(σ) =
∫

p(σ, f ) d f is the proportion of occupied sites of stress level σ within the full
habitat (which in the saturated case is the total proportion of sites of level σ).

In words, Eq. 4.6 tells us that the dynamics of a species labelled by its fecundity f is
determined by a recruitment term and a mortality term, both of which are proportional
to the mortality given our saturation assumption. Mortality is being assumed a species-
independent parameter, and recruitment is the sum of successful recruitment in each class
of sites (defined by their stress level σ). Eq. 4.6 is our revised tolerance-fecundity tradeoff
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model.
In Appendix F, we show that Muller-Landau’s original formulation of the model can

be obtained from our revised formulation if to each species f there is an associated stress
threshold, s( f ), and T(σ, f ) is defined as the unit step function Θ(s − σ), defined as 1 if σ ≤ s
and 0 if σ > s. Importantly, this characterizes a discontinuous transition in stress tolerance
(Fig. 4.1C). Clearly, this state of affairs is a caricature of nature: site colonization by plants
mediated by seed size is not truly expected to rely on stress thresholds that determine
absolutely the fate of the seed (?).

If, conversely, we define T(σ, f ) as a continuously varying function, then sites of
increasing stress levels present correspondingly increasing levels of difficulty to a seed.
Habitat (resource) partitioning between two species becomes increasingly similar with
species similarity (Fig. 4.1D). Competition is presumably much stronger in this scenario.
In order to gauge the consequences of relaxing Muller-Landau’s assumption to important
predictions in the model such as levels of species diversity and patterns of species trait
distribution, below we compare results from simulations of the model using both the
step-like T(σ, f ) and an alternative continuous form.

4.3 Comparisons between continuous and discontinuous tolerance func-

tion

4.3.1 Tight packing

If, as in ?, T(σ, f ) is chosen to be a step-like function as above, then the model is greatly
simplified, and the fixed points and their stability can be determined analytically. Of
particular interest, we can find solutions p( f ) where species of arbitrarily similar traits can
coexist – a scenario which here will be called tight packing, and is also known as continuous
coexistence (strictly speaking, tight packing as referred to here should be defined as the
potential for continuous coexistence, as a finite number of species does never truly make up
a continuum). In equilibrium, dp( f )/dt in Eq. 4.6 must vanish for all f . For tight packing,
p( f ) , 0 for all f in [ f0, fm]. Thus, for tight packing, the expression in parenthesis in Eq. 4.6
must vanish identically. If we define the quantity h( f ), representing the proportion of land
whose stress level is equal to or less than the threshold s( f ) of species f (see Appendix F),

h( f ) =

∫ s( f )

0
r(σ) dσ,
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then a necessary condition for tight packing is (see details in Appendix G)

f h′′( f ) + 2h′( f ) + p( f ) = 0, (4.7)

where the prime is standard shorthand notation for differentiation with respect to a
function’s argument. Mathematically, the tradeoff consists in imposing that h( f ) be a
monotonically decreasing function. There are many acceptable functions h( f ) for which the
solution to this equation p( f ) is of the tight packing kind. Thus, tight packing is supported
in this model. Although we do not perform formal stability analysis here, we note that all
tight packing solutions we tried proved dynamically stable in our simulations.

Previous work has shown that for a wide class of competition models, tight packing,
when present, is fragile to changes in model parameters (??). Fragile states are not expected
in nature since fluctuations in parameters are inevitable in natural systems. To our
knowledge, robust tight packing is unheard of in the theoretical literature; the slightest
change in parameters suffices to destroy tight packing entirely, in the sense that after
such perturbation no continuous range of species remains. Nevertheless, we show with
simulations that this is not the case here. Given tight packing solutions, we perturb h( f ) at
either a single fecundity value or many, and observe that the effects of such perturbations
remain close to the perturbations (single-point case depicted in Fig. 4.2). Tight packing
proves robust to parametrization changes.

In contrast, if the tolerance function loses its discontinuity, the model’s predictions
regarding tight packing changes qualitatively. In fact, we provide proof in Appendix G
that there is no tight packing solution to Eq. 4.6 if the tolerance function is analytic 1 – a
mathematical result that should apply generally to any smooth tolerance function and
could be argued to hold for more general conditions as well, such as non-uniform mortality
(see Appendix G).

4.3.2 Species diversity

When tight packing is not allowed (or not robust), we say there is limiting similarity
to coexisting species. We now ask how the model with a continuous tolerance function
differs from Muller-Landau’s discontinuous version in terms of diversity when limiting
similarity occurs in both formulations. To find out, we perform the following test: starting
with 100 species of equal initial abundances uniformly distributed in the fecundity range

1An analytic function is a differentiable function that converges to a power series of its argument.
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[0,1] and a given parametrization h( f ), we simulate the model dynamics until equilibrium
is reached. We then take species richness and evenness (defined as the ratio between the
obtained Shannon diversity index and its maximum possible value given the number of
species present) and compare these diversity metrics between the discontinuous and the
continuous case. This test is replicated many times, each for a different parametrization.

The parameters h( f ) in each run are determined randomly as follows: we draw 100
real numbers between 0 and 1 from a uniform distribution, spline-interpolate them (cubic
spline), calculate their partial cumulative sums, normalize these by the total cumulative
sum, and then subtract them from 1 – thus generating a cascade of numbers in decreasing
order, ending in 0. Each value is then assigned to each of the species in order, as the
proportion of sites below their stress threshold. This set of steps was taken to ensure that
the parametrization would be random and smooth at the same time, with the intent of
reproducing a typical real-world case and avoiding results that depend on any special
parametrization. The dynamics is completely deterministic, meaning that a certain set of
initial species abundances and site-stress parametrization h( f ) uniquely determines the
outcome. Thus by averaging out the parametrization, we get an overall comparison of
diversity levels across model types. We start with a species-rich state with evenly spaced
species at equal abundances to represent an initial community in a tight packing state.

Results are shown in Fig. 4.3A and 4.3B. A very clear and strong distinction in
diversity levels between the two models is observed under both metrics: the model with
continuous tolerance function almost invariably allows for considerably less diversity in
the equilibrium community.

We note that in our simulations species are not allowed to evolve and there is no
immigration. The addition of new types can bring in better competitors that could drive
out hitherto coexisting inferior types (?). Thus it is likely that, should mutation and
immigration be implemented, diversity would come out even lower in the continuous
formulation, while the discontinuous formulation would show less change, as that scenario
typically sees pockets of tight packing where all species can coexist. The results reported
here should thus be seen as conservative estimates of the disparate diversity levels across
these two formulations of the tolerance-fecundity tradeoff.

It should be noted that the discontinuous case is a limit of the continuous case. For
instance, our expression of choice for the continuous tolerance function used in the
tests, T(σ, f ) = 1

2

(
1 + erf[ν(s( f ) − σ)]

)
, approaches the step function as ν → ∞. Thus, it

behooves us to check how diversity levels in the continuous case behave as the limit
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is approached. Fig. 4.3C shows a progression of species richness in the equilibrium
community as a function of the parameter ν. The curve rises to no limit, again confirming
the tendency towards higher diversity as the tolerance function becomes steeper and nears
the discontinuity.

4.3.3 Trait dispersion

Finally, we examine how the models differ regarding the distribution of species along
the trait axis. Recently, community ecologists have been interested in finding evidence for
the role of species differences in allowing for competitive coexistence, and employ several
different metrics of trait dispersion to that purpose (????). Here we focus on one of such
metrics, the coefficient of variation in adjacent-neighbor trait distances (?). For each of
the simulated runs, we take the differences in fecundity between consecutive (adjacent)
neighbors on the trait axis. The coefficient of variation is then defined as the ratio between
the standard deviation and the mean of such distances. A value significantly lower than
expected by the null hypothesis implies overdispersion – species are more separated than
expected by chance – and the opposite indicates clustering – species clump together.

The test is perfomed as follows: for each of one hundred simulation runs, we set up
model parametrization with a random small perturbation around h( f ) = exp(− f ) and run
the continuous and discontinuous versions to equilibrium (this is a different approach
to parametrization than used in the tests above, but was necessary because completely
random h( f ) tends to yield very few species in the continuous case, which brings in power
issues). We then take the corresponding coefficient of variation of adjacent-neighbor
distances along the fecundity axis (henceforth referred to simply as CVAND for brevity) for
each and establish the probability that these values would be obtained by chance (p-value)
by comparing with a pool of null CVANDs. We end up with a distribution of one hundred
p-values for each formulation of the model, which are summarized in the box plots on
Fig. 4.3D.

The pool of null CVANDs is generated and used to arrive at p-values as follows: for
every number between 3 and 99, we randomly draw that number of species from the pool
of 100 species of the initial community used in the simulations, and take the CVAND. This
is repeated 100,000 times, thus obtaining a pool of null CVANDs for all richness values
between 3 and 99. Then, for each run of each model, we compare the resulting CVAND
with the corresponding pool of null CVANDs (i.e., that with the same number of surviving
species). The proportion of times (out of 100,000) that the null CVANDs are lower than
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the observed value is the p-value, representing the probability that randomly generated
CVANDs be lower than the observed one. As low CVANDs indicate overdispersion, this is
in effect the probability that a random assemblage would be at least as much overdispersed
as the observed assemblage.

Upon comparing the box plots for the discontinuous and continuous versions (Fig.
4.3D), the distinction in trait dispersion becomes clear. Although both tend towards
overdispersion in that both result in median p values less than 0.5, the pull of the continuous
model is much stronger. In fact, 83% of the runs in the continuous model are within the
α = 0.05 significance level for overdispersion, compared to 4% in the discontinuous case.
Results do vary quantitatively with different parameter implementations, but importantly
the two formulations consistently lead to quite disparate trait dispersion regardless of
how we parametrized the models. We should note that while different metrics could exist
that may be better suited to capture the spread in fecundity among surviving species than
the coefficient of variation of adjacent-neighbor distances, our test suffices to capture the
dramatic differences in trait dispersion across the two model formulations under analysis
here.

In order to further ensure generality of our results, we performed the tests described
above for different initial conditions (namely, more species and unevenly spaced initial
species). Indeed, although outcomes vary quantitatively, the continuous model invariably
produces less diverse communities and shows stronger tendency for overdispersion than
the continuous model.

4.4 Relation to competition kernel and generalization to other models

Our comparisons indicate that a discontinuity in the tolerance function has a strong,
qualitative impact on model predictions regarding the distribution of species along the
fecundity (or seed size) axis. This phenomenon is in fact an example of a more general
result recently shown by us (?) regarding the influence of a non-differentiable sharp peak
in the competition kernel on model predictions of competitive outcomes.

The competition kernel is the function that determines the level of competition between
two species given their traits. It can be defined as a( f1, f2) =

δR( f1)
δp( f2) , where R( f ) = 1

p( f )
dp
dt is the

per capita growth rate of species f . (Note that alternative definitions are also in use; see,
e.g., ?. The definition we employ is the most pertinent to our analysis, and has the added
benefit of, when applied to Lotka–Volterra models, being equivalent to the collection of all
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the competition coefficients.) In Appendix H we show that the competition kernel in our
tolerance-fecundity tradeoff model (Eq. 4.6) has a point of non-differentiability – a kink
(Fig. 4.1E, 4.1F) – at its peak if and only if T(σ, f ) has a discontinuity. In our recent work (?),
we show that coexistence of arbitrarily similar species is robust to changes in parameters
when the competition-kernel is kinked, and nonexistent or fragile when the competition
kernel is smooth (no kinks). The results shown here for tight packing in the TFM are in
good accord with that generalization. Above and beyond this, here we have shown for
the TFM additional model behavior that is strongly affected by a discontinuous tolerance
function, namely species diversity and patterns of spacing between species on the trait
axis.

When the kernel is expressible in terms of the overlap of resource utilization functions
(?), kinked competition kernels arise from discontinuities in those functions (?). More
generally, competition kernels can be written in terms of functions describing species’
sensitivity to and impact on regulating factors (i.e. factors that influence and are in turn
influenced by the population sizes of species; ?), and we show in ? that kinked competition
kernels arise from discontinuities in those functions. Clearly, the tolerance function T(s, f )
is related to these functions, and a discontinuity in the former must be tantamount to a
discontinuity in the latter. Informally it is apparent that the tolerance function is reflective
of resource use, where the resources can be seen as patches of a given stress level.

To further make the point that the impacts of non-differentiability in the competition
kernel extend beyond the particulars of any given model, in Appendix I we provide the
same analysis shown above for a different model of seed size diversity which turns out to
have a kinked kernel: the hierarchical competition-colonization model (???). In this model,
the non-differentiability arises from the assumption that the hierarchy is absolutely strict,
with a clearly dominant competitor arising out of any two species considered, no matter
how similar they are in colonization ability. Results of the analysis are much alike: when
the model’s original non-differentiability is removed, much lower levels of diversity are
obtained, tight packing is no longer supported, and tendencies for species overdispersion
are much stronger. We note that ? showed previously that predicted diversity dramatically
decreases when strictly hierarchical competition is relaxed for a similar mechanism, namely
the competition-mortality tradeoff. Their finding can be now understood in the context of
the severe consequences of a kinked kernel to model behavior.
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4.5 Discussion

We have examined the importance of relieving Muller-Landau’s tolerance-fecundity
tradeoff model of the discontinuity in resource use that it previously contained. Our work
on this model can be viewed as a case study on the consequences of modeling resource use
(interpreted broadly as described above) as discontinuous. We can understand the general
consequences of discontinuous resource use analogously to our understanding of the
importance of the tolerance function: if resource use is discontinuous, then two species, no
matter how close in traits, stand apart in their use of resources. Hence competition among
similar species is relatively lax compared to models with continuous resource utilization,
which explains the greater permissivity to coexistence in the former.

We would like to impress upon the reader the unnaturalness of the discontinuity in
tolerance level. For one, any small variation in intraspecific trait expression or environmen-
tal conditions, which are inevitable in any biological system, suffices for this theoretical
scheme to break down (?). More importantly, the infinitely sharp transition is hopelessly
unrealistic because ultimately in nature there is no such thing as a continuous change in
the cause bringing about a discontinuous change in the effect.

Muller-Landau acknowledged the discontinuous tolerance regime as unrealistic, but
argued that this assumption was not central to her demonstration that this tradeoff can
generate coexistence. Nevertheless, one cannot ignore the implications of this assumption
for the amount of diversity that the mechanism can explain. All else being equal, the
smoother the tolerance function is, the lower the number of species that will coexist
in this model. As is the case with any model of coexistence, it remains an empirical
question whether conditions in nature are such that this tradeoff actually explains observed
diversity. Our work here highlights the importance of the tolerance function for assessing
the existence and potential importance of the tolerance-fecundity tradeoff.

We do not purport to have purged Muller-Landau’s model of all its unrealistic sim-
plifications. Many others remain, such as no explicit spatial structure, uniform mortality,
no dynamics to stress levels, and no stochasticity. One must keep in mind that any
model is a limited representation of reality and must perforce rely on helpful, if simplistic,
assumptions. Of course the trouble is that there is no general way to know beforehand the
degree to which any given assumption impacts the quality of the model as a representation
of the real world. Here we showed that discontinuous resource use has a very strong impact
in the tolerance-fecundity tradeoff, and connected this result with the more general impact
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of modeling resource use as discontinuous on predictions regarding limits to similarity,
species diversity, and patterns of trait dispersion.

In addition to cautioning against modeling resource use discontinuously, our study
presented and at the same time cast aside a potential challenge to the widely influential
theory of limiting similarity. We showed that a specific mechanism of coexistence seemingly
indicates that tight packing of species can be robust, but eventually rooted this unexpected
prediction to one of the simplifying and unrealistic assumptions of the model.

78



4.6 Figures

Figure 4.1: A: Cartoon representation of the distribution of seeds given a gradient in habitat
stress according to Muller-Landau’s assumption of all-or-nothing tolerance. Three seed
sizes are represented. Density in seed numbers across habitat represents tolerance levels.
The smallest seeds (light grey) occur with uniform density (constant tolerance) through
sites with increasing stress levels, up to a threshold – marked by the gray line – beyond
which no small seeds are found (zero tolerance). Intermediate-sized seeds (red), occur with
uniform density until their own stress threshold is reached – red line – beyond which no
medium-sized seeds occur. Large seeds (green) occur uniformly throughout the patch, as
its particular threshold is never reached. B: Analogous representation in the case where the
tolerance function varies continuously. Here, all seeds occur in increasingly lower densities
as stress levels increase, and there is no sharp threshold separating sites where seeds occur
from sites where they are absent. C: When tolerance curves of different species are overlaid,
it becomes clear that given any pair of species, no matter how similar, there is always a
range of stress levels (resources) that is at once perfectly accessible to the more tolerant of
the pair and absolutely out of reach to the other. This range is indicated in the figure by the
black bar. D: When the tolerance function is continuous, that range disappears. Instead,
the way arbitrarily similar species use resources becomes arbitrarily similar, thus making
for higher competition than in the previous case. E: Illustration of the competition kernel
a( f , f ′) when the tolerance function is discontinuous, showing an infinitely sharp ridge at
f = f ′. A 2D projection of this surface would show a curve with a kink at its peak. F: When
the tolerance function is continuous – here modeled as T(σ, f ) = 1

2

(
1 + erf[ν(s( f ) − σ)]

)
–

the ridge is absent, and the surface is smooth across its domain.
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Figure 4.2: Robust tight packing. The gray solid line shows one possible solution of Eq. 4.7,
p( f ) = 3 f 2 (gray line), obtained when h( f ) = 1 − f 3/4 (black solid line). The dotted line
shows what happens to the community upon a small local disturbance at h( f = 5). The
abundance of species f = 5 is greatly affected, and so are those of its immediate neighbors,
which go extinct. The remainder of the community, however, is left intact. In the end, tight
packing survives the disturbance. This is in striking contrast with known results for a
great variety of models (??).
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Figure 4.3: A: histogram with the distribution of richness R ratios between runs of the
discontinuous and continuous versions of the model (Rdiscont/Rcont)for 1,000 runs. If the
continuity of the tolerance function does not significantly affect diversity outcomes, we
should obtain a distribution centered around Rdiscont/Rcont = 1. Results, however, are
strongly skewed towards Rdiscont/Rcont > 1, indicating that the discontinuous formalization
consistently leads to a higher species count in equilibrium (see main text for explanations).
B: histogram showing the distribution of evenness E ratios (Ediscont/Econt) for the same runs
as in A. Again, results deviate from the null hypothesis (Ediscont/Econt = 1); the discontinuous
version of the model tends to produce more evenly distributed species abundances in
equilibrium. C: trend in species richness with the steepness of the continuous tolerance
function. As the steepness parameter ν in the function T(σ, f ) = 1

2

(
1 + erf[ν(σ( f ) − σ)]

)
increases while all other parameters are kept fixed, so does the number of species in
equilibrium after the community reaches equilibrium, starting with 100 species uniformly
distributed in the [0,1] fecundity range. This indicates that diversity grows as the continuous
formulation approaches its discontinuous limit. Inset shows how the tolerance function
looks like for two examples, ν = 5 and ν = 20. D: comparison of the distribution of
coefficients of variation between adjacent-neighbor distances (CVAND) throughout 499
runs of each version of the model, parametrized as described in the main text. The CVAND
gives an indication of how closely surviving species distribute themselves along the trait
axis in equilibrium. We see a striking distinction between results for each model: although
both tend towards overdispersion (median below 0.5), the pull of the continuous model
is much stronger. In addition to a much narrower scatter, the continuous version yields
a median p-value of 0.004, in contrast with 0.286 in the discontinuous case. 83% of the
runs in the continuous model are within the α = 0.05 significance level for overdispersion,
compared to 4% in the discontinuous case.
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Chapter 5

Niche differentiation does not guarantee higher species

diversity, longer lifetimes, or lower extinction rates

Abstract

Niche differentiation is normally regarded as a promoter of species coexistence in competi-
tive systems, as it stabilizes species abundances. In a stochastic context, one might expect
lower extinction rates and higher species richness and life expectancy in niche-differentiated
communities than in neutral assemblages. Here we compare stochastic niche dynamics
to neutrality in simulated assemblages subject to immigration from a regional pool, and
find that the effect can be more complex. Trait variation that lessens competition between
species will not necessarily give all immigrating species their own niche to occupy. Niche
differentiation protects certain species from local extinction, but expedites exclusion of
others. As a result, niches may lessen extinction rates and raise richness and mean local
persistence times, or they may have the opposite effect, depending on the number of niches
available to species. In particular, in a species assemblage similar to the tree community on
Barro Colorado Island, extinction rates may actually be higher than neutral expectations
if the number of niches is not sufficiently high. The impact of niche differentiation may
also be similar to that caused by asymmetries in regional abundances and intrinsic growth
rates, and is lessened by higher immigration rates.

5.1 Introduction

Niche differentiation is widely considered a prime force behind species coexistence, and
thus instrumental in maintaining biodiversity. Niche differentiation stabilizes communities
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by guaranteeing positive growth rates of rare species ??. Without such stabilization,
coexistence is only temporary, and biodiversity can only be maintained if gains from
immigration or speciation compensate losses to competitive exclusion or drift as posited in
neutral theory ?.

Views on the implications of niche differentiation for biodiversity maintenance mostly
come from deterministic community models with no immigration. However, stochastic
formulations, which model the influence of variability whose deterministic details are
unknown and unrelated to species differences, are more relevant for natural systems. In
such settings, coexistence is defined in a probabilistic sense ?. Furthermore, many if not
most communities in nature are subject to propagule pressure from regional pools. In
such open-community scenarios, even species that are not stabilized will colonize the
community and may persist for a substantial period of time, and extinction is not an
absorbing state, since re-colonization is possible in the future. One measure of diversity
maintenance in this context is the mean species local persistence time – the average time
between introduction through immigration and extirpation through drift or competitive
exclusion.

