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:  Introduction CHAPTER 1

The field of population genetics examines the genetic variation within and between 

populations and the processes that affect this variation. Such processes include migration of 

individuals, genetic drift, natural selection, changes in population size, and non-random mating. 

Though it is not a new field of study, population genetics is constantly evolving due to the rapid 

improvements in technology for obtaining genetic information. The biological field originated in 

the early 20
th

 century as a theory-driven discipline that combined Mendelian genetics with 

Charles Darwin’s theory of natural selection 
1
. However, it was not until the widespread use of 

protein electrophoretic variation that population genetics emerged as a data-driven field.
2-5

 

Statistical-based analyses continued to develop with the invention of polymerase chain reaction 

technology 
6-8

, and later, genome-wide single nucleotide polymorphism (SNP) data 
9
. Now, with 

the falling costs of next generation sequencing (NGS), we have access to increasingly large 

sequencing studies, offering a unique opportunity for innovative methods in statistical analyses.  

New developments aim to exploit the wealth of information in rare variation, made 

available by sequencing more subjects more thoroughly with NGS.  Recent studies have shown 

that rare genetic variants are extremely abundant in the human population. In a resequencing 

study of 202 genes in 14,002 subjects, Nelson et al. found >95% of variants were defined as rare 

(minor allele frequency less than 0.05%)
10

. Similarly, Tennessen et al. sequenced over 15,000 

genes in 2,440 subjects, finding 86% of variants found in the subjects were rare
11

. Rare variants 

have already informed several important population genetics findings. For example, Keinan and 
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Clark used rare variation from sequencing studies to confirm explosive population growth in 

human history and estimate the human population has expanded by at least three orders of 

magnitude in the past 400 generations
12

. Additionally, studying rare variants within and between 

populations has shaped approaches to testing for disease risk. Gravel et al showed that rare 

variants have extremely limited sharing between diverged populations
13

, leading to new 

recommended adjustments for statistical power in disease association tests. In this dissertation, 

we present a new collection of population genetics methods, specifically tailored for accessing 

the signals residing in rare variants. We focus on methods for the processes of migration, 

changes in population size with subsequent genetic drift, and natural selection.  

In Chapter 2 of this dissertation, we present a new method for estimating changing 

migration rates using the distribution of rare variants among populations. The estimation of 

migration rates is essential to our understanding of the genetic variation between and within 

populations. This is valuable for a wide range of studies including preventing false positives in 

epidemiological studies
14-16

, improving matching in case-control association testing 
17; 18

, 

ecological and conservation studies 
19-21

, and historical analyses 
22-26

. Furthermore, the migratory 

history of a population can help to establish the evolutionary origin of a disease. Each of these 

applications require a reliable, accurate, and realistic method for estimating migration rates. 

As rare variant distributions depend only on the migration rate after the mutation-

generating event, we can estimate recent migration from very rare variants and ancient migration 

from more common variants. Using the distribution specific for each minor allele count, we 

develop a likelihood function to obtain one estimate of the migration rate for variants with the 

given minor allele count. Therefore, by comparing different estimates of migration based on 

variants with different minor allele counts, we obtain evidence for changes in migration rate. 
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Evaluating the performance of our method on simulated data, we can identify migration changes 

as recent as 20 generation in the past (approximately 400-500 years ago). Additionally, we apply 

our method to large-scale exonic sequence data from 202 drug target genes sequence data from 

European and African American samples.  We observe an increase in migration rates in recent 

years from European populations into African American populations, corresponding to the 

historical record of increased gene flow. In the European samples, we observe generally high 

migration rates and temporal trends indicating previously higher gene flow between the Northern 

Europe populations and the rest of Europe, with decreasing rates in more recent years. We 

hypothesize this could be the result of the recently inferred expansion of Yamnaya steppe 

herders
27; 28

. 

In Chapter 3, we present an exact model for modeling population bottlenecks and 

subsequent genetic drift and provide two different applications for this model. Population 

bottlenecks are defined as extreme reductions in population size. Populations that experience 

bottlenecks can exhibit dramatic shifts in population allele frequencies after returning to their 

original size
29

. This shift can be driven simply by the random sampling process for reproduction 

known as genetic drift. In some cases, however, selection acting on the variants during regrowth 

will alter expected allele frequencies. Discerning between drift and selection is essential to 

understanding functional consequences of the variants and the effects of environmental 

pressures. Accurately modeling the bottleneck, genetic drift, and selection has many important 

applications for humans and other organisms, such as studying the results of natural disasters 
30-

32
, captive breeding

33-35
 and re-introduction

36-38
 of animals, especially endangered species

36; 39; 40
, 

understanding host-pathogen relationships
41-43

, and identifying disease patterns
19; 44-48

.  

Furthermore, studying bottlenecks and genetic drift can help identify populations with reduced 
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genetic diversity or elevated rare variant frequencies. Modeling the bottleneck and genetic drift 

can improve the chance of finding rare variant associations that are difficult to identify using 

general populations
49; 50

. In this chapter, we show two further examples requiring accurate 

modeling of population bottlenecks: estimating the size of the bottleneck during mtDNA 

transmission from mother to child and identifying evidence of selection in a cell growth 

experiment with a known bottleneck size. 

In this approach, we construct a flexible, probability-based approach to directly modeling 

the biological process of population bottleneck and growth and identifying variants with a 

selection advantage. We model bottleneck effects using binomial sampling and a discrete 

stochastic process for finite populations. We build upon traditional models of genetic drift
51; 52

, 

allowing for population growth and overlapping generations. With this approach, we can 

construct a closed-form equation to calculate the probability of observing a shift in allele 

frequency under genetic drift alone. The primary process of bottleneck and genetic drift can be 

concisely computed using a discrete Markov chain with two transition matrices. Incorporating 

sequencing error and genotyping error, we can use this approach to estimate parameters of the 

model, such as the size of the bottleneck. We also show this model can be easily adjusted to 

incorporate and estimate a selection coefficient.  

We present two unique applications for this mathematical model. First, we apply this 

approach to 58 variants from next generation sequencing of cell populations isolated from 

control subjects and individuals with pre-mature aging disorders at the National Institutes of 

Health. Using the allele frequencies in the cell populations before and after the bottleneck and 

genetic drift, we find evidence of selection and estimate a selection coefficient in three of these 

variants. In a second application of this model, we analyze short read sequences of the 
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mitochondrial DNA of 189 mother-daughter pairs from the Genome of the Netherlands and 

Biobanking and Biomolecular Research Infrastructure of the Netherlands. We estimate the size 

and nature of the bottleneck in mtDNA transmission from mother to child based on a maximum 

likelihood equation and model comparisons.  

In the final chapter, we focus on detecting selection signals in autoimmune disease 

associated loci. Autoimmune diseases are a particularly interesting case for selection because, 

though detrimental to reproductive fitness, they maintain prevalence in human populations
53; 54

. 

One hypothesis for this evolutionary phenomenon is that loci known to be associated with 

multiple autoimmune diseases were previously selected for protection from infectious diseases or 

pathogens and offered an evolutionary advantage. Therefore, identifying selection signals in 

these loci could provide important insight into immunity pathways as well as potential medical 

interventions for autoimmune diseases.  

While focusing on autoimmune diseases, we outline and evaluate a new approach to 

identify selection signals in large-scale whole genome sequencing (WGS). Specifically, we adapt 

two existing site frequency spectrum statistics, originally developed for small-scale region-based 

analyses, to applications using WGS data from over 3500 individuals. We identify advantages of 

using WGS compared to genome wide association studies (GWAS), including avoiding issues of 

ascertainment bias and missing short range linkage disequilibrium. Furthermore, WGS allows for 

significance testing using the empirical distributions from SFS statistics genome-wide. Using this 

approach, we can account for confounding signals of population growth that affect the SFS 

statistic across the genome. However, the increased information on rare variation from WGS and 

the large data format requires adjustments in the usage and expected results of these statistics. 

We evaluate the power of this approach using previously identified positively selected loci under 
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various parameter settings such as window size and null distributions and discuss issues of 

dependency across the genome. Therefore, in this final project, we present and evaluate a novel 

approach to using existing site frequency spectrum statistics. 

Next generation sequencing studies are constantly advancing, increasing in scale and 

number and requiring the development of novel, flexible statistical methods. Population genetics 

in particular will benefit from the increased access to rare variation with this technology. This 

dissertation focuses on three population genetics approaches for NGS data and provides 

important applications of these analyses. These studies provide insight into current and future 

developments for NGS data, improving the overall understanding of this steadily growing 

technology.  
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:  Estimating Migration Rates Using Distributions of Rare CHAPTER 2

Variants 

2.1 Introduction 

The estimation of migration rates is essential to understanding the genetic variation 

between and within populations and therefore, valuable for a wide range of studies. In population 

genetics, these estimates can elucidate the history of migratory patterns, particularly recent 

barriers to gene flow
22-26

.  Furthermore, migration rate estimates between subpopulations of 

species are useful in ecological studies and conservation biology
19-21

. Careful modeling of 

population relationships is also necessary in epidemiological studies to avoid false positives 

where allele frequencies differ between subpopulations
14-16

. Finally, understanding population 

structure can improve matching of cases and controls in association testing for public health 

studies
17; 18

. All of these applications require a reliable, accurate, and realistic method for 

estimating migration rates. 

Traditional estimators of migration rates primarily fall into three categories, which recent 

methods build upon. The first category, estimators based on Wright’s F-statistic, include the 

most commonly employed and simplest methods
55

. These estimators use comparisons of 

heterozygosity within and between subpopulations to develop a single estimate of migration 

based on information across all variants
56-65

. These estimators often rely on several simplifying 

assumptions including constant and equal population sizes. Second, there are estimators that rely 

on coalescent theory
66

. These methods are based on modeling a genealogy of sampled 
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individuals under various population parameters including migration and determining the 

likelihood of observed data under different parameter choices
67-71

. The coalescent-based methods 

are typically computationally intense but allow for relaxing some assumptions such as constant 

population size. More recent updates to the coalescent approach use a Bayesian framework to 

estimate a distribution of migration rates
72-78

.  These approaches are generally able to analyze 

large amounts of data by applying algorithms such as the Markov Chain Monte Carlo.  Third, 

there are estimators that use a maximum likelihood estimate based on allele frequencies across 

populations
79; 80

. This strategy requires an accurate probability distribution of allele frequencies. 

This can be difficult to obtain, particularly in the case of asymmetric migration rates 
57

. 

Generally, the distribution is established through simulations of simple population models such 

as Wright’s island model
81

. In this distribution of allele frequencies, alleles private to populations 

are informative of previous genetic dispersal
70; 74; 82

. Our method builds on this traditional 

maximum likelihood approach by focusing on rare and population-specific variants.  

In each of these traditional estimators, the methods consider a constant migration 

parameter and do not provide a temporal picture of migration changes over time. Identifying 

changes in migration rate is critical not only to understand our demographic history but also to 

control rare variant association analysis for population stratification. More recent methods, such 

as the Pairwise Sequential Markovian Coalescent (PSMC) and, later, the Multiple Sequential 

Markovian Coalescent (MSMC) allow for estimating changes in migration rate, though restricted 

to pre-historic times, by computing TMRCA distributions across the genome, indicating 

historical migration events 
83; 84

. As this approach relies on a small number of chromosomes it is 

not sensitive to recent timescale changes less than 10,000 years ago. Another recent method, 

dadi
85

 is a powerful approach to identifying a broad range of demographic parameters, including 
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changing migration, using diffusion approximations to obtain the site frequency spectrum. 

However, this method relies on solving partial derivative equations numerically, making it 

computational intensive for complicated histories and large data sets and its solutions can be 

unstable
86

. Excoffier et al
87

 overcomes this issue by obtaining the expected site frequency 

spectrum (SFS) under specific demographic histories from coalescent simulations. Our method 

applies a similar approach, but adds additional information by slicing across the SFS and 

leveraging the relative rareness of variants in the population to present a temporal picture of 

changing migration. 

A major challenge for estimating migration rates is the confounding effect of population 

size. Estimates of migration rate depend on the amount of genetic variation shared between 

populations. For this reason, migration methods traditionally estimate a compound parameter of 

population size and migration rate. However, many populations in nature have undergone recent 

dramatic size changes 
12; 88; 89

. As genetic variation increases with population size, the amount of 

shared variation also increases, even if the per individual migration rate remains constant. 

Estimates of changes in migration rate must account for population growth so that migration 

rates are appropriately scaled and do not falsely infer higher migration in recent years. 

Establishing a method that reflects such demographic changes is necessary to understand the 

effects of historical human events on gene flow in non-constant size populations. 

In this study, we leverage the increasing prevalence of large sequencing datasets and 

develop a method to identify changing migration patterns using rare variants. Previous studies 

show that rare variants are particularly informative for understanding fine-scale population 

structure and geographic origin, with a large excess of rare variation existing in current human 

populations 
10; 90-92

. We base our method on the distribution of these rare variants among multiple 



10 

 

populations. Intuitively, rare variants will largely be population specific under low migration, 

while increasing migration rates will generate a more balanced distribution of alleles. However, 

only migration events that occur after a variant arises can affect the population distribution of 

that variant. Hence, rare variants that arose recently are only affected by recent migration events, 

reflecting the migration rate in the recent past.  We develop a likelihood function to obtain one 

maximum likelihood estimate of the migration rate using variants with a given minor allele 

count.  By comparing different estimates of migration based on variants with different minor 

allele counts, we obtain evidence for changes in migration rate. Evaluating the performance of 

our method on simulated data, we can identify migration changes as recent as 20 generation in 

the past (approximately 400-500 years ago). Furthermore, this method is adjustable for 

population growth and changes in population size.  We also show that the method is robust to 

model population characteristics including misspecifications in effective population size, 

ancestral divergence, asymmetric migration, and uneven sample size between the island 

populations.  

As a proof of principle, we estimated migration rates in recent years from European 

populations to African American populations using counts generated from sequence data. This 

data set included 7809 individuals with broad consent selected from a previously published 

sequencing study of 14,002 subjects, resulting in 7470 Europeans and 339 African American 

subjects.
10

 We observe an increase in migration rates in recent years from European populations 

into African American populations, corresponding to the historical record of increased gene 

flow. These results provide a real data example in which our method detects realistic migration 

changes over recent generations in the presence of population growth. We further analyze four 

geographically-defined subpopulations of Europe: Northwestern (British Isles), Northern 
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(Iceland, the Faroe Islands, Denmark, Norway, Sweden, Estonia, Latvia, Lithuania), Western 

(Belgium, France, Luxembourg, and the Netherlands), and Central (Austria, Germany, and 

Switzerland)
10

. We observe generally high gene flow with slightly lower migration rates between 

the more geographically distant populations. Interestingly, we observe temporal trends indicating 

previously high gene flow between the Northern Europe populations and the rest of Europe, with 

decreasing rates in more recent years. We hypothesize this signal is the result of the recently 

inferred expansion of Yamnaya steppe herders
27; 28

. 

2.2 Methods 

2.2.1 Dataset Formulation and Notation 

Consider a sample of 𝑛 chromosomes from 𝑠 subpopulations, each with effective diploid 

population size 𝑁 
93

. We define a segregating site as having minor allele count k if the minor 

allele occurs k times across all 𝑠 subpopulations. For a variant with 𝑘 minor alleles, let  𝑘𝑡  be the 

number of minor alleles in population 𝑡 (𝑡 = 1,… , 𝑠 ) with ∑ 𝑘𝑡
𝑠
𝑡=1 = 𝑘. There are 𝑎 =

(
𝑘 + 𝑠 − 1

𝑘
) ways to arrange the k observations in 𝑠 populations (using unordered sampling with 

replacement, we choose a population 𝑡 for each of the k observation)
94

. Each observed variant 

will occur in one of these configurations. Across the 𝑠 populations, let ℎ𝑘 be the number of sites 

with minor allele count 𝑘. The number of times configuration 𝑖 is observed is ℎ𝑘𝑖 (ℎ𝑘 = ∑ ℎ𝑘𝑖𝑖  ). 

Notice that the probability of a variant with allele count 𝑘 being in configuration 𝑖 depends on the 

migration rate between the populations since the time of the mutation event that generated the 

variant. For example, a doubleton (𝑘 = 2) taken from a sample of 𝑠 = 2 populations, will 

typically be population specific (configurations [2,0] or [0,2]) if migration rate is low and often 

shared between populations (configuration[1,1]) if migration rate is high. Our objective is to 
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estimate a migration rate 𝑀, for each minor allele count k based on (ℎ𝑘1, … , ℎ𝑘𝑎)  where 

𝑀 = 4𝑁𝑚 and 𝑚 is the fraction of each population made up of new migrants each generation. 

Let 𝑴 = (𝑀1, … ,𝑀(
𝑠
2
)
) be the vector of migration rates between pairs of 𝑠 populations. For a 

given variant with minor allele count 𝑘, let 𝑝𝑴,𝑘,𝑖 be the probability of observing configuration 𝑖 

for a given migration rate vector 𝑴. The 𝑝𝑴,𝑘,𝑖 are therefore dependent on the sample 

configuration such as the sample size and number of populations. Assuming that all sites 

segregate independently, we calculate the likelihood of migration rate vector 𝑴using a 

multinomial distribution:  

 
𝐿𝑘(𝑴|ℎ𝑘1, ℎ𝑘2, . . . ℎ𝑘𝑖) =

ℎ𝑘!

ℎ𝑘1! ℎ𝑘2!. . . ℎ𝑘𝑖!
(𝑝𝑴,𝑘,1 

ℎ𝑘1𝑝𝑴,𝑘,2 
ℎ𝑘2 …𝑝𝑴,𝑘,𝑖 

ℎ𝑘𝑖)    
(2.1) 

Maximizing this likelihood provides an estimate for the most likely migration parameter estimate 

based on the information contained only in sites with allele count 𝑘. We note that in many cases 

we cannot assume all sites segregate independently. In this situation, (2.1) conveniently becomes 

a consistent and asymptotically normal pseudo-likelihood 
95

.  

We identify the maximum likelihood estimate of the migration rate based on 

(ℎ𝑘1, ℎ𝑘2, . . . ℎ𝑘𝑖) by implementing a grid-search algorithm across a grid of migration rates 

vectors, 𝑮. Using (2.1), we calculate the likelihood for each grid point and identify the grid point 

with the highest likelihood as the maximum likelihood estimate for allele count 𝑘.  

We notice at higher allele counts, migration estimates are less accurate due to the 

decreasing number of observed segregating sites and increasing possible number of 

configurations. We address this problem by collapsing neighboring maximum likelihood 

estimates (i.e. those for allele counts 𝑘, 𝑘 + 1, and 𝑘 + 2), into “bins” to ensure a minimum 

number of observations contribute to each estimate. This means the higher allele count bins 
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include a larger range of allele counts due to the limited number of observations for each 

configuration. While under this scheme, estimates are no longer allele-specific, we can observe a 

qualitative trend of migration estimates using rank-based correlation statistics and model 

comparisons. 

2.2.2 Estimating 𝑝𝑴,𝑘,𝑖 

To fully construct (2.1), we first obtain the 𝑝𝑴,𝑘,𝑖 the probability of observing each 

configuration 𝑖 for a particular migration vector. We do so by simulating sequence data using the 

coalescent simulator ms
96

. For known parameters, such as sample size and relative population 

sizes, we choose the simulation parameters to match those of the populations in our dataset of 

interest. We also set simulation parameters which are unknown such as effective population size, 

exponential population growth, and instantaneous changes in population size, based on our best 

knowledge of the populations represented in our dataset of interest. For our basic analyses, we 

simulate 10
7
 independent regions of 3.75 kB each without recombination, drawn from two 

populations of equal and constant effective population size (𝑁𝑒=10,000 diploid individuals each). 

This creates a sample of 2.5x10
4
 diploid individuals with a total of 750 kB each. In this two-

population setting with symmetric migration, the migration rate vector is a single element, 𝑀. 

For our grid of possible migration rates for 𝑀, we include a denser coverage lower levels of 

migration where small differences in gene flow are more easily detectable (𝑮 =[5, 10, 20, 30, 40, 

50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400, 500, 600, 

700, 800, 900, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000, 3250, 3500, 3750, 4000, 

4250, 4500, 4750, 5000, 5250, 5500, 5750, 6000, 6250, 6500, 6750, 7000, 7250, 7500, 7750, 

8000, 8250, 8500, 8750, 9000, 9250, 9500, 9750, 10000, 10250, 10500, 10750, 15000, 20000]), 
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corresponding to 𝑚 = 0 to 0.5. Throughout this analysis, we use the present-day scaled 𝑀 

parameter, as in the coalescent simulator ms
96

. 

For each 𝑀 in 𝑮, we record the number of times 𝑟𝑘𝑖 each configuration 𝑖 is observed for 

each allele count 𝑘. Using these frequencies, we estimate the probability  𝑝𝑴,𝑘,𝑖 = 𝑟𝑘𝑖/∑ 𝑟𝑘𝑖𝑖  of 

observing this distribution under migration parameter 𝑴. 

2.2.3 Identifying Changing Migration Using Spearman’s Rho 

For each scenario of migration that we simulate, detailed below, we calculate Spearman’s 

rank correlation coefficient (Spearman’s rho) between the allele-count bin number and the allele-

count-specific estimated migration rates. A positive Spearman’s rho indicates lower migration 

rates for variants with smaller allele counts than for variants with larger allele counts, indicating 

decreased migration in recent years. In contrast, a negative Spearman’s rho indicates higher 

migration in smaller allele counts, indicating increased migration in recent years. We estimate 

the power to detect temporal change in migration rate using this approach by counting the 

number of significant rho values in these models. 

2.2.4 Grid Search Algorithm 

In addition to using Spearman’s rho as a preliminary and immediate test for identifying 

changing migration, we introduce a grid search and model comparison procedure to obtain 

precise estimates of the migration rates and time of change. We build on the likelihood defined 

in (2.1) but now the grid of possible migration rates, 𝑮, is a grid of demographic histories,𝑮𝑯 

including both constant and changing migration and population expansion. As above, let ℎ𝑘 be 

the number of sites with minor allele count 𝑘. The number of times configuration 𝑖 is observed is 

ℎ𝑘𝑖 (ℎ𝑘 = ∑ ℎ𝑘𝑖𝑖  ). For a given variant with minor allele count 𝑘, let 𝑝𝐻,𝑘,𝑖 be the probability of 

observing configuration 𝑖 for a given history 𝐻. Let 𝑧 be the highest minor allele count to be 
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analyzed. For datasets considered here we use 𝑧 = 75 for optimal power and precision of 

detecting recent migration changes. The total number of sites with minor allele count less than 

limit 𝑧 is ℎ = ∑ ℎ𝑘
𝑧
𝑘=2 . Let 𝑝𝐻,𝑘 be the probability of observing minor allele count 𝑘 under 

history 𝐻. For each possible history 𝐻 in 𝑮𝑯, we calculate the probability of the observed 

configurations for each allele count under of history 𝐻 (2.2) using a multinomial distribution 

similar to (2.1). In (2.3), we then combine information across allele counts using an additional 

multinomial distribution based on the total minor allele counts, to obtain a likelihood estimate for 

observing the complete allele count data under specific demographic history. 

 
𝑃(ℎ𝑘1, ℎ𝑘2, . . . ℎ𝑘𝑖|𝐻) =

ℎ𝑘!

ℎ𝑘1! ℎ𝑘2!. . . ℎ𝑘𝑖!
(𝑝𝐻,𝑘,1 

ℎ𝑘1𝑝𝐻,𝑘,2 
ℎ𝑘2 …𝑝𝐻,𝑘,𝑖 

ℎ𝑘𝑖)    
(2.2) 

 
𝐿(𝐻|𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝐹𝑆) = [

ℎ!