Species local persistence times have been studied as indicators of ecological processes
??. In particular, species local persistence times are well understood theoretically in the
context of neutral dynamics, and have been used as tests of neutrality ????. A study of
a nearly neutral model showed that even slight fitness differences may greatly shorten
local persistence times ?. In contrast, niche model studies suggest that niche differentiation
may prolong local persistence times considerably ???. However, it can be argued that the
niche scenarios proposed in these studies are too extreme to be applicable to most natural
systems.

Pigolotti and Cencini (2013) ? showed that niche stabilization increased species local
persistence times compared with neutral assemblages. They used a simplified Lotka-
Volterra competition model where species interactions are identical except that competitive
suppression is stronger within than across species ?. In the deterministic form of this
model, all species stably coexist and in this sense occupy their own niche. Given this
extreme degree of stabilization, the higher local persistence times are not surprising.

However, a one-to-one ratio between species and available niches is unlikely in highly
diverse systems such as tropical forests, where it has been argued that the niches-to-species
ratio can be low ??. Even in lower diversity systems, there is no clear evidence as to whether
all co-occurring species differ enough in traits so as to mutually invade one another. In
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these situations is not clear that the average time between introduction and extinction
of invaders in systems with niche redundancy is longer than in systems lacking niches
altogether. Nor is it logically necessary that such a partially stabilized system will be more
diverse than a similar system where richness is maintained only through mass effects.

The classical MacArthur-Levins model (?) allows for different niches-to-species ratios by
positing that competition depends on phenotypic differences, a feature observed in nature
???. For a deterministic, closed community, this model predicts limits to similarity between
coexisting species, and exclusion of species that do not meet such limits. Simulations of this
model have revealed transient states characterized by clumps of similar species separated
by gaps ?. This pattern suggests that some species are excluded faster than others. In
particular, those with unfavorable characters might actually be excluded faster than in a
game of drift, while those optimally adapted to a specific niche may persist indefinitely.
This raises the possibility that partial stabilization, when the number of niches available is
less than the number of species in the pool, may result in lower diversity and shorter local
persistence times than neutral dynamics.

Here we perform a simulation-based study of the stochastic MacArthur-Levins model
to compare species richness, the distribution of local persistence times, and extinction rates
between assemblages differing by the presence or absence of stabilization. We consider
how the niches-to-species ratio affects this comparison, as well as the effect of other factors
governing species input and exclusion such as regional species abundances, immigration
rate, and differences between species intrinsic growth rates. We structure our simulations
to maximize relevance for the potential influence of niche differentiation on the dynamics
of the Barro Colorado Island tree community, for which a recent paper found species input
rates compatible with neutrality ?.

5.2 Methods

Our study is essentially a comparison between species assemblages with and without
niche differentiation. Our assemblages represent local communities of fixed size subject to
a birth-death process, and surrounded by a large fixed pool of species, from which the local
community receives immigrants. Communities start as a random draw from the pool, and
in each subsequent step one individual is randomly chosen to die and is replaced by a new
recruit. The probability that the death occurs on species i is proportional to Ni

∑
j Ai jN j,

where the competition coefficient Ai j quantifies the impact of species j on species i. The
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proportionality factor is calculated by normalizing the sum of these probabilities across
species to 1. The new recruit can either be an immigrant with probability m or a local
birth event with probability 1 −m. The probability that species i is chosen at this stage is
proportional to Ni(1 −m)ri + mpi, where ri is species i’s intrinsic fitness, and pi is its relative
abundance in the regional pool. The deterministic immigration-free version of this model
is the Lotka-Volterra model1 1/NidNi/dt = ri −

∑
j Ai jN j, which was used by MacArthur

and Levins to describe competition along a trait axis ?. Niche stabilization is only possible
if intraspecific competition exceeds interspecific competition (?). In our niche model this
is achieved by setting Ai j(xi, x j) = exp[−((xi − x j)/w)ρ], where xi and x j are the trait values
of species i and j, w sets the scale for the decline of competition between species with
increasingly different trait values, and ρ sets the speed of exclusion dynamics. In contrast,
neutral competition is achieved by setting Ai j = 1 between all species.

We simulate a local community with 21,000 individuals, approximately the number of
trees larger than 10 cm diameter at breast height in the 50-hectare plot on Barro Colorado
Island ?. This local community is surrounded by a fixed species pool ?, which we populate
with 400 species with trait value xi drawn uniformly from 0 to 1. We start with a random
draw of individuals from the regional pool, and then simulate dynamics for 5.0 × 107

steps to allow for a stationary state to be reached (i.e. to allow for species abundance
distributions averaged across a set of runs to settle to relatively stationary values). We
then run for another 5.0 × 107 steps while keeping track of all introduction and extirpation
events, for a total of 1.00 × 108 steps, corresponding to roughly 5,000 community turnovers.
At the end of a run, each species average local persistence time is computed by calculating
the average number of steps that species persisted between being introduced through
immigration and being extirpated due to competitive exclusion or drift.

By analogy with common statistical terminology for null and alternative hypotheses,
we will refer to communities lacking niche stabilization as H0 assemblages, and those with
niche stabilization as H1 assemblages. Aiming to isolate the effect of niche stabilization
from other drivers of dynamics, in our “baseline” H0 and H1 assemblages all species have
identical regional abundances and intrinsic growth rates, and we use a low immigration rate
(m = 0.01, about an order of magnitude lower than has been estimated for the 50ha Barro
Colorado Island plot ?). In our baseline H1 case we consider a scenario with substantially

1The correspondence with our model is fairly intuitive, but for a more detailed understanding the reader
can consider the analogy with stochastic models of chemical reactions and the corresponding differential
equation models ?.
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fewer niches than species. Specifically, we set w so that about 13 species would stably
coexist in the absence of stochasticity and immigration within this trait range (i.e. 13 niches.
Specifically we use w = 0.063). We set ρ = 4 because it gives relatively fast niche sorting.
The classical model studied by MacArthur and Levins (1967) with an exponent 2 leads to
much slower dynamics, which are not ideally suited for contrasting with neutrality (see
Fig. J.3). The actual rate of exclusion dynamics in nature is unknown.

Other factors causing differences between species might mimic the effects of partial
niche differentiation. Regional abundances affect the frequency of immigration by different
species and hence are likely to modulate local persistence times. If regional abundances
vary across species, some will be more prone to extinction than others due to different
probabilities of being rescued from low abundance by immigrants. Differences in intrinsic
growth rates can have similar effects, as some species would recover from low abundance
faster than others. Finally, higher immigration increases local persistence times, magnifies
the effects of uneven regional abundances, and dampens the effects of internal dynamics
thus bringing H0 and H1 closer.

To examine the influence of uneven regional abundances we populate the regional pool
according to a neutral metacommunity species abundance distribution using R package
untb ?. We used a regional pool size of 150,000 individuals, and θ = 50, the approximate
value for which the neutral model provides the best fit to the BCI species abundance
distribution. Regional richness is approximately 400 species as in our base case, but here
abundances are approximately log-series distributed. We consider the impact of raising
the immigration rate tenfold to m = 0.1, maintaining the uneven abundance distribution
in the pool. To test for the effect of differences in intrinsic growth rates, we consider two
alternatives to the baseline case where ri differs among species. In the first, representing
a scenario where metabolic costs or other physiological limitations cause lower fitness
of species with extreme trait values, we take ri = xi(1 − xi). In the second, we consider
influences on the growth rates unrelated to the trait at hand, and hence draw the ri at
random from a uniform distribution, ri ∼ runif(0, 1).

Finally, given that the true number of niches in real communities like BCI is largely
unknown, and in order to more fully explore the influence of niche number on dynamics,
we consider a set of scenarios with niche number varying from 4 to 380, leading to
niches-to-species ratios ranging between 0.01 and 0.95. For these scenarios we used the
neutral metacommunity abundance distribution as described above, an immigration rate
equal to that estimated for BCI (m = 0.08 ?), and randomly drawn ri across species.
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5.3 Results

Local persistence times in the H0 assemblage show no relation to species trait values (Fig.
5.1A) and do not correlate with species abundances observed at the end of the simulation
(correlation index ρlog(N),log(T) = 0.008), while in the H1 both species abundances and local
persistence times form a distinctive pattern along the trait axis (Fig. 5.1B), and correlate
strongly with each other (ρlog(N),log(T) = 0.86, see also Fig. J.1). The average local persistence
time across all species in the H1 assemblage, T̄1 = 85.4 community turnovers, is higher
than in the H0 assemblage, T̄0 = 22.1 community turnovers. On the other hand, it also has
a much higher coefficient of variation, CV[T1] = 4.9 against CV[T0] = 0.4, indicating much
higher local persistence time variation in the partially stabilized assemblage.

This is confirmed by the histograms in Fig. 5.1C. The partially stabilized community is
characterized by a strong positive skew and the presence of 8 resident species, defined as
species that were present throughout the tracking period. The local persistence times of
the resident species are many orders of magnitude higher than other species, and therefore
heavily drive the higher mean local persistence times in the H1: if residents are discounted,
the mean local persistence time in the H1 drops by an order of magnitude to 8.3 turnovers,
lower than T̄0. Compared with neutral dynamics, partial stabilization leads to higher
overall mean local persistence times but lower local persistence time of transient species, as
well as lower species richness (Fig. 5.1D). The estimated extinction rate, calculated as the
number of extinction events divided by the time interval spanned by the tracking period,
is actually higher than neutral (Fig. 5.1D).

It should be noted that the niche axis in our model is finite, and hence has edge
effects. Our simulations showed that these drastically influence the local persistence time
distribution compared with a circular axis (see Fig. J.2). This is because the positions of
the niches on a finite axis are set, whereas on a circular axis they constantly shift through
time, thus mitigating the effects of stabilization. We used a finite axis as it is more likely to
represent real systems. Also, for the reader interested in the classical MacArthur-Levins
model, in Fig. J.3 we show that the local persistence time distribution in that model is
much closer to neutrality, which is not surprising given the slower (weaker) exclusion
dynamics under ρ = 2.

When abundances in the pool are log-series distributed, the local persistence times
distribution shifts towards the extremes (Fig. 5.2A, 5.2E): compared with a pool with
identical abundances, species now generally have much shorter local persistence times,
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although now in the H0 a number of them persist throughout the entire tracking period,
which did not occur with the homogeneous pool, and in the H1 that number is higher
than before. These new and additional residents arise because of their comparatively high
regional pool abundance (see Fig. J.4). As a result, H0 and H1 now have more similar local
persistence time statistics and extinction rate than in the baseline case (cf. Fig. 5.2I, 5.1D).

When immigration is increased in this uneven abundance scenario from m = 0.01 to
m = 0.1, most local persistence times increase, and many species achieve residence status
in both H0 and H1 assemblages (Fig. 5.2B, 5.2F, cf. Fig. 5.2A, 5.2E. See also Fig. J.5). A
few species now have actually lower local persistence times, presumably due to regional
rarity. Overall, regional abundances become stronger determinants of local persistence
times compared with the lower immigration scenario. As a result, the ratio of richness,
community average local persistence time, and extinction rates are all closer to 1, compared
with the lower immigration case (cf. Fig. 5.2J, 5.2I). It should be noted that although high
immigration may make those statistics rather indistinguishable, niche differentiation still
influences which species are residents (see Fig. J.5).

The introduction of a parabolic shape to species intrinsic growth rates ri has the
anticipated effect on the H0 assemblage. It dramatically shifts most of the H0 local
persistence time distribution to the left, and promotes a very small number of species
(those with the highest ri) to resident status (Fig. 5.2C). The effects on the H1 assemblage
are more complicated, with local persistence times actually increasing for several species
(Fig. 5.2G), and correlating negatively with ri (ρr,log(T) = −0.2, see also Fig. J.6). This is
presumably due to lower competitive suppression between species with low intrinsic
growth rate near the edges of the trait axis. However, the qualitative shape of the H1

local persistence time distribution is unchanged, indicating that the ri have a small effect
on H1 exclusion dynamics relative to competition. The H0 and H1 local persistence time
distributions become less distinguishable under parabolic ri compared with identical ri

across species, and the extinction rate of H1 is now lower than H0 (cf. Figs. 5.2K and 5.1D).
Random variation in ri lowers local persistence times for almost all species in both the
H0 and H1 assemblages, but again the effect is much stronger on the assemblage lacking
stabilization (Fig. 5.2D, 5.2H). Now H1 has an even greater lead in local persistence times
over H0 than in the baseline, and the extinction rate in H0 increases so much that it is now
comparable to H1 (Fig. 5.2L).

Fig. 5.3 shows the community average local persistence time and extinction rate for
different niche numbers in a scenario geared to include the complex elements of a real
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species assemblage like the BCI tree community. As the number of niches increases,
the community average local persistence time increases, while average extinction rate
decreases. Critically, both straddle neutral levels depending on the niche-to-species ratio.
Further examination of the local persistence time distributions (see Fig. J.7) reveals that
this is because the presence of few niches shortens the local persistence times of many
species, but as more niches are added more species are promoted to resident status.

5.4 Discussion

Our main results can be understood as follows. Niche differentiation causes some
species to persist all but indefinitely, thus raising community average local persistence
times; however, when there are fewer niches than species, many species fall in exclusion
zones and are extirpated more quickly than expected from drift. Among those species, local
persistence times can be much lower than in a neutral community. As a result, average
extinction rates in partially stabilized communities may surpass the neutral assemblage.
And since the number of niches is limited and many species are quickly excluded, richness
can also be lower than in a neutral community. As stabilization increases towards the limit
of one niche per species, mean local persistence times increase together with the proportion
of residents, and extinction rates decrease. Niche stabilization may therefore result in a
net increase in local persistence times compared to neutrality if there are enough niches
relative to the number of species in the pool, but a net decrease if that ratio is too low.

Asymmetries in regional abundances affect local persistence times because they cause
asymmetries in the rescue effect. While local species that are common in the pool are
less prone to extinction due to an enhanced rescue effect and therefore may last longer,
the opposite holds for the large majority of species that are regionally rare. Similarly,
differences between species intrinsic growth rates accelerate competitive exclusion, and
increase local persistence times only for the few species with the highest growth rates.

Overall, asymmetries in regional abundances or intrinsic growth rates had a bigger
impact in the assemblages lacking stabilization entirely. This showcases the robustness of
stabilized assemblages against other dynamical forces, in contrast with the susceptibility
of neutral dynamics. However, it should be noted that species differences, whether
related to partial niche stabilization or to pool abundances and intrinsic growth rates, have
qualitatively similar consequences: some species die fast while others may last much longer.
Furthermore, immigration tends to blur the dynamical differences between stabilized and
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non-stabilized communities. Thus it may not be trivial to distinguish between assemblages
with and without niche stabilization using local persistence times and diversity alone.

Our findings are compatible with real-life observations of “core” species which persist
for long times and “occasional” species whose local populations may regularly undergo
local extinction and recolonization events ?. Our results suggest that core and occasional
species could fall into these categories on the basis of their stance in competitive interactions,
or else because of their regional relative abundance or intrinsic growth rate.

Our results also bear on the recent finding that observed species input on BCI is
compatible with neutrality ?. We find extinction rates are often higher under niche
differentiation than neutrality. When species richness is at equilibrium, species input rates
should match extinction rates. Our results then suggest that the observed species input
could also be compatible with niche differentiation, as the link between species input and
diversity, being mediated by species local persistence times, is not unique to a specific
assembly process. However, if species local persistence times can be measured and related
to their traits, abundances, and regional prevalence, it may help reveal whether niche
differentiation is playing a role in coexistence.

Our study provides a refined understanding of the sense in which niche differentiation
promotes coexistence, highlighting the new insights into biodiversity maintenance that
can be gained by building on the framework of neutral models ?. Compared to neutral
dynamics, niche differentiation stabilizes species abundances and may indefinitely prolong
local persistence times of certain species, but it does not guarantee higher species diversity,
longer local persistence times, or lower extinction rates.
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5.5 Figures

Figure 5.1: A, B: Species abundances and local persistence times plotted against relative trait
values in baseline H0 assemblage (A) and H1 assemblage (B). Stems show log N / log Nmax,
and red lines show log T / log Tmax, where N are species abundances and T are species local
persistence times. C: Number of species by mean local persistence time in the baseline
assemblages with no stabilization (H0, blue bars) and partial stabilization (H1, red bars).
D: Comparison of species richness, average local persistence time, and extinction rates
between baseline H1 and H0 assemblages. Bars show ratio H1/H0.
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Figure 5.2: Comparison of distribution of local persistence times between baseline and
variant treatments for H0 assemblages (top row) and H1 assemblages (middle row). Baseline
(light colored bars): identical pool abundances, identical ri, immigration rate m = 0.01.
Variants (dark colored bars): A, E: log-series distributed pool abundances; B, F: log-series
distributed pool abundances and higher immigration rate (m = 0.1); C, G: parabolic
distribution of intrinsic growth rates ri; D, H: random distribution of ri. Bottom row, I-L:
ratio between richness, mean local persistence time, and extinction rate of H1 and H0

assemblage in each of the variants.

A

−1 0 1 2 3 4

0

50

100

150

200

Log−series pool

E

−1 0 1 2 3 4

0

50

100

150

200

Richness
Mean

persistence
Extinction

rate

I

0

1

2

3

4

B

−1 0 1 2 3 4

0

50

100

150

200

Log−series pool + High immigration

F

−1 0 1 2 3 4

0

50

100

150

200

Richness
Mean

persistence
Extinction

rate

J

0

1

2

3

4

C

−1 0 1 2 3 4

0

50

100

150

200

Parabolic r

G

−1 0 1 2 3 4

0

50

100

150

200

Richness
Mean

persistence
Extinction

rate

K

0

1

2

3

4

D

−1 0 1 2 3 4

0

50

100

150

200

Random r

H

−1 0 1 2 3 4

0

50

100

150

200

Richness
Mean

persistence
Extinction

rate

L

0

1

2

3

4

H
0

H
1

H
1 

/ H
0

94



Figure 5.3: Comparison of community-wide mean local persistence times (in units of
community turnovers) and extinction rates (in units of extinction events per community
turnover) between neutral assemblages and partially differentiated assemblages with in-
creasing number of niches and fixed regional diversity. Community size 21,000 individuals,
fixed pool with 150,000 individuals and circa 400 species, and immigration rate m = 0.08
were chosen to approximate parameters observed or estimated for the BCI tree community.
Regional abundances follow neutral (approx. log-series) distribution. Intrinsic growth
rates drawn at random from a uniform distribution.
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Chapter 6

Trait pattern under stochastic niche assembly: are species

clusters a general phenomenon?

Abstract

Niche differentiation explains the maintenance of biodiversity, but remains difficult to
demonstrate. Inference based on trait patterns is commonly used, as traits are easy
to measure and directly tied to ecological strategy. However, classical trait pattern
theory ignores stochasticity and immigration, and assumes competitive interactions are
determined strictly by trait similarity, which makes it difficult to extrapolate predictions
to natural systems. Recent literature suggests that niche differentiation may drive the
spontaneous formation of species clusters, but it is not known whether the phenomenon
is general and under what conditions it is expected to appear. We propose a metric to
quantify clustering, and show that clustering occurs across different niche mechanisms, and
is more likely to appear when competition is primarily determined by trait similarity, niche
sorting is fast, regional diversity is high, and immigration is low. Classical predictions of
functional overdispersion and even spacing were not supported in our simulations.

6.1 Introduction

It is widely held that nature’s prodigious levels of biodiversity would not be possible
without niche differentiation. Although speciation provides new species, those can be lost
to extinction and ecological drift without stabilizing forces. As an important provider of
such forces, niche differentiation is thought to be a major driver of community structure. Yet,
this can be difficult to verify empirically. Experimental approaches are the golden standard
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since they can isolate niche differentiation from other community assembly processes (?)
and directly test competition between pairs of species (?). However, experiments can
be logistically difficult for large or long-lived organisms. Inference-based methods that
suggest process based on observed patterns can be a valuable aid, and several have been
used (?). Notable among those are trait-based approaches, e.g. (??). Traits have been
extensively used to infer niche differentiation and other community assembly processes
(??). Trait-based approaches have several advantages over strictly taxonomic approaches
because they are easily generalizable and have explicit ties to ecological strategy and
performance (??). Furthermore, inference based on trait patterns does not require censuses
spanning extended periods of time, which is particularly handy in the study of long-lived
organisms such as trees.

However, we have previously argued that the theory underlying many trait-based infer-
ence approaches needs updating (?). Studies of pattern on niche axes are based primarily
on intuitive hypotheses linking niche differentiation and functional overdispersion (??),
or simplified models of competition that do not capture population dynamics (e.g. ?), or
where competition is determined purely by trait similarity (????), which has been criticized
(??). Classical expectations of limiting similarity have been questioned in the past (?), and
lag behind recent findings from modeling studies (?). In addition, they also typically ignore
the influence of stochasticity and immigration (with some notable exceptions, see ???); it
is not clear that predictions based on deterministic immigration-free models bear out in
stochastic open communities, which hampers extrapolation to many natural systems.

Recently, ecologists have considered the possibility that community assembly under
niche differentiation can produce clusters of similar species (??), a phenomenon that has
been hailed as potentially bridging neutral theory with classical niche theory (?). Clusters
arise in classical deterministic niche models as long-lived transients (?), and can persist
indefinitely if species similar in one trait can be stably maintained by differences on other
niche axes (??), environmental fluctuations (?), and evolution (?). We suggested in a recent
paper that clusters also appear under stochastic niche assembly with immigration (?), but
clusters have been strikingly absent from stochastic niche simulations by other authors
(???), and have not been tested across models with distinct niche mechanisms. It remains
unclear whether clustering is a general phenomenon, and therefore whether it can be used
to infer niche differentiation (?).

Furthermore, as clusters have only recently been associated with niche differentiation,
the literature is sparse on tools for detecting them in ecological data. Empirical assays have
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so far been either based on subjective examination of data (?) or relied on metrics that
depend on parameter choices such as binning the trait axis (?), or presence-absence metrics
that require time series data (?), which is often unavailable for long-lived organisms.

Here we first propose a parameter-free abundance-weighted metric to identify species
clusters, and then ask whether clustering is a general feature of stochastic niche dynamics
under immigration. We validate our metric by testing it on a model where clusters are
known to arise, the MacArthur-Levins model (????). In this model competitive interactions
are set directly by trait similarity, thus setting the stage for niche differentiation. We
then test how the clustering pattern is affected by immigration rate, regional diversity,
abiotic filtering, and departures from the exclusive dependence on trait similarity. Finally,
we assess whether clustering appears across a suite of models comprising different
niche differentiation mechanisms: a) differences in preferred resource, b) differences in
preferred abiotic conditions, and c) differences in life history strategies. We also use
our niche scenarios to test two common predictions regarding niche differentiation: that
species under niche assembly will be more different than expected by chance (functional
overdispersion, ?), and that species will be evenly dispersed along the trait axis (even
spacing, ?).

6.2 Methods

Metrics

Clustering metric: the gap statistic

We propose an abundance-weighted metric that identifies the number of clusters in
the data and quantifies the degree to which the data is clustered. Our metric is based on
the gap statistic method (?), coupled with the k-means cluster-finding algorithm (?). For
a given community to be tested, the metric produces an index quantifying the degree of
clustering in the data, compares the index against a set of neutral communities used as
the null hypothesis, and computes the standard score. For details about the metric, see
Appendix K.

In our simulations we also measure the average time interval between introduction
and extirpation of each species (i.e. lifetimes) to look at whether and how the clustering
pattern relates to impacts of niche differentiation on species dynamics.
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Other metrics

In addition to our new metric, we also test our niche scenarios for pattern with three
other metrics that have been used in the literature: Rao’s quadratic index (?), functional
dispersion (?), and the coefficient of variation in trait differences between adjacent species
(?). See Appendix K for a detailed description.

Models and simulation design

In Appendix L we provide a detailed description of our simulation design and niche
models, which we now summarize.

We simulate local communities of fixed size undergoing competitive dynamics subject
to a stochastic birth-death process and surrounded by a large fixed pool of species, from
which the local community receives immigrants. We set community size and immigration
rate to match observations and estimates for the tropical tree community on Barro Colorado
Island, in Panama. Communities start as a random draw from the pool, and in each
subsequent step one individual is randomly chosen to die and is replaced by a new recruit.
A proportion of recruits fulfilling vacancies left by deaths are immigrants from the pool, and
the remainder are local birth events. The particular model used dictates the probabilities
that each species is selected for each death and each recruitment event.

MacArthur-Levins scenarios

We consider a variety of scenarios spanning several different niche mechanisms. We
start with variations of the Lotka-Volterra competition model studied by MacArthur and
Levins (?), a very influential model where clusters have been shown to occur (?). This
model is conceptually important because the strength of competition is determined entirely
by species similarity—see Discussion section below. Our different MacArthur-Levins
scenarios are obtained by setting different values of the parameters regulating immigration,
regional diversity, environmental filtering, speed of competitive sorting, and shape of the
competition matrix.

Niche differentiation by preferred resource

The second category of models we test is the Rosenzweig-MacArthur model of resource-
consumer interactions (?). The model assumes a linear array of substitutable resources
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depended upon by a set of consumers. Resources follow the same stochastic birth-death
process as consumers, except there is no resource immigration, so extirpated resource
populations cannot be replenished. A consumer’s trait value defines its preferred resource,
and its consumption of all other resources declines as a function of their difference to
that consumer’s preferred resource. Abrams showed that resource depletion or exclusion
affects competition-similarity relationships (?), as well as on coexistence outcomes (?).
We therefore consider two scenarios of this model. In the first, most resources are never
severely depleted by consumption, whereas in the second resource depletion is severe and
many resources are extirpated.

Niche differentiation by preferred abiotic environment

The third type of niche model we examine was introduced in ? based on Tilman’s
stochastic niche model (?), and also studied by ?. It assumes a linear array of sites forming
a gradient of fixed abiotic conditions. A species’ trait determines its optimal environment,
and its ability to thrive in other local environments declines with the difference between
those environments and its optimum. We explore two dispersal scenarios in this model:
local dispersal, where the probability of arrival of propagules to a site quickly drops
with the distance to the parent, and global dispersal, where the probability of arrival is
independent of distance to the parent. The latter corresponds to a case where the physical
distances are small relative to the dispersal ability of the individuals.

Niche differentiation by life history strategy

We examine two niche models where species differ by life history strategy. Unlike the
previous mechanisms, here there is a competitive hierarchy in the sense that some species
are better competitors than others. In both models, the species trait is fecundity, or number
of propagules produced by an individual. In the competition-colonization tradeoff model
(??), species trade off fecundity with competitive ability, defined as the ability of propagules
to displace individuals of other species. In Muller-Landau’s tolerance-fecundity tradeoff

model (?), species trade off fecundity with propagule stress tolerance, and the environment
varies in stress levels.
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Null model: neutral dynamics

We quantify clustering pattern in our niche models by comparing them to an appropriate
set of neutral communities, where complete equivalence is assumed for all species. These
neutral communities undergo the same zero-sum stochastic birth-death-immigration
process as the niche models, and birth and death probabilities are simply proportional to
species abundances. Each niche community is compared against a corresponding set of
1,000 neutral communities with identical regional diversity, local community size, and
immigration rate. All simulations and statistical manipulations are performed using the R
language (?).

6.3 Results

The stem plot in Fig. 6.1A represents the outcome of a simulation of our baseline scenario
of the MacArthur-Levins niche model. Species are arranged by trait value on the x-axis,
and their abundances are indicated on the y-axis. The plot shows unmistakable structure,
with the apparent formation of about 13 clusters around dominant (i.e. high-abundance)
species, which in turn are evenly dispersed along the trait axis. The gap statistic has a
clear spike at k = 13 (Fig. 6.1D), supporting the visual identification of 13 clusters. In the
deterministic immigration-free formulation of this model, there are 13 evenly spaced stably
coexisting species (Fig. 6.1G). The correspondence with the deterministic case suggests
interpreting each cluster as a group of species vying for the same niche.

The average standard score of the gap statistic across ten runs of our baseline MacArthur-
Levins scenario was > 5, indicating unambiguous clustering (Fig. 6.2A). The standard
score of the gap statistic clearly decreases with immigration (Fig. 6.2B). Increasing regional
diversity while maintaining the number of niches available also has a clear effect: the
average standard score is higher for scenarios with more diverse pools (Fig. 6.2C).

In addition to the baseline, clustering was also clearly evident regardless of the presence
or absence of edge effects and abiotic filtering (Fig. 6.2A). However, this was not the case
of scenarios where competitive niche sorting was slow and scenarios where competition
coefficients deviated from exclusive dependence on species trait similarity. The clustering
metric failed to distinguish those cases from the neutral nulls.

The center and right columns in Fig. 6.1 show two of those scenarios in more detail (see
Appendix L for a detailed description of the scenarios). Compared with the baseline case,
the stem plot of the scenario with Gaussian competition coefficients (Fig. 6.1B) shows less
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clear-cut distinction between species abundances by trait, while the scenario with random
w (Fig. 6.1C) shows strong abundance structure, as in Fig. 6.1A, but less regularity on the
trait axis. Our deterministic immigration-free results show that stably coexisting species
in the scenario with random w are irregularly spaced (Fig. 6.1I), whereas in the scenario
with Gaussian competition species are as evenly spaced as in the baseline scenario (Fig.
6.1H). These results suggest that the scenario with Gaussian competition differs from the
first in the speed of competitive sorting, whereas the scenario with random w differs by
asymmetries in species interactions. The gap statistic was generally much lower than in
the baseline scenario. Indeed, whereas the baseline case shows a distinct peak soaring
above the neutral expectations, both the slow-sorting case and the case with randomness
in the competition coefficients failed to express strong evidence of clustering (compare
Figs. 6.1E and 6.1F to 6.1D). For stem plots of deterministic and stochastic runs of all other
scenarios, as well as their respective gap statistic curves, see Appendix M.

Simulation outcomes of the other niche models are shown in the stem plots in Fig. 6.3,
and the gap statistic results for these models are shown in Fig. 6.4. We see considerable
variation in the standard score across models with different niche mechanisms, as well
as across different scenarios within the same niche mechanism. Significant clustering
was sometimes observed in the Rosenzweig-MacArthur model, but only in the scenario
with high resource depletion. In the Schwilk-Ackerly model of competition for local
environmental conditions, clustering was strong in the scenario with local dispersal but did
not occur in the scenario with global dispersal. The competition-colonization communities
are strongly clustered, but the abundance structure in Fig. 6.3 suggests that the dominant
cluster may be driving the result. Indeed, all 10 runs were estimated to have only either 2
or 3 clusters. This is in contrast with the deterministic results where a higher number of
species stably coexist (see Appendix M). The tolerance-fecundity communities consistently
fit a single cluster (see caption of Fig. 6.4). The abundance structure (Fig. 6.3) suggests that
this is because our metric “sees” one big cluster on the left side of the axis. Indeed, if the
test is restricted to the left side, more clusters appear and clustering is much enhanced
(mean standard score 1.86 across 10 runs, standard deviation 0.7).

Immigration links species lifetimes to regional abundances. The relationship is very
strong in the neutral scenario, where lifetimes are almost completely predicted by regional
abundances (Fig. 6.5A). This is less so in the niche scenarios, particularly when niche
sorting is fast (Figs. 6.5B and 6.5C). Specifically, in the niche cases some species had
higher lifetimes than could be expected based on their regional abundances. Both in
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neutral and niche cases, species that persisted throughout the entire tracking period in the
simulation (“residents”) tended to have high regional abundance, revealing an obvious
influence from immigration; however, in the fast niche sorting cases some residents did not
have particularly high regional abundances (Fig. 6.5C. See also Appendix M for all other
scenarios). Species identified as centers of their clusters (medoids) tend to be residents,
and in the fast sorting cases their lifetimes may exceed expectations based on regional
abundance. Finally, note that there is a tendency for cases identified by the gap statistic as
strongly clustered to also be cases with a looser relationship between regional abundances
and lifetimes and vice versa, indicating strong impact of competition on lifetimes (see
Appendix M).

It should be noted that these niche scenarios do not express the type of trait structure
that motivates commonly used metrics in the empirical literature. Species in these scenarios
do not show a tendency to overdisperse in functional space in the sense of Rao’s quadratic
index (?) or the related functional dispersion index introduced in (?). In fact, not only did
our scenarios largely fail to express significantly high Rao and functional dispersal indices,
some actually showed significantly low values compared with the neutral scenarios (Fig.
6.6A). This occurred with our tradeoff scenarios, and the MacArthur-Levins scenario where
environmental filtering towards an optimal trait value acts on top of niche sorting. While
the latter result is perhaps not surprising, the outcome of the hierarchy models indicates
that species mostly cluster around a single dominant niche. In that sense, communities
formed under these hierarchy models are not entirely distinguishable from a case of pure
filtering from the point of view of these metrics.

Species are also not evenly dispersed along the trait axis, contrary to the common
expectation that has motivated metrics of even spacing such as the variance in distances
between nearest neighbors or adjacent neighbors on the trait axis (??). We tested the
coefficient of variation (CV) in distances between adjacent neighbors on the trait axis,
and found that it is indistinguishable from that of the neutral communities (Fig. 6.6A).
Metrics of even spacing that do not account for abundances cannot distinguish between
dominant species and rare species that may be present due to a recent introduction from
the regional pool. As a result, immigration severely limits the ability of this metric to detect
a pattern. One possibility for bringing abundance into account is to subset only the most
abundant species. In Fig. 6.6B we illustrate the idea using an example run of the baseline
MacArthur-Levins scenario. The CV is calculated in turns across progressively larger
subsets, starting with only the community’s 5 most abundant species and then adding the
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other species in order of abundance until the entire community is sampled. Notice how
the CV ranges from lower to higher than null (neutral) expectations as more species are
sampled, but falls back to null expectations when the entire community is taken.

6.4 Discussion

Our metric successfully identified clusters in the MacArthur-Levins model. While the
fact that species identified as medoids tended to have high regional abundance signals
the influence of immigration, the fact that medoids tended to be residents signals both
their dominant status in the competitive dynamics and the success of the clustering metric
in finding meaningful patterns in the community, as it indicates that species around
which others are clustering are those whose lifetimes are most enhanced due to niche
differentiation.

Pattern was stronger at low immigration, which is intuitive: because the arrival of
immigrants to the local community is independent of competitive interactions and any
other internal processes, higher propagule pressure is expected to lead to noisier outcomes
and therefore weaker pattern. The positive effect of regional diversity is also easy to
understand: other things being equal, clusters with more species are more distinctive.
Note that our case with the lowest regional diversity, which had a species-to-niches ratio
of only about three species per niche, was not identified as distinctive from its neutral
counterpart, even though the competitive interactions driving this community were of the
exact same nature as those in the cases that were distinctively clustered. This suggests that
clusters in nature could be more easily found in extremely diverse systems such as tropical
forests and coral reefs than in relatively species-poor systems such as temperate forests
and grasslands.

? argued based on a proof from ? that a community supersaturated with species in
an unstable equilibrium will always undergo transient clustering if the matrix formed by
the competition coefficients is cyclic, i.e. its rows are rotations of each other. Specifically,
they show that a long time after the disturbance species abundances will converge to the
dominant eigenvector of the community matrix, which for any cyclic matrix is periodic.
Our results across variants of the MacArthur-Levins model can be understood under
the light of ?’s (?) argument. Similarity-based competition on a circular axis meets the
cyclic prescription exactly, whereas similarity-based competition on a finite axis meets it
approximately if the axis is sufficiently long (i.e. if interactions are not dominated by edge
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effects1). In contrast, the cyclicity is more severely broken, and with it the clustering pattern,
when the parameter w is no longer held constant across all competitive interactions, as was
the case in two of our MacArthur-Levins scenarios. Environmental filtering that acts only
on species intrinsic fitness does not affect the matrix, and accordingly had no deleterious
effect on clustering.

The agreement between our results and predictions based on a deterministic analysis
indicates that stochastic assembly with immigration does not affect the nature of the
transient. Rather, it appears that stochastic immigration maintains the system in a
permanent transient state of the deterministic formulation. On the other hand, clusters
were not seen in our scenarios with slow niche sorting. This suggests that within stochastic
assembly the relative speed of sorting is as important as the architecture of the competition
matrix. Clusters were absent not because the matrix is not cyclic but because the pace at
which they form is so slow that stochastic immigration can easily overwhelm it. Indeed,
clusters occur when immigration is turned down in these slow-sorting scenarios (Appendix
M).

The lack of clustering in the low-depletion scenario of the Rosenzweig-MacArthur
consumer-resource model reveals the connection between this scenario and the MacArthur-
Levins model with Gaussian competition kernel (see Appendix L). Because in our
consumer-resource model the gains in consumer population upon consumption are
proportional to the depletion of the resource population, the competition coefficients
arising from overlap in resource consumption form a positive-definite matrix (?), which has
been linked to stable coexistence among species with arbitrarily similar traits and strong
sensitivity to edge effects (?). Our results show that it also leads to slow niche sorting and
therefore high sensitivity of pattern to immigration.

On the other hand, clustering appeared in some of our runs with high resource
depletion. This could be because the extirpation of most resources forces species to
compete for the same few surviving resources and thus clusters are formed based on
specialization to specific resources (see Appendix M for stem plots of consumers and
resources in both scenarios). Our finding that resource depletion has a strong effect on trait

1Note that our clustering results were stronger in the baseline MacArthur-Levins scenario than in the
scenario with a circular axis, in apparent contradiction with this argument. The paradox is dissipated by
considering that edge effects break the otherwise perfect symmetry of the axis and set the positions of
the niches, thereby speeding up competitive sorting relative to a circular axis. This highlights our finding
that even if the deterministic immigration-free model predicts clusters, when immigration occurs their
appearance is affected by the relative rates of internal dynamics and immigration.
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pattern is consistent with Abrams’ results regarding the effect of depletion on competitive
interactions and coexistence (??). However, we note that even though Abrams criticizes the
assumption of similarity-based competition as simplistic for ignoring resource depletion,
at least with regards to pattern our high depletion scenario is comparable to our baseline
MacArthur-Levins scenario, which is based purely on similarity (discounting edge effects,
which did not affect clustering in our simulations).

The negative results in the global-dispersal scenario of the Schwilk-Ackerly model
of competition for suitable environments can also be understood via its connection with
the MacArthur-Levins model. Fitness of species to specific environments are modeled
as a Gaussian function of the difference between the local environment and the ideal
environment for that species. Species compete based on their attempts to colonize the same
spot. In the simpler case of no dispersal limitation, the competition coefficients result from
overlaps in suitability to environmental conditions. ? showed that coefficients originating
from overlap of Gaussian resource use curves are themselves Gaussian functions of species
similarity. We conclude that the global-dispersion version of the Schwilk-Ackerly model
is directly analogous to the MacArthur-Levins model of Gaussian competition, and thus
inherits its slow niche sorting and low ability to form pattern under high immigration.

In contrast, we found that the picture changes drastically when dispersal limitation is
considered. Dispersal limitation lowers the rescue of populations that are ill-adapted to
local environments by propagules from individuals located in more propitious areas. The
slow niche sorting characteristic of this model is then compensated by what amounts to a
dramatic reduction in “internal” immigration. This enhances local exclusion and therefore
pattern formation.

It should be noted that Schwilk and Ackerly, along with ?, found very strong pattern in
this model, but marked by even spacing rather than clusters. There is no contradiction
with our results because these authors used extremely low immigration rates. The
MacArthur-Levins model, of which this model is an analogue, produces even spacing
when immigration is absent. Our stochastic simulations will also produce even spacing
for sufficiently low immigration rate. ?, tested both very high and very low immigration
rates. As expected, even spacing was observed at the low end. The picture forming
here is that stochastic niche pattern falls on a spectrum with even spacing under little
to no immigration, no pattern when high immigration overwhelms local dynamics, and
clustering in between.

The hierarchy models were characterized by striking asymmetries on the niche axis,
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as evidenced by the stem plots and the low Rao and Functional Dispersion indices.
Despite these asymmetries, both models showed strong clustering, even though their
niche mechanism is fundamentally different from the MacArthur-Levins model. In the
competition-colonization tradeoff, the vast difference in size and abundances between the
leftmost cluster and those on its right calls into question whether the outcome expresses
coexistence at all, as low-abundance species are vulnerable to extinction due to drift, even
if they are being stabilized by niche differences. As for the tolerance-fecundity tradeoff,
clustering was present but results were complicated by the fact that the model predicts
coexistence—and therefore pattern—only among species with high competitive ability.

Functional overdispersion and even spacing between species were notably absent
from our results, in stark contrast to widely held expectations regarding the effects of
niche differentiation. We note that the coefficient of variation has also been used to detect
clustering (?)—a clustered community is supposed to have significantly high CV—but it did
not identify clustering in any of our scenarios. We adapted the CV metric to take abundance
structure into consideration and saw that the clusters—and not the species—may be evenly
spaced. We propose that this abundance-weighted extension of the CV metric can be
further developed into a metric that could simultaneously detect even spacing between
niches and clustering between species, as may be the case when regional diversity far
exceeds the number of niches available.

The relationship between clustering and competition based on similarity can be linked
back to MacArthur and Levins’s results (?) regarding invasion of a two-species community
by a third species with an intermediate trait value. Coexistence between the three species
is only possible if they are separated by a minimum distance on the trait axis (limiting
similarity), but when that condition is not met, the combined competitive suppression
caused by the two residents is lower on an invader closer to one resident than on an invader
in the middle. Extending this argument to multispecies cases, the total competition felt by
a species is lower near one of the niche-differentiated residents than in the center of the
interspersing gaps. Therefore in immigration-free assembly with a community initially
supersaturated with species, transient clusters spontaneously form because competitive
exclusion is slower in the immediate vicinity of niche-differentiated residents than in the
center of the interspersing gaps. In our stochastic models, this transient state is made
permanent by immigration and mass effects, but can be overwhelmed if the species sorting
is too slow.

The appearance of clusters under niche mechanisms that are not expressly based on

107



trait similarity is potentially due to the fact that even in these other models competitive
interactions do tend to decline with trait difference, if less symmetrically than in the
MacArthur-Levins model. Some degree of similarity-based competition is the quintessential
element of niche differentiation, and stabilization is probably impossible without it. Niche
models that predict coexistence can be expected to contain some form of similarity-based
competition, and therefore potential for clustering. However, our study shows that whether
clusters will arise depends on many other factors such as immigration, speed of sorting, the
species-to-niches ratio, and randomness across pairwise species interactions. Our results
indicate that depending on these factors niche pattern may fall somewhere on a spectrum
between even spacing on one end and no pattern on the other, with clustering in between.

Although our results were obtained for niche differentiation along a single axis, our
conclusions hold in general for multidimensional niche space. If competition originates
primarily from species similarity in an n-dimensional space, species under stochastic
assembly with immigration will form n-dimensional clusters (results not shown). Our
metric can quantify clusters in any dimension, so long as a distance function is provided.