ℎ2! ℎ3!. . . ℎ𝑧!
(𝑝𝐻,2 

ℎ2𝑝𝐻,3 
ℎ3 …𝑝𝐻,𝑧 

ℎ𝑧)]∏𝑃(ℎ𝑘1, ℎ𝑘2, . . . ℎ𝑘𝑖|𝐻)

𝑧

𝑘=2

 
(2.3) 

 

To construct each history in the grid used in this analysis, we simulate 10
7
 independent 

regions of 3.75 kB each without recombination, drawn from two populations of equal and 

constant effective population size (𝑁𝑒=10,000 diploid individuals each). This creates a sample of 

2.5x10
4
 diploid individuals with a total of 750 kB each. In this two-population setting with 

symmetric migration, we vary three parameters in the grid: a recent migration rate, 𝑀1, a past 

migration rate, 𝑀2, and a time of migration rate change 𝜏. For each 𝐻 in 𝑮𝑯, we record 𝑟𝑘𝑖 , the 

number of times each configuration 𝑖 is observed for each allele count 𝑘. Using these 

frequencies, we estimate the probability  𝑝𝐻,𝑘,𝑖 = 𝑟𝑘𝑖/∑ 𝑟𝑘𝑖𝑖  of observing this distribution and 

the probability 𝑝𝐻,𝑘 = ∑ 𝑟𝑘𝑖𝑖 /(∑ [∑ 𝑟𝑘𝑖] )𝑖𝑘  of observing this minor allele count under migration 

parameter 𝐻.  
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2.2.5 Testing for Changing Migration and Estimating Parameters with Grid Search  

To test for changing migration using this approach, we compare the likelihoods of 

observing the data of interest, 𝐷, under each history. We define the history that achieves the 

maximum likelihood as the alternative model (𝐻𝑎) and the constant migration history with the 

largest likelihood as the null model (𝐻0). We then compute the likelihood ratio test statistic: 

ℒ = −2[log(𝐿𝐻0) − log(𝐿𝐻𝑎)]. Where these likelihoods are sufficiently different, we reject the 

null hypothesis of constant migration.  

To statistically test this difference, we must identify a critical value. Using the coalescent 

simulator ms, we simulate 1,000 datasets under the null hypothesis constant migration model, 

using the sample size and data size of 𝐷. For each dataset, we calculate the likelihoods for each 

history and compute the likelihood ratio test statistic as above. The empirical distribution of 

these likelihood ratio test statistics is the distribution for our test statistic under the null. We 

define the 95% quantile as 𝐶, the critical value for our testing procedure. Where our likelihood 

ratio statistic, ℒ, is greater than 𝐶 we reject the null hypothesis of constant migration. In this 

case, we estimate the parameters of changing migration as those defined in the maximum 

likelihood history. 

2.2.6  Simulation of Populations with Constant and Changing Migration 

To assess our method, we generate test datasets with the coalescent simulation program 

ms. We first simulate two populations of constant population size under a two-population island 

model with effective population sizes of 10,000 individuals each. Initially, we consider a 

constant migration rate of 𝑀 = 100 (𝑚 = 0.0025). We generate 10,000 datasets of 1,000 

diploid individuals from each population and applied our algorithm to each dataset to estimate 

the temporal pattern of migration rate as well as the average bias and mean squared error. To 
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determine the behavior of the method for a range of migration rates, we perform 10,000 

simulations for 10 migration parameters from 𝑀 = 10 to 𝑀 = 1,000, calculating the mean, 

median, 95% empirical confidence intervals, and relative bias. 

We next focus on the method’s ability to detect a temporal change of migration rate. In 

model (a), we first simulate two populations under the ancestral divergence model. In this model, 

two populations were previously a single ancestry population. In recent times, a split occurred, 

creating two distinct populations with low migration, 𝑀 = 100 (𝑚 = 0.0025). For 10,000 

iterations, we simulate this scenario where the time of split occurs at four different times: 0.01, 

0.005, 0.001, and 0.0005 coalescent units, corresponding to approximately 400, 200, 40, and 20 

generations before present day. With 20 year generations, these time scales are 8,000, 4,000, 

800, and 400 years in the past, respectively. Second, in model (b), we simulate a model of two 

isolated populations with historically zero gene flow with new migration (𝑀 = 100) beginning 

at the four different times (0.01, 0.005, 0.001, and 0.0005 coalescent units). Third, we generate 

two additional models with smaller changes in migration: (c) migration decreases from 𝑀2 =

100 in the past to 𝑀1 = 50 in recent years and (d) migration increases from 𝑀2 = 50 in the past 

to 𝑀1 = 100 in recent years. In each case, we simulate the four different times of change (𝜏= 

0.01, 0.005, 0.001, and 0.0005).  

Using these models (c) and (d), we also assess the power and precision of our grid search 

and model comparison approach to identify the parameters of changing migration. The grid used 

included 657 histories for each combination of: recent migration (𝑀1): 0, 25, 50, 75, 100, 125, 

150, 175, 200, past migration (𝑀2): 0, 25, 50, 75, 100, 125, 150, 175, 200, and time of change in 

coalescent units in the past from present day (𝜏): constant, 0.00025, 0.0005, 0.00075, 0.001, 

0.0025, 0.005, 0.0075, 0.01, 0.025. We simulate 1000 datasets for each model and record the 
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likelihood of each history in the grid. We obtain the critical value for testing constant migration 

using the likelihood ratio testing procedure outlined in section 2.2.5. For the 1,000 test data sets, 

we record how often we reject the null hypothesis of constant migration. We also identify the 

number of times the highest likelihood belongs to a non-constant model and the number of times 

all three parameters are estimated exactly correctly.  

To consider model adjustments in cases of exponential growth, we simulate a two-

population island model with a growth in effective population sizes of 10,000 to 1,000,000 in 

500 generations and a constant, symmetric migration of 𝑀 = 100 (𝑚 = 0.000025). To adjust 

for this change, we re-estimate the 𝑝𝑴,𝑘,𝑖 in the likelihood equation based coalescent-simulated 

data under a model of exponential growth. Under these expansion-adjusted parameters, we 

expect the migration estimates to be close to 𝑀 = 100 across allele count bins, newly scaled 

based on the present-day population size. We calculate median estimates before and after 

adjusting our model for this growth. 

Finally, we assess our method’s robustness to model misspecifications such as deep 

ancestral divergence, imbalanced effective population size, and asymmetric migration (2.5). 

Previously, we simulated the 𝑝𝑴,𝑘,𝑖values with parameters corresponding to the populations of 

interest including sample size, effective population size, ancestral populations, direction of 

migration, and relative subpopulation sizes. We now consider what happens when these 

parameters are incorrectly defined. We generate 10,000 simulations of constant migration 

(𝑀 = 100), under a range of parameters and counted the number of simulations falsely identified 

as changing migration by Spearman’s rho. 
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2.2.7 Application 

We estimated migration rates in European and African American populations using 

counts generated from an exome sequencing study of 14,002 individuals focused on 202 drug 

target genes (351 kb of coding and 323 kb of untranslated (UTR) exon regions).
10

 We analyzed 

7809 individuals with broad consent, including 7470 Europeans and 339 African Americans. 

From the European subjects, we down-sampled 2800 individuals to obtain equal sample sizes 

from four geographically-defined subpopulations (n=700 per population): Northwestern (British 

Isles), Northern (Iceland, the Faroe Islands, Denmark, Norway, Sweden, Estonia, Latvia, 

Lithuania), Western (Belgium, France, Luxembourg, and the Netherlands), and Central (Austria, 

Germany, and Switzerland).We consider pairs of these populations at a time, resulting in six 

different temporal pictures of migration. In this analysis, we estimate the 𝑝𝑴,𝑘,𝑖 values for the 

maximum likelihood using simulations based on a symmetric migration model with exponential 

growth. In each case, we set a growth in effective population sizes of 10,000 to 1,000,000 in 500 

generations based on approximate recent estimates of human population expansion 
97; 98

. For 

each pair of populations, after estimating the allele-count-specific migration rates, we calculate 

Spearman’s rho and assessed significance of an increasing or decreasing trend in migration rates. 

We also apply the model comparison grid search approach, with histories including an 

initial migration rate, final migration rate, and time of change. The values included in the grid are 

based on the range of allele count specific migration estimates, using the same growth in 

effective population sizes of 10,000 to 1,000,000 in 500 generations. The grid included 512 

histories for each combination of: recent migration (𝑀1): 2500, 5000, 7500, 10000, 12500, 

15000, 17500, 20000, past migration (𝑀2): 2500, 5000, 7500, 10000, 12500, 15000, 17500, 

20000, and time of change in coalescent units in the past from present day (𝜏): constant, 
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0.0000025, 0.000005, 0.0000075, 0.00001, 0.000025, 0.00005, 0.000075, 0.0001, 0.00025. For 

each pair of populations, we test for changing migration and estimate these three parameters 

using this approach. 

As an example of known historical gene flow, we use our method to estimate the migration 

between the 339 African Americans (population one) and the 7470 Europeans (population two). 

We estimate the 𝑝𝑴,𝑘,𝑖 values used in the likelihood via simulations based on a directional, 

asymmetric migration pattern with exponential growth (growth in effective population sizes of 

10,000 to 1,000,000 in 500 generations).  We estimate the allele-count-specific migration rates 

and calculated Spearman’s rho with standard significance testing of an increasing or decreasing 

trend in migration rates. We repeated this procedure focusing on a down-sampled set of 339 

Europeans to understand the effects of equal versus unequal sample sizes from the two 

populations.  

We also apply the model comparison grid search approach, with histories including a 

recent migration rate, past migration rate, and time of change. The values included in the grid are 

based on the range of allele count specific migration estimates, with directional migration, 

exponential growth, and sample size as outlined above. The grid used included 52 histories for 

each combination of: recent migration (𝑀1): 500, 5000, 10000, 12500, past migration (𝑀2): 500, 

5000, 10000, 12500, and time of change in coalescent units in the past from present day (𝜏): 

constant, 0.000005, 0.00001, 0.00005, 0.0001. For each pair of populations, we test for changing 

migration and estimate these three parameters using this approach. 

2.3 Results 

To evaluate this method, we simulated a series of datasets of two populations with 

varying parameters and applied the estimation method on each dataset to evaluate its ability to 
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identify changing migration rates. We further assess our method’s ability to adjust for and 

estimate migration under both constant and changing population size, including exponential 

growth. Finally, we used our method to estimate migration rates in African Americans and 

Europeans.  We estimate migration rates in pairs of four distinct European populations and show 

the method’s ability to detect previously unknown changes in gene flow. 

2.3.1 Constant Migration 

We first compare the accuracy and precision of the estimator across allele count bins 

assuming constant migration rates. We simulate 10,000 coalescent-based sequence datasets of 

750 kb from 1,000 individuals from two populations of constant population size under a two-

population island model with constant, symmetric migration rate of 𝑀 = 100 (𝑚 = 0.0025). For 

each dataset, we estimate the migration rate 𝑀 between these two populations for each allele 

count bin. We then calculate the mean and median migration estimates across datasets for each 

allele count bin with corresponding 95% empirical confidence intervals (Figure 2.1). In the first 

allele count bin, which consists of doubletons, the median migration estimate is 100 with a mean 

of 101.8 (95% CI: [50,160]). In the highest allele count bin, with minor allele counts between 72 

and 100, the median migration estimate is 100 and mean of 103.5 (95% CI: [70,140]). Across all 

allele count bins, the median estimate of the migration rate is consistently 100. The mean 

estimates range from 101.24 to 103.67 (Figure 2.1). The mean squared error (MSE) for these 

estimates is lowest (291.74 to 329.46) in the mid-range allele count bins (bins 8 through 17), 

with the highest MSE observed in the first allele count bin (809.48) (Figure 2.8). While these 

median estimates are accurate across allele count bins, the means and the empirical confidence 

intervals are increasingly skewed slightly upwards with increasing allele count bin number 

(Figure 2.1). We calculate the average bias as the mean of the bias for each of the 10,000 
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simulations (Figure 2.8). The magnitude of the average bias increases at higher allele count bins. 

We observed this upward bias due to the flattened likelihood curve at higher allele counts 

(Figure 2.9). Particularly at the higher allele count bins, the shape of these likelihood curves fall 

quickly for migration rates decreasing below the MLE, but decrease slowly for migration rates 

increasing above the MLE. However, these slight biases do not affect our proposed initial test for 

changing migration rates using Spearman’s rho (See 2.2.3), as 370 of 10,000 simulations resulted 

in significant (p<0.05) test, providing a false positive estimate of 3.7%.  

 

Figure 2.1 Estimates Under Constant Migration Across Allele Count Bins  

Median estimates, indicated by the blue dots, and mean estimates, indicted by pink dots, for each 

allele count bin and the corresponding empirical 95% confidence intervals, shown as vertical 

error bars, with the true migration parameter of 𝑀 =100 indicated by the hashed line.  The 

vertical axis shows the estimated �̂� value and the horizontal axis shows the allele count bin 

(with decreasing level of rareness with increasing bin number). 



23 

 

To evaluate robustness when the model used to estimate parameters is miss-specified, we 

simulate a range of scenarios: deep ancestral divergence, asymmetric migration rates, and 

asymmetric population sizes. We estimate migration rates and calculate Spearman’s rho to obtain 

false positive rates under each of these settings (2.5). For most scenarios, Spearman’s rho is well-

calibrated. Only for highly asymmetric population sizes with 𝑁1 = 5,000 and 𝑁2 = 15,000, 

miss-specified as symmetric with 𝑁 = 10,000 each, is the false positive rate high at 20.58%.  

To determine the performance of our method across a range of migration rates, we 

generate 10,000 datasets for each of nine constant migration parameters from 𝑀 =100 to 

𝑀 =1,000 and analyzed the resulting datasets. We calculate the median estimates and 

corresponding empirical 95% confidence intervals for 𝑀 =100, 200, 300, 400, 500, 600, 700, 

800, 900, and 1000 (Figure 2.2). At 𝑀 = 100, the median estimate is the expected �̂� = 100 

across allele count bins and the average estimates ranges between 101.2 and 103.7 across allele 

count bins. At the highest simulated migration rate, 𝑀 = 1000, the median estimate is �̂� =1000, 

with average estimates ranging from 1032.2 to 1319.2 across bins. The relative bias of mutation 

rate estimates increases with increasing migration rates (Spearman’s rho=0.9878, p-value 

<0.0001), as does the mean squared error, (Spearman’s rho=1, p-value<0.0001) (Figure 2.10). 

However, the median estimates remain accurate at higher levels of migration and false positive 

rate based on the Spearman’s rho test remain low. Based on 10,000 simulations, at the higher 

constant migration rate of 𝑀 =1000, the false positive rate is 2.82%, comparable to the false 

positive rate for the low migration rate of 𝑀 =100 at 3.70%. 
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Figure 2.2 Estimated Migration vs. True Migration for Simulated Constant Migration 

We show four median estimates (black dots) and four means (black triangles) across the range of 

allele count bins (from allele count bins 1, 5, 15, and 20) with their corresponding empirical 95% 

confidence intervals (indicated by error bars). The true parameter estimates 𝑀 =100, 200, 300, 

400, 500, 600, 700, 800, 900, and 1000 are shown by the gray line. The horizontal axis shows the 

estimated M̂ value and the vertical axis shows the corresponding true parameter estimated in 

each group. 
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2.3.2 Temporal change of migration rates 

We next considered pairs of populations with increasing or decreasing migration rate to 

determine this method’s ability to detect temporal change. To quantify this change in migration, 

we calculate Spearman’s rank correlation coefficient (Spearman’s rho). A positive significant rho 

value indicates decreased migration, whereas a negative significant rho value indicates increased 

migration. In addition, we apply the model comparison grid search procedure (see Methods) to 

quantify the change. We consider 4 scenarios.  

In model (a), the ancestral divergence model, we simulate a historically unified 

population. At time 𝜏, this population splits, becoming two distinct populations. The two new 

populations maintain a migration rate of 𝑀=100 from time 𝜏 to present day. We consider the 

scenarios where the time of split occurs at four different times: 0.01, 0.005, 0.001, and 0.0005 

coalescent units, corresponding to approximately 400, 200, 40, and 20 generations before present 

day. Assuming 20 year generations, these times correspond to 8,000, 4,000, 800, and 400 years 

in the past, respectively.  For each model, we calculate the migration rate estimate for each allele 

count bin. Repeating this procedure for 10,000 individual data sets, we calculate the mean 

estimate for each allele count bin (Figure 2.3A). The mean estimates range from 99.92 to 101.22 

for 𝜏 =0.01, 98.5 to 121.36 for 𝜏 =0.005, 143.02 to 351.82 for 𝜏 =0.001, 286.3 to 609.99 for 𝜏 

=0.0005. For every choice of 𝜏, we observe increasing mean estimates of 𝑀 with increasing 

allele counts, indicating a downward trend in migration in recent years. To quantify this trend, 

we calculate the rho estimates of each data set. The mean rho values were: 0.117, 0.327, 0.656, 

and 0.473 for 𝜏 = 0.01, 0.005, 0.001, and 0.0005 respectively (Table 2.1). These positive rho 

values correctly identify decreased gene flow, with the strongest signal in the more recent time 

changes (𝜏 =0.001, 𝜏 =0.0005).  
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To assess our power to identify decreasing gene flow, we repeat this procedure for 10,000 

simulations and recorded the number of simulations resulting in significant rho values for each 

model. In this ancestral divergence model, there are 9.8%, 34.6%, 96.8%, and 64.6% significant 

rho values, for 𝜏 = 0.01, 0.005, 0.001, and 0.0005 respectively, at the 𝛼 = 0.05 significance level 

with a two-sided hypothesis test (Table 2.1). This indicates the change in gene flow is 

increasingly detectable with more recent changes to a point. When the time of change is too 

recent (in this case, shown by decreased power at 𝜏=0.0005), our ability to detect a change using 

Spearman’s rho is diminished. 

As our second model, model (b), we perform simulations with new migration between 

two isolated populations with historically zero gene flow. At time 𝜏 (𝜏= 0.01, 0.005, 0.001, and 

0.0005), we begin symmetric, constant migration of 𝑀=100. In this setting, we expect to see 

lower migration estimates at higher allele counts, resulting in negative correlation coefficients. 

For each model, we simulate 100 data sets and estimated migration rates for each allele count 

bin. The mean migration estimates ranged from 70.0 to 101.62 for 𝜏 =0.01, 50.0 to 100.81 for 𝜏 

=0.005, 10.65 to 81.29 for 𝜏 =0.001, 10.0 to 60.68 for 𝜏 =0.0005 (Figure 2.3B). The mean rho 

estimates per dataset are: -0.037, -0.570, -0.903, and -0.845 for time changes 𝜏 = 0.01, 0.005, 

0.001, and 0.0005, respectively (Table 2.1). In contrast to the first model, we observe negative 

correlation coefficients, indicating increased migration in recent years. The mean rho value at the 

most distant time of change (𝜏= 0.01) is close to zero. Across 10,000 simulations, we observe 

7.0%, 86.6%, 100%, and 100% significant rho values, respectively, at the α=0.05 significance 

level. Like our first model, we observe changing migration is more difficult to detect by 

significant rho values at more distant time points, due to the longer stretches of constant 
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migration levels capture by our rare variants. We observe more recent changes (𝜏 =0.001, 

0.0005) give consistently significant rho values of negative correlation. 

To provide examples of smaller changes in migration, we generate two additional 

models: (c) migration decreases from M2=100 in the past to M1=50 in recent years and (d) 

migration increases from M2=50 in the past to M1=100 in recent years. In each case, we simulate 

the four different times of change (𝜏 =  0.01, 0.005, 0.001, 0.0005). Under each model we 

simulate 10,000 individual data sets, estimate migration rates for each allele count bin and 

calculate the mean estimate for each bin (Figure 2.3C-D). For model (c), the mean migration 

estimates range from 58.3 to 60.0 for 𝜏 =0.01, 51.5 to 61.4 𝜏 =0.005, 58.9 to 87.4 for 𝜏 =0.001, 

67.2 to 95.1 for 𝜏 =0.0005. As expected, we see positive correlation coefficients, indicating 

higher gene flow in the past than present times. The mean rho values based on these datasets are: 

0.137, 0.293, 0.507, 0.427 for time changes t= 0.01, 0.005, 0.001, and 0.0005, respectively 

(Table 2.1). There are 10.7%, 30.4%, 73.9%, 57.7% significant rho values, respectively, at the 

α=0.05 significance level. For model (d), the mean migration estimates range from 101.3 to 

103.2 for 𝜏 =0.01, 93.7 to 100.8 for 𝜏 =0.005, 63.9 to 94.2 for 𝜏 =0.001, 57.8 to 85.3 for 𝜏 

=0.0005. This model has primarily negative correlation coefficients, indicating the increased 

migration in current times. The mean rho values in model (d) are: 0.053, -0.075, -0.473, and -

0.405 respectively (Table 2.1). In model (d), there are 6.9%, 7.0%, 66.8%, 53.1% significant rho 

values, respectively (Table 2.1).  

We note that in cases where the migration rate change only affects either the rarest 

frequency categories or the more common ones, it can be difficult to have power using 

Spearman’s rho as the statistic is most sensitive to a trend that is continuous across all frequency 

categories.  
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Figure 2.3 Estimated Migration for Change in Migration Models  

We show four examples of changing migration. The vertical axis shows the estimated M̂ value 

and the horizontal axis shows the allele count bin (with decreasing level of rareness with 

increasing bin number). Each point indicates the mean value in the allele count bin across the 

10,000 simulations. The lines are generated using a loess curve on each set of correspondingly 

colored points. We use four different times of migration rate change: 0.01, 0.005, 0.001, and 

0.0005 coalescent units, corresponding to 400, 200, 40, and 20 generations in the past 

respectively (constant effective population sizes=10,000 individuals, sample sizes=1,000 

individuals each). (A) Ancestral divergence: Previously one population, two distinct populations 

form with current symmetric migration rates of 𝑀 =100. (B) New migration: Previously isolated 

populations, at the time of change, the migration rate shifted to the current rate of 𝑀 =100. (C) 

Two populations with past symmetric migration rates of 𝑀2 =100 decrease to a migration of 

𝑀1 =50 in recent years. (D) Two populations with past symmetric migration rates of 𝑀2=50 

increase to a migration of 𝑀1=100 in recent years. 

A B 

C D 
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Table 2.1 Spearman’s Rho Test for Temporal Change Models  

For 10,000 dataset simulations of the four examples of changing migration, ancestral divergence 

and increased and decreased migration, and the four different times of migration change, we 

calculated Spearman’s rank correlation coefficient and recorded the number of significant signals 

(α=0.05). For comparison, in the previous simulations of constant migration, 370 of 10,000 

simulations resulted in significant rho values, providing a false positive estimate of 3.70%. 

 

2.3.3 Identifying Parameters of Changing Migration Rates 

In addition to Spearman’s rho, for models (c) and (d), we also apply the model 

comparison grid search approach. We simulate 1,000 datasets of 750 kb under each model. 

Using a grid of 657 histories (see Methods), we calculate the power to reject the null hypothesis 

of constant migration (Table 2.2). For model (c), migration decreases from M2=100 in the past to 

M1=50 in recent years, the proportion of datasets where the grid search algorithm selects a 

changing migration as the largest likelihood is 1.0 for 𝜏 =0.0005, 1.0 for 𝜏 =0.001, 0.996 for 𝜏 

=0.005, and 0.976 for 𝜏 =0.01. The power to reject the null in these datasets was 0.926 for 𝜏 

=0.0005, 0.831 for 𝜏 =0.001, 0.503 for 𝜏 =0.005, 0.06 for 𝜏 =0.01. For model (d), migration 

increases from M2=50 in the past to M1=100 in recent years, the proportion of datasets where the 

grid search algorithm selects a changing migration as the largest likelihood is 1.0 for 𝜏 =0.0005, 

1.0 for 𝜏 =0.001, 0.996 for 𝜏 =0.005, and 0.985 for 𝜏 =0.01. The power to reject the null in these 

Time of 

Change 

(Coalescent 

Units) 

(A) 

Ancestral Divergence  

(B) 

New Migration  

(C) 

M2=100 to M1=50  

(D) 

M2=50 to M1=100  

Mean Rho Power Mean 

Rho 

Power Mean Rho Power Mean Rho Power 

0.01 0.117 0.098 -0.037 0.070 0.137 0.107 0.053 0.069 

0.005 0.327 0.346 -0.570 0.866 0.293 0.304 -0.075 0.070 

0.001 0.656 0.968 -0.903 1.000 0.507 0.739 -0.473 0.668 

0.0005 0.473 0.646 -0.845 1.000 0.427 0.577 -0.405 0.531 
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datasets was 0.998 for 𝜏 =0.0005, 0.908 for 𝜏 =0.001, 0.12 for 𝜏 =0.005, 0.043 for 𝜏 =0.01. We 

observe the power is highest for the most recent time changes and decreases farther in the past. 