Our study is limited by the assumption of a neutral regional pool. In real systems,
the pool is likely to be under its own biotic and abiotic filtering and may display pattern
which will be inherited to some degree by the local community. In addition, all our
niche scenarios except for the Schwilk-Ackerly model with local dispersal are spatially
implicit and therefore ignore dispersal limitation within the local community. Thus
our immigration rate may overestimate propagule pressure in real systems, where most
immigrants would originate from a smaller pool of nearby individuals. Particularly in
the case of the life history tradeoff models presented here, dispersal limitation may have
a considerable impact on coexistence and the formation of pattern. Combined with the
fact that immigration tends to dilute pattern, we conclude that our results are probably a
conservative estimate of the potential for clustering in the scenarios tested.

In sum, our manipulations of the MacArthur-Levins model and examination across
different competition mechanisms found that clustering is a general phenomenon in
stochastic niche assembly under immigration, emerging from competitive dynamics
dominated by species similarity. We provided a tool to find and quantify clusters in data.
Our study also delimited the circumstances under which clusters are more likely to be
observed, namely low immigration, high regional diversity, and fast competitive sorting.
Our findings highlight the importance of tying pattern predictions to modeling assays that
come as close as possible to realistic scenarios.
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6.5 Figures

Figure 6.1: A-C: Outcomes of stochastic assembly with immigration of three MacArthur-
Levins scenarios. D-F: Gap statistic as a function of number of clusters fitted to the
stochastic data. The null expectation of the gap statistic for any given number of clusters is
zero, as marked by the dashed grey line. The peak of the curve is the test statistic returned
by the metric. G-I: Outcome of deterministic immigration-free simulations of the same
scenarios. Every species from the regional pool are initially present, and competitive
dynamics proceeds until only stably coexisting species remain. Left: baseline scenario.
Center: scenario with slow niche sorting (ρ = 2). Right: scenario with random w (see
Methods for details.)
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Figure 6.2: Average standard score of the gap statistic across 10 runs of each MacArthur-
Levins scenario. Error bars show standard error of the mean. A: Comparison of the
standard score of the baseline case against variants with slower competitive sorting or
reduced symmetries in the competitive interactions. See Methods for full description of
each scenario. B: Comparison among variations of the baseline scenario with different
immigration rates. Labels show immigration rate used in simulation. C: Comparison
among cases with different regional diversity. Labels show neutral diversity parameter θ
used to generate regional pool. Red lines mark a deviation from the neutral mean of 1.645
standard deviations, which for normally distributed null values corresponds to the 95%
percentile.
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Figure 6.3: Stem plots representing communities generated from models with various
niche mechanisms. Left: Niche differentiation by preferred resource. In the scenario
shown in the top panel, parameters are set so that resources are not severely depleted by
consumption; in the bottom scenario, consumption causes extensive resource depletion
and extinction. Center: Niche differentiation by preferred abiotic environment. In the top
scenario, species are not limited by dispersal: the offspring of every individual compete
for every vacancy. In the bottom scenario, dispersal declines with distance to the vacated
site. Right: Niche differentiation by life history strategy. Top: Competition-colonization
tradeoff. Numbers in red show abundances of species exceeding 1,000 individuals (marked
by red dots). Bottom: Tolerance-fecundity tradeoff.
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Figure 6.4: Average standard scores of the gap statistic of communities generated from
competition models with several niche mechanisms. Clustering was observed in all of
the mechanisms tested, although not in every scenario; within the same type of niche
mechanism, clustering varied significantly depending on factors such as resource depletion
and dispersal limitation. The gap statistic of communities estimated to have a single cluster
was set to zero, so scenarios that fit a single cluster appear as negative bars. This was the
case of the tolerance-fecundity tradeoff and the pure filtering scenario, characterized by
purifying selection with no niche differences (Ai j = 1).
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Figure 6.5: Immigration links species lifetimes to regional abundances. Red dots indicate
species identified as cluster centers (medoids). The relationship is very strong in the neutral
scenario, but less so in the niche scenarios, particularly when niche sorting is fast. Both
in neutral and niche cases, species that persisted throughout the entire tracking period
in the simulation (“residents”) tended to have high regional abundance; however, in the
fast sorting niche case many residents are not of particularly high regional abundance.
Niche scenarios shown are the MacArthur-Levins baseline and the MacArthur-Levins with
Gaussian competition coefficients.
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Figure 6.6: A: Standard scores of the Rao quadratic index, the functional dispersion index
(FDis), and the coefficient of variation in distances between adjacent neighbors on the trait
axis (CV). The red lines mark the threshold z = ±1.96 , corresponding to the 95% confidence
interval for the standard score against normally distributed null values. Rao and FDis
were not significantly high in any of our niche scenarios, and were low in the hierarchy
models as well as the similarity-based models with environmental filtering. CV was not
significantly high or low in any scenario. B: Coefficient of variation of the trait differences
between adjacent species in subsets with the n most abundant species, with n between
5 and the total number of species observed, S. Pink band shows the 95% confidence
interval from the set of 1,000 neutral runs. The CV is clearly lower than neutral when n is
similar to the estimated number of clusters k̂ (indicated by the red dot), and clearly higher
than neutral when n is intermediate between k̂ and S, but falls to null expectations as n
approaches S.
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Chapter 7

Can clustering in genotype space reveal niches?

Abstract

Community ecology lacks the success enjoyed by population genetics to quantify the
relative roles of deterministic and stochastic processes. Jeraldo et al. (2012) proposed
that clustered patterns of abundance in genotype space provide evidence of selection in
microbial communities, since no such clustering would arise in the absence of selection.
We critique this test for its unrealistic null hypothesis. We show mathematically and with
simulations that point mutations alone lead to clustering in genotype space by causing
correlations between abundances of similar genotypes. We also show potential deviations
from the mutation-only pattern caused by immigration from a source pool. Clustered
patterns in genotype space may still be revealing of selection if analyzed quantitatively, but
only if neutral and selective regimes can be distinguished once mutation and immigration
are included in the null model.

7.1 Introduction

Population geneticists have at their disposal various techniques for detecting selection
at the gene level, including null-hypothesis tests against neutral models calibrated with
data from a large number of genes (e.g. ??), and cross-species tests such as the McDonald-
Kreitman and the dN/dS test (?). However, assessing the relative roles of selection and
neutral forces in community assembly has proven a challenge. ? have contributed a step
forward by offering a test for selection’s influence on community assembly in microbial
communities based on patterns in genotype space. This method, if reliable, would be very

115



useful, as it needs only a combination of abundance and genomic data that are widely
available in microbial ecology studies.

? argued that clustering of operational taxonomic units (OTUs) in genotype space can
be used to infer selection. Jeraldo et al. refer to selection in general as “niche stabilization".
This use of the phrase differs from the current predominant usage in community ecology
(e.g. ?), where niche stabilization is specifically reserved for stable coexistence promoted
by species differences. Still, clear signatures of selection in the broader sense meant by
the authors would be of great interest to ecologists. Jeraldo et al. found that within the
gastrointestinal microbiomes of domesticated vertebrates, rare OTUs tend to be close in
genotype space to abundant ones, and argued that this is qualitatively different from the
pattern expected under neutrality, where rare and abundant OTUs should be randomly
located in genotype space.

This paper has already generated some interest, having typically been cited as existing
evidence that selective forces influence the assembly of gut microbial communities (e.g. ?).
The test was introduced in the context of gut microbiomes and applied to a gene known to
be under selection due to its functional importance (?), but it would apply in general to
genes of unknown fitness effects in any microbial community with high genetic diversity.
Furthermore, it tells whether selection on that gene is influencing the assembly of OTUs
into a community.

Here we argue that a more thorough consideration of the appropriate null model for
abundance patterns in genotype space is needed before Jeraldo et al.’s approach can be
accepted. In particular, we argue that Jeraldo et al. did not consider the potential influences
of mutation and immigration in the neutral scenario. We show that point mutations alone
are expected to lead to clustering in genotype space, and that immigration may lead to the
local community mirroring pattern existent in the source. We argue that the presence of
clustering in genotype space is typically not enough to infer selection. Instead it must be
inferred by demonstrating quantitative departures from patterns expected from mutation
and immigration alone. We also discuss the particular role mutations and immigration
from a source pool might play in the gut microbiome system to which Jeraldo et al. applied
their test, and show how they should be factored into a more informative null model for
the test.
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7.2 The Jeraldo et al. test

The Jeraldo et al. test looks at operational taxonomic units (OTUs) in a microbial
community. An OTU is generally the taxonomic level of sampling selected to be used in a
study, and in this context is essentially a “species" concept for microbes based on genetic
similarity. For the purposes of describing the qualitative properties of abundance pattern in
genotype space identified by Jeraldo et al., the species/OTU label is unnecessary. Henceforth
we will refer to genotypes in a community, with no regard for which species/OTU they
belong.

Consider a community of asexual individuals, each characterized by its genotype
within a certain genetic sequence that is polymorphic. Ranking genotypes by abundance,
let the 5% most abundant ones be called “modal", and call all others “rare". For each of
the rare genotypes, find the modal genotype with the shortest Hamming distance to it, i.e.
the smallest number of discordant loci. Jeraldo et al. (2012) proposed that the distribution
of such shortest distances between rare and abundant genotypes can be used to infer the
influence of selection among genotypes. (Note that Jeraldo et al. frame the test in terms of
OTUs.)

Jeraldo et al. reasoned that in the case of selection, the community will consist of a few
modal genotypes (those being most selected for), and many more rarer genotypes having
arisen through point mutation from the modal ones, with the likelihood of a particular
genotype being present declining with increasing number of allelic differences (Hamming
distance) due to decreasing fitness. Put simply, assuming similar genotypes have similar
fitnesses, the fittest genotypes would be most abundant, followed by their immediate
neighbors in genotype space, and so on. They then showed that static communities
constructed that way show a monotonic distribution of shortest Hamming distances
between rare and modal genotypes, with shorter distances prevailing over larger ones.

On the other hand, Jeraldo et al. claimed that in the absence of selection, rare and
modal genotypes would be randomly distributed in genotype space, resulting in a peak
in the distribution of distances to nearest modal genotype at an intermediate Hamming
distance. Essentially, Jeraldo et al. theorized that the curve in the neutral scenario would
track the number of neighbors by Hamming distance H to a given genotype, which peaks
at H = 3/4. They confirmed their expectations by measuring the Hamming distance curve
on randomly constructed communities.

Jeraldo et al. then applied their test to microbiomes collected from the guts of swine,
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cattle, and chickens, and rejected neutrality because the observed distributions of distances
to nearest modal OTU were a better fit to a monotonic distribution than a distribution with
a peak.

7.3 Limitations of Jeraldo et al.’s null hypothesis

The authors’ null prediction of a curve with a peak reflects their assumption that
the abundances of different genotypes would be entirely uncorrelated in the absence of
selection. However, this assumption can be violated in a number of ways, most notably
by the effects of mutations and immigration from a source with a nonrandom abundance
distribution.

7.3.1 The effect of mutations

Consider a community of microbes where individuals die and reproduce asexually
with a chance of mutation under a purely neutral regime. Individuals differ with respect
to their genotype in a genetic segment of specific length. Suppose there can only be point
mutations, that is, mutations that replace a single base nucleotide with another nucleotide.
In Appendix N we prove that in the long term genotype abundances are correlated, and
the correlation declines monotonically with the Hamming distance between them. This
means that genotypes with short Hamming distance will tend to have similar abundances
compared to pairs with long distance. Intuitively, those are precisely the conditions
necessary for the formation of clusters in genotype space that Jeraldo et al. associate with
selection (Fig. 7.1).

To show that these correlations do in fact lead to this patterning in Jeraldo et al.’s
metric, we simulated neutral communities with point mutations. Our simulated neutral
communities have 1,000 individuals, each characterized by a genotype consisting of 40 loci.
We draw the genotypes of the initial individuals from a uniform probability distribution,
and run zero-sum neutral dynamics (i.e. community size is kept fixed) for 2 million
simulation steps, corresponding to 2,000 turnovers. At each simulation step, one individual
is selected at random to die, and another is selected to reproduce. It then either sires a clone
or a mutant with one point mutation (i.e. a substitution in a single nucleotide). We set the
mutation rate µ = 0.1, so every newborn has 10% chance of carrying a point mutation.

As expected, we obtained a monotonic distribution of distances to nearest modal
genotype, qualitatively similar to Jeraldo et al.’s expectation for the selection scenario
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(Fig. 7.2). In contrast, in simulated neutral communities that are not constrained by point
mutations, i.e. where each genotype can mutate with equal probability into any other
in a single step, we see a mode at a Hamming distance of 3/4, matching Jeraldo et al.’s
expectations exactly.

We used a very high mutation rate to save computation time, but we checked that our
results are qualitatively the same for mutation rates several orders of magnitude lower,
µ = 10−3 and µ = 10−4. Estimates for actual mutation rates in bacteria hover around 10−11

substitutions per site per generation (?), which would require years of simulation time
with our code. However, given that our analytical result for the correlations applies to any
mutation rate, we see no reason to expect any qualitative difference in this distribution for
lower mutation rates. We note that organizing genotypes into OTUs would not eliminate
correlations and hence would not qualitatively change our results.

So when structure caused by neutral mutations is considered, Jeraldo et al.’s test is
unable to infer selection based upon a simple qualitative assessment of the shape of the
curve. But can it do so upon a quantitative assessment? The answer depends on the array
of possibilities that exist for the strength of selection, mutation rates, and community size.
In Appendix P, we carry out an example analysis using simulations to illustrate how this
question might be answered for specific systems in future studies.

7.3.2 Immigration

To test how immigration can affect the neutral pattern caused by mutations, we added
immigration to our simulations of neutral dynamics with mutation and compared with the
mutation-only scenario. We simulated local communities with 1,000 individuals receiving
immigrants from a fixed source pool. We considered two different types of sources: one
lacking any structure, where genotype abundances are drawn at random from a uniform
distribution, and one that is shaped by mutation and selection. The structured source
was generated through simulation as described above, with ten times the size of the local
community (see Appendix P for a description of the selection case considered). For the
unstructured source we simply chose genotypes randomly for immigrating individuals
when an immigration event was to occur. The intensity of immigration is controlled by
the immigration parameter m, which sets the probability that a death event is replaced by
an immigrant from the pool instead of a local birth. We tested three different values for
the immigration parameter, m = 0.001, m = 0.01, m = 0.1, representing low, medium, and
high contribution of immigration relative to mutation (set at µ = 0.1 for all simulations).
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Results are shown in Fig. 7.3. When immigration is low compared to mutation, the
effect on the local Hamming distance curve is minimal. For higher immigration rates, the
effect of immigration depends on the abundance structure in the pool. Immigration from
a pool without structure adds a mode and causes the monotonic part to be steeper and
narrower. In contrast, immigration from a pool shaped by mutation and selection adds no
mode, but deforms the monotonic part if the immigration rate is sufficiently high.

In summary, structure in the source pool, or lack thereof, will influence the local
community Hamming distance curve if immigration is substantial enough compared with
mutation, and hence must be factored into the null model to detect selection occurring at a
local scale.

7.3.3 The gut microbiome

The results above draw a general picture for a process-based null model for the Jeraldo
et al. test that combines mutation and immigration. In this section, we discuss the
appropriate null model for the specific case of the gut microbiome, to which the test was
applied.

Assuming about 1013 microbial cells in a cow’s gut (?), a mutation rate of 10−11 mutations
per site per cell cycle (?), and a gene with 1 kbp, we can expect about 105 new mutations in
that gene per generation in the gut. It thus seems likely that mutations would matter for the
dynamics (for comparison, our simulated communities had an average of 102 mutations
per generation).

Ingested microbes have been shown to impact gut flora composition (?). It is thus
conceivable that immigration may affect local structure as well. The main modes of
transmission for gut-living microbes are presumably maternal sources (?) and the fecal-oral
route. Grazers such as cattle regularly ingest soil microbes, but experiments with mice
indicate that xenomicrobiota from soil and the guts of other species are poor competitors
compared with autochthonous microbiota ?, and are thus unlikely to significantly affect
gut community structure within a host species. Thus one can assume that in addition to
drift, selection, and local mutations, structure in the gut microbiome of an individual is
influenced by the legacy of maternal sources and ingestion of autochthonous microbes,
and to a lesser extent, xenomicrobes.

There are thus a few possible null models for gut microbiomes, depending in part on the
scale at which one wishes to infer selection. If one is interested in selection within the gut
of an individual host, the null model would be a neutral community with initial structure
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based on the gut microbiome of the individual’s mother (due to the prominence of maternal
sources early in life) and dynamics driven by drift, mutation, and immigration from
ingestion of autochthonous gut microbes. Such a null model would require information
about the composition and relative abundance of genotypes in the host population. In the
absence of that data, one might model the pool as structured by mutation. The distribution
of Hamming distances is expected to be monotonic (Fig. 7.3). On the other hand, if one
aims to infer selection at the level of the host population, immigration can probably be
ignored, as recruitment of xenomicrobes is infrequent compared to local mutations. The
null model would be a community with dynamics driven by drift and mutation.

7.4 Discussion

If selection favors one or a few genotypes over others, and if similar genotypes have
similar fitnesses, one expects the abundance of a genotype to be negatively associated with
its Hamming distance to the fittest genotypes. Genotype space should be characterized by
regions of high abundance near the fittest genotypes and regions of low abundance away
from them. This idea has been used to infer selection among OTUs in microbiomes, but the
implementation was problematic because it ignored the fact that neutral dynamics under
point mutation can create similar abundance patterns. Jeraldo et al.’s null hypothesis is
based on oversimplified genotype-blind dynamics. Once point mutations are accounted
for, the test fails to distinguish selective from neutral regimes based solely on a qualitative
assessment. A quantitative approach is required.

We have shown how mutation and immigration contribute to neutral predictions to be
used as a null hypothesis to the test proposed by Jeraldo et al. If immigration events are
rare compared to mutation events, mutation dominates structure. The neutral model with
mutation described here can then be used as a process-based null model for the Jeraldo
et al. test. Given the low values of mutation rates in actual systems, simulations of that
model will need to use parallel computing, as serial computing is impractical.

When immigration is significant, the null prediction will depend on the immigration
rate and the abundance structure in the source pool. If the pool has weak or no structure,
then immigration adds noise and brings the curve towards the random null hypothesis
used by Jeraldo et al. But if the pool itself is shaped by selection, then the shape of the local
Hamming distance curve is qualitatively similar to the mutation-only case, but influenced
quantitatively by the structure in the source pool.
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Jeraldo et al. were not specific about whether they aimed to detect selection at the scale
of the individual host or the host population, and made no mention of a potential source
pool. Their null hypothesis corresponds to a case where mutations are so slow as to be
non-existent in the local community, and where immigration comes from an unstructured
pool. Their data should be reanalyzed in the context of a mutation-only null model in
order to gain evidence for selection at the level of the host population, or in the context of a
null model structured by mutation and ingestion of autochthonous microbes for detecting
selection at the level of an individual host.

Issues with the test’s null hypothesis notwithstanding, its limitations in scope must be
noted. The test looks for selection, not niches: in taking abundance as a proxy for fitness,
the test is blind to niches that only allow for a low carrying capacity, such as specializing on
a scarce resource. Also, the selective regime that the authors test for is somewhat specific.
The fitness landscape is assumed smooth, which is not realistic when fitness does not
correlate strongly with Hamming distance. The test is therefore better suited to sequences
in which mutations have cumulative small effects on fitness. Finally, the test can only be
applied if there is enough variation present for clustering patterns to possibly emerge. This
was mentioned by Jeraldo et al., but bears emphasizing, since it means the test can only be
successful with highly variable genes.

One further use of our analytical work in Appendix N is as a precursor for an
alternative metric based on the correlations themselves. We offer a partial derivation,
where correlations are obtained as a function of the mean and variance of observed
genotype abundances. To complete it, one must find predictions for the mean and variance
as a function of population size and mutation rate. That could be complemented with
simulations to establish variability in the correlations and carry out statistical analysis.
Preliminary investigation of this suggests that a test based on correlations would have at
least as much power, if not more, as the test proposed by Jeraldo et al.

Our analytic results mirror previous findings of clustering of organisms in a spatial
context (?). Our model also has parallels with quasispecies models, which describe
populations of asexual replicators at a high mutation rate and are thus of interest in
virology (?). For a comparison between these types of models and conventional population
genetics models, see ?. Finally, there are obvious parallels between genotypes in genotype
space and species in multidimensional trait space, and between point mutations and
sympatric speciation with a phylogenetic signal. This suggests that the Jeraldo et al. test
can also in principle be applied to detect clustering of species in trait space caused by
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habitat filtering and niche processes (?).
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7.5 Figures

Figure 7.1: Conceptual illustration of genotype space: clustered versus random. Circles
represent genotypes, with size indicating genotype abundance. Positions of the circles mark
their placement in a multidimensional genotype space, here represented in two dimensions.
A: Neutral scenario envisioned by Jeraldo et al. : abundance of genotypes unrelated to
their location in genotype space. B: Clustering pattern: the immediate neighborhood of
particularly abundant genotypes consists of other relatively abundant genotypes, whereas
distant regions are populated with rare genotypes. Jeraldo et al. associate this pattern with
selection, but it can also appear due to mutation.