The power is particularly strong in the range of 𝜏=0.0005 and 0.01. Farther in the past, the 

algorithm often identifies a changing migration as the most likely history, but there is not enough 

evidence to reject the null hypothesis. We also perform 1,000 simulations of 750 kb datasets with 

constant migration of 𝑀 =100. We obtain a false positive rate, where we incorrectly reject the 

null hypothesis of constant migration of 4.2%. We observe the power to detect changing 

migration for these models is substantially improved for changes more recent than 𝜏 = 0.01 with 

the grid search algorithm compared to Spearman’s rho. 

Table 2.2 Grid Search Results for Identifying Changing Migration 

For 1,000 dataset simulations of two examples of changing migration with four different times of 

migration change, we apply the grid search algorithm and record the proportion of the datasets 

that selected a changing migration model as the most likely. We also record how often there is 

evidence to reject a constant migration (power) and how often all three parameters are estimated 

correctly.  

Model 

Test Data Set 

Parameters 

Proportion with 

Maximum 

Likelihood of 

Changing 

Migration 

Power to Reject 

Constant 

Migration 

Proportion 

Correct All 

Parameters M1 M2 𝜏 

(c) 50 100 

0.0005 1.00 0.926 0.169 

0.001 1.00 0.831 0.353 

0.005 0.996 0.503 0.128 

0.01 0.976 0.060 0.031 

(d) 100 50 

0.0005 1.00 0.998 0.352 

0.001 1.00 0.908 0.466 

0.005 0.990 0.120 0.045 

0.01 0.985 0.043 0.010 

 

Of the 1,000 data sets, the proportion that exactly identified the correct parameters in model (c) 

was 0.169 for 𝜏 =0.0005, 0.353 for 𝜏 =0.001, 0.128 for 𝜏 =0.005, 0.031 for 𝜏 =0.01. While all the 

parameters are not necessarily exactly estimated, the individual average estimated parameters are 
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consistently close to the true underlying value (Figure 2.4, Figure 2.5). For the time estimates in 

model (c), the mean across datasets was 0.0011 (median: 0.00075, 95% CI: [0.00025, 0.005]) for 

𝜏 =0.0005, 0.0014 (median: 0.001, 95% CI: [0.00025, 0.005]) for 𝜏 =0.001, 0.0063 (median: 

0.005, 95% CI: [0.005, 0.025]) for 𝜏 =0.005, 0.011 (median: 0.0075, 95% CI: [0.00025, 0.025]) 

for 𝜏 =0.01. Similarly, for the time estimates in model (d), the mean across datasets was 0.00071 

(median: 0.0005, 95% CI:[0.00025, 0.0025]) for 𝜏 =0.0005, 0.0016 (median: 0.001, 95% 

CI:[0.00025, 0.0075]) for 𝜏 =0.001, 0.0061 (median: 0.005, 95% CI:[0.00025, 0.025]) for 𝜏 

=0.005, 0.0064 (median: 0.005, 95% CI:[0.00025, 0.025]) for 𝜏 =0.01 (Figure 2.4). We observe 

the precision for estimating time is best for recent time points. 

 
Figure 2.4 Estimation of the Time Parameter for Changing Migration 

For 1,000 data simulations of two examples of changing migration with four different times of 

migration rate change, we attempt to estimate the time of change in each dataset, showing here 

the mean estimate across datasets and the 95% confidence interval. The times are 0.01, 0.005, 

0.001, and 0.0005 coalescent units, corresponding to 400, 200, 40, and 20 generations in the past 

respectively (constant effective population sizes=10,000 individuals, sample sizes=1,000 

individuals each). In the first model, two populations with past symmetric migration rates of 

M2=100 decrease to a migration of M1=50 in recent years (dashed line). In the second model, 

two populations with past symmetric migration rates of M2=50 increase to a migration of 

M1=100 in recent years (dotted line). We show the true value being estimated in the solid grey 

horizontal line. 
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 In estimating the two migration rates, 𝑀1 the recent migration, and 𝑀2 the past migration, 

we observe the precision for both models is high (Figure 2.5). For model (c), the 𝑀1 median 

estimates are consistently equal to 50 with average 𝑀1 estimates of 49.3 (95% CI: [0, 75]) for 𝜏 

=0.0005, 46.5 (95% CI: [25, 75]) for 𝜏 =0.001, 50.2 (95% CI: [50, 75]) for 𝜏 =0.005, 50.2 (95% 

CI: [25, 75]) for 𝜏 =0.01. For model (d), the 𝑀1 median estimates are also consistently equal to 

the true value of 100 with average 𝑀1 estimates of 107.8 (95% CI: [75, 150]) for 𝜏 =0.0005, 

103.9 (95% CI: [75, 150]) for 𝜏 =0.001, 101.9 (95% CI: [75, 125]) for 𝜏 =0.005, 98.7 (95% CI: 

[75, 125]) for 𝜏 =0.01. For the estimates of 𝑀2, the estimates are less precise with larger 

confidence intervals, but the median and average estimates remain accurate (Figure 2.5). For 

model (c), the 𝑀2  average estimates are upwardly biased: 114.8 (median: 100, 95% CI: [100, 

200]) for 𝜏 =0.0005, 113.2 (median: 100, 95% CI: [75, 200]) for 𝜏 =0.001, 128.64 (median:125, 

95% CI: [50, 200]) for 𝜏 =0.005, 100.1 (median: 100, 95% CI: [0, 200]) for 𝜏 =0.01. For model 

(d), the 𝑀2  average estimates are 48.2 (median: 50, 95% CI: [25, 50]) for 𝜏 =0.0005, 46.1 

(median: 50, 95% CI: [0, 75]) for 𝜏 =0.001, 69.5 (median: 75, 95% CI: [0, 200]) for 𝜏 =0.005, 

101.47 (median: 100, 95% CI: [0, 200]) for 𝜏 =0.01. We observe again the precision for 

estimating both migration rates is best for recent time points. 
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Figure 2.5 Estimation of the Migration Rates in Change of Migration Models 

For 1,000 data simulations of two examples of changing migration with four different times of 

migration rate change, we attempt to estimate the recent migration (M1) and past migration (M2) 

in each dataset, showing here the mean estimate (dot) across datasets and the 95% confidence 

interval (bar). The times of change are 0.01, 0.005, 0.001, and 0.0005 coalescent units, 

corresponding to 400, 200, 40, and 20 generations in the past respectively (constant effective 

population sizes=10,000 individuals, sample sizes=1,000 individuals each). In the first model, 

two populations with past symmetric migration rates of 𝑀2 =100 decrease to a migration of 

𝑀1=50 in recent years. In the second model, two populations with past symmetric migration rates 

of 𝑀2 =50 increase to a migration of 𝑀1=100 in recent years. We show the true value being 

estimated in the solid grey horizontal line. 

We note that we apply this method to a small dataset of 750 kb. With increased 

availability of whole exome and whole genome data, this data size can now feasibly be much 

larger. We repeat this procedure for a sample size equal to that of whole exome sequencing (30 

MB) and see that both precision and power increases (Table 2.6). The range of time changes in 

which there is power to reject constant migration increases, including as distant as 𝜏=0.005. At 

the time ranges of 𝜏=0.0005 and 𝜏=0.001, this data size allows for precise estimation of 

parameters. We also perform 1,000 simulations of 30000 kb datasets with constant migration of 

𝑀 =100. We obtain a false positive rate, where we incorrectly reject the null hypothesis of 

constant migration, of 4.7%. 

A B 
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2.3.4 Exponential Growth 

Previously, we assumed population size in both populations to be constant. To consider 

model adjustments in cases of exponential growth, we simulate a baseline growth model of two 

islands with growth in effective population sizes from 10,000 to 1,000,000 in 500 generations 

and a constant, symmetric migration of 𝑀 = 100 (𝑚 = 0.000025). Without applying 

adjustments, the method incorrectly indicates a substantial increase in migration in recent years 

(Figure 2.11). To adjust for population growth, we re-estimate the 𝑝𝑴,𝑘,𝑖 in the likelihood 

equation based coalescent-simulated data under a model of exponential growth. Under these 

expansion-adjusted parameters, we expect the migration estimates to be close to 𝑀 = 100 across 

allele count bins, newly scaled based on the present-day population size. In the first allele count 

bin, which consists entirely of doubletons, the median migration estimate was 100 with a mean 

of 101.5 (95% CI: [50,150]). In the highest allele count bin, with minor allele counts between 88 

and 100 across datasets, the median migration estimate was 100 and mean of 106.6 (95% CI: 

[50,150]). Across all allele count bins, the median estimates of the migration rate are consistently 

at 100. The mean estimates range from 94.56 to 109.89. We observe this change properly adjusts 

the method to once again provide accurate estimates based on the present-day size. To assess our 

power to distinguish changing gene flow from exponential growth, we repeat this procedure for 

10,000 simulations and recorded the number of simulations resulting in significant rho values for 

each model.  We observe a false positive rate of 2.4%. 

We also find these results are robust when the growth rate is underestimated in the 

adjustment for exponential growth. We simulate a two-population island model with a growth in 

effective population sizes of 10,000 to 5,000,000 in 500 generations and a constant, symmetric 

migration of 𝑀 = 100 (𝑚 = 0.000025). Using 𝑝𝑴,𝑘,𝑖  estimated under this growth model, the 
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false positive rate is 1.32%. In contrast, using the 𝑝𝑴,𝑘,𝑖 estimated under our baseline growth 

model, the false positive rate is 1.92%. We also simulate a two-population island model with a 

growth in effective population sizes of 10,000 to 500,000 in 500 generations and a constant, 

symmetric migration of 𝑀 = 100 (𝑚 = 0.000025). Using the 𝑝𝑴,𝑘,𝑖 estimated over our baseline 

growth model to provide an example of overestimating the adjustment, the false positive rate is 

11.36%. 

Like the case of constant population size, we generate two additional change of migration 

models under exponential growth with correctly applied adjustments: (a) migration decreases 

from 𝑀2=10000 in the past to 𝑀1=5000 in recent years and (b) migration increases from 

𝑀2=5,000 in the past to 𝑀1=10,000 in recent years. In each case, we simulate four different 

times of change (𝜏 =  0.0001, 0.00005, 0.00001, 0.000005 coalescent units), corresponding 

to approximately 400, 200, 40, and 20 generations before present day. With 20 year generations, 

these time scales are 8,000, 4,000, 800, and 400 years in the past, respectively. We perform these 

simulations for 10,000 individual data set simulations and calculated the average estimate under 

each model for each allele count bin (Figure 2.12).  We observe clear signals of changing 

migration comparable to the case of constant population size within this time scale. For model 

(a), this signal of decreasing migration is well defined across values of 𝜏, though the point 

estimates of migration rate for specific minor allele count bins are slightly biased upwards for the 

most recent times of change (𝜏 =  0.00001, 0.000005). For model (b), we see clear signals of 

increasing migration rate, except for the most distant time of change (𝜏 =  0.0001). Therefore, 

while the temporal picture of changing migration is distinct, the estimates are most accurate 

where much of recent history is spent at lower migration levels (𝑀 =5000). 
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 We also apply the grid search algorithm to these two models under exponential growth. 

We simulate 1,000 datasets of 750 kb under each model with a growth in effective population 

sizes of 10,000 to 5,000,000 in 500 generations. The grid used included 657 histories with the 

same growth parameters and each combination of: recent migration (𝑀1): 0, 2500, 5000, 7500, 

10000, 12500, 15000, 17500, 20000, past migration (𝑀2): 0, 2500, 5000, 7500, 10000, 12500, 

15000, 17500, 20000, and time of change in coalescent units in the past from present day (𝜏): 

constant, 0.0000025, 0.000005, 0.0000075, 0.00001, 0.000025, 0.00005, 0.000075, 0.0001, 

0.00025. We observe power to reject constant migration comparable to the case of constant 

population size (Table 2.7). Under this model of exponential growth, the power is highest at 

𝜏 = 0.00005 and 𝜏 = 0.0001. As with the constant population size case, we repeat these 

simulations for the larger data size of 30000 kb for exome sequencing data (Table 2.8). With this 

larger data size, the power to reject constant migration is extremely high and the precision of 

estimates is greatly improved. 

2.3.5 Application to Sequence Data 

African American and European Populations 

We next evaluate our method’s performance by estimating migration using counts from 

sequence data for African American and European individuals which enabled us to contrast our 

method to a known historical record of migration changes. For a large portion of the past twenty 

thousand years, modern day Africans had very low gene flow with Europeans e.g. 
83; 99

. 

Approximately 200 to 300 years ago, corresponding to ~10 generations in the past, the increased 

gene flow began between a smaller genetically isolated group of individuals from the larger 

African population and a subset of modern day European ancestors. This genetic exchange 

formed the African American population we observe today 
100

. This historical model indicates 
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we should observe higher migration rates between the European sample and the African 

American sample in recent years and lower migration rates farther back in time. 

To estimate this recent gene flow into the African American population from Europeans, 

we adjusted our method by calculating the probabilities used in the maximum likelihood 

equation, 𝑝𝑴,𝑘,𝑖, for directional, asymmetric migration with exponential growth (growth in 

effective population sizes from 10,000 to 1,000,000 in 500 generations) and corresponding 

sample sizes of 7470 (Europeans) and 339 (African Americans).  The resulting migration 

estimates ranged from 𝑀=900 (allele count bin number 34 with counts 73-79) to 9750 (allele 

count bin number 1 with only doubletons). This corresponds to 𝑚=0.0009 to 0.009750 assuming 

a current effective population of 1,000,000. The graph of the migration estimates across allele 

count bins indicates higher estimates in the recent past decreasing farther back in time Figure 

2.6). We compute a Spearman’s rho value of -0.7692, 𝑝 < 0.00001 under a two-sided 

alternative. We observe a similar trend when this procedure is repeated for equal sample sizes 

(down-sampling the European sample to 339 randomly selected individuals) (Figure 2.13). This 

temporal trend is consistent with the increased migration in recent years with a downward trend 

back in time.  

Using the grid search algorithm, we also estimate the parameters of an initial migration 

rate, time of change, and a final (recent) migration rate. These results indicate the most likely 

model is of constant migration with 𝑀 =5000. This may be a function of the sparse grid used 

which included only 4 migration rates and 4 times of change, with the most recent at 20 

generations prior to present day. Future analyses will include a denser grid for more refined 

estimate of change. 
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Figure 2.6 Estimated Migration for African-Americans and Europeans 

Estimates of the migration rates using probabilities based on populations of sample sizes 7470 

and 339, undergoing exponential growth, with migration in a single direction. 

European Populations 

We use our method to estimate migration rates between four subpopulations within 

Europe.  These subpopulations are defined primarily by the United Nations geo-scheme: 

Northwestern (British Isles), Northern (Iceland, the Faroe Islands, Denmark, Norway, Sweden, 

Estonia, Latvia, and Lithuania), Western (Belgium, France, Luxembourg, and the Netherlands), 

and Central (Austria, Germany, and Switzerland)
10

. The estimates were derived by randomly 

selecting 700 individuals from each population. For each variant in the sequencing dataset, we 

calculate the minor allele count both between and within populations. We estimate migration 



39 

 

rates between each pair of populations using probabilities, 𝑝𝑴,𝑘,𝑖, based on symmetric migration 

with exponential growth (growth in effective population sizes from 10,000 to 1,000,000 in 500 

generations) and sample sizes matching those of each population sample (Figure 2.14). Across 

all the population pairs, the migration rates range from 𝑀 =3,000 to 𝑀 =15,000. To quantify 

these patterns, we calculate Spearman’s rho in the six population pairs. For example, the 

Northern-Western estimates range from 𝑀 =3,000 to 7,000, with a negative rho value of 0.751 

(𝑝 = 0.00000172) (Figure 2.7A, Table 2.3) and Western-Northwestern estimates range from 

𝑀 =7,000 to 14,000 with a negative rho value of -0.249 (𝑝 = 0.193) (Figure 2.7B, Table 2.3). 

Three pairs show evidence of decreasing migration rates (Northern-Central, Northern-Western, 

and Northern-Northwestern), indicated by significantly positive Spearman’s rho values. The 

remaining three pairs indicate increasing migration, (Central-Western, Central-Northwestern, 

and Western-Northwestern), based on negative rho values (Table 2.3, Figure 2.14). The p-value 

for Central-Western is significant while these other negative rho values are non-significant.  

Using the grid search algorithm, we perform an additional test of changing migration rate 

and estimate the parameters: initial migration rate, time of change, and a final (recent) migration 

rate (Table 2.4). We find the parameter estimates indicating increasing and decreasing migration 

rates match the direction indicated by the sign Spearman’s rho. In contrast with Spearman’s rho, 

the algorithm rejects the null hypothesis of constant migration rate in each population pair. We 

observe, however, the population pairings that did not reject constant migration with Spearman’s 

rho also have the smallest estimated changes in migration rate (Table 2.3, Table 2.4). For 

example, the Central-Northwestern and Western-Northwestern, the estimated change in 

parameters is small (𝑀2 =7,500 to 𝑀1=10,000). The times of change for the increasing migration 

rates ranged from 0.00001 to 0.000025 coalescent units (40 to 100 generations in the past). The 
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estimates for the Central-Western pairing indicate a large increase in migration, with 𝑀2=5000 to 

𝑀1=17500 and a time of change at 0.000025 coalescent units in the past. As also reflected by the 

negative Spearman’s rho values, the estimates for Northern-Central, Northern-Western, and 

Northern-Northwestern each indicate decreasing migration rates. The Northern-Northwestern 

pairing has an estimated strong decrease in migration 0.0001 coalescent units in the past (400 

generations) from 𝑀2=20,000 to M1=5000. The Northern-Central and Northern-Western have 

smaller estimated changes in migration from 𝑀2=7500 to 𝑀1=2500 at 0.000025 coalescent units 

in the past (100 generations) and 𝑀2=10000 to 𝑀1=2500 at 0.00005 coalescent units in the past 

(200 generations). 

 

Figure 2.7 Estimated Migration for European Populations  

(A) Estimated migration between Western and Northern Europe (Nordic-Baltic). (B) Estimated 

migration between Western Europe and Northwestern (Britain and Ireland). 

  

A B 
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Table 2.3 Spearman's Rho Test for Association for European Populations 

Populations Spearman’s Rho P-value 

Northern-Central 0.312 0.0995 

Northern-Western 0.751 0.00000172 

Northern-Northwestern 0.664 0.0000867 

Central-Western -0.519 0.00392 

Central-Northwestern -0.249 0.193 

Western-Northwestern -0.288 0.1233 

 

Table 2.4 Grid Search Results with Parameter Estimations for European Populations 

Populations 
Estimated Parameters 

Reject 
M1 M2 Time 

Northern-Central 2500 7500 0.000025 Yes 

Northern-Western 2500 10000 0.00005 Yes 

Northern-Northwestern 5000 20000 0.0001 Yes 

Central-Western 17500 5000 0.000025 Yes 

Central-Northwestern 10000 7500 0.000025 Yes 

Western-Northwestern 10000 7500 0.00001 Yes 

 

2.4 Conclusion 

We propose a novel method for using rare variants to identify changing migration 

patterns. Based on the configuration of alleles across populations, we obtain one maximum-

likelihood estimate of the migration rate for each minor allele count. By comparing estimated 

migration rates for a range of minor allele counts, we generate a temporal picture of gene flow 

between populations. An increase (or decrease) in migration is indicated by the higher (or lower) 

migration estimates as the variants become rarer. To quantify these changes, we present two 

options: a quick initial test using Spearman’s rank correlation coefficient (Spearman’s rho) and a 

refined model comparison grid search with parameter estimates. We show our method can detect 

changes of migration rates not only for fundamental changes in migration, such as when two 

populations were previously a single ancestry population or when new migration begins in two 

isolated populations with historically zero gene flow, but also for smaller changes in mutation 
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rate. With samples of 1000 individuals each, our method captures shifts in migration rate that 

occurred recently (20-40 generations in the past). Our method is less likely to identify more 

distant shifts over 200 generations in the past in this setting. Similarly, for changes that occurred 

less than 20 generations ago, our power decreases slightly. In this case, the signal is diluted by 

longer runs of constant migration estimates up until the time change. We also observed that 

migration estimates become less reliable at extremely high levels of gene flow. Thus, in 

populations with consistently high migration, our method has less power to establish accurate 

estimates.  

We apply this methodology to the sequence data for African American and European 

individuals to evaluate our method in a case where there is a historical record of migration 

changes. In this case, we incorporate a directional, asymmetric migration pattern with 

exponential growth. As expected, the temporal picture created from our analysis shows an 

extreme increase in gene flow from Europeans into the African-American population in recent 

years. This evidence is consistent with admixture following the transatlantic slave trade, 

beginning in the mid-fifteenth century 
101

. While the grid search algorithm did not identify 

changing migration, we believe this is a result of the sparse grid applied. Denser grids will give 

more precise estimates of changing migration and  we plan to include this in a future analysis.  

We further use this methodology to estimate migration rates between four closely related 

European populations: Northwestern (British and Irish), Northern (Nordic and Baltic), Western, 

and Central. Based on the close geographical and historical relationships between these regions, 

we expect to observe consistently high gene flow between pairs of populations. As Ralph and 

Coop 
102

 observe in their identity-by-descent analysis and as indicated in studies of isolation-by-

distance effect 
103; 104

, we expect lower migration from the more geographically distant 
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populations, such as the Nordic-Baltic region. The results from our method reflect this 

expectation, with the geographically proximate Central-Western pair indicating overall high gene 

flow and continued increasing migration into present-day. We also observe significant changes 

in migration rates in several pairs of populations.  For the Northern-Central, Northern-Western, 

and Northern-Northwestern pairings, our method indicates that migration rates were higher in the 

past than they are in present-day. This observation is unlikely to be the result of model 

specifications as we show our method is robust to the underestimation of exponential growth 

rates. Using the grid search algorithm, our results suggest that these changes occurred for the 

Northern-Central, Northern-Western, and Northern-Northwestern pairings approximately 100, 

200, and 400 generations in the past, respectively. At this time, we observe the migration 

between these populations reaches a lower rate. We hypothesize this signal is the result of the 

Yamnaya steppe herders entering Europe from the East, creating new populations and spreading 

current populations 
27

. As this Yamnaya population entered Europe, Allentoft et al, based on f3 

statistics, indicate this influx resulted in admixture, forming the Corded Ware population 
28

. This 

Corded Ware population is inferred to have spread north and west through Europe, creating a 

cline of genetic affinity with Yamnaya
28

. We speculate this is the past high gene flow we observe 

in the population pairs with Northern Europe. Haak et al found this steppe migration continues 

until approximately 3,000 years ago, aligning with the timescale of the decline in migration rates 

we observe through recent years
27

. Our results, therefore, provide support for understanding this 

complex historical admixture of present-day Europeans.  

While we show the range of applicability of our method, we recognize there are several 

limitations to our current approach. The first caveat is the detectable time range is dependent on 

scale of data (sample size) and the population history. For the time scales we consider, increasing 
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the data size to exome sequencing substantially improves power to detect change in migration 

rate and precision in estimating parameters. Also, the initial process focuses on providing a 

qualitative description of migratory history. Precise quantitative descriptions require a further 

step, applying the model comparison grid search algorithm. Choosing the histories to include in 

this grid can be somewhat subjective, though the initial analysis should inform this set.  We note 

the precision of these time estimates is restricted by the histories included in the grid. A follow-

up with a denser grid could yield more precise estimates where required. Finally, to establish the 

appropriate probability values, some knowledge of the population history is necessary. While the 

method is clearly robust to small misspecifications, we require a general understanding of the 

previous population size and migration direction to accurately apply this method.  

In summary, we establish a flexible method for estimating migration and detecting 

temporal patterns while allowing for demographic changes. Using simulated and real sequence 

data we show the applicability of our method for a wide range of population scenarios. 

Identifying such temporal trends in migration will help to identify history patterns in human 

demography. 
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2.5 Appendix 

2.5.1 Robustness to Misspecifications 

Previously, we simulated the 𝑝𝑴,𝑘,𝑖 values with parameters corresponding to the 

populations of interest including sample size, effective population size, ancestral populations, 

direction of migration, and relative subpopulation sizes. We now assess the performance of our 

method when these parameters are incorrectly defined. We generated 10,000 simulations of 

constant migration (𝑀 =100), under a range of parameters and counted the number of 

simulations falsely identified as changing migration using Spearman’s rho (Table 2.5). 

Deep Ancestral Divergence 

Most current population genetics models support an out-of-Africa hypothesis, indicating 

modern human populations derive from a single ancestral population e.g. 
105; 106-109

. To maintain 

the simplicity of the model, it is important to determine if including this population history in 

calculating 𝑝𝑴,𝑘,𝑖values is necessary to correctly identify a temporal pattern of migration. We 

simulated a population model where the two distinct populations were previously one population 

246,160 years ago and applied the original maximum likelihood equation using probabilities that 

do not include this change to see how this affected estimates. These populations have a constant 

migration rate of 𝑀 =100 with constant effective population sizes 10,000 individuals and sample 

sizes of 1000 individuals each.  With this ancestral divergence condition, median estimates were 

consistently 𝑀 =100 across allele count bins. The false-positive rate, 3.70%, for changing 

migration was similar to that where ancestral divergence was not included, 4.34% (Table 2.5). 

Therefore, the inclusion or exclusion of deep ancestral divergence history does not affect these 

more recent migration estimates. 
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Imbalanced Effective Population Size 

Previously we assumed an effective population size of 10,000 individuals. We next 

considered the case where the effective population sizes are incorrectly specified, specifically 

when one population is larger than the other. We simulated two different cases of this 

misspecification, using simulations of constant migration of 𝑀 =100. In the case of small 

inaccuracies in effective population size, with 8,000 and 12,000 instead of 10,000 and 10,000, 

the false positive rate of changing migration remains well controlled at 5.68%. For the larger 

discrepancy, 5,000 and 15,000, the false positive rate of changing migration increases to 20.58% 

(Table 2.5). For small discrepancies, while the magnitude of estimates may no longer be accurate 

under these misspecifications, the temporal pattern is still identifiable. 

Asymmetric Migration 

We considered the case of asymmetric migration in which migration occurs from 

population 1 to population 2 more frequently than migration from population 2 to population 1. 

We simulated this scenario with constant effective population sizes of 10,000 individuals, sample 

sizes of 1,000 individuals each, with migration rates in three different ratios: 1:0.25 (M1=100 and 

M2=25), 1:0.5 (M1=100 and M2=50), and 1:0.75 (M1=100 and M2=75). In the case of mild 

asymmetry 1:0.75, the false positive rate for changing migration was 4.93%. For 1:0.5, the false 

positive rate for changing migration was 5.14%. In the extreme directional migration case of 

1:0.25, the false positive rate for changing migration was 4.93% (Table 2.5). In each of these 

scenarios, we note that while estimates may change, the temporal pattern of constant migration 

remains clear with a controlled false positive rate. Therefore, even under these misspecifications, 

a temporal trend could be detected with this method.  
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Table 2.5 False Positive Rates of Changing Migration Under Parameter Specifications  

Using Spearman’s rho for 10,000 simulations of constant migration (𝑀 =100), under a range of 

parameters, we recorded the number of simulations falsely identified as changing migration. 

Parameter Specifications False Positive Rate 

Correct Specifications 3.70% 

Out-of-Africa Hypothesis 4.34% 

Misspecifications of Effective Population Size 

8,000 and 12,000 5.68% 

5,000 and 15,000 20.58% 

Asymmetric Migration 

1:0.25 4.83% 

1:0.50 5.14% 

1:0.75 4.93% 
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2.5.2 Supplementary Figures and Tables 

 

Figure 2.8 Mean Squared Error and Bias by Allele Count Bin Under Constant Migration  

(A) Relative mean squared error for each allele count bin for 10,000 simulations of 𝑀 =100. The 

MSE is lowest at the intermediate allele count bins but remains stable across allele count bins. 

(B) Relative bias based on the 100 simulations for each allele count bin. There is an increase in 

overestimation, resulting in an upward bias, at the higher allele count bins 

A B 
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Figure 2.9 Likelihood Curves for One Simulation of Constant Migration 𝑀 =100  

Four likelihood curves from a range of allele count bins. The curve becomes very flat with 

increasing migration rate, indicating any bias in estimates is likely to be upward. 
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Figure 2.10 Mean Squared Error and Bias by Migration Rate under Constant Migration  

(A) Mean squared error across allele count bins based on the 10000 simulations for each 

migration rate. There is an increase in bias and variance in estimates, resulting in overall 

precision loss. (B) Relative bias across allele count bins based on 10000 simulations for each 

migration rate. 

  

A B 
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Table 2.6 Grid Search Results for Identifying Changing Migration with Whole Exome Data 

For 1,000 dataset simulations of 30,000 kb (~whole exome data size) of two examples of 

changing migration with four different times of migration change, we apply the grid search 

algorithm and recorded the proportion of the datasets that selected a changing migration model 

as the most likely. We also record how often there is evidence to reject a constant migration 

(power) and how often all three parameters are estimated correctly.  

Model 

Test Data Set 

Parameters 

Proportion with 

Maximum 

Likelihood of 

Changing 

Migration 

Power to Reject 

Constant M 

Proportion 

Correct All 

Parameters M1 M2 𝜏 

(c) 50 100 

0.0005 1.00 1.00 0.985 

0.001 1.00 1.00 1.00 

0.005 1.00 1.00 0.889 

0.01 0.975 0.533 0.17 

(d) 100 50 

0.0005 1.00 1.00 1.00 

0.001 1.00 1.00 1.00 

0.005 1.00 0.999 0.790 

0.01 0.950 0.064 0.055 
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Figure 2.11 Adjustments for Exponential Growth 

Two populations with an exponential growth in effective population sizes of 10,000 to 1,000,000 

in 500 generations and a constant migration of (A) (left) 𝑀 = 100  (𝑚 = 0.000025), (B) (right) 

𝑀 = 1000  (𝑚 = 0.00025). Without applying any adjustments (blue line), the method 

incorrectly indicates a high level of migration in the past and a substantial increase in migration 

in recent years. The adjustment corrects for this bias (pink line), indicating a constant migration 

at the expected rate (black dashed line). 

  

  

A B 
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Figure 2.12 Estimated Migration for an Exponential Growth Change in Migration Model  
We show two examples of changing migration under exponential growth with the correctly applied 

adjustments. (A) Two populations with past symmetric migration rates of 𝑀2 =10000 decrease to a 

migration of 𝑀1 =5000 in recent years. (B) Two populations with past symmetric migration rates of 

𝑀2 =5000 increase to a migration of 𝑀1 =10000 in recent years. We use four different times of 

migration rate change: 0.0001, 0.00005, 0.00001, and 0.000005 coalescent units, corresponding to 400, 

200, 40, and 20 generations in the past respectively (population growth from 10,000 to 1,000,000 in 500 

generations, sample sizes=1,000 individuals each). 

  

A B 
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Table 2.7 Grid Search Results for Identifying Changing Migration with Exponential Growth 

For 1,000 dataset simulations of 750 kb of two examples of changing migration with exponential 

growth for four different times of migration change, we apply the grid search algorithm and 

recorded the proportion of the datasets that selected a changing migration model as the most 

likely. We also record how often there is evidence to reject a constant migration (power) and 

how often all three parameters are estimated correctly.  

Model 

Test Data Set Parameters Proportion with 

Maximum 

Likelihood of 

Changing 

Migration 

Power to Reject 

Constant M 

Proportion 

Correct All 

Parameters 
M1 M2 𝜏 

(a) 5000 10000 

0.000005 0.998 0.279 0.082 

0.00001 1.00 0.822 0.114 

0.00005 1.00 1.00 0.513 

0.0001 1.00 0.999 0.423 

(b) 10000 5000 

0.000005 0.998 0.891 0.124 

0.00001 1.00 1.00 0.186 

0.00005 1.00 0.954 0.507 

0.0001 0.994 0.23 0.143 
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Table 2.8 Grid Search Results for Identifying Changing Migration with Exponential Growth and 

Whole Exome Sequencing 

For 1,000 dataset simulations of 30000 kb (whole exome) of two examples of changing 

migration with exponential growth for four different times of migration change, we apply the 

grid search algorithm and recorded the proportion of the datasets that selected a changing 

migration model as the most likely. We also record how often there is evidence to reject a 

constant migration (power) and how often all three parameters are estimated correctly.  

Model 

Test Data Set Parameters Proportion with 

Maximum 

Likelihood of 

Changing 

Migration 

Power to Reject 

Constant M 

Proportion 

Correct All 

Parameters 
M1 M2 𝜏 

(c) 5000 10000 

0.000005 1.00 0.985 0.452 

0.00001 1.00 1.00 0.727 

0.00005 1.00 1.00 0.942 

0.0001 1.00 1.00 0.948 

(d) 10000 5000 

0.000005 1.00 1.00 0.319 

0.00001 1.00 1.00 0.6 

0.00005 0.999 0.999 0.945 

0.0001 0.999 0.711 0.667 
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Figure 2.13 Estimated Migration for African-Americans and Europeans.  

Estimates of the migration rates using probabilities based on populations of equal sample sizes 

339 and 339, undergoing exponential growth, with migration in a single direction. 
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Figure 2.14 Estimated Migration for European Populations  

(A) Estimated migration between Northwestern (Britain and Ireland) and Northern Europe 

(Nordic-Baltic). (B) Estimated migration between Northwestern (Britain and Ireland) and 

Western Europe. (C) Estimated migration between Northern (Nordic-Baltic) and Western 

Europe). (D) Estimated migration between Central and Northwestern (Britain and Ireland) 

Europe. (E) Estimated migration between Central and Western Europe. (F) Estimated migration 

between Central and Northern (Nordic-Baltic) Europe. 

A B

 
 A 

C D 
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: Mathematical Modeling of Population Bottlenecks and CHAPTER 3

Genetic Drift in Next Generation Sequencing Data 

3.1 Introduction 

Population bottlenecks are defined as drastic reductions in population size. There are 

many possible causes for bottlenecks, including natural disasters 
30-32

, captive breeding and re-

introduction
36-38

, host-pathogen relationships
41-43

, and founder populations
19; 44; 45

. After the 

bottleneck-inducing event, the population begins to regenerate, growing towards its original size. 

During this period of regrowth, there is a random sampling process for reproduction known as 

genetic drift. The random nature of genetic drift, compounded with the small size and potential 

reduction in genetic diversity of the post-bottleneck population, causes dramatic shifts in the 

regrown population allele frequencies compared to those of the original population
29

. Therefore, 

accurately modeling the bottleneck and genetic drift has many important applications, such as 

studying endangered species
36; 39; 40

, animal breeding
33-35

, and disease patterns
46-48

. In this 

chapter, we present a mathematical model for population bottlenecks followed by genetic drift 

and two applications: mtDNA transmission in humans and fibroblast cell growth. 

There are several existing basic models describing genealogies that relate to present-day 

observable sequences. Two models in particular form the foundation of stochastic approaches to 

modeling reproduction in population genetics. The first of these is the Wright-Fisher model, 

named after the independent ideas of Sewell Wright
52

 and R.A. Fisher
110

. In this model, the 

ancestors of the genes in the present day generation are drawn randomly with replacement from 
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the genes in the previous parental generation
29; 111

. Each previous generation is entirely replaced 

by its offspring
111

. This model is valued for its simplicity, with the assumption of discrete and 

non-overlapping generations allowing for simple binomial sampling
112

. An alternative to this 

model which relaxes this assumption was proposed by Patrick Moran
51

. In contrast to the 

Wright-Fisher model, the Moran model defines steps, or birth-death events, at which two 

individuals are chosen with replacement: one individual is to give birth (replicate itself) to a new 

individual and one individual to die
29; 111

. Thus, at each step, the minor allele increases its 

frequency by one, the major allele increases its frequency by one, or the relative frequencies 

remain the same
111

. This approach is popular because many calculations that can only be 

approximated under the Wright-Fisher model are mathematically tractable
29; 111

. However, in the 

basic formulation of each of these models, the populations represent an idealized scenario with 

constant population size, no sexual reproduction, random mating, no mutation, and no 

selection
29; 111

. 

For this model of population bottlenecks and subsequent genetic drift, we build on these 

existing models. Maintaining the concept of overlapping generations, we develop a “modified 

Moran model”, now allowing for a growing population size. We show the entire process can be 

written as a discrete Markov chain with transition matrices corresponding to the bottleneck and 

subsequent growth. Constructing a closed-form equation, we fully model the probability of 

observing the shift in allele frequency in populations before and after the bottleneck. 

Additionally, we develop a framework for incorporating and testing selection in this model. We 

modify the stochastic process to include changes in the probability of reproduction due to a 

selection coefficient. Using a grid search, we estimate the most likely selection coefficient given 

the shift in allele frequencies before and after the population bottleneck. 
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In my first application of this model, we focus on mtDNA transmission from mother to 

child. This work is previously published in Genome Research, April 2016
113

. The allele 

frequencies in mtDNA allele frequencies from mother to child can shift dramatically, indicating 

the presence of a severe bottleneck during this process. We aim to understand the number of 

genetic units in this bottleneck and its characteristics, such as variability in size. To this end, we 

analyze short read sequences of the mitochondrial DNA of 189 mother-child pairs from the 

Genome of the Netherlands and Biobanking and Biomolecular Research Infrastructure of the 

Netherlands. Using a maximum likelihood equation and model comparisons, we determine the 

best fitting model is a variable size bottleneck with a mean of nine individual genetic units 

transmitted.  

In the second application, we apply the mathematical model to cell growth in a laboratory 

setting. We analyze 58 variants from  a set of 1489 variants from next generation sequencing of 

cell populations isolated from subjects at the National Institutes of Health. During the 

experimental process, these fibroblast cell populations underwent an extreme bottleneck of 

known size. The allele frequencies of the population before the bottleneck and after regrowth 

from the bottleneck differ drastically. While this shift could be driven by genetic drift alone, in 

some cases, selection is acting on the variants. Discerning between drift and selection is essential 

to understanding functional consequences of the variants and providing insight into the etiology 

of the pre-mature aging disorders studied here. Applying the probabilistic approach with a 

known bottleneck size, we find evidence of positive selection in three of these variants and 

estimate corresponding selection coefficients. We therefore present a second application of this 

flexible, probability-based approach to directly modeling the biological process of population 

bottlenecks and growth and identifying variants with a selection advantage.  
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3.2 Mathematically Modeling Population Bottlenecks and Genetic Drift 

We first describe the basic model: a single bottleneck of constant size 𝑛𝑏 with subsequent 

genetic drift (population growth) and no selection. The observed data set includes the following 

statistics for each variant: in the initial population (also called “early stage”), we observe a 

sample of size 𝑛𝐼 with observed minor allele count, 𝑘𝐼
𝑜𝑏𝑠 (0 ≤  𝑘𝐼

𝑜𝑏𝑠 ≤ 𝑛𝐼); in the final 

population (also called “late stage”), we observe a sample of size, 𝑛𝐹, with observed minor allele 

count, 𝑘𝐹
𝑜𝑏𝑠(0 ≤  𝑘𝐹

𝑜𝑏𝑠 ≤ 𝑛𝐹). We aim to directly formulate the probability, 

𝑃(𝑘𝐹
𝑜𝑏𝑠|𝑘𝐼

𝑜𝑏𝑠, 𝑛𝐼 , 𝑛𝐹 , 𝑛𝑏), the probability of observing the final minor allele count, given the 

bottleneck size and initial population statistics.  

There are four primary components to this model: genotyping, sampling, population 

bottleneck, and genetic drift. In Figure 3.1, we show a schematic diagram of how these 

components fit together. The observed initial minor allele count in the sample is obtained from 

the true minor allele count in the sample by genotyping, with some potential for error. This true 

minor allele count arises through sampling from the initial population, creating sampling error. 

The initial population undergoes the bottleneck, followed by subsequent genetic drift or 

population growth to obtain the final population. Like the initial population, this final population 

is also sampled and then genotyped, with uncertainty incurred at each step. Finally, this results in 

the final observed minor allele count. We will discuss each of these components separately, 

beginning with the primary population genetic processes, the bottleneck and genetic drift, and 

returning to the full probabilistic model at the end of this section. We include Table 3.1 as a 

reference for the symbols used to construct this model. 
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Figure 3.1 Schematic Diagram of Each Component of the Mathematical Model  

We model genotyping, sampling, population bottleneck, and genetic drift. The black boxes 

indicate the observed data: initial population observed minor allele count and final population 

observed minor allele count. The grey boxes indicate the primary population genetics 

components of the model: the bottleneck and subsequent genetic drift. 

Table 3.1 Symbols for Probabilistic Model 

Symbol Known or 

Unknown? 

Meaning 

𝑘𝐼
𝑜𝑏𝑠 Known Observed minor allele count in the sample of the initial population 

𝑛𝐼 Known Initial sample size 

𝑘𝐼 Unknown True minor allele count in the sample of the initial population 

𝑘𝐹
𝑜𝑏𝑠 Known Observed minor allele count in the sample of the final population 

𝑛𝐹 Known Final sample size 

𝑘𝐹 Unknown True minor allele count in the sample of the final population 

𝑘𝑏 Unknown Minor allele count in the post-bottleneck population 

𝑛𝑏 Known Post-bottleneck population size 

𝐾𝐹 (= 𝑘𝑏 + 𝑧) Unknown True minor allele count in the full final population 

𝑁𝐹 (= 𝑛𝑏 + 𝑗) Known Final Population Size 

𝑗 Known Number of steps during genetic drift 

𝑧 Unknown Additional minor alleles gained during genetic drift 

𝜀 Known Position-specific error rate 

𝑝𝐹 (= 𝐾𝐹/𝑁𝐹) Unknown Minor allele frequency in final population 

𝑝0  Unknown Minor allele frequency in initial population 

𝑘𝐼
𝑜𝑏𝑠: Observed 

Minor Allele Count 

in Sample of Initial 

Population 

𝑘𝐹
𝑜𝑏𝑠: Observed 

Minor Allele Count 

in Sample of Final 

Population 

𝑘𝐼: True Minor 

Allele Count in 

Sample of Initial 

Population 

𝑘𝐹: True Minor 

Allele Count in 

Sample of Final 

Population 

𝐾0: Minor Allele 

Count in Initial 

Population 

𝐾𝐹: Minor Allele 

Count in Final 

Population 

Bottleneck: 𝑛𝑏 

transmitted, 𝑘𝑏 with 

minor allele 

Genetic drift 

(population growth) 

to full size final 

population 

Genotyping 

error 

Sampling  

error 

Sampling  

error 

Genotyping  

error 
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Population Bottleneck 

The bottleneck step is a random sample from the full size initial population. Let 𝑁0 be the 

number of individuals in the full-size initial population and 𝐾0 (0 ≤ 𝐾0 ≤ 𝑁0) of these 

individuals carry a minor allele. From this pool of individuals, we assume an unordered draw 

without replacement for 𝑛𝑏 individuals, 𝑘𝑏 (0 ≤ 𝑘𝑏 ≤  𝑛𝑏) of which carry the minor allele. In 

this case, 𝑛𝑏=200 randomly chosen cells from the early stage cell population. Therefore, the 

number of individuals carrying a minor allele in the post-bottleneck population follows a 

hypergeometric distribution, 𝑘𝑏~𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝑛𝑏 , 𝐾0, 𝑁0). Where 𝑁0 is much larger than 

𝑛𝑏, this hypergeometric distribution converges in distribution to the simpler binomial distribution 

(𝑘𝑏~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑏 , 𝑝0 =
𝐾0

𝑁0
))94

 as in (3.1). As in this application 𝑛𝑏 << 𝑁0, we use this 

binomial distribution to model this bottleneck process, creating a transition matrix to all possible 

values of 𝑘𝑏 given 𝑛𝑏 , 𝐾0, 𝑁0, with transition probabilities 𝑃(𝑘𝑏|𝑛𝑏 , 𝑝0 = 𝐾0/𝑁0). 

 𝑃(𝑘𝑏|𝑝0, 𝑛𝑏) = (
𝑛𝑏
𝑘𝑏
) 𝑝0

𝑘𝑏(1 − 𝑝0)
𝑛𝑏−𝑘𝑏 

(3.1) 

Genetic Drift 

To model the subsequent genetic drift during the replication or population growth 

process, we build on the basic Moran model while incorporating a growing population size.  

Under the original Moran model, at each step, one individual dies and is replaced by the copy of 

another individual in the population
51

, maintaining a constant population size. In our modified 

Moran model, at each step, one individual is chosen randomly from the current population to be 

replicated and added to the current generation. This means there are no deaths, causing the 

population to grow by one individual in each step. Therefore, given a previous population size of 

𝑛𝑏 with 𝑘𝑏 individuals carrying the minor allele, the current population of 𝑛𝑏 + 1 individuals can 
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have 𝑘1 individuals carrying the minor allele, where 𝑘1 = 𝑘𝑏 or 𝑘1 = 𝑘𝑏 + 1. This gives a 

Bernoulli distribution for the number of minor alleles in the population after one step (𝑘1):  

 

𝑃(𝑘1|𝑛𝑏 , 𝑘𝑏) =

{
 
 

 
 

𝑘𝑏
𝑛𝑏

𝑘1 = 𝑘𝑏 + 1

𝑛𝑏 − 𝑘𝑏
𝑛𝑏

𝑘1 = 𝑘𝑏

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 

 
 

 

(3.2) 

Similarly, in the next step, the proportions of minor and major alleles in the population are 

updated and the sampling repeats. Therefore, the number of minor alleles, 𝑘2, in the population 

after two steps (population size now 𝑛𝑏 + 2)  is: 

 

𝑃(𝑘2|𝑛𝑏 , 𝑘𝑏) =  

{
 
 
 

 
 
 
𝑛𝑏 − 𝑘𝑏
𝑛𝑏

(
𝑛𝑏 − 𝑘𝑏 + 1

𝑛𝑏 + 1
) 𝑖𝑓 𝑘2 = 𝑘𝑏

2
𝑘𝑏(𝑛𝑏 − 𝑘𝑏)

𝑛𝑏(𝑛𝑏 + 1)
𝑖𝑓 𝑘2 = 𝑘𝑏 + 1

𝑘𝑏
𝑛𝑏
(
𝑘𝑏 + 1

𝑛𝑏 + 1
) 𝑖𝑓 𝑘2 = 𝑘𝑏 + 2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 
 

 
 
 

 

(3.3) 

Repeating this binomial sampling for each step, at generation 𝑗 the probability of observing 𝑧 

additional individuals carrying minor alleles, for a total of 𝑘𝑏 + 𝑧 minor alleles is: 

 𝑃(𝑘𝑗 = 𝑘𝑏 + 𝑧|𝑘𝑏)

= (
𝑗
𝑧
) (
(𝑘𝑏 + 𝑧 − 1)!

(𝑘𝑏 − 1)!
) (
((𝑛𝑏 − 𝑘𝑏) + (𝑗 − 𝑧 − 1))!

(𝑛𝑏 − 𝑘𝑏 − 1)!
) (

(𝑛𝑏 − 1)!

(𝑛𝑏 + (𝑗 − 1))!
) 

(3.4) 

This closed-form equation (3.4) provides the probabilities for the transition matrix for moving 

from the initial 𝑘𝑏 minor alleles in the post-bottleneck population of size 𝑛𝑏, to the final number 

of alleles after genetic drift, 𝑘𝑗, in the final population of size 𝑛𝑏 + 𝑗. The binomial sampling for 

the bottleneck in (3.1) and the genetic drift in equation (3.4) correspond to two transition 

matrices of a discrete Markov Chain.   
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Modeling Sampling Error 

The next component of the full probability reflects the sampling process used to obtain the 

observed data set. Consider the true final minor allele count, 𝐾𝐹 in the full size final population 

of size 𝑁𝐹 and a sample of size 𝑛𝐹, the probability of observing 𝑘𝐹 (0 ≤ 𝑘𝐹 ≤ 𝑛𝐹) minor alleles 

in this sample follows a hypergeometric distribution, 𝑘𝐹~𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝑛𝐹 , 𝐾0, 𝑁0). As in 

the bottleneck process, 𝑛𝐹 << 𝑁𝐹, we use a binomial distribution to model this sampling, 

(𝑘𝐹~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝐹, 𝑝𝐹 =
𝐾𝐹

𝑁𝐹
)). Therefore, we calculate: 

 𝑃(𝑘𝐹|𝑝𝐹, 𝑛𝐹) = (
𝑛𝐹
𝑘𝐹
) 𝑝𝐹

𝑘𝐹𝑝𝐹
𝑛𝐹−𝑘𝐹 

(3.5) 

Additionally, we need to incorporate the sampling process for the initial population sample. In 

this case, the probability calculation is in the opposite direction and we aim to estimate 

𝑃(𝑝0|𝑘𝐼 , 𝑛𝐼), the probability of the minor allele frequency in the initial full size population, 𝑝0, 

given the minor allele count 𝑘𝐼 and sample size 𝑛𝐼. We apply Bayes’ Rule and the Total 

Probability Theorem, followed by the General Product Rule.  The final reduction occurs because 

𝑛𝐼 (the initial population sample size) is a known parameter and independent of 𝑝0 (𝑃(𝑛𝐼|𝑝0) =

𝑃(𝑛𝐼) = 1). Now 𝑃(𝑘𝐼|𝑝0, 𝑛𝐼) is simply the sampling error described above in (3.5), the 

binomial probability of 𝑘𝐼 minor alleles in a sample of size 𝑛𝐼, drawn from the underlying 

frequency of 𝑝0.  We assume a uniform prior on 𝑝0. 