A B
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Figure 7.2: Distribution of distances to nearest modal genotype observed in neutral
communities driven by drift and mutation. (normalized Hamming distance is defined as
z/L, where z is the number of discordant loci and L is the total number of loci.) Numbers
on the y axis reflect the frequency of rare-modal pairs. Black curve corresponds to neutral
scenario with restriction to point mutations, and grey curve corresponds to neutral scenario
with mutations of unconstrained size. Curves and error bars represent mean and standard
error of the mean across 127 (point mutation) and 163 (mutation of unconstrained size) runs.
Community size for all runs is 1,000, and mutation rate is 0.1 per genome per generation,
for a genome with 40 loci.
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Figure 7.3: Comparison between neutral communities with and without immigration, for
three different immigration rates m (columns) and immigration from source pools with
different abundance structures (rows). Grey curves correspond to communities subject
only to point mutation at fixed rate µ = 0.1, while black curves correspond to communities
under both mutation and immigration. The last column shows the source pools of the
corresponding rows.
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Chapter 8

Dissertation summary and closing thoughts

8.1 Dissertation summary

Despite being a central tenet of ecological theory, niche differentiation can be difficult to
verify, and attempts at empirical measurement have met with mixed results (??). Chapter 1
promoted inference based on trait pattern as being generalizable across systems, directly
tied to ecological strategy, and less data-intensive than other methods, but argued that recent
findings from dynamical niche models require a new round of revisions in expectations of
pattern. Key themes included the need for developing theory across models and the need
for metrics better suited to capture pattern the models are telling us to look for.

Chapter 2 investigated the consequences for model behavior of the problematic assump-
tion of discontinuity in ecological strategy. This assumption, while hopelessly unrealistic,
has found its way into a variety of models spanning different niche mechanisms (???????).
We showed that such discontinuity may raise coexistence to arbitrary levels and therefore
drastically affects predicted pattern. In Chapter 3, we offered revised formulations of
two important niche models that implicitly make this assumption as originally presented,
namely the tolerance-fecundity tradeoff (?) and the competition-colonization tradeoff (?).
These revised formulations are essential for studying trait pattern on these models.

An important step in linking pattern and process is to gain a clear picture of the
dynamical influence of the process. Niches promote coexistence in deterministic models
(?), but what do niches do to species dynamics in a stochastic model, and how does
immigration play into it? In Chapter 4 we set out to understand what niche differentiation
is actually doing to species lifetimes and in what sense it enhances them. We showed
that a partially niche-differentiated assemblage, where the number of species regionally
present exceeds the number of niches available at the local scale, may actually contain
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fewer species and display higher species turnover than a completely neutral assemblage.
This chapter also related the effect of niches on species lifetimes to species traits, and those
results support ideas further explored in Chapter 5 that clusters are directly related to the
varying pace of competitive sorting along the trait axis.

Chapter 5 performed the model exploration called for in Chapter 1, and found that
persistent clustering is a general outcome in stochastic niche assembly under immigration,
especially when competitive sorting is driven by trait similarity. On the other hand, we
also showed that pattern may not form if immigration rates greatly exceed the speed of
competitive sorting. Finally, we showed that functional overdispersion and even spacing
between species does not occur under the types of niche differentiation mechanisms
explored. This chapter provided the first abundance-weighted metric specifically designed
to find and quantify clustering in ecological data. Combined, Chapters 4 and 5 paint a
picture of clusters as groups of species vying for the same niche, their appearance being a
consequence of the fact that niche differentiation enhances the lifetimes of those species
centrally situated within their clusters but expedites exclusion of those located in gaps.

We also argued for refining inference methods with process-based null models. Whereas
in Chapter 5 only immigration is considered, Chapter 6 showed that if an OTU/species
can generate similar OTUs/species by random mutation/speciation, then clustering will
appear even in the absence of niche mechanisms. Statistical null hypotheses based on data
randomization ignore this, and may lead to false positive results. Together, Chapters 5 and
6 make the case for clustering in niche inference by use of a process-based null model that
includes the relevant neutral processes.

8.2 Closing thoughts

Niche differentiation means higher species richness, lower extinction rates, longer
lifetimes, functional overdispersion, and even spacing on trait axes. Without niche
differentiation, traits and abundances are randomly distributed across species. All of
the above are commonly held beliefs about the impact of niche differentiation on species
assemblages, and in this dissertation each of them were shown not to hold generally in
the context of stochastic assembly with immigration and/or speciation, and when pattern-
forming neutral processes are considered in the null model. This dissertation emphasized
the need to validate inference methods using niche models. This approach clarifies in
which circumstances specific methods and metrics are expected to work, and when specific
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expectations regarding the impact of niche assembly on coexistence and pattern are likely
to be met. Using this approach, we presented a refined theoretical expectation, that under
stochastic niche assembly with immigration from a diverse regional pool, clustering on
trait axes is expected. We also provided a metric for measuring clustering pattern, which
can be used to compare observations with neutral process-based nulls that factor in the
potential for neutral clustering.

We stated in the Introduction that the main goal of this dissertation was to “advance
theory connecting niche differentiation to coexistence and pattern, and contribute to
improving niche inference methods.” This was accomplished by showing the following:
i. Avoidance of discontinuity in ecological strategies should lead to more realistic niche
models with more realistic pattern predictions; ii. More widespread use of process-based
null models should lead to inference tests with reduced risk of type I and type II errors; iii.
Measuring extinction rates alone may be insufficient to reject neutrality, as species turnover
is not necessarily lower under niche differentiation than under neutrality; iv. Clustering
should be brought to mainstream niche inference, and we have provided a tool to assist in
that purpose.

A theme has emerged of clustering as a potentially general outcome of niche differenti-
ation. We have argued that the interplay of immigration and competitive sorting leads
to clustering in stochastic niche models where competition is related to trait similarity.
An inverse relation between intensity of competition and trait differences, at least be-
tween very similar species, is the quintessential property of niche differentiation, without
which stabilization is impossible—intraspecific competition cannot exceed interspecific
competition otherwise. By tying similarity-based competition with clustering, we have
then opened the floor to speculation that clustering on niche axes could be, to be liberal
with language, a new “law” of ecology (??). Whether this is the case will depend on if
the results of Chapter 5 are borne out across a wider set of niche mechanisms, and if the
connections between niche stabilization and similarity-based competition can be more
firmly established mathematically and/or empirically.

Going forward, new metrics of trait pattern should be developed in lockstep with model
outcomes, as was done here with clustering and the gap statistic. Existing metrics can be
coopted to reflect new findings: for example, the abundance-weighted extension of the
coefficient of variation offered in Chapter 5 can be further developed intro a metric, which
would be particularly useful for systems with low regional diversity. The relationship
between the competition matrix and the speed of competitive exclusion must be better
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understood, as it predicts which niche mechanisms are more likely to lead to pattern in
communities under propagule pressure and other stochastic processes likely to dilute
pattern.

Another important future direction is to better understand how disturbance and
dispersal limitation may affect pattern. This is likely to be critical for niche mechanisms
with strongly asymmetric competition, such as the competition-colonization tradeoff. This
mechanism requires that higher fecundity compensate for lower competitive ability. In our
results, low-fecundity strong competitors dominated over high-fecundity poor competitors.
This could be because in a spatially implicit model with a saturated environment where
every site is permanently occupied, as implemented here, competitive ability is likely
to matter much more than fecundity. The tradeoff may maximize coexistence in an
environment under continual disturbance, which periodically resets the exclusion process
by temporarily favoring species with high fecundity, and if species are dispersal-limited,
which slows down the exclusion of high-fecundity poor competitors by low-fecundity
strong competitors. With these phenomena included, the competition-colonization tradeoff

may predict more coexistence, less asymmetry in abundance, and stronger patterning than
we found here.
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Appendix A

Niche mechanisms and spatial scales: life history tradeoffs

and example plant traits

Niche mechanisms requiring spatial variation in the environment can involve tradeoffs
between different life history components like those between species’ ability to outcompete
other species for a limiting resource in a suboptimal environment and their ability to
colonize or quickly make use of newly available resources. Models falling into that
category include the forest-architecture hypothesis (Kohyama 1993), the successional
niche (Pacala and Rees 1998), the competition-colonization tradeoff (Tilman 1994), the
dominance-discovery tradeoff (Adler et al. 2007), and the tolerance-fecundity tradeoff

(Muller-Landau 2010). At a small scale, there will be filtering for species best able to
colonize or make use of resources given the age or stress level of the patches encompassed,
i.e. for species at a particular positioning on the life history tradeoff axis. At a large scale,
there should be trait patterning associated with niche differentiation, since there will be
some limit to the similarity in species’ positioning along the tradeoff axis required for
robust stable coexistence (Fig. 2.4).

The scale at which a given trait should display signs of niche differentiation relates to
the scale of the niche mechanism at play. For example, leaf economics traits such as specific
leaf area (SLA) can plausibly contribute to stable coexistence through stand dynamics.
Low SLA indicates investment in slow growth and long-lived leaves, suggesting a climax
strategy where the plant endures in shaded areas, whereas high SLA reflects fast growth
and short-lived leaves, indicative of a pioneer strategy where the plant grows fast when
the opportunity arises such as in gaps in the canopy (Wright et al. 2004). Hence variation
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in SLA values might lead to coexistence in a forest composed of a patchwork of stands
in different stages of the successional cycle. One would thus expect to see niche related
patterning in SLA across stands of different successional stages, and not within a stand or
among neighbors, where filtering would predominate (though the existing evidence is
ambivalent, see Cavender-Bares et al. 2004).

In contrast, a trait like root profile may show niche-related patterning at the smallest
scales. For instance, root systems may segregate to obtain water and nutrients from different
soil depths (de Kroon et al. 2003). Changes in rooting strategies in response to the presence
of other species have been documented, although the evidence for overdispersion in root
profiles at the neighborhood scales is limited and contradictory, indicating additional
processes such as facilitation and species-specific interactions beyond resource depletion
(Schenk 2006). Traits associated with Janzen-Connell effects can also exhibit niche-related
patterning at small spatial scales (Sedio and Ostling 2013). Some authors measured strong
negative effects of conspecific seedling and adult densities on growth and survival of
seedlings at small scales, dropping to background levels within just a few meters’ distance
(Hubbell et al. 2001). Such short-scale ranges raise questions about the actual role to
coexistence and the maintenance of diversity at larger scales, although it has been shown
to have an influence on patterns of relative abundance (Comita et al. 2010).
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Appendix B

Existing research on the role of intraspecific variation to

coexistence

The impact of intraspecific variation on trait dispersion starts with its impact on
coexistence. Bolnick et al. (2011) suggest that intraspecific variation should be considered
in understanding the outcome of species interactions whenever the strength of those
interactions depends non-linearly on traits, because in that case the average interaction
strength will differ from the interaction strength estimated from the mean trait value. Fig 5
in the main text shows that intraspecific variation has the potential to either increase or
decrease interspecific competition, which suggests intraspecific variation may sometimes
enhance coexistence and sometimes make it less likely. Indeed, existing work suggests
intraspecific variation affects coexistence both ways.

A few experiments have been made to find correlations between interspecific variation
(either in the form of genotypic diversity or trait variation) and coexistence (measured
through species richness or community invasibility), with results ranging from positive
(Booth and Grime 2003; Lankau and Strauss 2007) to non-significant (Weltzin et al. 2003) to
negative (Crutsinger et al. 2008). As an example of the latter, Crutsinger et al. (2008) found
that a plant community comprised of phenotypically diverse species was more resistant to
invasion, thus restricting the number of species a community can support.

A variety of theoretical hypotheses and models of the impact of intraspecific variation
on coexistence have also been offered, mostly suggesting that intraspecific variation should
promote coexistence. For example, Aarssen (1983) proposed that it can reduce extinction
risk by allowing for tolerance to spatially or temporally varying local conditions. Vellend
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(2006) verified this in a Lotka-Volterra model where within-species genotypic diversity
promotes coexistence by allowing species to span multiple viable niches and giving them
flexibility to respond to selection by converging or diverging from competitors. Yamauchi
& Miki (2009) further explored Vellend’s model with the introduction of genetic flow
between phenotypes, sexual inheritance of traits, and environmental stochasticity, and
reported mixed effects of intraspecific variation on species diversity in simulation outcomes
depending on the scenario tested. (It should be noted that the case where the facilitation of
coexistence is most strongly observed, when environmental fluctuations correlate with
niche positions, in effect harbors additional niche dimensions along which the species are
differentiated.)

From the standpoint of Chesson’s framework, by bringing species together in trait
space, intraspecific variation may in effect reduce fitness differences between species and
hence decrease the amount of stabilization required for coexistence (Chesson and Rees
2007). This could also slow down competitive exclusion, although Lichstein et al. (2007)
argue that this effect on the speed of the dynamics would have little impact on observed
diversity in real systems. Lichstein et al. (2007) concluded for a model with intraspecific
variation in seed quality that such variation enables coexistence only when there is a
tradeoff between species means and variances. How common such a tradeoff might be is
unknown.

Other processes have also been proposed. If an intransitive loop (i.e. a “rock-paper-
scissors” competitive hierarchy) occurs between the different phenotypes of a species
and individuals from another species, then both species can persist without one species
completely dominating the other (Lankau and Strauss 2007). Finally, rather than being
a direct agent of coexistence, intraspecific variation could be associated with high niche-
dimensionality, which in turn is an agent of stable coexistence. Clark et al. (2007) provides
an example of this.
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Appendix C

Two-species coexistence under smooth and kinked kernels

Let us consider two competing species in equilibrium, placed along a trait axis at trait
values x1 and x2. We assume x2 > x1 without loss of generality. The equations read

dn(x1)
dt

= n(x1)
(
r0(x1) − a(x1, x1)n(x1) − a(x1, x2)n(x2)

)
, (C.1)

dn(x2)
dt

= n(x2)
(
r0(x2) − a(x2, x2)n(x2) − a(x2, x1)n(x1)

)
. (C.2)

If the two species are closely packed then the difference ∆x = x2 − x1 between the strategies
of the two species will be small. When this is so, several expansions become possible. First,

r0(x2) = r0(x1 + ∆x) ≈ r0(x1)︸︷︷︸
r0

+
dr0

dx
(x1)︸  ︷︷  ︸
c

∆x = r0 + c∆x, (C.3)

where we introduced the notations r0 and c for the value and the slope of the function
r0(x) at x = x1, respectively (we assume r0(x) is differentiable). Second, by introducing the
function A(x) = a(x, x), we get

a(x2, x2) = A(x2) = A(x1 + ∆x) ≈ A(x1)︸︷︷︸
ax

+
dA
dx

(x1)︸  ︷︷  ︸
w

∆x = ax + w∆x, (C.4)

where ax = a(x1, x1) and w is the slope measuring the difference between the two intraspe-
cific competition coefficients a(x1, x1) and a(x2, x2). Third, the interspecific competition
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coefficients are expanded as

a(x1, x2) = a(x1, x1 + ∆x) ≈ a(x1, x1) + ∂2a(x1, x+
1 )︸      ︷︷      ︸

−kx

∆x +
1
2
∂2

2a(x1, x+
1 )︸      ︷︷      ︸

−dx

∆x2

= ax − kx∆x −
dx

2
∆x2

(C.5)

and

a(x2, x1) = a(x2, x2 − ∆x) ≈ a(x2, x2)︸  ︷︷  ︸
ay

− ∂2a(x2, x−2 )︸      ︷︷      ︸
ky

∆x +
1
2
∂2

2a(x2, x−2 )︸      ︷︷      ︸
−dy

∆x2

= ay − ky∆x −
dy

2
∆x2,

(C.6)

where ∂n
k a(x, y) is the nth partial derivative of a with respect to the kth variable, evaluated

at (x, y), and ∂n
k a(x, y+) means the limit of the derivative as the second variable approaches

y from values strictly higher than y itself. The derivatives in the expansions above are
defined via the limiting procedure because in the kinked case the derivatives do not exist at
zero trait difference. Moreover, even if the kernel is smooth, it might only be differentiable
once and so its second derivative might only exist to the right and left of the maximum,
not at the maximum itself. This procedure is justified since we assumed x2 > x1, therefore
the competition coefficients a(x1, x2) and a(x2, x1) only need to be considered to the left and
right of the kernel’s maximum, respectively. Also, notice that the quantities r0, ax and ay

are positive due to the positivity of r0(x) and a(x, y), and the positivity of kx, ky, dx, and dy is
evident from the fact that the kernel is a decreasing function of |x − y|.

The dynamical equations may now be written as

dn(x1)
dt

= n(x1)
(
r0 − axn(x1) − (ax − kx∆x −

dx

2
∆x2)n(x2)

)
, (C.7)

dn(x2)
dt

= n(x2)
(
r0 + c∆x − ayn(x2) − (ay − ky∆x −

dy

2
∆x2)n(x1)

)
(C.8)

in this approximation.
The well-known inequalities expressing the necessary and sufficient conditions of stable
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coexistence under two-species Lotka–Volterra competition read

a12

a22
<

r01

r02
<

a11

a21
(C.9)

(e.g., ?). In our notation, a12 = a(x1, x2), a21 = a(x2, x1), a11 = ax, a22 = ay, r01 = r0, and
r02 = r0 + c∆x. Applying the criterion to these parameters,

ax − kx∆x − (dx/2)∆x2

ay
<

r0

r0 + c∆x
<

ax

ay − ky∆x − (dy/2)∆x2 (C.10)

must be true for coexistence to happen. Let us take the inverse of these conditions:

ay

ax − kx∆x − (dx/2)∆x2 > 1 +
c
r0

∆x >
ay

ax
−

ky

ax
∆x −

dy

2ax
∆x2. (C.11)

At this point, we will consider the smooth and the kinked case separately. We start with the
smooth case. If the kernel is smooth, it is differentiable at its maximum and the value of the
derivative is zero — therefore kx = ky = 0 and the quadratic terms are the first nontrivial
orders of expansion for the kernel. Then the above condition reduces to

ay

ax − (dx/2)∆x2 > 1 +
c
r0

∆x >
ay

ax
−

dy

2ax
∆x2. (C.12)

Multiplying by ax − (dx/2)∆x2 and neglecting terms that are higher order than quadratic,
we get

ay > ax +
cax

r0
∆x −

dx

2
∆x2 > ay −

(
dxay

2ax
+

dy

2

)
∆x2. (C.13)

We subtract ay and use ay = ax + w∆x to obtain

0 >
(cax

r0
− w

)
∆x −

dx

2
∆x2 > −

(
dxay

2ax
+

dy

2

)
∆x2, (C.14)

or, after adding (dx/2)∆x2 and dividing by ∆x,

dx

2
∆x >

cax

r0
− w >

(
dx

2
−

dxay

2ax
−

dy

2

)
∆x. (C.15)

If cax/r0 − w is positive, there will exist a ∆x so small that the first inequality cannot be
satisfied. The same is true for the second inequality when cax/r0 − w is negative. This
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puts a limit to the similarity of the two species: ∆x must be large enough to satisfy both
inequalities. Formally, the limit to the similarity of the species disappears when cax/r0 − w
is zero, a nongeneric situation.

Having established the limits to the similarity of two competing species under smooth
competition kernels, let us turn our attention to kinked ones. In this case the first-order
expansion coefficients kx and ky are nonzero, rendering the second order negligible in
comparison. Therefore in Eq. (C.11) we may neglect any terms that are quadratic or higher
order. As a result, we get

ay

ax − kx∆x − (dx/2)∆x2 > 1 +
c
r0

∆x >
ay

ax
−

ky

ax
∆x. (C.16)

Multiplying by ax − kx∆x − (dx/2)∆x2 and neglecting all terms of quadratic or higher order
leads to

ay > ax − kx∆x +
cax

r0
∆x > ay −

(
kxay

ax
+ ky

)
∆x. (C.17)

Using ay = ax + w∆x, rearranging, and simplifying yields

0 >
cax

r0
− kx − w > −

kxay

ax
− ky, (C.18)

which is independent of ∆x. The conclusion is that two species may be arbitrarily closely
packed if the competition kernel is kinked, as long as these inequalities are satisfied.
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Appendix D

Competition kernel as an overlap between sensitivities and

impacts

Our purpose is to show that the competition kernel is always expressible as an overlap
between two different functions called sensitivities and impacts (?). This expression does
not depend on the assumptions that lead to the utilization overlap picture. The resource
utilization overlap model turns out to be a special case of this general formalism where the
sensitivity and impact functions are precisely proportional to one another.

As mentioned in the Introduction, species interactions are mediated through a number
of regulating factors, i.e., variables that mediate the feedback loops between densities and
growth rates. Familiar examples include resources, predators, pathogens, space, etc. We
assume that there is a continuum of regulating entities in the system: R(z) measures the
quantity of the zth factor with z ∈ [z0, zm] ⊆ R. Within this framework, the most general
continuous time, continuous density model will read

dn(x)
dt

= n(x) r (R(z,n),E) , (D.1)

where n(x) is the density distribution along the trait axis, and E is the collection of all
density-independent model parameters (they may depend on the trait values). Around a
fixed point equilibrium with equilibrium distribution n∗, the linearization of the growth
rates will read

dn(x)
dt
≈ n(x)

(
r(R(z,n∗),E)︸        ︷︷        ︸

0

+δr(R(z,n),E)
)
, (D.2)
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or
dn(x)

dt
≈ n(x)

(∫ xm

x0

δr(x)
δE(y)

δE(y) dy +

∫ xm

x0

∫ zm

z0

δr(x)
δR(z)

δR(z)
δn(y)

δn(y) dz dy
)
, (D.3)

where we used the chain rule of differentiation (see Section 3.2 for the meaning of the
functional derivative); r(x) is shorthand for r (R(x,n(x)),E(x)). The factor in the second term
of the expansion multiplying the perturbed densities δn(y) consists of two parts. The first
part,

S(x, z) =
δr(x)
δR(z)

, (D.4)

is the sensitivity of the species with trait x to the zth regulating factor (?), since it measures
how the growth rate of species x would change if the zth factor was slightly modified. The
second part of the product,

I(y, z) =
δR(z)
δn(y)

, (D.5)

is the impact of species with trait y on the zth regulating factor. It tells us how the factors
regulating the populations are themselves affected by a change in species abundances. As
before in Section 3.2, the full factor multiplying the perturbed densities δn(y) in Eq. (D.3)
is the competition kernel, which in our case is the overlap of the sensitivities and impacts:

a(x, y) =

∫ zm

z0

δr(x)
δR(z)

δR(z)
δn(y)

dz =
δr(x)
δn(y)

=

∫ zm

z0

S(x, z)I(y, z) dz. (D.6)

Note that this formula applies to any ecological scenario near a fixed point, and as such,
it is the proper generalization of the resource utilization overlap picture. The resource
utilization function is a phenomenological construct that is intuitive and very useful, but
not generalizable to arbitrary ecological situations. The sensitivities and impacts on the
other hand are always well-defined, and the competition kernel is always obtained as their
overlap integral. Indeed, the resource utilization model is simply the special case when
the sensitivity and impact functions are strictly proportional to one another.