 
𝑃(𝑝0|𝑘𝐼 , 𝑛𝐼) =

𝑃(𝑘𝐼 , 𝑛𝐼|𝑝0)𝑃(𝑝0)

∫ [𝑃(𝑘𝐼 , 𝑛𝐼|𝑝0)𝑃(𝑝0)]𝑑𝑝0 
1

0

=
[𝑃(𝑘𝐼|𝑝0, 𝑛𝐼)𝑃(𝑛𝐼|𝑝0)]𝑃(𝑝0)

∫ [𝑃(𝑘𝐼|𝑝0, 𝑛𝐼)𝑃(𝑛𝐼|𝑝0)𝑃(𝑝0)]𝑑𝑝0 
1

0

=
𝑃(𝑘𝐼|𝑝0, 𝑛𝐼)𝑃(𝑝0)

∫ [𝑃(𝑘𝐼|𝑝0, 𝑛𝐼)𝑃(𝑝0)]𝑑𝑝0 
1

0

 
(3.6) 
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Modeling Genotyping Error 

To model the genotyping errors, we incorporate a position-specific error rate ε of 0.001 

based on the base quality scores during sequencing. Consider the final sample of size 𝑛𝐹 with the 

true number of minor alleles 𝑘𝐹 (0 ≤ 𝑘𝐹 ≤ 𝑛𝐹), the probability that the number of observed 

minor alleles is 𝑘𝐹
𝑜𝑏𝑠 (0 ≤ 𝑘𝐹

𝑜𝑏𝑠  ≤ 𝑛𝐹) is determined by rate of errors in genotyping, 𝜀. In (3.7), 

this probability is made up of two binomials that model: the probability that 𝑖 minor alleles are 

correctly called minor (with probability (1 − 𝜀)); and the probability that the remaining 𝑘𝐹
𝑜𝑏𝑠 − 𝑖 

alleles are incorrectly called minor (with probability 𝜀). 

 𝑃(𝑘𝐹
𝑜𝑏𝑠 |𝑛𝐹 , 𝑘𝐹)

= ∑ (𝑘𝐹
𝑜𝑏𝑠 
𝑖
) (1 − 𝜀)𝑖(𝜀)𝑘𝐹−𝑖 (

𝑛𝐹 − 𝑘𝐹
𝑘𝐹
𝑜𝑏𝑠  − 𝑖

) 𝜀𝑘𝐹
𝑜𝑏𝑠 −𝑖(1 − 𝜀)(𝑛𝐹−𝑘𝐹)−(𝑘𝐹

𝑜𝑏𝑠 −𝑖)

𝑘𝐹
𝑜𝑏𝑠 

𝑖=0

 

(3.7) 

 Because there is potential for genotyping error on both sides of the model (for the 

observed initial sample and the observed final sample), we also need to calculate the probability 

of the true initial minor allele count in the sample, 𝑘𝐼, given the observed value 𝑘𝐼
𝑜𝑏𝑠. To this 

end, we apply Bayes’ Rule and conditional probability to calculate 𝑃(𝑘𝐼|𝑘𝐼
𝑜𝑏𝑠, 𝑛𝐼)  as shown in 

(3.8). We assume a uniform prior on 𝑘𝐼 so 𝑃(𝑘𝐼|𝑛𝐼)/𝑃(𝑘𝐼
𝑜𝑏𝑠|𝑛𝐼)  is constant in 𝑘𝐼. Therefore, 

this reduces to the genotyping error component as shown in (3.7), now for the initial population 

sample: the probability of observing 𝑘𝐼
𝑜𝑏𝑠 minor alleles in the initial sample of size 𝑛𝐼 given the 

true minor allele count of 𝑘𝐼. 

 
𝑃(𝑘𝐼|𝑘𝐼

𝑜𝑏𝑠, 𝑛𝐼) =
𝑃(𝑘𝐼

𝑜𝑏𝑠, 𝑘𝐼|𝑛𝐼)

𝑃(𝑘𝐼
𝑜𝑏𝑠|𝑛𝐼)

=
𝑃(𝑘𝐼

𝑜𝑏𝑠|𝑛𝐼 , 𝑘𝐼)𝑃(𝑘𝐼|𝑛𝐼)

𝑃(𝑘𝐼
𝑜𝑏𝑠|𝑛𝐼)

∝ 𝑃(𝑘𝐼
𝑜𝑏𝑠|𝑛𝐼 , 𝑘𝐼) 

(3.8) 
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Combining Components for the Full Model 

With each of these components defined, we now return to the full probabilistic model, 

𝑃(𝑘𝐹
𝑜𝑏𝑠|𝑘𝐼

𝑜𝑏𝑠, 𝑛𝐼 , 𝑛𝐹 , 𝑛𝑏). For reference, Table 3.1 provides a list of the symbols and their 

meanings used throughout this derivation. First, we write 𝑃(𝑘𝐹
𝑜𝑏𝑠|𝑘𝐼

𝑜𝑏𝑠, 𝑛𝐼 , 𝑛𝐹 , 𝑛𝑏) by 

conditioning on 𝑘𝑏, the number of minor alleles in the bottleneck of size 𝑛𝑏: 

 

𝑃(𝑘𝐹
𝑜𝑏𝑠|𝑘𝐼

𝑜𝑏𝑠, 𝑛𝐼 , 𝑛𝐹 , 𝑛𝑏) = ∑ 𝑃(𝑘𝐹
𝑜𝑏𝑠|𝑘𝑏 , 𝑘𝐼

𝑜𝑏𝑠, 𝑛𝐼 , 𝑛𝐹 , 𝑛𝑏)𝑃(𝑘𝑏|𝑘𝐼
𝑜𝑏𝑠, 𝑛𝐼 , 𝑛𝐹 , 𝑛𝑏 )

𝑛0

𝑘0=0

= ∑ 𝑃(𝑘𝐹
𝑜𝑏𝑠|𝑘𝑏 , 𝑛𝐹 , 𝑛𝑏)⏟            
𝑃𝑎𝑟𝑡 𝐵

𝑃(𝑘𝑏|𝑘𝐼
𝑜𝑏𝑠, 𝑛𝐼 , 𝑛𝑏)⏟          
𝑃𝑎𝑟𝑡 𝐴

𝑛𝑏

𝑘𝑏=0

 

(3.9) 

In (3.9), this probability further simplifies because 𝑘𝐹
𝑜𝑏𝑠 given 𝑘𝑏 , 𝑛𝐹 , 𝑛𝑏 is independent 

of 𝑘𝐼
𝑜𝑏𝑠, 𝑛𝐼 and 𝑘𝑏 given 𝑘𝐼

𝑜𝑏𝑠, 𝑛𝐼 , 𝑛𝑏is independent of 𝑛𝐹. Therefore, this probability consists of 

two expressions: (A) the probability of transmitting 𝑘𝑏 minor alleles in a bottleneck of size 𝑛𝑏 

given the initial observed minor allele frequency 𝑘𝐼
𝑜𝑏𝑠 and initial sample size 𝑛𝐼; and (B) the 

probability of observing 𝑘𝐹
𝑜𝑏𝑠 minor alleles after genetic drift, conditional on 𝑘𝑏 , 𝑛𝐹 , 𝑛𝑏. We use 

conditional probabilities to break these parts into the interpretable components defined above. 

To calculate Part A, we condition on 𝑝0, the minor allele frequency in the initial 

population. Because 𝑝0 is independent of 𝑛𝑏 given 𝑘𝐼
𝑜𝑏𝑠, 𝑛𝐼and because 𝑘𝑏 given 𝑝0, 𝑛𝑏 is 

independent of 𝑘𝐼
𝑜𝑏𝑠, 𝑛𝐼 and 𝑝0, this simplifies to two additional parts in (3.10). 

 

𝑃(𝑘𝑏|𝑘𝐼
𝑜𝑏𝑠, 𝑛𝐼 , 𝑛0) = ∫𝑃(𝑘𝑏|𝑝0, 𝑘𝐼

𝑜𝑏𝑠, 𝑛𝐼 , 𝑛0)𝑃(𝑝0|𝑘𝐼
𝑜𝑏𝑠, 𝑛𝐼 , 𝑛0)𝑑𝑝0

1

0

 

= ∫𝑃(𝑘𝑏|𝑝0, 𝑛0)⏟        
𝐴1

𝑃(𝑝0|𝑘𝐼
𝑜𝑏𝑠, 𝑛𝐼)⏟        
𝐴2

𝑑𝑝0

1

0

 
(3.10) 
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The first part of this expression, A1, is simply the bottleneck step as in (3.1). The second 

expression of this equation, A2, requires further work. We first condition on 𝑘𝐼 , the true minor 

allele count and A2 simplifies to (3.11) since 𝑝0 given 𝑛𝐼 , 𝑘𝐼  is independent of 𝑘𝐼
𝑜𝑏𝑠. This 

expression now includes the genotyping and sampling processes for the initial population sample 

as outlined in previous sections.  

 

𝑃(𝑝0|𝑘𝐼
𝑜𝑏𝑠, 𝑛𝐼) = ∑ 𝑃(𝑝0|

𝑛𝐼

𝑘𝐼=0

𝑘𝐼
𝑜𝑏𝑠, 𝑛𝐼 , 𝑘𝐼)𝑃(𝑘𝐼|𝑘𝐼

𝑜𝑏𝑠, 𝑛𝐼)

= ∑ 𝑃(𝑝0|

𝑛𝐼

𝑘𝐼=0

𝑛𝐼 , 𝑘𝐼)𝑃(𝑘𝐼|𝑘𝐼
𝑜𝑏𝑠, 𝑛𝐼) 

(3.11) 

In (3.12), we incorporate the sampling error as calculated in (3.6), and the genotyping error as 

calculated in (3.8). 

 

∑ 𝑃(𝑝0|

𝑛𝐼

𝑘𝐼=0

𝑛𝐼 , 𝑘𝐼)𝑃(𝑘𝐼|𝑘𝐼
𝑜𝑏𝑠, 𝑛𝐼)

∝ ∑ {(
𝑃(𝑘𝐼|𝑝0, 𝑛𝐼)𝑃(𝑝0)

∫ 𝑃(𝑘𝐼|𝑝0, 𝑛𝐼)𝑃(𝑝0)𝑑𝑝0 
1

0

)𝑃(𝑘𝐼
𝑜𝑏𝑠|𝑘𝐼 , 𝑛𝐼) }

𝑛𝐼

𝑘𝐼=0

 

(3.12) 

We now focus on Part B of (3.9), the probability of observing 𝑘𝐹
𝑜𝑏𝑠 minor alleles after 

genetic drift, conditional on 𝑘𝑏 , 𝑛𝑏 , and 𝑛𝐹.  This part models the three processes that occur after 

the bottleneck: (1) genetic drift (growth) to reach the final minor allele count 𝐾𝐹 and final total 

allele count 𝑁𝐹 from the bottleneck size of 𝑛𝐼, (2) sampling from this final population, (3) 

genotyping error in our sample. To reach these interpretable parts, we start by conditioning on 

𝑘𝐹, the true minor allele count in the sample, and then 𝐾𝐹, the final population minor allele 

count. 
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𝑃(𝑘𝐹
𝑜𝑏𝑠|𝑘𝑏 , 𝑛𝑏 , 𝑛𝐹) = ∑ 𝑃(𝑘𝐹

𝑜𝑏𝑠|𝑘𝐹 , 𝑛𝑏 , 𝑘𝑏 , 𝑛𝐹)𝑃(𝑘𝐹|𝑘𝑏 , 𝑛𝑏 , 𝑛𝐹)

𝑛𝐹

𝑘𝐹=0

= ∑ 𝑃(𝑘𝐹
𝑜𝑏𝑠|𝑘𝐹 , 𝑛𝐹)𝑃(𝑘𝐹|𝑘𝑏 , 𝑛𝑏 , 𝑛𝐹)

𝑛𝐹

𝑘𝐹=0

= ∑ [𝑃(𝑘𝐹
𝑜𝑏𝑠|𝑘𝐹 , 𝑛𝐹) ∑ 𝑃(𝑘𝐹|𝑘𝑏 , 𝑛𝑏 , 𝑛𝐹 , 𝐾𝐹 , 𝑁𝐹)

𝑁𝐹=0

𝐾𝐹=0

𝑃(𝐾𝐹|𝑁𝐹 , 𝑘𝑏 , 𝑛𝑏 , 𝑛𝐹)]

𝑛𝐹

𝑘𝐹=0

= ∑ [𝑃(𝑘𝐹
𝑜𝑏𝑠|𝑘𝐹 , 𝑛𝐹)⏟          
𝐵1

∑ 𝑃(𝑘𝐹|𝑛𝐹 , 𝐾𝐹 , 𝑁𝐹)⏟          
𝐵2

𝑁𝐹=0

𝐾𝐹=0

𝑃(𝐾𝐹|𝑁𝐹 , 𝑘𝑏 , 𝑛𝑏)⏟          
𝐵3

 ]

𝑛𝐹

𝑘𝐹=0

 

(3.13) 

The first expression in (3.13), B1, arises because 𝑘𝐹
𝑜𝑏𝑠 is independent of 𝑛𝑏 , 𝑘𝑏 given 

𝑘𝐹 , 𝑛𝐹 . Then B1 is the genotyping error probability, as calculated in (3.7). The second term, B2, 

arises by conditioning on 𝐾𝐹 , 𝑁𝐹 , such that 𝑃(𝑘𝐹|𝑛𝐹 , 𝐾𝐹 , 𝑁𝐹) is independent of 𝑘𝑏 , 𝑛𝑏 (we 

assume 𝑁𝐹, the final population size, is known). Then B2 is the sampling error component as in 

(3.5): a binomial that corresponds to the observing 𝑘𝐹 minor alleles after sampling 𝑛𝐹 from the 

full final population where minor alleles are sampled with probability 𝑝𝐹 = 𝐾𝐹/𝑁𝐹. The last 

portion, B3, models the growth of the population (genetic drift) to the full size final population 

from the bottleneck size. In B3, 𝐾𝐹 is independent of 𝑛𝐹 given 𝑘𝑏 , 𝑛𝑏 , 𝑁𝐹. As in (3.4), B3 is 

calculated using a modified Moran model without replacement, with 𝐾𝐹 = 𝑘𝑏 + 𝑗 and 𝑁𝐹 =

𝑛𝑏 + 𝑗. 

Combining these components gives the overall summation in (3.9). This is the basic 

model for the bottleneck and subsequent growth.  

3.3 Application to mtDNA Transmission 

Mitochondria, regarded as the “energy powerhouses” of the cell, are vital to the health of 

an individual. Previous studies implicate mutations in mitochondrial DNA (mtDNA) as the cause 

of major health problems, including colorectal cancer susceptibility, tissue aging, and post 
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lingual deafness 
114-117

.  Most mtDNA mutations that cause diseases due to defects in 

mitochondrial function exist as heteroplasmies (intra-individual variation) and only cause disease 

symptoms when the frequency of the mutant allele exceeds a particular threshold 
118

. Below this 

threshold, individuals are asymptomatic, presumably because there are enough functional 

mitochondria for normal metabolism. Changes in the frequency of pathogenic mutations during 

the transmission of heteroplasmies from mothers to offspring can thus play an important role in 

the disease risk of the offspring 
119-122

. However, most of our knowledge concerning the 

dynamics of heteroplasmy transmission comes from studies of pathogenic mutations 
118; 123-125

 or 

from mouse models 
126-129

. There are also a few studies in oocytes 
130; 131

 and placenta 
132

. To 

date there have been limited studies of normal patterns of heteroplasmy transmission in humans 

133-137
, and several questions remain.  

The process of mitochondrial DNA transmission, for example, remains unclear.  Previous 

estimates of the effective number of transmitted mtDNA genomes range widely, from 1 mtDNA 

genome to 200 mtDNA genomes 
134; 135; 138

. These previous studies assumed a constant size for 

the bottleneck across individuals, ignoring the potential effects of allowing the bottleneck size to 

vary among individuals. Furthermore, previous biological studies, both microscopic and 

biochemical
139

, suggest that mtDNA genomes may not behave as individual, independent 

entities, but rather, behave as discrete homoplasmic units called “nucleoids”, each of which 

contains 5-10 identical mtDNA genomes 
140-142

. Under this nucleoid model, mtDNA 

heteroplasmy at the cellular level would reflect multiple nucleoids that are homoplasmic for 

different sequence variants. Some studies found nucleoid-based models provide a better fit than 

simple bottleneck models in the segregation of heteroplasmic mtDNA genomes in cell lines 
140; 
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142
. Other studies, however, find the opposite

126
. To date nucleoid-based models have not been 

investigated in the transmission of mtDNA heteroplasmy from mothers to offspring.    

In this study, we analyzed short read sequences of the mitochondrial DNA of mothers 

and children from 189 trios from the Genome of the Netherlands and Biobanking and 

Biomolecular Research Infrastructure of the Netherlands. The allele frequencies in the 

mitochondrial DNA between generations differed considerably. Using the probabilistic method 

described, we estimate the size and nature of the bottleneck based on a maximum likelihood 

equation and model comparisons.  

3.3.1 mtDNA Transmission Data 

The characteristics of the study population from the Genome of the Netherlands and the 

production of the sequence data have been described in detail in previous manuscripts143; 144. Briefly, 

genomic DNA was purified from blood samples from 769 individuals from across The Netherlands 

and sequenced to an average genomic coverage of ~14X on the Illumina HiSeq2000 platform. This 

consisted of the 231 trios used for this analysis as well as, 11 monozygotic (MZ) twin quartets, and 8 

dizygotic (DZ) twin quartets. Of the 231 trios, 189 mothers exhibited heteroplasmy and 112 of these 

heteroplasmies were transmitted to their children. For this analysis, we use one offspring and one 

heteroplasmic position per family to avoid any complications due to potential non-independence 

of heteroplasmies within families, resulting in a total of 125 independent sites. 

3.3.2 mtDNA Transmission Methods 

We aim to estimate the size and nature of the bottleneck during the inheritance of mitochondria 

based on the change in minor allele frequency of these sites transmitted from mother to offspring. we 

considered four models: a constant size bottleneck model, in which each mtDNA genome is a 

segregating unit and the bottleneck size does not vary between individuals; a variable size bottleneck 
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model, in which each mtDNA genome is a segregating unit and the bottleneck size is allowed to vary 

between individuals; a constant size nucleoid model, in which a nucleoid containing a variable 

number of identical mtDNA genomes (with mean = 7.5 genomes per nucleoid) is the segregating unit 

and the bottleneck size does not vary between individuals; and a variable size nucleoid model, in 

which a nucleoid containing a variable number of identical mtDNA genomes (with mean = 7.5 

genomes per nucleoid) is the segregating unit and the bottleneck size is allowed to vary between 

individuals. 

We first describe the most basic model: a constant size bottleneck with the transmission of 

individual mitochondria. Using the notation of the mathematical model described above, let 𝑛0 be the 

size of the bottleneck, 𝑘𝐼
𝑜𝑏𝑠

 the number of copies of the minor allele in the mother, 𝑛𝐼  the total 

number of reads in the mother, 𝑘𝐹
𝑜𝑏𝑠 the number of copies of the minor allele in the offspring, and 𝑛𝐹  

the total number of reads in the offspring. We aim to maximize 𝐿(𝑛0|𝑘𝐹
𝑜𝑏𝑠, 𝑛𝐹, 𝑘𝐼

𝑜𝑏𝑠, 𝑛𝐼). To this end, 

we model the bottleneck as sampling 𝑛0 mtDNA genomes with 𝑘0 copies of the minor allele where 

each transmitted mtDNA genome is sampled independently from many maternal mtDNA genomes. 

Therefore, we calculate the probability of observing 𝑘𝐹
𝑜𝑏𝑠given 𝑘𝐼

𝑜𝑏𝑠 when 𝑛0 mtDNA genomes are 

transmitted, as described in Section 3.2:  

 𝐿(𝑛0|𝑘𝐹
𝑜𝑏𝑠, 𝑛𝐹, 𝑘𝐼

𝑜𝑏𝑠, 𝑛𝐼)

= 𝑃(𝑘𝐹
𝑜𝑏𝑠|𝑘𝐼

𝑜𝑏𝑠, 𝑛𝐼, 𝑛𝐹, 𝑛0) ∑ 𝑃(𝑘𝐹
𝑜𝑏𝑠|𝑘𝐹, 𝑛0, 𝑘0, 𝑛𝐹)𝑃(𝑘𝐹|𝑘0, 𝑛0, 𝑛𝐹)

𝑛𝐹

𝑘𝐹=0

 
(3.14) 

 Building on the most basic model of a constant size bottleneck, we construct three more 

complex models. The variable size bottleneck model differs from the constant size bottleneck model 

by modeling 𝑛0, the number of mtDNA genomes transmitted to the child, as a Poisson distributed 

random variable with mean 𝜆. The estimate of 𝜆 can be obtained by maximizing the likelihood of 𝜆 

while summing over the unknown values of 𝑘0 and 𝑛0 as in (3.15). With a goal of simply obtaining 
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an approximate value, we use integer values of 𝜆. This allows for a grid search to obtain the 

maximum value of 𝜆.  

 𝐿(𝜆|𝑘𝐹
𝑜𝑏𝑠, 𝑛𝐹, �̂�𝐼, 𝑛𝐼) = 𝑃(𝑘𝐹

𝑜𝑏𝑠|𝜆,𝑘𝐼
𝑜𝑏𝑠, 𝑛𝐼, 𝑛𝐹, 𝑛0)

=  ∑𝑃(𝑘𝐹
𝑜𝑏𝑠
|𝑛0,𝑘𝐼

𝑜𝑏𝑠, 𝑛𝐼, 𝑛𝐹, 𝜆)𝑃(𝑛0| 𝜆,𝑘𝐼
𝑜𝑏𝑠, 𝑛𝐼, 𝑛𝐹)

=∑𝑃(𝑘𝐹
𝑜𝑏𝑠
|𝑛0,𝑘𝐼

𝑜𝑏𝑠, 𝑛𝐼, 𝑛𝐹)𝑃(𝑛0| 𝜆) 

(3.15) 

  

The final equality in (3.15) arises because 𝑘𝐹
𝑜𝑏𝑠 given 𝑛0,𝑘𝐼

𝑜𝑏𝑠, 𝑛𝐼, 𝑛𝐹 is independent of 𝜆 

and 𝑛0 given 𝜆 is independent of 𝑘𝐼
𝑜𝑏𝑠, 𝑛𝐼 , 𝑛𝐹. Because the upper limit of 𝑛0 is infinite for a Poisson 

distribution, we calculate this sum until 𝑃(𝑛0|𝜆) reaches a lower limit (set at 10−10).  

 The third model, the constant size bottleneck with nucleoids, differs from the first two 

models in that the estimate of 𝑛0 now represents the number of nucleoids transmitted to the child, 

with each nucleoid containing only identical copies of either the major allele or the minor allele. We 

assume each nucleoid 𝑖 has a random size 𝑔
𝑖
, 𝑖 = 0…𝑛0 modeled as a Poisson-distributed random 

variable with mean 𝜆 = 7.5 (based on empirical studies that find that each nucleoid has 5-10 mtDNA 

genomes140-142). Without loss of generality, the first 𝑘0 groups contain the minor allele. This gives 

∑ 𝑔𝑖
𝑛0
𝑖=1  as the total number of transmitted mitochondria and ∑ 𝑔𝑖

𝑘0
𝑖=1  as the total number of copies of 

the minor allele. Under this nucleoid model, we adjust B3 in equation (3.13), which models the 

replication process to the full-size offspring population from the bottleneck size at transmission. 