As an example, let us consider simple, linear resource competition, a continuous
extension of ?’s (?) model. The dynamics of the species densities is given by the equations

dn(x)
dt

= n(x)
(∫ zm

z0

b(x, z)R(z) dz −m(x)
)
, (D.7)

where R(z) is the zth resource, b(x, z) is the potential growth the xth population is able to
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achieve on a unit of the zth resource, and m(x) is the density-independent mortality rate of
species x. As we can see, the total birth rate is accumulated through the contribution of all
the resources available to the species. The resources, in turn, have their own dynamics,
which assumes logistic saturation in the absence of consumers and linear consumption in
their presence:

dR(z)
dt

= R(z)
(
R0(z) − R(z) −

∫ xm

x0

f (y, z)n(y) dy
)
, (D.8)

where R0(z) is the maximum (saturation) quantity of resource z, and f (y, z) is the rate at
which species y depletes resource z. Assuming that the dynamics of the resources is fast
compared to that of the densities, it is always in its equilibrium state:

R(z) = R0(z) −
∫ xm

x0

f (y, z)n(y) dy. (D.9)

Substituting Eq. (D.9) into Eq. (D.7) we obtain

dn(x)
dt

= n(x)
(∫ zm

z0

b(x, z)
(
R0(z) −

∫ xm

x0

f (y, z)n(y) dy
)

dz −m(x)
)

= n(x)
( ∫ zm

z0

b(x, z)R0(z) dz −m(x)︸                           ︷︷                           ︸
r0(x)

−

∫ xm

x0

(∫ zm

z0

b(x, z) f (y, z) dz
)

︸                     ︷︷                     ︸
a(x,y)

n(y) dy
)
.

(D.10)

As we can see, the competition kernel is the overlap of the functions b(x, y) and − f (y, z).
This suggests that these functions play the roles of sensitivities and impacts. Indeed, from
their definitions we get

S(x, z) =
δr(x)
δR(z)

=

∫ zm

z0

b(x, z′)δ(z − z′) dz′ = b(x, z) (D.11)

and

I(y, z) =
δR(z)
δn(y)

= −

∫ xm

x0

f (y′, z)δ(y − y′) dy′ = − f (y, z). (D.12)

The original MacArthur resource utilization model is recovered when b(x, z) = α f (x, z)
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for some constant α. Since populations tend to influence those resources most that they
depend upon the most, this assumption is reasonable — but it is neither ubiquitous nor
necessary.
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Appendix E

Generalization of the results of Section 3.5

Here we extend the results obtained in Section 3.5 from resource overlap to arbitrary
models. The key to doing this is to write the competition kernel as the overlap of sensitivity
and impact functions (see Appendix B); note that this is always possible and does not
depend upon the specific assumptions of resource overlap models. The competition kernel
is thus given by Eq. (D.6). Since we are interested in nondifferentiability at zero trait
difference, we set y = x:

a(x, x) =

∫ zm

z0

S(x, z)I(x, z) dz, (E.1)

where S(x, z) and I(x, z) are the sensitivity and impact functions, respectively, assumed to
be bounded. We now show that discontinuities in the sensitivities and impacts occurring
at corresponding points between the two functions is sufficient to lead to kinked kernels.
Let us consider functions that contain a jump for every possible trait value x:

S(x, z) = αΘ(x − z1(x)) + η(x, z), (E.2)

I(x, z) = βΘ(x − z2(x)) + ζ(x, z), (E.3)

where α and β are constants, η and ζ are continuous functions, Θ is the Heaviside unit
step function and z1(x), z2(x) are curves along which the sensitivity and impact functions
possess a discontinuity (they depend on x because we allow for the possibility of each
species having their discontinuity at different points).

Similarly to the procedure in Section 3.5, our strategy for determining whether a(x, x) is
nondifferentiable will be to take the second derivative of the kernel with respect to the
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first variable and see whether the result obtained is infinitely large or not. The second
derivative reads

∂2
1a(x, x) =

∫ zm

z0

∂2
1S(x, z)I(x, z) dz

= α

∫ zm

z0

δ′(x − z1(x))I(x, z) dz + . . . ,

(E.4)

where ∂2
1S(x, z) is the second partial derivative of S with respect to the first variable,

evaluated at (x, z), δ′ is the derivative of the Dirac delta function, and the ellipsis denotes
all other terms the derivative produces that we have not written out, for the reason that
those terms are necessarily finite and so they do not contribute to the nondifferentiability
of the kernel. The integration can be performed with the help of the δ′ function:

∂2
1a(x, x) = −α∂2I(x, z1(x)) + . . . , (E.5)

which is infinitely large if I is discontinuous along z1(x). This of course happens when
z1(x) = z2(x). Therefore, if S(x, z1(x)) and I(x, z1(x)) are both discontinuous along some curve
z1(x), then the resulting competition kernel is kinked.
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Appendix F

Constructing the tolerance-fecundity tradeoff model

Here, we show that Muller-Landau’s 2010 tolerance-fecundity tradeoff model arises
from Eq. 6 of the main text when a simpler picture of seed tolerance is assumed.

First, we must convert the sum over sites to a sum over fecundities. This can be done
for the following reason: sweeping over the stress axis is equivalent to sweeping over
fecundity values, as each stress level is the threshold associated with a given fecundity.
Mathematically, we can always write∫

(integrand) dσ =

∫
(integrand) ds =

∫
(integrand)

ds
dx

dx,

In our case, we will write∫ sm

s0

r(s)T(s, f )∫ fm
f0

y p(y)T(s, y) dy
ds = −

∫ fm

f0

h′(x)g(x, f )∫ fm
f0

y p(y)g(x, y) dy
dx. (F.1)

where s0 and sm are the thresholds of the least and most tolerant species, respectively. The
left-hand side of Eq. F.1 is simply the integral term in Eq. 6 (main text) with the stress
threshold explicitly used as the integration variable, and the functions h(x) and g(x, f ) are
defined to have the properties

h′(x)dx = r(s)ds g(x, f ) = T(s(x), f ),

where s(x) is the stress threshold of the species with fecundity x. Finally, the minus sign
arises because of the change in the limits of the integration given the inverse relationship
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between stress thresholds and fecundity:
∫ σm

σ0
ds→

∫ f0
fm

dx = −
∫ fm

f0
dx.

To see what h(x) means, let us write r(s) as dγ
ds , where γ(s) is some function of s. Then,

using the chain rule, we see that
dh
dx

=
dγ
dx
,

whereby we can say h(x) = γ(s(x)). The function γ is easily interpretable: γ(s) =
∫ s

r(σ) dσ,
that is, γ(s) is the total proportion of sites in the community whose stress level is equal
to or less than s. The function h( f ), then, is the proportion of land whose stress level is
equal to or less than the threshold of species f . Its functional form is determined by both
the environment and the biology of the organisms, as it depends on the distribution of
stress in the land and on how a given fecundity translates to its stress threshold. Notice
that the tolerance-fecundity tradeoff, which comprises the essence of the model, requires
that h′( f ) < 0 for all values of f .

The function g is just a renaming of function T, and is not hard to interpret: just as
T(s(x), f ) is the probability that species f can tolerate in a site with stress s (which is the
threshold of species x), g(x, f ) is the probability that species f can tolerate a site whose
stress level is the threshold of species x. Notice that, for fixed f , g(x, f ) is a forward sigmoid
function of x, while T(σ, f ) is a backwards sigmoid function of σ (i.e., g starts low and
transitions to 1 as x increases, while T shows the opposite behavior with increasing σ). We
change notation from T(σ, f ) to g(x, f ) to highlight this shift of focus from sites to species,
which flips the function.

Having justified all terms in Eq. F.1, we can now render our model in the form

dp
dt

( f ) = m

− f
∫ fm

f0

h′(x) g(x, f )∫ fm
f0

yp(y)g(x, y) dy
dx − 1

 p( f ). (F.2)

If we further assume that all species have a similar transition regime around their specific
stress threshold, then the transition function becomes a function of a single variable, g(x− f ).
Although this greatly simplifies things, such an assumption unfortunately has no a priori
biological foundation. It is, however, implicitly used by Muller-Landau, and we apply it
here to show the compatibility between the models. With that assumption, Eq. F.2 reads

dp
dt

( f ) = m

− f
∫ fm

f0

h′(x) g(x − f )∫ fm
f0

yp(y)g(x − y) dy
dx − 1

 p( f ). (F.3)
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In ?, the transition function is the unit step function Θ(x − f ) (which is one for positive
arguments and zero otherwise): g(x − f ) = Θ(x − f ). In biological terms, this means that
species with fecundity values x equal to or higher than that of the focal species with
fecundity f can tolerate sites whose stress level is that of the focal species with probability
1, and species whose fecundity x is less than f cannot tolerate that stress level at all. Thus
Eq. F.3 finally becomes

dp
dt

( f ) = m

− f
∫ fm

f

h′(x)∫ x

f0
yp(y) dy

dx − 1

 p( f ), (F.4)

which is Muller-Landau’s model put in the context of a continuum of species.
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Appendix G

Tight packing in the tolerance fecundity model

Here, we analytically solve Muller-Landau’s model for tight packing solutions. Simula-
tions reported in the main text further demonstrate that tight packing is robust in this case.
Additionally, we show that for a very general class of continuous transition functions g,
namely analytic ones, tight packing is not a possible solution.

For tight packing to occur in any subset [ f1, f2] of the range [ f0, fm], p( f ) must satisfy the
conditions dp

dt = 0, p( f ) > 0 for all f in [ f1, f2]. Applying these to Eq. F.4 – Muller-Landau’s
model written for a continuum of species – we obtain∫ fm

f

h′(x)
I(x)

dx +
1
f

= 0,

where I(x) =
∫ x

f0
dy yp(y). Differentiating twice the equation above with respect to f and

performing appropriate substitutions gives

f h′′( f ) + 2h′( f ) + p( f ) = 0. (G.1)

Eq. G.1 is our tight packing equation, and appears in the main text as Eq. 7. If it is satisfied
in the subset [ f1, f2], then we get a continuum of coexisting species in that subset. Given
that Eq. G.1 is a second-order differential equation, h( f ) must be further specified by
two boundary conditions. Such boundary conditions are more easily obtained from the
discrete version of the model, Eq. 1 of the main text. One such condition can be obtained
by summing over all i’s (recall that, in equilibrium, dpi

dt = 0):
∑N

i=1 pi = h1 – which when

extended for a continuum of species reads
∫ fm

f0
dx p(x) = h( f0). The other condition can also
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be obtained from Eq. 1 by substituting i = N: f −1
N

∑N
i=1 fi pi = hN – which in the continuum

is f −1
m

∫ fm
f0

dx x p(x) = h( fm). Although in principle Eq. G.1 is an equation for p( f ), the easiest
way to arrive at a solution for it is to posit p( f ) and solve for h, subject to the boundary
conditions discussed above. If no suitable h can be found, than the posited p( f ) is not a
possible solution. As it turns out, there are infinitely many functions h( f ) for which there
is a corresponding tight packing solution p( f ). We give one example in Fig. 2 in the main
text.

Having argued that the tight packing equation has a wealth of solutions in the
discontinuous model, we now turn to show that it has no solution at all in the continuous
case, at least if the transition function is analytic.

We can see from Eq. F.3 that for the tight packing conditions to hold, we must have

f
∫ fm

f0

h′(x)
J(x)

g(x − f ) dx = −1 ∀ f ∈ [ f0, fm], (G.2)

where J(x) =
∫ fm

f0
dy y p(y)g(x − y). We now make the assumption that g is analytic. We will

also require that the function ξ(x) ≡ h′(x)
J(x) be differentiable at all points and decay to zero at

|x| → ∞. This is expected to hold for any reasonable set of functions h(x) and J(x) which
obey the constraints of the model. The integral above is a function of f , and given our
assumptions about g and ξ, it can be shown that the Taylor series of the integral above
converges, and therefore the integral is an analytic function. Since f itself is of course an
analytic function and the product of analytic functions is analytic, then the entire left-hand
side of Eq. G.2 is analytic. Thus Eq. G.2 can only be satisfied if

f
∫ fm

f0
ξ(x) g(x − f ) dx = −1 ∀ f ∈ R

That, however, cannot be, as the equality cannot hold at f = 0. Now, since two analytic
functions differing at a point can only coincide at a finite number of points, we conclude
that Eq. G.2 does not have a solution for any continuous range [ f0, fm] if g is analytic.

Although this proves that no analytic transition function would allow tight packing (let
alone robust tight packing!), it does not prove that the same should hold for any continuous
transition function. However, if we restrict ourselves to differentiable transition functions (a
reasonable and fairly general assumption), then we can approximate any such function
with arbitrary precision by an analytic function. Then, given that Eq. G.2 cannot be satisfied
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if g is analytic, it stands to reason that no differentiable function g will work either. We
believe a formal proof can be constructed, and leave it for future work.

We add that while here we can only ensure tight packing is not possible for analytic
tolerance functions, we contend elsewhere (?) that, for any model with a differentiable
competition kernel, tight packing, if present, is necessarily fragile.

Finally, we speculate that this no-tight packing bound could probably be extended to
more general conditions. For instance, we were able to show (unpublished results) that the
proof developed here holds when mortality, rather than a constant, is an analytic function
of species fecundity.
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Appendix H

The competition kernel

Here we show that the competition kernel in Muller-Landau’s model, a( f1, f2), pos-
sesses a discontinuous first derivative at f1 = f2 if and only if the tolerance function is
discontinuous.

It follows from the definition of derivatives that the first derivative of a function is
discontinuous at a point if and only if the second derivative diverges to infinity at that point.
We will use that to show that the competition kernel has a divergent second derivative if
and only if the tolerance function is discontinuous. We will use the transition function
g defined in Online Appendix A, rather than the tolerance function T. Recall that g(x, f )
describes the probability that the species with fecundity f can tolerate stress level at the
threshold of the species with fecundity x.

From Eq. F.2, if g(x, f ) = Θ(x − f ), the per capita growth rate is

R( f ) =
1

p( f )
dp
dt

= −m

 f
∫ fm

f0

h′(x)Θ(x − f )∫ fm
f0

yp(y)Θ(x − y)dy
dx − 1


From this we calculate the competition kernel:

a( f1, f2) =
δR( f1)
δp( f2)

= m f1 f2

∫ fm

f0

h′(x)Θ(x − f1)Θ(x − f2)
(I(x))2 dx,

where I(x) ≡
∫ fm

f0
yp(y)Θ(x − y)dy, and take the first derivative with respect to f2 (we could
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equally well pick f1 instead):

∂
∂ f2

a( f1, f2) = m f1

(∫ fm

f0

h′(x)Θ(x − f1)Θ(x − f2)
(I(x))2 dx − f2

∫ fm

f0

h′(x)Θ(x − f1)δ(x − f2)
(I(x))2 dx

)
.

The second derivative is, then,

∂2

∂ f2
2 a( f1, f2) = m f1

(
− 2

∫ fm

f0

h′(x)Θ(x − f1)δ(x − f2)
(I(x))2 dx

− f2
∂
∂ f2

(∫ fm

f0

h′(x)Θ(x − f1)δ(x − f2)
(I(x))2 dx

) )
= m f1

(
−2

h′( f2)
(I( f2))2 Θ( f2 − f1) − f2

∂
∂ f2

(
h′( f2)

(I( f2))2 Θ( f2 − f1)
))
. (H.1)

Since we are only interested in whether or not the second derivative diverges, we can stop
here and look at the behavior of the terms. Since h( f ) is well behaved and I( f ) , 0 for all
f > f0, the first term never diverges, and is therefore of no consequence. The second term,
however, contains a derivative of Θ( f2 − f1). The step function is discontinuous at f1 = f2,
and the derivative of a discontinuous function diverges at the point of discontinuity (more
specifically, the derivative of a function at a point of discontinuity is proportional to the
Dirac delta function, which is uniformly zero at all points except for where its argument
vanishes, at which point it is infinite). Precisely at f1 = f2, then, we have a singularity in
Eq. H.1. This proves that the competition kernel has a discontinuous first derivative at the
point where two species coincide if the transition function g(x, f ) is discontinuous when
x = f .

In the same vein, the competition kernel when the transition function g is continuous
can be shown to be smooth, i.e., it does not contain any point where the first derivative is
discontinuous – no ‘kinks’. To see that, we can follow the same steps as above and replace
the discontinuous unit function with any continuous function g:

a( f1, f2) = m f1 f2

∫ fm

f0

h′(x)g(x − f1)g(x − f2)
(J(x))2 dx,

∂
∂ f2

a( f1, f2) = m f1

(∫ fm

f0

h′(x)g(x − f1)g(x − f2)
(J(x))2 dx − f2

∫ fm

f0

h′(x)g(x − f1)g′(x − f2)
(J(x))2 dx

)
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where J(x) ≡
∫ fm

f0
yp(y)g(x − y)dy. Proceeding to the second derivative, we have

∂2

∂ f2
2 a( f1, f2) = m f1

(
− 2

∫ fm

f0

h′(x)g(x − f1)g′(x − f2)
(I(x))2 dx

− f2
∂
∂ f2

(∫ fm

f0

h′(x)g(x − f1)g′(x − f2)
(I(x))2 dx

) )
.

Now it should be easy to see that none of the terms above diverge at any point, since they
contain only smooth, well-behaved functions and their derivatives. This proves that the
kernel is smooth.
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Appendix I

The hierarchical competition-colonization model

To illustrate the generality of the impact of a kinked competition kernel on model
predictions across different models, here we present a similar analysis for a different
‘kinked model’, the hierarchical competition-colonization model (?). We find that this
model shares with Muller-Landau’s the ability to support robust tight packing due to
discontinuity in resource use. A continuous formulation of the model is presented, from
which our simulations indicate robust tight packing is absent. Further tests verify that
diversity levels and trait dispersion differ sharply between the original and the smooth
formulations.

The original model is defined by the equations (?)

ṗi = fipi

(
1 −

i∑
j=1

p j

)
− pi

i−1∑
j=i

f jp j −mipi, (I.1)

which determines the growth of species i, characterized by fecundity fi and mortality mi.
The first term represents recruitment, which can occur in any patch happening to be empty
or occupied by any species j with j ≥ i. In fact, species i sees patches occupied by species
j, j > i as empty patches. The second term represents the converse: species i is promptly
displaced by any species j, j < i. The last term is the mortality term. When we extend
Eq. I.1 to a continuous pool of species, we obtain

dp
dt

( f ) =

(
f
(
1 −

∫ f

f0
p(x)dx

)
−

∫ f

f0
x p(x)dx −m( f )

)
p( f ). (I.2)
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Let us first derive the conditions under which the solution to Eq. I.2 constitutes tight
packing. For tight packing equilibrium, characterized by dp/dt = 0, p( f ) > 0 for all f in
[ f0, fm], we then must have

f
(
1 −

∫ f

f0
p(x)dx

)
−

∫ f

f0
x p(x)dx −m( f ) = 0. (I.3)

We can turn this integral equation into a differential equation by differentiating twice with
respect to f . The resulting equation, as found in ?, is

3p( f ) + 2p′( f ) + m′′( f ) = 0. (I.4)

If m( f ) satisfies Eq. I.4, then our equilibrium will consist of arbitrarily close species
coexisting in the community. Since it is a second-order differential equation, it requires two
boundary conditions for the solution to be completely specified. Here, such conditions can
be found from Eq. I.3:

m( f0) = f0,

m′( f0) = 1 − 2 f0 p( f0).

The first is obtained by substituting f = f0, and the second by taking the derivative with
respect to f on both sides and then evaluating at f = f0. Thus any solutions to Eq. I.4
subject to these initial conditions is a tight packing solution. We find one such solution
and show with simulations that it is robust to small perturbations in m( f ) (Fig. I.1A).

Fixing the hierarchical competition-colonization model

As before, we take the model’s equations to the species continuum, Eq. I.2, and introduce
unit step functions to obtain

dp
dt

= p( f )
(

f −
∫ fm

f0
dx ( f + x) p(x) Θ( f − x) −m( f )

)
.
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The discontinuity is again effectively removed by substituting the step function with a
differentiable function:

dp
dt

= p( f )
(

f −
∫ fm

f0
dx ( f + x) p(x) g( f − x) −m( f )

)
.

Whereas in the tolerance-fecundity tradeoff the function g(x) introduces a continuous
transition between full tolerance and absolute intolerance to stress, here it introduces a
gradient of competitive effect across species. While in Kinzig et al.’s original model an
individual could be displaced just as easily by any given seed from any outranking species,
here a seed from a species higher up the hierarchy poses a stronger threat than another
seed from a species closer down. The same goes for species being outranked by the focal
species: the further down the hierarchy the other species is, the greater its competitive
disadvantage per seed. In short, our reformulation of the model introduces degrees of
competitive ability differences, thus replacing the binary {outranks, is outranked}.