Using the same model of replication, we now assume that in the initial population, there are 

∑ 𝑔𝑖
𝑛0
𝑖=1  mtDNA genomes with ∑ 𝑔𝑖

𝑘0
𝑖=1  carrying minor alleles. Because we lack a closed form 

equation for all possibilities of the Poisson-distributed random sizes of 𝑔𝑖, we use a Monte-Carlo 

approximation to calculate this term. The other terms of equation (3.13), B1 and B2, are again made 
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up of the genotyping error probability and the sampling error probability. The remainder of the 

maximum-likelihood estimation was calculated as for the constant size bottleneck model. 

Finally, we consider the variable size bottleneck with nucleoids. Like the variable size 

bottleneck model in which each mtDNA genome is a segregating unit, this model differs from the 

constant size bottleneck model with nucleoids in that we now estimate 𝜆, the mean of a Poisson 

distributed random variable that represents the mean number of nucleoids transmitted to the child. 

The estimate of 𝜆 can be obtained by maximizing the likelihood of 𝜆 while summing over the 

unknown values of 𝑘0and 𝑛0, as in (3.15) with 𝜆 now representing the mean number of nucleoids 

transmitted to the child. Again, with a goal of simply obtaining an approximate value, we use integer 

values of 𝜆. This allows for a grid search to obtain the maximum value of 𝜆. 

3.3.3 mtDNA Transmission Results 

We used the distribution of the changes in minor allele frequency (MAF) between mother 

and offspring pairs at heteroplasmic sites to investigate the size and nature of the transmission 

bottleneck. We fit four models to the data: a constant size bottleneck, a variable size bottleneck, 

a constant size bottleneck with nucleoids, and a variable size bottleneck with nucleoids.  

Under the constant size bottleneck model, the maximum-likelihood estimate (MLE) of 

the number of transmitting mtDNA genomes was 8 (Figure 3.2A) while under the variable size 

bottleneck model the MLE was a mean of 9 transmitted mtDNA genomes (Figure 3.2B). For the 

constant size bottleneck with nucleoids the MLE was 7 nucleoids, assuming an average size of 

7.5 mtDNA genomes (based on empirical data 
139; 140; 142

) (Figure 3.2C). The variable size 

bottleneck with nucleoids, also assuming an average size of 7.5 mtDNA genomes, the MLE was 

a mean of 9 transmitted nucleoids (Figure 3.2D). The Akaike Information Criterion (AIC) was 

1123.92 for the constant size bottleneck model, 1119.16 for the variable size bottleneck 
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model,1190.38 for the constant size bottleneck with nucleoids, and 1167.00 for the variable size 

bottleneck with nucleoids (Table 3.2). This indicates that the variable size bottleneck with 

nucleoids model provides the best fit to the data (the smaller the AIC value, the smaller the loss 

in information when fitting the model).  

 

Figure 3.2 Likelihoods for Bottleneck Size Under Four Different Bottleneck Models 

The likelihoods combined across the 125 independent sites, with the maximum likelihood 

estimate indicated with a red dot. The four panels correspond to the four models: (A) a constant 

size bottleneck model, in which each mtDNA genome is a segregating unit and the bottleneck 

size does not vary between individuals, (B) a variable size bottleneck model, in which each 

mtDNA genome is a segregating unit and the bottleneck size is allowed to vary between 

individuals, (C) a nucleoid model, in which a nucleoid containing a variable number of 

homoplasmic mtDNA genomes is the segregating unit (mean size 7.5) and the bottleneck size 

does not vary between individuals, (D)a variable size nucleoid model, in which a nucleoid 

containing a variable number of homoplasmic mtDNA genomes (mean size 7.5) is the 

segregating unit and the bottleneck size is allowed to vary between individuals. 

C D 

B A 
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Table 3.2 Maximum Likelihood Estimates (MLE) and Akaike's Criterion Information (AIC) for 

Each Model 
Model MLE AIC 

Constant Size Bottleneck 8 1123.92 

Variable Size Bottleneck 9 1119.16 

Constant Size Bottleneck with Nucleoids 7 1190.38 

Variable Size Bottleneck with Nucleoids 9 1167.00 

 

3.4 Application to Fibroblast Cell Growth 

Natural selection is an evolutionary process in which the genetics of some individuals 

provide an advantage (or disadvantage) in survival and reproduction. Selection on a variant alters 

the assumption of randomness in reproduction, therefore changing the allele frequencies 

expected in a population over time
29

.  As observed previously, drastic reductions in population 

size, followed by genetic drift, can also change population allele frequencies
29; 112

. Discerning 

between drift and selection is essential to understanding functional consequences of the variants. 

In addition, identifying genes under selective pressure can elucidate the mechanisms of disease, 

the role of bacterial resistance, and improve the design of gene-driven pharmaceutical 

interventions. 

This application focuses on understanding the somatic variation in aging related genes in 

fibroblast cell samples. Specifically, this study uses a deep sequencing approach to analyze intra-

individual genetic variation at the single nucleotide level in 44 aging related candidate genes to 

determine if this variation changes during in vitro aging. The initial and final populations of 

primary cells come from unaffected individuals and individuals with premature aging diseases. 

We aim to identify variants in this dataset that show evidence against the null hypothesis of 

genetic drift alone and, in those cases, estimate selection coefficients. Applying the mathematical 
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modeling approach, we identified three variants with evidence of selection including a likely 

driver mutation in CDKN2A in an XPA patient. 

3.4.1 Cell Growth Data 

This study uses next generation sequencing on primary dermal fibroblast cell cultures from 

3 individuals diagnosed with Hutchinson-Gilford progeria syndrome, 3 individuals diagnosed 

with Xeroderma pigmentosum, and 5 unaffected individuals from the Coriell Cell Repository 

and the Progeria Research Foundation cell and tissue bank. Target enrichment and sequencing 

were performed for 44 genes including genes involved in cell cycle regulation, DNA repair, 

telomere maintenance, and the nuclear lamina on a sample from the initial population 

(approximately two million cells) from each donor. Using a cell sorter, two hundred cells from 

this initial population were randomly sampled, creating a post-bottleneck population. This 

sample was re-plated and allowed to grow through approximately sixteen doublings. Target 

enrichment and sequencing was repeated for the 44 genes on a sample from the final population 

(approximately 13.6 million cells) for each donor. In both sequencing procedures, sequence 

capture was done to enrich for loci totaling 290 kb of sequence with a mean read depth between 

600-2800 bp. After sequencing, there were 1489 mutations across individuals identified as 

somatic based on minor allele frequency. Of these mutations, 58 differed in allele frequency in 

the initial and final population within a participant’s sample (based on collaborator’s lofreq 

analysis). The changes in minor allele frequency from initial to final population in these 58 

variants are shown in Figure 3.3. 
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Figure 3.3 Changes in Minor Allele Frequency from Initial to Final Population 

Sites are sorted by initial allele frequency, with the direction of change indicated by the arrow. 

3.4.2 Cell Growth Methods 

We aim to test the null hypothesis of the change in minor allele frequency of a site 

between the initial to the final population under a model of genetic drift acting alone. To this end, 

we calculate a p-value: the probability, given the initial minor allele count, of observing a final minor 

allele count at least as extreme as that observed in the data, under the null model of basic genetic 

drift.  Using the notation of the mathematical model described above, we calculate the 

probability of the observed final allele count 𝑘𝐹
𝑜𝑏𝑠 given 𝑛𝑏, 𝑛𝐹 , 𝑘𝐼

𝑜𝑏𝑠, and 𝑛𝐼 as in (3.9): 

𝑃(𝑘𝐹
𝑜𝑏𝑠|𝑛𝑏 , 𝑛𝐹 , 𝑘𝐼

𝑜𝑏𝑠, 𝑛𝐼). To test the null hypothesis of genetic drift alone, we calculate the 

individual probabilities of observing each minor allele count at least as extreme as �̂�𝐹. For 

example, if the final minor allele count is greater than the initial minor allele count, indicating 
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the minor allele count has increased, we calculate each 𝑘𝐹
∗ ≥ 𝑘𝐹

𝑜𝑏𝑠. Summing over these 

probabilities, we obtain 𝑃(𝑘𝐹
∗ ≥ 𝑘𝐹

𝑜𝑏𝑠|𝑛0, 𝑛𝐹 , 𝑘𝐼
𝑜𝑏𝑠, 𝑛𝐼) = ∑ 𝑃( 𝑘𝐹

∗ |𝑛0, 𝑛𝐹 , 𝑘𝐼
𝑜𝑏𝑠, 𝑛𝐼)

 𝑘𝐹
∗=𝑛𝐹

 𝑘𝐹
∗=𝑘𝐹

𝑜𝑏𝑠 .  

Similarly, if the observed final minor allele count is less than the initial minor allele count, 

indicating the minor allele count has decreased, we calculate 𝑃( 𝑘𝐹
∗ ≤ 𝑘𝐹

𝑜𝑏𝑠|𝑛0, 𝑛𝐹 , 𝑘𝐼
𝑜𝑏𝑠, 𝑛𝐼) =

∑ 𝑃( 𝑘𝐹
∗ |𝑛0, 𝑛𝐹 , 𝑘𝐼

𝑜𝑏𝑠, 𝑛𝐼)
 𝑘𝐹
∗=�̂�𝐹

 𝑘𝐹
∗=0

. This formulation provides a closed-form equation to calculate a 

p-value: the probability of change in allele frequency at least as extreme as that observed, under 

the null hypothesis of genetic drift alone. Where this p-value is sufficiently small, we have 

evidence against this null hypothesis. Because there are 1489 originally detected somatic 

mutations that were then assessed with lofreq, we adjust for multiple testing by comparing each 

p-value to a Bonferroni corrected alpha (α=0.05/1489= 3.35 x 10
-5

). 

Where there is significant evidence against the null hypothesis of drift alone, we estimate 

𝑠, the selection coefficient of the variant. The selection coefficient is a measure of the relative 

fitness of individuals carrying the minor allele
145

. Individuals carrying the minor allele have an 

increased probability of reproducing by a factor of (1 + 𝑠). We construct a grid of possible 

values for 𝑠: (-1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.25, -0.2, -0.15, -0.1, -0.05, -0.01, 0.0, 

0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) based on the changes in minor 

allele count in the data set. We use an upper limit of 𝑠 = 1.0 (indicating very strong selection 

and increasing the probability of reproduction by a factor of 2) because a larger 𝑠 is unlikely 

when the observed final minor allele frequencies do not approach 1.0. We have additional points 

between -0.25 and 0.25 to increase precision where we anticipated the most likely estimates of 𝑠. 

For each possible value for 𝑠 in the grid, we calculate 𝐿(𝑠| 𝑛0, 𝑘𝐹
𝑜𝑏𝑠, 𝑛𝐹 , 𝑘𝐼

𝑜𝑏𝑠, 𝑛𝐼), the likelihood 

of this 𝑠 given the observed data. Maintaining the basic model above, we adjust the step-wise 
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probabilities in (3.2) such that individuals carrying the minor allele have an increased probability 

of being selected for replication of (1 + 𝑠). After normalization, the probability of 𝑘1 minor 

alleles in the next generation, given 𝑘𝑏 in the current population of size 𝑛𝑏 is: 

 

𝑃(𝑘1|𝑛𝑏 , 𝑘𝑏) =  

{
 
 

 
 
𝑛𝑏 − 𝑘𝑏
𝑛𝑏 + 𝑘𝑏𝑠

𝑖𝑓 𝑘1 = 𝑘𝑏

𝑘𝑏 + 𝑘𝑏𝑠

𝑛𝑏 + 𝑘𝑏𝑠
𝑖𝑓 𝑘1 = 𝑘𝑏 + 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 

 
 

 

(3.16) 

Under this formulation, the closed-form expression of (3.4) is no longer available. 

Therefore, to obtain Part B3 in equation (3.13), we apply Monte Carlo integration based on 

10,000 random walks using these step-wise probabilities from the post-bottleneck population 

size, 𝑛0 = 200, to the final population size, 𝑁𝐹. For each walk, we record the simulated final 

minor allele frequency, 𝐾𝐹, producing a probability distribution over 𝐾𝐹 to be used for Part B3. 

The rest of the model remains unchanged. The 𝑠 with the maximum likelihood across this grid is 

the maximum likelihood estimate (MLE) of the selection coefficient. In addition, we calculate 

the acceptance region of the MLE using the log-likelihood ratio test with a chi-square value of 

one degree of freedom. The grid values whose likelihoods are contained in this region make up 

the reported 95% confidence interval. 

3.4.3  Cell Growth Results 

For each of the 58 variants identified by lofreq, we assess the evidence against a null 

model of genetic drift. Twenty of the variants showed nominally significant departure from this 

null hypothesis, but only three of these variants showed significant evidence after correcting for 

multiple testing (p-value < 3.35 x 10
-5

) (Table 3.3,Table 3.4). All three of these significant 

variants increased in frequency from early to late passage. Two of the three variants were not 
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detected in the initial sequenced sample, thus likely having a very low initial allele frequency. 

The most significant p-value was for variant ID chr9:21974774:A, with a minor allele frequency 

change from 0 to 55.3% (Table 3.3). While they did not pass Bonferroni-corrected significant 

levels, ten of the twenty nominally significant variants were observed in the early passage 

sample but not in the final passage sample. Twelve of these twenty variants increase in minor 

allele frequency, while eight decrease. In these twenty variants, the total count size increased 

from early to late passage in seven variants and decreased in thirteen.  

For the three significant variants, we found the maximum likelihood estimate of the 

selection coefficient. All three of the variants have estimates of strong positive selection (s 

greater than 0.25) (Table 3.4). The variant with highest significant value has the strongest 

selection coefficient estimate of 0.5. For these variants, we also calculate the 95% confidence 

intervals of the selection coefficient. We observe these intervals are large, but they include 

contain only high values of positive selection.  
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Table 3.3 Assessing the Null Hypothesis of Genetic Drift 

Variant ID Number Initial Population 

Sample 

Final Population 

Sample 

P-Value 

Minor 

Allele 

Count 

Total 

Count 

Minor 

Allele 

Count 

Total 

Count 

chr9:21974774:A 0 725 156 282 3.87*10
-13

 

chr5:60169670:T 0 2168 122 705 3.02*10
-14

 

chr13:32914714:T 42 3122 642 2996 9.82*10
-39

 

chr5:1294984:T 29 331 0 195 2.84*10
-04

 

chr5:1253376:A 40 1267 0 1653 2.29*10
-03

 

chr5:1253377:A 43 1274 1 1641 3.41*10
-03

 

chr6:158613635:A 0 2694 48 3109 9.08*10
-03

 

chr2:47708066:A 50 1762 0 659 1.03*10
-02

 

chr11:108238380:T 0 2103 30 2013 1.23*10
-02

 

chr5:1272305:T 1 2180 20 1128 1.36*10
-02

 

chr10:69644914:C 0 1389 13 758 1.39*10
-02

 

chr5:1255344:C 0 895 45 2587 1.68*10
-02

 

chr9:100444492:G 0 2267 9 761 2.22*10
-02

 

chr11:108238298:A 0 2452 14 1671 3.40*10
-02

 

chr17:7577097:A 22 1423 0 1689 3.48*10
-02

 

chr10:50682121:C 0 1735 28 3218 3.85*10
-02

 

chr2:128047816:A 0 2894 20 3023 4.07*10
-02

 

chr12:21654214:A 37 1871 2 1799 4.13*10
-02

 

chr15:91260568:A 27 1188 0 393 4.24*10
-02

 

chr9:121929565:A 24 1782 0 1657 4.94*10
-02

 

chr13:49033845:T_2 0 1903 16 2335 5.01*10
-02

 

chr13:33591216:A 0 1303 12 1469 5.34*10
-02

 

chr13:49033845:T_1 0 1914 13 2022 5.39*10
-02

 

chr12:102795854:T 0 1840 12 2525 7.23*10-
02

 

chr9:122011379:A 38 2727 2 2892 7.76*10
-02

 

chr3:56213963:A 1 1355 17 1917 7.85*10
-02

 

chr19:2428438:A 19 1033 0 367 7.89*10
-02

 

chr13:49054511:T 2 2005 17 1928 7.96*10
-02

 

chr5:1266593:T 26 1418 1 616 9.20*10
-02

 

chr13:49033845:T_3 8 522 1 1006 9.52*10
-02

 

chr8:31004723:A 1 1343 18 2583 1.04*10
-01

 

chr6:158619968:T 0 969 9 1827 1.08*10
-01

 

chr4:120242868:A 10 1461 0 2472 1.11*10
-01

 

chr10:50747184:C 14 1733 0 1879 1.14*10
-01

 

chr15:99507532:T 2 2128 14 2335 1.17*10
-01

 

chr13:48921931:T 1 1777 10 2064 1.18*10
-01
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chr13:32921003:T 17 2940 0 2796 1.22*10
-01

 

chr10:50678713:A 26 2448 0 885 1.23*10
-01

 

chr14:56472467:T 21 1767 0 603 1.28*10
-01

 

chr9:122075467:A 22 1781 0 538 1.29*10
-01

 

chr17:73645363:A 16 1993 0 1533 1.33*10
-01

 

chr6:83526997:T 24 2334 1 1959 1.37*10
-01

 

chr13:49055813:A 22 2573 1 2907 1.46*10
-01

 

chr11:66611768:A 1 785 18 2354 1.50*10
-01

 

chr13:49055814:A 21 2560 1 2915 1.55*10
-01

 

chr19:45855602:A 15 1349 0 402 1.84*10
-01

 

chr5:1253380:T 12 2033 0 1458 1.97*10
-01

 

chr3:189507602:A 11 1748 1 3248 2.01*10
-01

 

chr3:189507601:A 11 1751 1 3243 2.02*10
-01

 

chr5:126113018:T 11 1302 0 623 2.06*10
-01

 

chr19:45855601:A 14 1148 0 269 2.10*10
-01

 

chr5:1271115:A 8 721 0 314 2.11*10
-01

 

chr5:1253379:T 11 2016 0 1428 2.16*10
-01

 

chr5:126113019:T 10 1309 0 623 2.32*10
-01

 

chr13:32910631:A 14 2040 0 670 2.55*10
-01

 

chr5:60169882:A 13 2613 1 3089 2.65*10
-01

 

chr12:102791138:A 11 2040 2 2652 3.39*10
-01

 

chr15:99501088:G 9 1586 1 475 4.92*10
-01

 

 

Table 3.4 Variants with Significant Evidence against the Null Hypothesis of Drift Alone and 

Corresponding Selection Coefficient Estimates 

Variant ID 

Number 

Initial 

Population 

Sample 

Final 

Population 

Sample 

P-Value MLE of 

Selection 

Coefficient 

95% 

Confidence 

Interval 

Minor 

Allele 

Count 

Total 

Count 

Minor 

Allele 

Count 

Total 

Count 

chr9:21974774:A 42 3122 642 2996 3.87*10
-13

 0.25 [0.2, 0.4] 

chr5:60169670:T 0 2168 122 705 3.02*10
-14

 0.3 [0.2, 0.6] 

chr13:32914714:T 0 725 156 282 9.82*10
-39

 0.5 [0.4, 0.8] 
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3.5 Conclusion 

In this chapter, we present a mathematical model for population bottlenecks followed by 

genetic drift and two applications: mtDNA transmission in humans and fibroblast cell growth. 

The first application, focused on the transmission of human mtDNA heteroplasmy across the entire 

mtDNA genome, is one of the largest mtDNA genome studies to date, and provides several important 

insights. We used the shifts in heteroplasmy minor allele frequency (MAF) from mothers to 

offspring to estimate the size of the bottleneck that occurs during the transmission of mtDNA 

genomes. The size of the bottleneck was estimated under four models: a constant size bottleneck 

model, in which each mtDNA genome is a segregating unit and the bottleneck size does not vary 

between individuals; a variable size bottleneck model, in which each mtDNA genome is a 

segregating unit and the bottleneck size is allowed to vary between individuals; a constant size 

nucleoid model, in which a nucleoid containing a variable number of homoplasmic mtDNA 

genomes is the segregating unit and the bottleneck size does not vary between individuals; and a 

variable size nucleoid model, in which a nucleoid containing a variable number of homoplasmic 

mtDNA genomes is the segregating unit and the bottleneck size is allowed to vary between 

individuals. The best fitting model (as determined by AIC values) was a variable size bottleneck, 

with an estimated mean of 9 individual mtDNA genomes transmitted 4 from mothers to 

offspring. 

This number is smaller than a recent estimate of 30-35 mtDNA genomes transmitted, 

based on 39 mother-offspring pairs
135

. Although this previous study assumed a constant-size 

bottleneck model, our estimate for a similar constant-size bottleneck model is also smaller, about 

8 mtDNA genomes transmitted. The reason for this discrepancy is most likely because we do not 

assume that the observed minor allele frequency in the child is identical to the minor allele 
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frequency at transmission (immediately after the bottleneck). Instead, we model the replication 

process from the bottleneck to the actual mtDNA population in the child, thereby allowing for 

genetic drift during the replication process. Doing so allows for substantial changes in MAF 

during the replication process, but such changes will only be substantial if the bottleneck size is 

small. Incorporating drift in this way has two consequences: first, the same bottleneck model can 

be consistent with the few variants in the dataset that have drastic changes in allele frequency 

and with the large set of variants in the dataset that show a smaller change. Second, small MAF 

in the offspring do not require very large bottleneck sizes. Consider that without a drift model, 

the smallest nonzero allele frequency possible is 1/n, where n is the bottleneck size. Hence 

without modeling drift, all descendants with a very low MAF provide strong evidence for a large 

bottleneck size. However, by including drift, the final MAF in the offspring can be substantially 

smaller than the frequency at the bottleneck. Because drift can only have substantial effects if the 

bottleneck size is small, this explains the estimate of a relatively small number of transmitted 

mtDNA genomes. 

A variable-size bottleneck with each mtDNA genome as a segregating 1 unit fit the data 

better than models involving nucleoids. However, this is not necessarily evidence against 

nucleoids, as we assumed an average of 7.5 mtDNA genomes per nucleoid, in accordance with 

some observations
139; 140; 142

. If instead the number of mtDNA genomes per nucleoid is smaller, 

then the results based on nucleoids will approach the results based on mtDNA genomes as 

segregating units; in the limit, if each nucleoid contains exactly one mtDNA genome, as 

suggested by some studies
146

 , then both models will give identical results. Our results therefore 

argue against the existence of nucleoids with several mtDNA genomes, but not necessarily 

against nucleoids with smaller numbers of mtDNA genomes. The most important conclusion is 
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that the size of the bottleneck varies among individuals, whereas all previous attempts to model 

the size of the bottleneck have assumed that it is constant among individuals. Identifying the 

factors that influence this between-individual variation in bottleneck size would be of great 

interest and might have consequences for understanding the transmission of mtDNA-related 

diseases. 

One limitation of this approach is that we are using the MAF observed in the mother’s 

blood several years after conception as the estimate for the MAF in the egg at the time of 

conception. In the absence of data on heteroplasmy in human eggs this limitation is unavoidable, 

although one way to improve the estimate would be to utilize heteroplasmy data from multiple 

tissues, as was done recently elsewhere
135

. To further investigate this potential limitation, a 

previous study of heteroplasmy variation across different tissues
147

 calculated the correlation in 

MAF at heteroplasmic positions in blood and ovarian tissue from the same individual. There 

were 52 heteroplasmies with MAF>0.02 detected in either blood or ovarian tissue (or both) in 

individuals with data from both tissues, and the MAF in blood exhibits a modest but nonetheless 

significant correlation with that in ovarian tissue (Pearson’s correlation = 0.62, p<0.0001). This 

would suggest that the MAF in blood is a reasonable proxy for the MAF in ovarian tissue, 

although data on heteroplasmy in human eggs would still be desirable. A significant correlation 

between the mother’s age at conception and the number of heteroplasmies detected in the 

offspring was reported previously
135

. However, there is no such correlation in the GoNL data 

(Pearson’s rho = -0.03, p =0.65), even though the range of mother’s ages at conception is similar 

between the two studies (range = 18 – 44). The reason for this difference is unclear and further 

studies are warranted. 
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In the second application, we explore somatic mutations that exist at low frequencies in 

tissues of healthy individuals or individuals with premature aging conditions. Applying a 

mathematical model, we calculate the probability of observing the change in allele frequency 

from the initial to final population under the null hypothesis of genetic drift acting alone. We 

find three cases where there is significant evidence to reject this null hypothesis. The most 

striking significant evidence against the null was observed for the variant chr9:21974774, a 

mutation in the CDKN2A gene, detected in the fibroblast cells from an XPA patient. This 

mutation is located in a CpG dinucleotide within a CpG island. These islands are mutational 

hotspots, with fifteen times the mutation rate observed as other sites
148; 149

. This mutation was 

previously identified in liver carcinoma and suggested to be one of the CDKN2A inactivation 

mechanisms
149; 150

. The mutation is also within the binding site of several transcription factors, 

including EZH2. EZH2 is a known inhibitor of the INK4A-ARF pathway, involved in beta-cell 

regulation and cellular senescence
151; 152

.  

The cell populations of this XPA individual also carried another mutation, 

chr5:60169670, located in the 3’UTR of ERCC8. This somatic mutation also showed significant 

evidence against the null hypothesis of genetic drift. The ERCC8 mutation may have a possible 

functional effect based on its location in regions of two microRNA, though this may not explain 

the extreme shift in allele frequency. The occurrence of these two mutations in the same 

individual suggest that while the CDKN2A mutation could drive the clonal expansion of cells 

that have this mutation, with the ERCC8 mutation as a passenger mutation. The ERCC8 mutation 

does not appear to have a strong negative effect on the cell and, in agreement with the lower 

allele frequency in the final population of cells compared to the allele frequency of the CDKN2A 

mutation, could be secondary to the CDKN2A mutation.  
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The third mutation, that indicated by its change in allele frequencies to provide a 

selective advantage, was chr13:32914714:T, located in BRCA2. This mutation was found in a 

sample from a healthy subject of old age (85 years old). Analysis by collaborators using the 

Human Splicing Finder and Alamut splicing tools for the functional significance of the BRCA2 

mutation showed that it could potentially cause aberrant splicing of the C-terminal region. The 

region is essential for BRCA2 function and its interaction with RAD51
153

. Even in the case of 

loss of BRCA2 function, it is not expected that this mutation alone to provide proliferative 

advantage to its cells. This mutation, however, could result in increased genomic instability in its 

cells due to a dysfunctional mechanism of homologous recombination of double-strand breaks. It 

is also possible that this mutation is a passenger for a variant that was not observed in the dataset. 

One criticism of this model is the assumption of no deaths during the period of regrowth. 

While it is possible some cells are lost during the regrowth period, we believe this to be a 

minimal amount. Further, if deaths are occurring at random, our results should be largely 

unaffected. In the case were cells are dying do to a selection pressure, this would be captured in 

the evidence against the null hypothesis of genetic drift alone. Therefore, the evidence for the 

three positively selected variants would be maintained. For future analyses, where deaths play a 

larger role in the evolution of a population, the probabilities of regrowth could be easily adjusted. 

Additionally, the initial and final cell populations for each variant are derived from a sample 

form a single individual. While this is an interesting first step, to make broader claims of the 

selective pressures of these variants, it may be useful to see if similar trends are seen in these 

variants when the same procedure is applied to samples from many individuals. Another possible 

extension could be to manipulate the environmental pressures of the cells, applying this model to 

assess departures from genetic drift alone under these changes. Finally, while this procedure 
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identifies signals of selection, it is not clear if the variants are the targets themselves or hitch-

hiking artifacts. Functional analyses on these variants and variants in the region could clarify 

these conclusions. 

In this chapter, we present a flexible, probability-based approach to model population 

bottlenecks and genetic drifts, including sequencing and sampling error. With two applications of 

the model, we show the utility and accessibility of the approach. We provide insight into the 

mechanisms of mtDNA transmission as well as the functional importance of certain variants 

during cell growth. 
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: Detecting Positive Selection Signals in Autoimmune CHAPTER 4

Disease Associated Loci with Whole Genome Sequencing Data 

4.1 Introduction 

Positive selection is the process by which advantageous genetic variants increase in 

frequency in a population due to improved fitness and reproduction. Also called “Darwinian 

selection” or “natural selection”, selection was the driving force in Darwin’s Theory of 

Evolution, creating the vast amounts of genetic variation within species and the divergence 

between species
154

. In contrast, Kimura’s Neutral Theory of Molecular Evolution states that the 

majority of this variation is driven by the random process of genetic drift and that most alleles 

are selectively neutral
155

. One motivating factor for studying positive selection in modern 

genetics is to distinguish between these theories of evolutionary origins and identify what 

relative importance drift and selection have in genetic and phenotypic diversity among humans. 

Additionally, identifying genetic regions that are under selection can provide important 

functional information of the genetic variants. We are particularly motivated by understanding 

the underlying genetic model of disease, therefore providing biological insights and potentially 

leading to future medical interventions.  

In this study, we focus on identifying positive selection in autoimmune disease associated 

loci. Autoimmune diseases are defined by abnormally low activity or over-activity of the 

immune system. The immune systems in individuals with these diseases are reacting against 

normally-occurring antigens in the body as if these antigens were foreign. Collectively, the 
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diseases are a leading cause of death in women in the United States and are known to have a 

negative effect on reproductive fitness
54; 156

. However, the diseases remain prevalent, with 

epidemiological studies estimating autoimmune diseases collectively affect at least 5% of 

individuals worldwide
53

. The diseases included in this category, such as Celiac disease, 

rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, type 1 diabetes, and 

inflammatory bowel disease, present a wide range of symptoms and affect a variety of organ 

systems. Though phenotypically diverse, the diseases share multiple associated loci. We focus on 

these loci as they may contribute to a broader, shared immune response and implicate common 

pathways under selection.  

The detrimental effect on fitness paired with the prevalence of autoimmune diseases 

presents an evolutionary conundrum. The thrifty gene hypothesis is one attempt at explaining 

this occurrence with positive selection. This hypothesis states that variants in the present day that 

appear to confer detrimental attributes persist in the population because they previously offered 

some other evolutionary advantage. James V. Neel first introduced this hypothesis in 1962 to 

explain the persistence of Type 2 diabetes, suggesting its driving variants were selected during 

times of food shortages and became detrimental with the ease of modern access to nutrition
157

.   

A similar concept emerged later in the field of epidemiology. Incidence of autoimmune diseases 

has increased in the past three decades, particularly for inflammatory bowel disease, Type 1 

diabetes, and multiple sclerosis
158

. At the same time, epidemiological studies show a decrease in 

infectious burden with industrialization
158; 159

. In 1989, Strachan suggested a link may exist 

between these discordant trends, coining the term ‘the hygiene hypothesis’
160

. Autoimmune 

disease associated loci could be maintained in the population because they were previously 

necessary to offer protection from infectious diseases or foreign pathogens. These past selective 
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events create distinct signals in present day human genetic variation. Therefore, to investigate the 

‘hygiene hypothesis’, we will conduct a comprehensive search for these signals in autoimmune 

disease associated loci. 

A few studies have previously investigated the ‘hygiene hypothesis’ for autoimmune 

diseases. For example, human leukocyte antigen (HLA) genes, which are highly associated with 

autoimmune diseases, are well-studied and show strong evidence of balancing selection
161-164

. 

Existing studies on non-HLA autoimmune-associated genes driven by pathogen selection are 

more limited. These studies primarily use a combination of methods from three categories with 

genome wide association data. The first category identifies regions under balancing selection 

with correlations between pathogen richness and genetic variability
165; 166

. Fumagalli et al found 

several risk alleles in interleukin genes to be significantly correlated with micropathogen 

richness
167

. The second approach relies on comparing haplotype length using the integrated 

haplotype score (iHS)
54; 166; 168-170

. This method aims to identify alleles that have swept to 

intermediate frequencies by comparing the width of linkage disequilibrium surrounding a 

derived allele to that of the ancestral allele in the same position
170

. Using this approach followed 

by functional analysis, Zhernakova et al identified evidence of positive selection in the SH2B3 

locus, a primary risk variant for Celiac disease
169

. The final approach compares allele 

frequencies between populations. Using population differentiation measures, such as FST, these 

studies aim to identify variants affected by different selection pressures
54; 167; 168

. This previous 

research is primarily restricted to genome-wide association studies (GWAS). There are several 

drawbacks to utilizing this common variant genotyping data for scans of selection including the 

presence of ascertainment bias, in which the nonrandom sampling of single nucleotide 
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polymorphisms on an array distorts measures of human diversity
171

. In the case of haplotype-

based tests, the power also relies on the phasing accuracy in the GWAS
170

.     

To our knowledge, this is the first study searching for evidence of selection in a collective 

gene set using variants discovered by large-scale whole genome sequencing.  Sequencing, 

compared to GWAS, can better identify small regions of linkage disequilibrium to understand 

complicated signals of selection, as shown in the hemoglobin beta gene
172; 173

. Furthermore, 

whole genome sequencing studies, rather than sequencing portions of the genome,  have the 

advantage of obtaining a full picture of variation in an individual’s genome. Where certain 

population histories can confound signals of selection in the genome, whole genome sequencing 

circumvents this issue. Because population history affects the entire genome, whole genome 

sequencing provides an internal control. We will show we can adjust for these effects by 

comparing the loci of interest to an empirical distribution of the genome-wide statistics. 

Moreover, large scale whole genome sequencing studies increase access to rare variation. The 

clear majority of genetic variation within genes is rare, arose recently, and is highly population 

specific
10; 11

. Rare variants provide information on the very recent past and may be able to 

capture signals of recent positive selection that were previously unattainable. We aim to exploit 

the power of whole genome sequencing in this scan for selection in autoimmune loci. 

To investigate positive selection in autoimmune loci collectively, we will apply two site 

frequency spectrum (SFS) tests. These two tests are based on theoretical properties of the 

frequency distribution of variants in a sample. Under the Neutral Theory of Kimura, the fate of 

mutations under neutral evolution is determined entirely by random genetic drift
112; 174

. In the 

presence of selection, however, the site frequency spectrum does not follow these theoretical 

expectations
112

. For instance, when a new, strongly selected advantageous mutation quickly 
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increases in frequency, the variation in the neighboring (“linked”) regions is reduced, limiting 

the number of intermediate frequency alleles
111; 175

. At the time close to fixation, the site 

frequency spectrum is characterized by an abundance of rare variants, which arose recently, and 

high-frequency alleles, which “hitchhiked” during the process of selection
111; 175; 176

. Therefore, 

examining the site frequency spectrum can identify potential signals of selection.  

However, the site frequency spectrum is also affected by population forces other than 

selection. For example, exponential population growth creates an excess of rare variants in 

spectrum
29; 177; 178

. Also, previous population bottlenecks and the presence of population structure 

can affect the spectrum, causing an excess of intermediate frequency alleles
29; 177; 179

. In present 

day humans, it is therefore difficult to tease apart true selection signals from these effects. In 

applying site frequency spectrum tests, we must be able to account for these confounding signals. 

In this study, we focus on two site frequency spectrum tests: Tajima’s D and Fay and 

Wu’s H. Each test is calculated by contrasting different estimators of the scaled mutation rate. 

The estimators have varying sensitivities to the excess or depletion of low, intermediate, and 

high frequency alleles
175

. Therefore, obtaining the difference between estimators provides 

information on which parts of the spectrum are divergent from neutrality and which population 

forces are most likely responsible. Significant deviations from zero in the differences indicate the 

standard neutral model should be rejected
29; 111

. Tajima’s D
180

 measures departures from neutral 

evolution that are specifically reflected in the difference between low-frequency and 

intermediate frequency alleles
175

. Fay and Wu’s H
181

 measures departures from neutral evolution 

that are specifically reflected in the difference between high-frequency and intermediate 

frequency alleles
175

. Tajima’s D is particularly sensitive to exponential growth, which causes an 

abundance of rare alleles. Fay and Wu’s H does not have this issue; however, it does require 
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ancestral information to identify derived alleles. Using both tests can help capture information 

missed or confounded by other factors in one test alone
175

. 

We apply these tests to the new context of large-scale whole genome sequencing. While 

we emphasized the benefits of using this data type, there are several issues remaining to be 

investigated in applying SFS methods to whole-genome data. Applying this approach to 

previously identified genomic regions of positive selection, we assess its utility in identifying 

selection signals for a collective gene set. We examine the optimal window size in which to 

calculate the statistics when constructing a distribution, the relative similarity of genic vs. non-

genic windows, and the appropriate way to account for dependency in adjacent windows. After 

establishing these parameters, we explore signals of selection in 39 autoimmune loci. 

4.2 Data 

The data used for this project comes from the Bipolar Research in Deep Genome and 

Epigenome Sequencing (BRIDGES) Consortium. This is a multi-center case-control study aimed 

at identifying the genetic contributions to bipolar disorder. The dataset includes whole genome 

sequencing for 3675 individuals of European descent with an average coverage of 9.2x. There 

are 68,020,887 biallelic SNPs in the dataset. Using the folded site frequency spectrum, most 

variation is rare: 57.36% of SNPs are singletons (the minor allele is observed only once) and 

9.81% of SNPs are doubletons (Figure 4.1). Of these polymorphisms, we can infer ancestral 

information for 93.84%, allowing for their use in Fay and Wu’s H calculations.  

We consider three sets of genes for this analysis. We begin by focusing on identifying 

selection signals in genes previously identified as positively selected. Second, we apply our 

method to a collection of genes previously implicated in two or more autoimmune diseases. 

Finally, we study six autoimmune disease-specific gene sets. We analyze gene sets individually 
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for six autoimmune diseases independently: Celiac disease (CD), rheumatoid arthritis (RA), 

inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE), Ankylosing spondylitis 

(AS), and type 1 diabetes (T1D). 

 
Figure 4.1 Folded Site Frequency Spectrum in BRIDGES Data 

We show the folded site frequency spectrum for biallelic SNPs with minor allele frequency less 

than 0.05%. 

4.2.1 Previously Identified Positively Selected Genes  

To determine the optimal parameters for applying the SFS tests to whole genome 

sequencing data, we identified a subset of genes previously identified as positively selected from 

past studies using an in-depth literature search. Each gene we included in this positively selected 

gene (PSG) list has at least two studies identifying a signal of positive selection and no existing 
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conflicting studies (Table 4.1). The genes included are LCT, LYZ, MCPH1, CYP3A5, HFE, 

BRCA1, and ACKR1 (Duffy blood group). Using the empirical distribution from the whole 

genome sequencing data, we assessed our ability to identify selection signals with site frequency 

spectrum tests in this collection of genes under windows of size 1 kb, 10 kb, and 100 kb. 

Table 4.1 Previously Identified Positively Selected Genes 
Gene Name Gene Location Brief Description Supporting Literature 

LCT 2q21.3 Involved in lactase 

metabolism 

Bersaglieri et al, 2004
182

; Liu et 

al, 2013
183

; Schlebusch et al
184

, 

2013; Hollox et al, 2001
185

 

LYZ 12q15 Encodes an antimicrobial 

agent found in human milk 

and organs  

Messier and Stewart, 1997
186

; 

Yang et al, 1998
187

 

MCPH1 8p23.1 Involved in regulation of 

chromosome condensation 

and DNA damage response 

Pulvers et al, 2015
188

; Shi et al, 

2013
189

; McGown et al, 2011
190

 

 

CYP3A5 7q33.1 Involved in liver enzymes 

and metabolism of drugs 

Bans et al, 2013
191

; Thompson 

et al, 2004
192

; Chen et al, 

2009
193

 

HFE 6p22.2 Involved in iron absorption Toomajian et al, 2003
194

; 

Toomajian and Kreitman, 

2002
195

; Ajioka et al, 1997
196

, 

Thomas et al 1998
197

 

BRCA1 17q21.31 Breast cancer gene 1, 

critical for DNA repair, cell 

cycle, and genomic stability 

Huttley et al, 2000
198

; Lou et al, 

2014
199

 

ACKR1 1q23.2 Duffy blood group Hamblin et al, 2000
200

, 

Hamblin et al, 2002
201

 

 

4.2.2 Autoimmune Genes 

For this part of the analysis, we consider a collection of 39 non-HLA loci previously 

implicated in two or more autoimmune diseases.  While HLA genes contribute the strongest 

signals of association with autoimmune diseases, the strength of these associations and the 

extensive LD in the MHC region make it difficult to identify independent associations from 

common haplotypes. Therefore, we focus on the non-MHC pathways that also show strong 

associations in immune mediated diseases.  
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Though phenotypically diverse, autoimmune diseases share multiple associated loci and 

are believed to have common etiopathogenic factors
202

. We focus on these loci as they may 

contribute to a broader, shared immune response and implicate common pathways under 

selection. Parkes et al recently performed a systematic analysis of autoimmune loci to identify 

shared susceptibility loci based on individual studies in the ImmunoBase website
202

. In this 

analysis, we use this list of genes associated with two or more autoimmune diseases. These gene 

groups and pathways include: IL-23 and TH1, NF-κB, aminopeptidase, IL-2 and IL-21, IRF 

family, T-cell co-stimulation, PTPN2 and PTPN22, ubiquitylation, and viral response (Table 

4.2)
202

. 

  



99 

 

Table 4.2 Non-HLA Genes Used in Analysis  

An abbreviated table from Parkes et al showing genes and pathways implicated in two or more 

autoimmune diseases
202

. We abbreviate inflammatory bowel disease (IBD), type 1 diabetes 

(T1D), and systemic lupus erythematosus (SLE). Parkes et al identified genes using individual 

studies in the ImmunoBase website. 

Pathway or Gene Group Positional candidate genes 

shared by 2 or more diseases 

Diseases associated with this pathway or 

one or more gene 

IL-23 and TH1  IL23R (1p31), IL12B (5q33), 

IL12A (3q25), TYK2 (19p13), 

JAK2 (9p24), STAT3 (17q21), 

STAT4 (2q32), IL27 (16p11) and 

CCR6 (6q27) 
 

Ankylosing spondylitis, IBD, psoriasis, 

coeliac disease, rheumatoid arthritis, T1D, 

SLE, and multiple sclerosis 

NF-κB REL (2p16), TNFAIP3 (6q23), 

NFKB1 (4q24) and TNIP1 

(5q32) 

IBD, psoriasis, coeliac disease, rheumatoid 

arthritis, T1D, SLE, and multiple sclerosis  

Aminopeptidase  ERAP1 (5q15) and ERAP2 

(5q15) 
 

Ankylosing spondylitis, IBD, and psoriasis 

IL-2 and IL-21  IL2, IL21 (4q26), IL2RA (10p15) 

and IL2RB (22q13) 
 

IBD, coeliac disease, rheumatoid arthritis, 

T1D, and multiple sclerosis 

IRF family IRF4 (6p25), IRF5 (7q32), IRF7 

(11p15) and IRF8 (16q24) 

IBD, psoriasis, coeliac disease, rheumatoid 

arthritis, SLE, and multiple sclerosis  

T-cell co-stimulation CD40 (20q12), CD28, CTLA4, 

ICOS (2q33) and ICOSLG 

(21q22) 

Ankylosing spondylitis, IBD, coeliac 

disease, rheumatoid arthritis, and multiple 

sclerosis  

PTPN2 and PTPN22 PTPN2 (18p11) and PTPN22 

(1p13) 

IBD, coeliac disease, rheumatoid arthritis, 

T1D, and SLE  

Ubiquitylation  UBE2L3 (22q11) 
 

 Ankylosing spondylitis, IBD, psoriasis, 

coeliac disease, rheumatoid arthritis, SLE 

and multiple sclerosis 
 

Viral Response IFIH1 (2q24)  IBD, psoriasis, T1D and SLE 
 

Other IL10 (1q32) IBD, T1D and SLE 

 IL18RAP (2q12) IBD, coeliac disease and T1D 

 FCGR2A (1q23) Ankylosing spondylitis, IBD (ulcerative 

colitis), rheumatoid arthritis, T1D, SLE and 

multiple sclerosis 

 PTGER4 (5p13) Ankylosing spondylitis, IBD and multiple 

sclerosis 

 BACH2 (6q15) Ankylosing spondylitis, IBD, coeliac 

disease, T1D and multiple sclerosis 

 CARD9 (9q34) Ankylosing spondylitis and IBD 

 ZMIZ1 (10q22) IBD, psoriasis, coeliac disease and multiple 

sclerosis 

 YDJC (22q11) IBD, psoriasis, coeliac disease, rheumatoid 

arthritis and SLE 

 TAGAP (6q25) IBD, psoriasis, coeliac disease, rheumatoid 

arthritis, T1D and multiple sclerosis 

 PRDM1 (6q21) IBD, rheumatoid arthritis and SLE 
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4.2.3 Disease-Specific Autoimmune Genes 

In addition to studying these shared associated genes, we search for signals of selection 

that may be specific to one disease. We analyze gene sets individually for six autoimmune 

diseases independently: Celiac disease (CD), rheumatoid arthritis (RA), inflammatory bowel 

disease (IBD), systemic lupus erythematosus (SLE), Ankylosing spondylitis (AS), and type 1 

diabetes (T1D). We use the Phenotype-Genotype Integrator (PheGenI) website 

(https://www.ncbi.nlm.nih.gov/gap/phegeni/) from the National Center for Biotechnology 

Information (NCBI), which combines NHGRI genome-wide association study (GWAS) catalog 

data with several databases housed at NCBI, including Gene, dbGaP, OMIM, GTEx and dbSNP 

to list genes associated with a trait. For each of the six diseases studied here, we include genes 

identified as associated with a p-value of less than 10
-8

.  

4.3 Methods 

4.3.1 Site Frequency Spectrum Statistics 

We calculate two different site frequency spectrum statistics to determine if a sequence 

evolved through neutral process or if there is evidence of some non-neutral process, such as 

selection. Each of these statistics relies on contrasting estimators of the scaled mutation rate, 𝜃. 

For human diploid populations, 𝜃 = 4𝑁𝑒𝜇, where 𝑁𝑒 is the effective population size and 𝜇 is the 

average number of new neutral mutations in each generation
112

. Under the Neutral Theory of 

Kimura, the fate of mutations that are strictly selectively neutral is determined entirely by 

random genetic drift
112; 174

. On the other hand, mutations that are under selection pressure are 

more likely to rapidly increase or decrease in population frequency, affecting the estimation of 

the neutral mutation rate
112

.  The different estimators of 𝜃 have varying sensitivities to the excess 

or depletion of low, intermediate, and high frequency alleles. Each of these estimators is 

https://www.ncbi.nlm.nih.gov/gap/phegeni/
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unbiased  under neutrality (no selection, no population subdivision, and no changes in effective 

population size over time), meaning the difference between estimators is expected to be zero. 

Significant deviations from zero indicate the standard neutral model should be rejected
29; 111

. 

Since population genetics forces affect parts of the site frequency spectrum differently, the 

specific estimators that differ can be informative of which forces are acting
175

.  

We use three different estimators of mutation rate, 𝜃, in these site frequency spectrum 

statistics, each unbiased under neutrality. Fu et al showed that 𝐸(𝜀𝑖) =
𝜃

𝑖
 for 𝑖 = 1,… , 𝑛 − 1, 

where 𝜀𝑖 is the number of times the derived allele is observed 𝑖 times in the sample of size 𝑛 
175; 

203
. We refer to “derived” alleles as the mutant allele based on the ancestral state determined by 

an outgroup, in this case the chimpanzee. Using this framework, there are many possible 

unbiased estimators of 𝜃 
175; 203

. Each unbiased estimator we consider can be written as a linear 

function of 𝜀𝑖, while weighting different frequency classes
175

. The first estimator, Tajima’s 

estimator, is calculated as �̂� =
2

𝑛(𝑛−1)
∑ 𝑖(𝑛 − 𝑖)𝜀𝑖
𝑛−1
𝑖=1  

175
. This weighting of 𝜀𝑖 makes Tajima’s 

estimator particularly sensitive to an excess or depletion of intermediate frequency alleles
175

. 

More frequently, Tajima’s estimator, �̂�, is written as 
2

𝑛(𝑛−1)
∑ 𝜋𝑖𝑗𝑖<𝑗 , with 𝜋𝑖𝑗 the pairwise 

difference in sequence 𝑖 and 𝑗 52
. This has the convenient interpretation of the average number of 

pairwise differences in a sample and does not require knowledge of the ancestral state
29; 111

. The 

second estimator of mutation rate, the Watterson estimator, is calculated as 𝜃𝑊 =
 1

𝑎𝑛
∑ 𝜀𝑖
𝑛−1
𝑖=1  

where 𝑎𝑛 = ∑
1

𝑗

𝑛−1
𝑗=1  

175; 176
. This estimator is particularly sensitive to changes in the number of 

low frequency alleles
175

. The Watterson estimator is often written as 𝜃𝑊 =  
𝑆𝑛

𝑎𝑛
 with n the sample 

size, and 𝑆𝑛 the observed number of mutations in the sample
29; 111; 175

. In this form, ancestral 
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information for the allele is not required. The third estimator, the H estimator, is calculated as 

𝜃𝐻 =  ∑
2𝜀𝑖𝑖

2

𝑛(𝑛−1)
𝑛−1
𝑖=1  

175; 176
. The weighting of 𝜀𝑖 in this estimator makes  it sensitive to an excess of 

high frequency derived alleles
175

. This estimator requires ancestral information for the alleles. 