Comparing tight packing, species diversity, and trait dispersion

The competition-colonization tredoff, in its discontinuous (i.e. with a kinked competition
kernel) form as presented in ?, supports robust tight packing (Fig. I.1A). As for its
continuous, smooth kernel counterpart, though we are unable to produce analytical proof
that tight packing is absent, we argue elsewhere (?) that models with smooth competition
kernels cannot bear robust tight packing. Thus, if tight packing occurs, the smallest
fluctuation in model parameters suffices to break the assemblage. Since such fluctuations
could be easily brought about by noise and stochasticity in natural systems, a model which
forecloses robust tight packing effectively precludes tight packing altogether.

Analogous tests for diversity levels and species distribution along the trait axis as those
performed for the tolerance-fecundity tradeoff model in the main text produce similar
results (Fig. I.1B to I.1D).
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Figure I.1: A: tight packing solution for Kinzig et al.’s hierarchical competition-colonization
tradeoff model with uniform mortality. As with Muller-Landau’s model, the effect of a
perturbation – represented here as a change in the death rate of one species – remains local
and does not destroy the assemblage. B and C: comparison of diversity levels between
the original and ‘smooth’ formulations of the competition-colonization tradeoff produce
similar results as those performed with the tolerance-fecundity case, namely, the smooth
version typically supports much lower diversity levels. D: trait dispersion differs markedly
across the two formulations of the competition-colonization tradeoff. For perturbations
around uniform mortality, the original model shows a consistent and strong tendency
towards species clustering due to the formation of patches of continuous coexistence,
whereas the smooth version shows no visible trend towards either overdispersion or
clustering. As with the model analyzed in the main text, results depend quantitatively on
model parameters (in this case, species mortality), but the two formulations consistently
lead to quite disparate trait dispersion across parametrizations.
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Appendix J

Supplementary information for Chapter 4

Figure J.1: Species mean local persistence times plotted against their abundance at the end
of the simulation. No correlation is observed in the H0 assemblage (left)(correlation index
ρlog(N),log(T) = 0.008), , in contrast with a clear positive correlation in the H1 assemblage
(right) (ρlog(N),log(T) = 0.86). Abundances and local persistence times are logged for better
visualization. Results shown for the baseline scenarios.
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Figure J.2: Comparison between simulation results for a finite niche axis (left) and a
circular axis (right). Competitive coefficients in the niche model used in the paper are a
function of trait difference di j. In the finite axis case, di j = |xi − x j|, while in the circular case
di j = min(|xi − x j|, 1− |xi − x j|), where xi, x j ∈ [0, 1] are the trait values of species i and j. The
complete symmetry of the circular niche axis prevents it from spontaneously sorting into
niches and gaps, whereas in the finite case the edge effects break that symmetry. A circular
axis is typically used to avoid edge effects, but in our paper we use finite axis for realism.
When the axis is finite the niche structure is more evident, and the local persistence times
(red curves) confirm that the positions of the niches are set: species located at the niches
are residents, while others come and go between competitive exclusion and recolonization
events. Particularly in gaps, exclusion is very fast. By contrast, in the circular case no
species is a resident, and all species have similar local persistence times. Simulation
parameters identical to our baseline cases.
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Figure J.3: Comparison between a Lotka-Volterra niche model with fast competitive
exclusion (ρ = 4, used in the main text), and a model with slow competitive exclusion (the
commonly used ρ = 2). In a deterministic formulation without immigration, both models
have similar final states where only niche-diferentiated species survive, but the sorting
is much faster for ρ = 4 (compare A and B, which are snapshots taken after the same
number of simulation steps). As a result, stochastic dynamics under immigration differ
considerably between these models. Comparing C and D, we notice that the abundance
structure is much less marked in the ρ = 2 case. In fact, except for edge effects, there is
hardly any abundance structure at all. This is confirmed by the local persistence time curve
(in red): the edge species persist throughout the entire tracking period; those species in
their immediate vicinity, being in strong competition with them, have particularly short
local persistence times; and the remainder of the community have mostly undifferentiated
local persistence times. This suggests that niche dynamics in the ρ = 2 model are so slow
and weak that other forces such as immigration and edge effects dominate. The histograms
(E) highlight the stark contrast between the local persistence time distribution of the ρ = 2
and ρ = 4 niche models, as well as ρ = 2 similarity to neutral dynamics (compare with Fig.
5.1C). We conclude that slow niche dynamics may be indistinguishable from neutrality in
both abundance structure and local persistence times in the context of stochasticity with
immigration, even though they would lead to the same final state in the corresponding
deterministic closed community model.
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Figure J.4: When regional abundances differ between species, they heavily influence local
persistence times. Species that are rare in the pool tend to have the lowest local persistence
times, while the most regionally common species tend to be residents locally. The effect
is seen both in H0 and H1 assemblages, but the correspondence is much tighter in the
neutral case (left) than in the partially stabilized assemblage (right). Notice in particular
that in the H1 assemblage some residents are not particularly abundant in the regional
pool. Simulation parameters are identical to the baseline cases except for the regional pool.
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Figure J.5: Comparison between species local persistence times when immigration was low
(m = 0.01) and high (m = 0.1). Points represent the same species across the two immigration
scenarios, and their position indicates the base-10 logarithm of their local persistence times,
in community turnovers. In both the H0 and H1 assemblages, points mostly fall above
the 1-to-1 line (red), indicating that most species had longer local persistence times in the
high immigration case. In particular, notice that many species are promoted to resident
status when m = 0.1. Having a local persistence time above a certain cutoff in the low
immigration case seems to be a better determiner of resident status in the high immigration
case in the H0 assemblage than in the H1 assemblage, indicating that stabilization may
counter the effects of immigration on local persistence times. Simulation parameters are
identical to the baseline cases except for the regional pool and immigration rates.
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Figure J.6: Distribution of abundances (stems) and local persistence times (red curves) as
a function of species trait value in H0 (top) and H1 (bottom) assemblages where intrinsic
growth rates differ between species (other parameters are set as in our baseline case).
Notice the stark contrast between the impact of the intrinsic growth rates ri on the neutral
and stabilized assemblages. While in the neutral assemblage both local persistence times
and abundances are dominated by ri both in the parabolic and random ri treatments, in
the stabilized assemblage the ri distribution has a much subtler effect. In the H1, neither
ri forming a parabolic trend along the niche axis (left) nor randomly assigned ri (right)
interfere with the resident status of niche differentiated species. The ri do have an impact,
however. In the parabolic case, the local persistence times increase towards the edges of
the axis, where the ri are actually smaller. This is possibly due to stronger competitive
interactions among higher-abundance species near the center of the axis. Abundances and
local persistence times logged to facilitate visualization.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Parabolic r Random r

Trait value

H
0

H
1

165



Figure J.7: Comparison between assemblages with different niches-to-species ratios. As
the ratio increases, more species are able to acquire high abundance and become residents
(stem plots and red dots). As a result, the community average local persistence time
increases from lower than neutral to higher than neutral (vertical red and blue lines). This
change in the mean is driven almost entirely by the increase in residents, as they have a
local persistence time that is orders of magnitude longer than most of the non-residents.
The local persistence time distribution among the latter remains similar or shorter than
neutral (red bars correspond to the niche community, blue bars to the neutral assemblage).
See caption of Figure 3 in the main text for simulation parameters.
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Appendix K

Detailed description of metrics

Clustering metric: the gap statistic

The gap statistic method estimates the number of clusters that best fits the data relative
to reference data sets (?). For each candidate number of clusters k within a provided
range [kmin, kmax], it calculates the goodness of fit of k clusters to the data, as well as the
goodness of fit of k clusters to the reference sets. The estimated number of clusters k̂ is the
k that maximizes the difference in goodness of fit—the “gap”—between the data and the
average of the reference sets. The method is quite general, and both the reference sets and
the measure of goodness of fit must be specified. Here, following ?, we use the k-means
clustering procedure to provide the measure of goodness of fit.

k-means clustering is a well established method for assigning each data point to one
of a previously specified number k of clusters (?). It does so by finding the k points in
data space that minimize within-cluster distances Wk, i.e. the average distance between
members of the same cluster.1 In our case, the data points are individuals and the data
space is the one-dimensional trait axis. The number of clusters, k, must be provided. We
apply the gap statistic to estimate k, using −log(Wk) as the goodness of fit, and reference
sets formed by randomizing observed abundances across the species while keeping their
trait values.

1Strictly speaking, Wk, known as the dispersion, is the average sum of squares of within-cluster distances.
In more formal terms, the k-means clustering procedure partitions data space of any dimensionality into the
set of Voronoi cells that minimizes Wk.
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Notice that it does not suffice to compare −log(Wk) directly across different k’s because
this number necessarily increases with k, as the average within-cluster distance always
decreases for increasing numbers of clusters. This is the reason for calculating the gap
statistic between the data and the reference sets: comparing against the references is a way
to find which increase in k produces the biggest increase in −log(Wk), above and beyond
what is expected from the increase in k. The reason we use −log(Wk) rather than simply
Wk is that the expected decrements in Wk with increasing k are multiplicative rather than
additive. See ? for more details.

Our metric is then defined as

Gap =

−log(Wk̂) + log(Wref
k̂

), if k̂ > 1

0, if k̂ = 1
(K.1)

where k̂ is the estimated number of clusters, −log(Wk̂) is the goodness of fit to the data when
k = k̂, and −log(Wref

k̂
) is the average goodness of fit to the reference distributions when

k = k̂. The distinction between k̂ > 1 and k̂ = 1 is due to our interest in finding evidence for
more than one cluster, because under the interpretation that each cluster represents a niche
(see main text), an outcome of a single cluster does not qualify as coexistence based on
niche differentiation, and is thus treated as a negative result.

In order to quantify the degree to which a given community is clustered relative to
what would be expected from neutral dynamics, we then compare the Gap observed for
that community against a set of neutral communities, and calculate the standard score,

z =
Gap − E[Gapneutral]

SD[Gapneutral]
.

To further verify that identified clusters are meaningful units related to the competitive
dynamics, we compare the lifetimes of species identified as the medoids of their clusters
to expectations given their regional abundance, and with lifetimes of other species in the
community. A medoid is the species whose average dissimilarity to all others within its
cluster is minimal. We find medoids using the “cluster” package in R (?). Lifetimes are
measured for each species by taking the average time between introduction and extirpation
events in our simulations.
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Other metrics

In addition to our new metric, we also test our niche scenarios for pattern with three
other metrics that have been used in the literature.

Rao’s quadratic index (?): the expected trait distance between two individuals randomly
sampled with replacement from the community. Defined as Q =

∑
di jpip j, where pi and p j

are the relative abundances of species i and j, and di j is the trait distance (absolute value of
trait difference) between them, and the sum is over all species pairs.

Functional dispersion, introduced in (?), is the abundance-weighted mean distance
between species and the community centroid—the point on the trait axis representing the
trait value of the average individual. Defined as FDis =

∑
zipi, where zi is the distance

between species i and the centroid.
Coefficient of variation between adjacent species: tests for even spacing (?). Given a set

of species sorted by trait value, it is defined as CV =
√

Var[di]/E[di], where di is the trait
distance between species i and species i+1. Often the trait range is used in the denominator
instead of the mean (??).

A niche-differentiated community is expected to have high Rao, high FDis, and low CV.
The CV has also been used to look for clustering, where it is expected to be high (?).
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Appendix L

Detailed description of niche models and simulation design

Simulation design

Communities start as a random draw from the pool, and in each subsequent step one
individual is randomly chosen to die and is replaced by a new recruit. A proportion of
recruits fulfilling vacancies left by deaths are immigrants from the pool, and the remainder
are local birth events. The particular model used dictates the probabilities that each species
is selected for each death and each recruitment event. We simulate dynamics for 5.0 × 107

steps to allow for a stationary state to be reached (i.e. to allow for species abundance
distributions averaged across a set of runs to settle to relatively stationary values). We
then run for another 5.0 × 107 steps while keeping track of all introduction and extirpation
events, for a total of 1.00 × 108 steps, corresponding to roughly 5,000 community turnovers.
At the end of a run, trait pattern is calculated using the trait values and abundances of
extant species, and each species’ average lifetime is computed by calculating the average
number of steps that species persisted between being introduced through immigration and
being extirpated due to competitive exclusion or drift. Unless otherwise noted for specific
niche scenarios, our parameter choices were as follows: the local community has J = 21, 000
individuals, approximately the number of trees larger than 10 cm diameter at breast height
in the 50-hectare plot on Barro Colorado Island (?). The regional pool, generated with R
package untb (?), is a neutral metacommunity with diversity parameter θ = 50 matching
fits to BCI’s species abundance distribution (?). The size of the pool was set to JM = 150, 000
individuals, which leads to approximately S = 410 species. We checked that bigger sizes

170



do not change neutral predictions for the SAD. Species trait values are randomly drawn
from a uniform distribution between 0 and 1 (standard uniform distribution). Following
empirical estimates for Barro Colorado Island, we set the immigration rate m to 0.08 (?).

MacArthur-Levins scenarios

The deterministic immigration-free version of the Lotka-Volterra model is

dNi

dt
= riNi −

∑
j

Ai jN jNi , (L.1)

where the competition coefficient Ai j quantifies the impact of species j on species i, and ri is
species i’s intrinsic fitness, which determines its growth when not limited by competition.
In the set of niche scenarios which we will refer to as MacArthur-Levins scenarios, niche
differentiation is achieved by setting Ai j = exp[−((xi − x j)/w)ρ], where xi and x j are the trait
values of species i and j, w sets the scale for the decline of competition between species
with increasingly different trait values, and ρ sets the speed of exclusion dynamics (niche
sorting). In contrast, neutral competition is achieved by setting Ai j = 1 between all species.

In our stochastic implementation of Lotka-Volterra competition, competition affects the
probability of death, while births are density independent. The probability that species i is
selected for a death event is

∑
j Ai jNiN j/

∑
i
∑

j Ai jNiN j, where the sums are over all species
currently present in the local community. The denominator normalizes the probabilities
to 1. The new recruit can either be an immigrant with probability m or a local birth
event with probability 1 − m. The probability that species i is chosen at this stage is
m qi + (1 −m) riNi/

∑
j r jN j, where qi is species i’s relative abundance in the regional pool.

In our “baseline” MacArthur-Levins scenario, we set ρ = 4, which causes fast niche
sorting, w = 0.063, which leads to approximately 13 niches1, and ri = 1 for all species. To
test the effect of immigration on clustering we included variations of the baseline with m
set to 0.005, 0.01, 0.05, 0.08, and 0.15. Regional diversity is also likely to affect clustering
pattern if the number of niches available to species is fixed. We tested this hypothesis by
including variations of the baseline with different regional diversity while holding constant
the number of niches. This was done by setting the regional diversity parameter θ to 5, 10,
20, 30, and 50.

1i.e. in the determinstic formulation this choice leads to an equilibrium with 13 stably coexisting species.
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In a community with a finite trait axis, species near the edge of the axis have an
automatic advantage because they face fewer competitors from one side. We test the
impact of these edge effects by including a scenario with a circular axis. This is done by
defining the trait difference between species i and j as di j = min(|xi − x j|, 1 − |xi − x j|).

We consider abiotic filtering in two of our MacArhur-Levins scenarios, modeled
as affecting the intrinsic rate of growth ri of each species. In the purifying filtering
scenario, named in analogy with purifying selection in population genetics, environmental
conditions favor species with intermediate trait values over those with extreme values. This
is implemented by defining ri = xi(1 − xi), where xi ∈ [0, 1] is the trait value of species i. In
the random filtering scenario, the species characteristic that is filtered by the environment is
unrelated to the trait being examined. This is implemented by drawing ri from a standard
uniform distribution. In all other scenarios, ri = 1 for all species. Note that a scaling
constant in ri does not affect the dynamics and outcome of our simulations. We include
one final scenario, called pure filtering, where species are under purifying selection but
compete neutrally without niche differences (done by setting Ai j = 1 for all i, j). This is of
course not a niche scenario, but we include it to compare and contrast clustering in this
scenario against complete neutrality and the niche scenarios (see Fig. 6.4 in main text).

The choice of ρ = 4 for our baseline scenario is a deliberate departure from the common
choice of Gaussian competition function (made by setting ρ = 2) used by MacArthur and
Levins (?), because the latter has been shown to allow stable coexistence of species with
arbitrarily similar traits and is sensitive to edge effects and other factors (?). We hypothesize
that the Gaussian prescription will lead to weak pattern due to slow niche sorting, and
include a Gaussian scenario to test this hypothesis. A slow-sorting scenario should also be
sensitive to edge effects caused by the finite trait axis. We therefore also include a Gaussian
scenario with a circular axis.

Finally, a defining characteristic of the MacArthur-Levins model, as mentioned in the
main text, is that competition is strictly and completely determined by trait similarity,
therefore not allowing for any particularities in interspecific competitive interactions caused
by the actual trait values of the species involved or any other factor. While capturing
the essence of the idea that species can mitigate competition by differing in strategies,
this assumption of complete symmetry along the trait axis is likely to be often violated
in nature. We test the importance of that property by including two scenarios where the
parameter w is not constant across the matrix Ai j. In the first, Ai j = exp[−((xi − x j)/wi)4],
where wi increases linearly between 0.015 for species 1 and 0.15 for species S. In this case, a
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pair of species with large trait values competes more intensely than a pair with equal trait
difference but small trait values. A hypothetical example of this situation is when the trait
has a metabolic cost that must be compensated by higher resource consumption. In our
second scenario with non-constant w, we set Ai j = exp[−((xi − x j)/wi j)4], where wi j is drawn
randomly from a uniform distribution between 0.015 and 0.15 for each pair of species i and
j. This adds noise to the dependence of competitive interactions on trait similarity, which
is still present but only on average across pairs of species.

Niche differentiation by preferred resource

In its deterministic form, the Rosenzweig-MacArthur model (?) is defined by the
dynamic equations

dXa

dt
= r

(
1 −

Xa

K

)
Xa −

∑
i

CaiXaNi

dNi

dt
= ε

∑
a

CaiXaNi − µNi , (L.2)

where Xa is the abundance of resource a, Ni is the abundance of consumer species i, µ is
consumer mortality, identical for all species, r and K are the resources intrinsic growth
rate and carrying capacity, also identical for all resources, Cai quantifies the amount of
resource a consumed by consumer species i, and ε is a conversion (efficiency) factor.
In our stochastic implementation we use the same zero-sum Moran process described
for our MacArthur-Levins scenarios. We assume density-independent mortality, and
resource consumption affects consumer birth rates. As death rate is identical across
species, the probability that species i with abundance Ni is chosen for a death event is
simply Ni/

∑
j N j. The probability that species i is selected for a recruitment event is

m qi + (1 −m)
∑

a CaiXaNi/
∑

j
∑

a CajXaN j. Resources follow the same stochastic birth-death
process as consumers, except that there is no immigration. Resource a is selected for a death
event with probability

∑
i CaiXaNi/

∑
b
∑

i CbiXbNi, and for a birth event with probability
(1 − Xa/K)Xa/

∑
b(1 − Xb/K)Xb. If a resource population is depleted to zero, the resource is

extirpated and cannot be replenished.
Notice that the only parameters that affect the stochastic dynamics are the resource

carrying capacity and the consumption matrix. We define Cai = C0 exp[−(dai/σ)2], where
dai is the difference between resource a and the preferred resource of consumer i, σ controls
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how fast the consumption declines as dai increases, and C0 is the consumption level of the
preferred resource. We assume C0 to be identical across all consumers, and therefore it
cancels out of the probabilities defined above. We set σ = 0.03.

The Rosenzweig-MacArthur model simplifies to the MacArthur-Levins model if the
resource dynamic equations are solved for equilibrium and the resource equilibrium
abundances substituted in the consumer dynamic equations (?). This assumes faster
resource dynamics relative to consumer dynamics, and ignores the possibility of resource
extinction. Abrams showed that resource depletion or exclusion has important effects on
the competitive interactions between consumers (?), as well as on coexistence outcomes
(?). We therefore consider two scenarios of this model, one with K = 100, and the other
with K = 400. In the first, most resources are never severely depleted by consumption,
whereas in the second resource depletion is severe and many resources are extirpated.
Both scenarios start with 500 resources with trait value drawn from a standard uniform
distribution.

Niche differentiation by preferred abiotic environment

The third type of niche model we examined was introduced by ?, and is based on
Tilman’s stochastic niche model (?) and was also studied by ?. It assumes that different
species are optimally adapted to different abiotic environmental conditions, and their
ability to colonize different local environments declines with the difference to their optimal
environment (their niche optimum). As with the stochastic models described above,
Schwilk and Ackerly assumed a saturated community where every site is occupied, and
each death, which occurs randomly in one of the sites, is followed by a lottery between
all propagules arriving at the vacated site, some of which can be from the regional pool.
Which propagule wins the lottery is probabilistically determined by their suitability to the
local environment.

A species’ “trait” in this model is its niche optimum, which is drawn from a standard
uniform distribution. The suitability of site a to species i is Fai = exp[−0.5(∆ai/0.05)2], where
∆ai is the difference between the local environment a and the niche optimum of species
i. There are 1,000 linearly arranged sites, forming a gradient of fixed abiotic conditions
between 0 and 1.

Dispersal limitation is implemented via a Gaussian dispersal kernel, Dab = exp[−0.5((a−
b)/σ)2], which sets the probability that a propagule from an individual located at site
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b arrives at the vacated site a. We explore two dispersal scenarios of this model: local
dispersal (σ = 50), where the probability of arrival of propagules to a site quickly declines
with the distance to the parent, and global dispersal (σ = 105), where the probability of
arrival is independent of distance to the parent. This corresponds to a case where the
physical distances are small relative to the dispersal ability of the individuals.

The probability that site a is occupied by species i in each time step is then mpi +

(1 −m)
∑

b,a φi,a,b/
∑S

j=1
∑

c,a φ j,a,c, where φi,a,b = Fai Dab and pi is the regional abundance of
species i.

Niche differentiation by life history strategy

In the competition-colonization tradeoff model (??), species trade off fecundity with
competitive ability: the number of propagules produced trades off with the ability of
propagules to displace individuals of other species. Species are ordered by fecundity value,
with species 1 being the least fecund and most competitive, and species S being the most
fecund and least competitive. This model as originally formulated is described by the
dynamic equations (?)

dpi

dt
= fipi(1 −

i∑
j=1

p j) − pi

i−1∑
j=1

f jp j − µpi , (L.3)

where pi is the relative abundance of species i in the local community, fi is its fecundity (i.e.
the number of propagules produced by each individual during time interval dt), and µ is
the mortality rate, here assumed identical across all species. After some algebra, Equation
(L.3) can be rewritten (see ?)

dpi

dt
= ( fi − µ)pi −

S∑
j=1

Θi j( fi + f j)p jpi , (L.4)

where Θi j = 1 if i > j, 1/2 if i = j, and 0 if i < j. It has been argued that for realistic
purposes the strict hierarchy must be replaced with a probabilistic approach where
higher-ranking species are more likely to displace lower-ranking ones (?). We follow this
approach by replacing the abrupt function Θi j with the continuous function Gi j( fi, f j) =

0.5 (1 − tanh[ν( f j − fi)]), which is equal to 0.5 when fi = f j and asymptotes to 1 and 0 when
fi � f j and fi � f j, respectively. In the limit of ν→∞ one recovers the step function.
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Notice that Equation (L.4) has the same format as the Lotka-Volterra model, Equa-
tion (L.1). We use that correspondence in our stochastic formulation of this model.
Again, we implement a saturated community under a stochastic birth-death process
with immigration from a regional pool, and place the density-dependent effects on the
probability of being selected for death. The probability that death befalls species i is thus∑

j Ai jNiN j/
∑

i
∑

j Ai jNiN j, where Ai j = Gi j ( fi + f j) is the competition coefficient, and the
probability that a recruit is from species i is m fiqi/

∑
j f jq j + (1 − m) riNi/

∑
j r jN j, where

ri = fi − µ. Notice that immigrants are more likely to be from species with high fecundity.
The logarithm of the fecundities were drawn from a uniform distribution between 0 and
log 500. We set mortality rate µ = 1, and steepness parameter ν = 0.15 in function G.

The other lifetime tradeoff model we examine is Muller-Landau’s tolerance-fecundity
tradeoff model (?). This model assumes that species trade off fecundity with stress tolerance,
and the environment varies in stress levels. The model can be written (?)

dNi

dt
= µ

∑
a

ha
Tai fiNi∑
j Taj f jN j

− µNi (L.5)

where fi is species i’s fecundity, Tai is its tolerance to stress level a, ha is the number of
sites with stress level a, and µ is the mortality rate, common to all species. In this model,
mortality is density-independent, and competition occurs at the recruitment stage.

Recruitment occurs as follows: for each recently vacated site of stress level a, all species
j contribute propagules according to their fecundity f j and abundance N j, which are then
weighted by their tolerance to stress a. A proportion Tai fiNi of those viable propagules
belong to species i. The recruitment at all sites with stress a is equal to this proportion
multiplied by the number of sites with that stress level, ha. Total recruitment is then
calculated by summing over all stress levels.

In our stochastic implementation of this model, which follows the same zero-sum recipe
used in the other models, species are selected to die in proportion to their abundances,
and the probability that species i is selected for a recruitment event is m fiqi/

∑
j f jq j +

(1 −m) Ii/
∑

j I j, where Ii =
∑

a ha(Tai fiNi/
∑

j Taj f jN j). There are 21,000 sites of 400 different
stress levels in the local community. The number of sites of each stress level is uniformly
distributed. The stress levels are drawn from a standard uniform distribution, as are the
fecundity values (note that multiplicative factors in the fecundity values cancel out of the
stochastic dynamics). The tolerance function we used was Tai(sa, fi) = 0.5 (1 − tanh[100(sa +

fi − 1)]), where sa is the stress level with index a. It has a sigmoidal shape, ranges from 0 to
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1, and monotonically decreases with stress level and fecundity value2.

Deterministic immigration-free simulations

For each niche scenario described above3, we also ran deterministic immigration-free
simulations in order to compare and contrast the outcomes with our simulations of
stochastic niche assembly under immigration.

In these simulations, the initial community corresponds to the regional pool used in
the stochastic simulations. That is, all of the approximately 410 species are initially present,
with abundances equal to their regional abundances, totaling 150,000 individuals. Those
abundances are then simultaneously updated at identical time intervals following the
respective niche model’s dynamic equations, without immigration, until stable equilibrium
is reached—i.e. until only those species that are able to stably coexist remain and have
reached their equilibrium abundances. The time interval is set so that on average each
update corresponds to one death and/or one birth at the beginning of the simulation. We
observed that 2 to 10 million updates sufficed for equilibrium to be reached, depending on
the model. Equilibrium was tested by checking that all abundances were changing by less
than one individual across the most recent 100,000 updates.

2In the original formulation by Muller-Landau, Tai was a step function, but ? argued that this is an
intrinsically unbiological assumption because it assumes that differences in tolerance strategy can remain
large between arbitrarily similar species, hence our use of a smooth function instead

3Except for the Schwilk-Ackerly model of competition for suitable habitat, which is mathematically
similar to the MacArthur-Levins model with Gaussian competition function (the rationale is the same behind
the demonstration that the Rosenzweig-MacArthur model, in the limit of fast resource dynamics, reduces to
the MacArthur-Levins model due to the fact that the overlap between two Gaussian resource use curves
yields a Gaussian competition curve. See ?).
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Appendix M

Supplementary figures for Chapter 5
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Figure M.1: Example simulation outcome of each scenario.
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Figure M.2: Gap curves corresponding to each scenario shown in Fig. M.1.
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Figure M.3: Species lifetimes versus regional abundance for each scenario shown in Fig.
M.1. See Fig. 6.5 in main text for details.
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Figure M.4: Trend in coefficient of variation for each of the scenarios shown in Fig. M.1.
See Fig. 6.6 in main text for details.
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Figure M.5: Deterministic immigration-free outcomes of all scenarios.
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Figure M.6: Example simulation outcomes of the resource-consumer model for low and
high resource depletion (top and bottom rows, respectively). Resources are shown on the
left, consumers on the right. In the high resource depletion scenario, gaps left by resource
extirpation cause analogous gaps among consumer species. These gaps possibly explain
why clustering was stronger in this scenario than the low depletion case.
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Figure M.7: Average standard score of the gap statistic across ten runs of the finite-axis
slow-sorting MacArthur-Levins scenario, for five different immigration rates. As with the
fast-sorting scenario (Fig. 6.2 in main text), there is a negative trend in clustering with
immigration. Notice that clustering is strong for sufficiently low immigration rates.
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Appendix N

Demonstration that neutral communities can be clustered

in genotype space

Using a master equation approach, Houchmandzadeh and Vallade (2003) demonstrated
the formation of spatial clusters in a neutral model of birth, death, and migration, where
the latter could only occur between neighboring geographic locations. In the long term,
individual organisms tend to aggregate spatially due to the local nature of geographic
dispersal. Here we employ the same technique to show that clusters also arise in a neutral
evolution scenario where haploid individuals die and reproduce at random, and mutations,
when they occur, are limited to replacement of a single nucleotide (point mutation).

Consider a genetic segment L bases long. The genotype is defined by the set of bases
A, C, G, T, at each site of this segment. There are 4L possible genotypes. The state of the
community is the set of abundances of each genotype. Suppose that individuals die and
replicate with a chance of mutation under a purely neutral regime. Further, suppose there
can only be point mutations, that is, mutations that replace a single base nucleotide with
another nucleotide (no indels and no large-scale mutations are allowed).

Our goal is to show that in the long term there will be a positive correlation between
the abundance of a genotype and its neighbors in genotype space, irrespective of the
initial composition of the community. Furthermore, this correlation should decline for
progressively dissimilar genotypes.

Point mutations link the abundances of “first neighbors" – pairs of genotypes that
differ from one another in only one site. In our neutral scenario, birth and death rates of
a genotype are otherwise unaffected by the abundances of the other genotypes. We will
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use the master equation to derive the covariances between abundances of genotypes. The
master equation is a differential equation for the probability P that the system is observed
at a given state n. It contains transition rates W describing the probability of change in the
abundance of a given genotype. It reads

∂P(n)
∂t

=

4L∑
i=1

P(ni − 1)W+(ni − 1) − P(ni)W+(ni)

+P(ni + 1)W−(ni + 1) − P(ni)W−(ni) (N.1)

where boldface n stands for the set n1, . . . ,nk, . . . ,n4L , and P(ni) is shorthand for
P(n) = P(n1, . . . ,ni, . . . ,n4L). In words, this equation says that the change in probabil-
ity of finding the community at state n is the balance between the probability that the
community was at a state with one individual too many or one too few and transitions into
state n, and the probability that it was at state n and leaves by gain or loss of an individual.

The model is defined by the transition rates W+(nk) and W−(nk), which express the rates
at which a genotype k with abundance nk gains and loses one individual, respectively. The
interaction-free model is defined by the following transition rates:

W+(nk) = b(1 − µ)nk + bµ
1

3L

∑
k′

nk′ (N.2)

W−(nk) = dnk (N.3)

The second expression is the rate at which genotype k loses one individual, which
occurs via death of an individual of that genotype. The first represents the rate at which
genotype k gains an individual, which occurs either via the birth of a clone or via the birth
of a mutant sired by another genotype. Notice that only the first neighbors of genotype k,
written k′, can mutate into k.

The birth and death rates of a genotype are unaffected by the community size J, which
is free to vary. Consistent with our assumption of neutrality, we assume that the per capita
rates b and d are uniform across genotypes. We can further assume that the community
size should not consistently increase or decrease through time, which implies b = d.

Let ukl be the covariance between genotypes k and l at time t, that is,

ukl(t) = 〈nk(t)nl(t)〉 − 〈nk(t)〉〈nl(t)〉,
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where the angle brackets denote an average over n (in effect averaging over a large
number of replicates of the community). The correlation is then ρkl(t) = ukl(t)/(ukk(t)ull(t))1/2.

In Appendix O we show, in close analogy with Houchmandzadeh and Vallade 2003,
that ukl satisfies the following differential equation:

dukl

dτ
= −2ukl +

1
3L

∑
k′

ulk′ +
1

3L

∑
l′

ukl′ for l , k, (N.4)

dukk

dτ
= −2ukk +

2
3L

∑
k′

ukk′ +
2
µ
〈nk〉 +

d〈nk〉

dτ
(N.5)

where µ is the probability of mutation per birth event, τ = µbt is dimensionless time
rescaled by the mutation and birth rates, and k′ and l′ represent the first neighbors of
genotypes k and l, respectively. The time-dependence is omitted for brevity of notation.

Now, we are ultimately interested in the correlation of genotypes based on their genetic
distance, i.e. the number of nucleotide differences between them. Genotype k has distance
z = 0 from itself, its first neighbors k′ stand a distance z = 1 from it, and so on. In the
limit of an infinitely large ensemble, the covariance ukl between the abundances of all pairs
of genotypes (k, l) separated by distance z converges to the same number, uz. Thus ukk

converges to u0 for every genotype k, ukk′ converges to u1, and so forth. Also, if k and l
differ in z loci, then among the first neighbors of k, z differ from l in z − 1 loci, 2z differ in z
loci, and 3(L − z) in z + 1 loci. The same is true, of course, of the first neighbors of l with
respect to k.

We can then rewrite Eqns. (N.4) and (N.5) as

du0

dτ
= −2u0 + 2u1 +

2
µ
〈nk〉 +

d〈nk〉

dτ
(N.6)

duz

dτ
= −2uz +

2
3L

(zuz−1 + 2zuz + 3(L − z)uz+1) (N.7)

for z = 1, 2, . . . ,L. Solving for ρz = uz/u0 in equilibrium, we get

ρ0 = 1 (N.8)

ρ1 = 1 −
1
µ
〈nk〉

u0
(N.9)

ρz+1 = ρz −
z

3(L − z)
(ρz−1 − ρz) (N.10)
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1Expressions N.8 to N.10 guarantee that the set {ρz} forms a monotonically decreasing
series in z. This indicates higher correlations between pairs with shorter genetic distance.
Thus fortuitous fluctuations in the abundance of a genotype will tend to boost the
abundance of its near neighbors in genotype space, and vice-versa. This leads to clustering
in genotype space: some regions are rich with abundant genotypes, while others are more
sparsely occupied because of negative fluctuations that augment each other. Note that the
abundances of all genotypes have the same ensemble mean (Eqn. O.1 in Appendix O): it is
the correlations of fluctuations around the mean in specific communities that reveal the
structure caused by small mutations under neutral dynamics.

The result suggests that the distribution of distances to nearest modal genotype caused
by point mutations would be monotonic. We verify this with simulations in the main test.
It is in principle possible to use the mathematical framework of neutral theory to derive
〈nk〉 and u0 as a function of J and µ. For example, by approximating the expected genotype
richness in the community using equation (7) in (Vallade and Houchmandzadeh 2003), one
can calculate 〈nk〉 ' (−µ logµ)−1. If both the mean and the variance can be so expressed, we
will have analytical neutral predictions for the correlations between all pairs of genotypes,
and this would be complemented with simulations to determine variability in order to
carry out a statistical analysis.

1Expressions N.8 and N.9 show that ρ1 < ρ0 and ρ1 is positive if 〈nk〉 < µu0. We conjecture that ρ1 is
always positive, and tends to zero for increasingly lower mutation rates. Notice that although it may seem
from equation N.9 that ρ1 is negative for low µ, this is not necessarily the case because 〈nk〉 and u0 are also
dependent on µ. Such may not be the case of a zero-sum formulation where the community size is fixed,
since higher abundance for certain genotypes necessarily means lower abundance for others. But in either
case the set {rhoz}will be monotonically decreasing, indicating more positive correlations between pairs with
shorter genetic distance.
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Appendix O

Calculating correlations with the master equation

The master equation can be used to calculate dynamic equations for the moments 〈nk(t)〉,
〈n2

k(t)〉, 〈nknl(t)〉, which can then be used to find a dynamic equation for the covariances
ukl(t) = 〈nknl(t)〉 − 〈nk(t)〉〈nl(t)〉. (We’ll subsequently omit the time-dependence for brevity
of notation.)

To illustrate the derivation method, let’s start with the equation for the expected
abundance of genotype k, 〈nk〉. Letting boldface n stand for the set n1, . . . ,nk, . . . ,n4L , we
write

〈nk〉 =
∑

n

nkP(n)

d〈nk〉

dt
=

d
dt

∞∑
n=0

nkP(n)

=

∞∑
nk=0

nk

∞∑
nl,k=0

∂P(n)
∂t

=

∞∑
nk=0

nk

∞∑
nl,k=0

4L∑
i=1

(P(ni − 1)W+(ni − 1) − P(ni)W+(ni)

+ P(ni + 1)W−(ni + 1) − P(ni)W−(ni)).

In the last line, we substituted the master equation (N.1) from Appendix N. Also, notice
that P(ni) is shorthand notation for P(n1, . . . ,ni, . . . ,n4L) emphasizing the probability that
the abundance of genotype i is equal to ni. Next, we recognize that all but the k-term in the
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sum
∑
i

vanish, because once we sum over
∑
nl

, the l-term in
∑
i

cancels out (Houchmandzadeh

and Vallade, 2003). This leaves us with

d〈nk〉

dt
=

∞∑
n=0

nkP(nk − 1)W+(nk − 1) − nkP(nk)W+(nk)

+ nkP(nk + 1)W−(nk + 1) − nkP(nk)W−(nk)

=

∞∑
n=0

W+(nk)P(nk) −W−(nk)P(nk)

= 〈W+(nk) −W−(nk)〉

= −
µ

J

〈nk〉 −
1

3L

∑
k′
〈nk′〉

 .
In the last line, we plugged in the transition rates that define the neutral model, Eqns.

(N.2) and (N.3). In words, the changes in the expected value of genotype k in a fixed-size
community are due to the balance between mutations in and out of genotype k. The
equilibrium solution is

〈nk〉 =
1

3L

∑
k′
〈nk′〉. (O.1)

That is, the expected abundance of genotype k is the mean of the expected abundance of
its first neighbors (a genotype has 3L first neighbors). Extending this result to all genotypes,
we conclude that all genotypes have the same mean. This reflects the neutrality of the
model.

Now we can move on to 〈nknl〉, with l , k. Again, the master equation can help us:

d〈nknl〉

dt
=

d
dt

∞∑
n=0

nknlP(n)

=

∞∑
n=0

nknl
∂P(n)
∂t

=

∞∑
n=0

nknl

4L∑
i=1

(
P(ni − 1)W+(ni − 1) − P(ni)W+(ni)

+ P(ni + 1)W−(ni + 1) − P(ni)W−(ni)
)
.

Using the same logic as above, the only surviving terms in the sum
∑
i

are the k- and
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l-terms, which can then be simplified upon summing over nk and nl.

d〈nknl〉

dt
=

∞∑
n=0

nknl

[
P(nk − 1)W+(nk − 1) − P(nk)W+(nk)

+ P(nk + 1)W−(nk + 1) − P(nk)W−(nk)

+ P(nl − 1)W+(nl − 1) − P(nl)W+(nl)

+ P(nl + 1)W−(nl + 1) − P(nl)W−(nl)
]

=

∞∑
n=0

nl (W+(nk)P(nk) −W−(nk)P(nk))

+ nk (W+(nl)P(nl) −W−(nl)P(nl))

= 〈nl (W+(nk) −W−(nk))〉 + 〈nk (W+(nl) −W−(nl))〉

=
µ

J

−2〈nlnk〉 +
1

3L

∑
k′
〈nlnk′〉 +

1
3L

∑
l′
〈nknl′〉

 ,
where k′ and l′ are the first neighbors of genotypes k and l, respectively.
Now we can piece those together to get the dynamic equation for ukl:

dukl

dτ
=

d〈nknl〉

dτ
− 〈nk〉

d〈nl〉

dτ
− 〈nl〉

d〈nk〉

dτ

= −2ukl +
1

3L

∑
k′

ulk′ +
1

3L

∑
l′

ukl′ , (O.2)

where τ = µbt is dimensionless time rescaled by the mutation and birth rates.
The equation for ukk is similar but slightly different:

d〈nknk〉

dt
=

∞∑
n=0

n2
k

[
P(nk − 1)W+(nk − 1) − P(nk)W+(nk)

+ P(nk + 1)W−(nk + 1) − P(nk)W−(nk)
]

= 2〈nk(W+(nk) −W−(nk))〉 + 〈W+(nk) + W−(nk)〉

= 2µb

−〈n2
k〉 +

1
3L

∑
k′
〈nknk′〉 +

1
µ
〈nk〉

 +
d〈nk〉

dt

dukk

dτ
= 2

−ukk +
1

3L

∑
k′

ukk′ +
1
µ
〈nk〉

 +
d〈nk〉

dτ
(O.3)
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Appendix P

Summary of our example power analysis

Building on our neutral simulations, we implemented selection by setting up death
rates d as a function of the Hamming distance z to the dominant genotype – d(z) = 1 + 0.05z.
This makes for a threefold difference between the death rates of the fittest and least fit
genotypes. In every other respect, our selective regime is identical to the neutral regime.
Results are shown in figure C1. The ribbons show the 95% confidence intervals for the
metric applied on our set of neutral (grey) and selective (blue) regimes. Both show a
monotonic decrease with genetic distance, but the selective regime is steeper. To quantify
that difference, we ran a χ2-based power analysis.

For each of the neutral communities and each of the selective regime communities,

we calculate its χ2-statistic as χ2 =
L∑

z=1
(Oz − Ez)2/Ez, where Ez is the mean of the metric at

distance z across the set of simulated neutral communities, and Oz is the observed value for
that particular community. We then compare the χ2 of each selective-regime community
to the set of χ2 for all neutral communities, and calculate its p-value by determining the
fraction of neutral χ2 that are larger than the χ2 of the selective community. The power of
the test is the percentage of selective regime cases that were determined to be significantly
different from the set of neutral communities, i.e., the percentage of selective regime cases
whose p-value was lower than 0.05. The metric was able to distinguish 200 out of 228
selective regime communities from the set of 127 neutral communities at the p = 0.05 level,
thus at 88% power. Lessening the selection gradient would lower power.
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Figure P.1: Distribution of distances to nearest modal genotype observed in neutral
communities driven by drift and mutation. (Normalized Hamming distance is defined as
z/L, where z is the number of discordant loci and L is the total number of loci.) Numbers
on the y axis reflect the frequency of rare-modal pairs. Grey band corresponds to neutral
scenario with restriction to point mutations, and blue band corresponds to neutral scenario
with mutations of unconstrained size. Bands span 95% confidence intervals across 127
(neutral) or 228 (selective) runs. Community size for all runs is 1,000, and mutation rate
is 0.1 per genome per generation, for a genome with 40 loci. Selection implemented on
death rates: rate d(z) for a genotype with Hamming distance z to dominant genotype is
d(z) = 1 + 0.05z.
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