These three estimators are contrasted in the two site frequency spectrum statistics focused on in 

this study. 

The first statistic, Tajima’s D, shown in equation (4.1), measures the normalized 

difference between �̂� and 𝜃𝑊 
29; 111; 180

.  Significant deviations from zero for this statistic indicate 

the basic neutral model does not capture the variation in the data, specifically reflecting a change 

in the number of low-frequency and intermediate-frequency alleles
111; 177

. After strong selection 

in the population, most of the tightly linked neutral sites on the haplotypes in the region of the 

selected variant should be identical, causing a decrease in intermediate frequency variants
177; 179; 

204
. Of the mutations that exist in these haplotypes, they arose recently, meaning they are rare in 

the population. Thus, there will be elevated levels of low frequency alleles
204

. Applying this 

intuition to equation (4.1), we expect D to be negative in the case of positive selection
177; 179

. 

Negative values of D can also arise from population growth or background selection, which 

create an excess of rare variants
29; 177; 178

. Therefore, it is difficult to discern which force is the 

cause of the negative Tajima’s D. Positive D values can arise from population bottlenecks, 

population structure, or balancing selection, each of these maintaining an excess of intermediate 

frequency alleles in the population
29; 177; 179

. 

 
𝐷 =

�̂� − 𝜃𝑊

√𝑉𝑎�̂�(�̂� − 𝜃𝑊)

 
(4.1) 
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The second statistic, Fay and Wu’s H shown in equation (4.2), measures the normalized 

difference between  �̂� and 𝜃𝐻 
175; 176

. As in Tajima’s D, this difference is expected to be zero 

under neutral evolution. Deviations from zero indicate departures from neutrality that are 

specifically reflected in the difference between high-frequency and intermediate-frequency 

alleles
175; 177

. The excess of high-frequency derived alleles is a hallmark of strong positive 

selection, where under rapid positive selection, the variant will increase in frequency
175

. Tightly 

linked regions will also be “swept” to higher frequencies in a process called hitchhiking. High-

frequency variants are particularly useful because very few are expected under neutrality
175; 176

. 

Applying this intuition to (4.2), positive H values indicate a deficiency of high frequency 

variants and a negative H indicates an excess of high-frequency alleles. We expect H to be 

negative in the case of positive selection. Unlike Tajima’s D, Fay and Wu’s H is not affected by 

an excess of rare variants, meaning it can be distinguished from the effects of population growth 

or background selection
176; 178

. However, Fay and Wu’s H has the disadvantage that it requires an 

outgroup to identify derived alleles
176

. This information is not always readily available, reducing 

the number of regions that can be studied with this method. Furthermore, ancestral alleles are 

misidentified will result in falsely extreme values of Fay and Wu’s H. For these reasons, we will 

use both statistics in our analyses here.  

 
𝐻 =

�̂� − 𝜃𝐻

√𝑉𝑎�̂�(�̂� − 𝜃𝐻)

 
(4.2)

  

4.3.2 Empirical Distributions 

In several tests for positive selection, population effects such as exponential growth and 

background selection can confound SFS statistics.  Therefore, it is often unclear how to assess 

significance for a test statistic. To alleviate this problem, we calculate these statistics in 



104 

 

uniformly-sized non-overlapping windows across the genome. For each analysis, we use three 

different window sizes: 1,000, 10,000, and 100,000 base pairs. For each window size, we 

construct an empirical distribution of these statistics from the set of windows across the genome. 

We then compare the windows that overlap with our genes of interest to this distribution. We 

expect that windows that have selected genic content will exist at the extremes of the genome-

wide empirical distribution. We are particularly interested in window that have some genic 

contents as these could be immediately informative of the function in specific pathways. We 

obtain a p-value for these windows directly from the corresponding quantile in the empirical 

distribution. We apply a Bonferroni correction to account for multiple testing when assessing 

significance of these p-values. 

4.3.3 Genic vs. Non-Genic Window Distributions 

The windows across the genome fall into two categories: “genic”, if the window’s base-

pair coordinates overlap with a known gene, and “non-genic” otherwise. We are interested in if 

the empirical distribution of the site frequency spectrum statistics of genic windows differs from 

that of non-genic windows or all windows. This could provide insight into the differing effects of 

selection on genes and non-genes. To explore this question, we categorize genic windows using 

Ensembl gene annotation, defined by the outermost transcript start and end coordinates of the 

gene
205

. For this analysis, we focus specifically on the protein-coding genes based on their 

immediate functional impact as targets of selection. We construct empirical distributions for two 

different datasets: genic windows and all windows across the genome. We calculate and compare 

summary statistics for each distribution (mean, median, minimum, maximum).  

Due to the non-normality of the distributions (each Shapiro-Wilkes and Anderson-

Darling tests p-value <0.001), we use the non-parametric Kolmogorov-Smirnov test (K-S test) to 
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formally compare the distributions. The two-sample K-S test measures the probability that a 

sample dataset is drawn from the same underlying population as a second sample dataset. The 

test statistic, D, is defined as the greatest distance between the empirical distribution functions of 

the two samples
206

. The K-S test requires an assumption of independence in the datasets. This 

assumption is violated due to linkage disequilibrium throughout the genome, creating a 

dependency between the neighboring windows for each dataset. To identify the extent of this 

dependency, we calculate the autocorrelation across windows with lag 1 to 50. To alleviate these 

issues of dependency, we use a random sample from each dataset of 1000 windows. We 

calculate autocorrelation within each random subsample to verify the dependency has been 

eliminated. Finally, we apply the K-S test to these random subsamples. We repeat this procedure 

with larger sample sizes of 5,000 and 10,000 to confirm the results are not a function of sample 

size. 

4.3.4 Rank-Based Testing 

In addition to testing individual gene windows, we are interested in identifying selection 

signals that affect the collections of genes. We aim to determine if the SFS test statistics for 

windows overlapping autoimmune genes are significantly different than a random subset of 

windows across the genome.  We apply a variation of the Wilcoxon Rank Sum Test, a non-

parametric alternative to a t-test. The Wilcoxon Rank Sum statistic is obtained by ordering the 

data values across groups and summing these ranks within groups. The exact p-value is easily 

obtained through permutations for small samples. In this case, we are interested in an excess of 

both extremely high and low SFS test statistics. Using the sum of ranks as the test statistic can 

mask extreme signals that are present in the sample at both ends of the distribution. For this 

reason, we instead use the sum of the absolute difference from the mean rank. Consider the set of 
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windows overlapping the genes of interest: 𝑋1…𝑋𝑛1 and the sample from the remaining 

windows genome wide 𝑌1…𝑌𝑛2 with 𝑁 total number of windows genome-wide. The testing 

procedure is as follows: 

1. Obtain rank of each value genome-wide: 𝑅(𝑋1)…𝑅(𝑋𝑛1), 𝑅(𝑌1)…𝑅(𝑌𝑛2) 

2. Calculate mean rank 𝑀 =
𝑁

2
 genome-wide. 

3. Calculate the absolute difference from the mean rank 

𝑊(𝑋1),…𝑊(𝑋𝑛1),𝑊(𝑌1),…𝑊(𝑌𝑛2)  for each data value:  |𝑀 − 𝑅(𝑋1)|… |𝑀 −

𝑅(𝑋𝑛1)|, |𝑀 −  𝑅(𝑌1)|… |𝑀 − 𝑅(𝑌𝑛1)| 

4. Sum rank differences in group 𝑋, to obtain the observed test statistic: 𝑆∗ =

∑ 𝑊(𝑋𝑖)
𝑛1
1 .  

5. Sum rank differences in group Y, to obtain  𝑆 = ∑ 𝑊(𝑌𝑖)
𝑛1
1  

6. Randomly choose 𝑛2 new windows among 𝑁 ranks and assign as group 𝑌. Re-

compute 𝑆. 

7. Repeat step (6) for each of the (
𝑁
𝑛2
) possible permutations or a large subset of these 

permutations for larger samples. 

8. Record the number of times the observed value is greater than the permuted value to 

obtain the p-value, 𝑝 = 𝑃(𝑆∗ ≥ 𝑆)  

We apply this testing procedure to each subset of genes outlined in section 4.2. Because 

many genes overlap multiple windows, dependency between neighboring windows can inflate 

the test statistic. To account for this dependency, the sample used for each group Y  is drawn to 

mimic the dependency structure in our gene subset, by randomly sampling windows with the 
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same frequency of consecutive windows as in 𝑋1…𝑋𝑛1. We perform 10,000 permutations to 

obtain a p-value, the probability a more extreme set of SFS test statistics than observed in the 

subset of interest. 

4.3.5 Determining Window Size 

To determine the optimal window size to power this approach, we apply the rank-based 

testing procedure to the known positively selected gene subset. This requires a balance between 

windows that are too large (averaging out any potential signal across the region) and windows 

that are too small (breaking up the potential signal between windows). We calculate individual p-

values and apply the rank-based testing for windows of 1000 bp, 10,000 bp, and 100,000 bp. In 

each case, we expect to find significant p-values, identifying a signal for the positive selection 

known to exist in this collection of genes. We compare the results for each rank-based test 

(Tajima’s D and Fay and Wu’s H) for each window size and select the window with the most 

significant result as the optimal window size. This window size is used throughout the remainder 

of the results.  

4.4 Results 

4.4.1 Optimal Window Size 

To determine the optimal window-size, we focus on the set of previously identified 

positively selected genes. We expect the SFS statistics for these genes to fall into the tails of the 

empirical distributions. Using window sizes of 1 kb, 10 kb, and 100 kb, we first calculate the 

empirical p-value for the Tajima’s D statistic and Fay and Wu’s H statistic in each window 

overlapping these genes. The QQ-plots for each of these sets of empirical p-values indicate that, 

for each window size, there are many points that reach nominal significance (hashed line) but 
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most points are within the limits of the Bonferroni-corrected significance line (black dotted lines) 

(Figure 4.2). Comparing the 1 kb window (Figure 4.2A, B) and 100 kb window plots (Figure 

4.2E, F) shows the striking reduction in sample size with larger window size. In the 1 kb 

statistics (Figure 4.2A, B) the points pick up from the diagonal, potentially indicating the high 

level of dependency between these windows. The Tajima’s D statistics (Figure 4.2A, C, E), fall 

primarily below the diagonal, then bowing slightly back up towards or over the diagonal. This 

indicates these samples are skewed slightly to the left compared to the empirical distributions or 

the distribution has a lighter tail on the right-side of the distribution. In contrast, the Fay and 

Wu’s H statistics (Figure 4.2B, D, F), are primarily above the line, then bow slightly down or 

over the diagonal, indicating a possibly right skew.  

To account for dependency and formally test the best possible window size, we apply the 

rank-based testing procedure (See Section 4.3.4) to each of the six window-size and statistic 

combinations.  In each case, we expect to see a significant p-value (𝛼 = 0.05), indicating 

departure from the null genome-wide empirical distribution. Tajima’s D is highly underpowered 

at each window level, indicating the nominally significant value observed in the QQ-plots were 

inflated by dependent windows (Table 4.3, Figure 4.2). The tests for Fay and Wu’s H, and in 

particular the 10 kb window size, appear to have the best power (Table 4.3). For this reason, we 

will show this window size for all future results. 

Table 4.3 Rank-Based Test Results for Set of Positively Selected Genes 

Window Size (kb) Rank-Based Test P-Value 

Tajima's D Fay and Wu's H 

100 0.9983 0.3394 

10 0.9081 0.0529 

1 0.8712 0.3197 
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Figure 4.2 QQ-Plots of Empirical P-values Previously Identified Positively Selected Genes  

Tajima’s D (left) and Fay and Wu’s H (right) empirical p-values for windows of size 1 kb (A, B), 

10 kb (C, D), and 100 kb (E, F). The red line shows equality between observed and 

expected− log10(𝑝). The black lines show quantiles under the expected distribution: 5% and 

95% (solid), 2.5% and 97.5% (hashed), and Bonferroni-corrected 2.5% and 97.5%. 

A B 

C D 

E F 
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4.4.2 Comparing Genic and Non-genic Windows 

To identify if selection signals in genic windows differ from those in non-genic windows, 

we calculate the empirical distributions for two different datasets: genic windows and all 

windows across the genome. We observe the summary statistics (mean, median, minimum, and 

maximum) are extremely similar between the distributions for both SFS statistics (Table 4.4). 

The maximum Tajima’s D for the genome-wide collection of windows, 8.12, is slightly higher 

than the genic windows, 7.36. However, the centrality measures (mean and median) are 

separated by less than 0.01 for both statistics. 

Table 4.4 Summary Statistics for Tajima’s D Distribution in Genic Windows and All Windows 

(10 kb) 

To formally compare these distributions, we apply the Kolmogorov-Smirnov (K-S) test. 

Without any adjustments for dependency in the windows, the KS test for comparing Tajima’s D 

distribution of genic windows to that of all windows appears highly significant (D=0.19, p-

value= 3.1x10
-29

).  Similarly, this test for Fay and Wu’s H statistic also returns a highly 

significant result (D=0.0088, p-value= 2.8x10
-6

). This indicates there is a significant difference 

between the SFS statistics of genic windows vs. non-genic windows. However, in each of these 

distributions, there is a high level of dependency between windows, invalidating these tests. We 

assess the assumption of independence between windows by calculating the autocorrelation for 

neighboring windows with lag 1 to 50 (shown for 10 kb windows in chromosome 20 in Figure 

Statistic Tajima’s D Fay and Wu’s H 

Genic 

Windows Only 

All Windows Genic 

Windows 

Only 

All Windows 

Maximum 7.36 8.12 1.52 1.52 

Minimum -2.67 -2.67 -15.9 -15.9 

Mean -1.83 -1.82 -0.63 -0.64 

Median -1.91 -1.90 -0.51 -0.52 
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4.3). For the Tajima’s D statistics, the autocorrelation remains high (>0.10) until lag 24 (Figure 

4.3). For the Fay and Wu’s H statistics, we observe that, though dependency exists in the 

neighboring windows, they are less strongly affected by autocorrelation, due to the potential gaps 

in ancestral information needed for the statistics calculation (Figure 4.3B). 

 

Figure 4.3 Autocorrelation of SFS Statistics in Genic Windows 

We show the lag 1 to 50 autocorrelations of the (A) Tajima's D statistics and (B) Fay and Wu’s 

H statistics in 10 kb genic windows across chromosome 22.  

Because of this dependency, we apply the K-S test to random sample of 1,000 windows 

from each distribution. In the sample of Tajima’s D statistic windows, the autocorrelation in the 

sample with lag-1 is eliminated (autocorrelation in genic windows=-0.028, all windows=0.052) 

and the Spearman’s rho across the sample is highly non-significant (genic windows: 𝜌=-0.0058, 

p-value=0.86, all windows: 𝜌=-0.0024, p-value=0.094). In the sample of Fay and Wu’s H 

statistic windows, we observe a similar reduction in correlation (autocorrelation in genic 

windows=-0.031, all windows=0.072) and Spearman’s rho (genic windows: 𝜌=-0.055, p-

value=0.082, all windows: 𝜌=-0.019, p-value=0.54). Applying the K-S test to the Tajima’s D 

samples gives a significant result (D=0.069, p-value=0.016), indicating these two samples are 

not drawn from the same underlying distribution. In contrast, the Fay and Wu’s H samples give a 

A B 



112 

 

strongly non-significant result (D=0.020, p-value=0.987).  These tests indicate that for the 

Tajima’s D statistics, there is a significant difference between the empirical distributions of the 

genic windows versus all genome-wide windows. For Fay and Wu’s H, there is no evidence of 

this significant difference.  

To determine if this lack of signal was due to smaller sample size, we repeated this 

procedure for larger sample sizes of 5,000 and 10,000. At a sample size of 5,000, we again 

obtain significant results for Tajima’s D (D=0.0265, p-value=0.029) and non-significant results 

for Fay and Wu’s H (D=0.024, p-value=0.11). Further increasing the sample size to 10,000, 

these results are again confirmed but the autocorrelation is no longer well-controlled (lag-1 AC > 

0.12 across distributions).  

4.4.3 SFS Statistic Distributions 

To understand the overall behavior of the SFS statistics across the genome and 

specifically within the collection of shared autoimmune genes, we compare the probability 

density functions and cumulative probability distributions. The distribution of Tajima’s D values 

across the genome is highly skewed to the right, reflecting a high number of negative values 

(Figure 4.4). This reflects our expectation for a population that has undergone exponential 

growth. The distribution of Tajima’s D in autoimmune genes is also right-skewed, but has 

shorter upper tails, most likely a result of smaller sample size (Figure 4.4). The centrality 

measures for these distributions are very similar, with a strongly negative mean and median 

(Table 4.5). Similarly, the minimum values of the distributions are close (-2.60 for autoimmune 

genes, -2.67 for all windows) (Table 4.5). The difference in maximums is substantial (0.17 for 

autoimmune genes, 8.12 for all windows) (Table 4.5), reflecting the longer upper tail of the 

genome-wide distribution. 
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Figure 4.4 Probability distributions of Tajima’s D in 10 kb Windows  

We show the probability distribution (left) and cumulative probability distribution (right) of 

Tajima’s D in all windows (green) and in windows overlapping autoimmune genes only (blue).  

Table 4.5 Summary Statistics for Tajima’s D Distributions (10 kb) 

In contrast to Tajima’s D, the distribution of Fay and Wu’s H statistics across the genome 

does not have a right skewed but is characterized by a long left tail (Figure 4.5). The distribution 

in the autoimmune gene windows does not contain this long tail and the mass is shifted to the 

right (Figure 4.5). The measures of centrality are similar between the two distributions, though 

both the mean and median are slightly larger for the autoimmune gene windows (Table 4.6).  The 

minimum Fay and Wu’s H in the genome-wide distribution (-15.9) is much smaller than that of 

the autoimmune gene distribution (-2.68). The maximums also differ, with 1.52 in the genome-

wide distribution and 0.56 in the autoimmune gene distributions (Table 4.6).  The extreme values 

in the genome-wide distribution are likely reflective of misidentified ancestral alleles. 

 Autoimmune Genes Windows All Windows 

Total Number of Windows 267 268431 

Maximum 0.17 8.12 

Minimum -2.60 -2.67 

Mean -1.82 -1.82 

Median -1.88 -1.90 
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Figure 4.5 Probability distributions of Fay and Wu’s H in 10 kb Windows  

We show the probability distribution (top) and cumulative probability distribution (bottom) of 

Fay and Wu’s H in all windows (green) and in windows overlapping autoimmune genes only 

(blue).  

Table 4.6 Summary Statistics for Fay and Wu’s H Distributions (10 kb) 

4.4.4 Identifying Selection Signals in Autoimmune Genes 

Using the genome-wide distribution of SFS statistics, we calculate the empirical p-values 

for each window in the autoimmune gene set. The QQ-plot for the Tajima’s D statistic shows 

there are several points that reach nominal significance (hashed line) but all points are within the 

limits of the Bonferroni-corrected significance line (black dotted lines) (Figure 4.6). The top ten 

autoimmune gene windows, shown in Table 4.7, come from both tails of the distribution. Four of 

the top ten windows fall below the genome-wide mean of -1.82 with highly negative Tajima’s D 

values. In the QQ-plot of autoimmune gene windows, the points fall primarily below the 

diagonal, then bowing slightly back over the diagonal. As in Figure 4.4, this indicates the 

distribution of autoimmune genes is skewed slightly to the left compared to the empirical 

 Autoimmune Genes Windows All Windows 

Total Number of Windows 292 263408 

Maximum 0.56 1.52 

Minimum -2.68 -15.9 

Mean -0.52 -0.64 

Median -0.39 -0.52 
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distributions and the distribution has a lighter tail on the right-side of the distribution. To 

formally test if selection signals exist in the collection of shared autoimmune genes, we apply a 

rank-based test to compare the distributions of the autoimmune gene windows and the genome-

wide windows (Section 4.3.4). This test result was strongly non-significant (p-value= 0.9923), 

indicating there is not significant evidence that these distributions differ. 

 
Figure 4.6 QQ-Plots of Empirical P-values from Tajima’s D for Autoimmune Genes 

We calculate Tajima’s D empirical p-values for windows of size 10 kb. The red line shows 

equality between observed and expected − log10(𝑝). The black lines show quantiles under the 

expected distribution: 5% and 95% (solid), 2.5% and 97.5% (hashed), and Bonferroni-corrected 

2.5% and 97.5%. 

Table 4.7 Top Ten Windows by P-Value for Tajima’s D Statistic in Autoimmune Gene Set 

Gene Tajima’s D P-Value 

IL27RA -2.60 0.0017 

UBE2L3 0.17 0.0099 

YDJC -0.09 0.015 

UBE2L3 -0.28 0.022 

UBE2L3 -0.30 0.023 

STAT4 -2.51 0.023 

BACH2 -0.46 0.031 

IL12A -2.49 0.036 

STAT4 -2.46 0.053 

UBE2L3 -0.75 0.057 
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We repeat these procedures for the Fay and Wu’s H statistics in each window. Like the 

Tajima’s D windows, the QQ-plot for the Fay and Wu’s H statistic shows there are a few points 

that reach nominal significance (hashed line) but all points are within the limits of the 

Bonferroni-corrected significance line (black dotted lines) (Figure 4.7). The points fall relatively 

tightly around the line expectation (red), indicating the autoimmune gene window distribution 

fits well with the empirical distribution (Figure 4.7). The top ten autoimmune gene windows, 

shown in Table 4.8, come from both tails of the distribution. Five of the top ten windows fall 

below the genome-wide mean of -0.64 with highly negative Fay and Wu’s H values. Applying 

the rank-based testing procedure, we find a strongly non-significant (p-value= 0.3363), 

indicating there is not significant evidence that these distributions differ. Based on the results of 

both statistics, we do not observe significant evidence to reject the null hypothesis of neutral 

evolution at these genes.  

 

Figure 4.7 QQ-Plots of Empirical P-values from Fay and Wu’s H for Autoimmune Genes 

We calculate Fay and Wu’s H empirical p-values for windows of size 10 kb. The red line shows 

equality between observed and expected − log10(𝑝). The black lines show quantiles under the 

expected distribution: 5% and 95% (solid), 2.5% and 97.5% (hashed), and Bonferroni-corrected 

2.5% and 97.5%. 
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Table 4.8 Top Ten Windows by P-Value for Fay and Wu’s H in Autoimmune Gene Set 

Gene Fay and Wu’s H P-Value 

ZMIZ1 0.56 0.00043 

UBE2L3 0.31 0.0064 

CARD9 -2.68 0.020 

TAGAP 0.20 0.025 

ERAP2 -2.54 0.025 

NFKB1 -2.51 0.027 

NFKB1 -2.49 0.027 

PTPN2 0.19 0.028 

FCGR2A -2.42 0.031 

UBE2L3 0.18 0.031 

4.4.5 Individual Autoimmune Diseases  

We analyze gene sets for six autoimmune diseases independently: Celiac disease (CD), 

rheumatoid arthritis (RA), inflammatory bowel disease (IBD), systemic lupus erythematosus 

(SLE), Ankylosing spondylitis (AS), and type 1 diabetes (T1D).  We show the QQ-Plots for each 

disease with 10 kb windows for both statistics, Tajima’s D (Figure 4.8) and Fay and Wu’s H 

(Figure 4.9). For Tajima’s D, most the points remain within the Bonferroni-corrected 

significance level (dotted line). However, Celiac disease and SLE have an excess of points 

beyond this limit (Figure 4.8B, E). For Fay and Wu’s H, the QQ-plots also show points staying 

within nominal significance levels (Figure 4.9). Again, the exception is SLE, with several points 

beyond the Bonferroni-corrected significance level (dotted line, Figure 4.9E). To formally test if 

selection signals exist in each collection of disease associated genes, we apply a rank-based test 

to compare the distributions to the genome-wide windows (Section 4.3.4). Apart from SLE, each 

of these tests results are strongly non-significant, indicating there is not significant evidence that 

these distributions differ from the genome-wide windows (Table 4.9). The test for Fay and Wu’s 

H for SLE was nominally significant (p-value=0.047), providing weak evidence that these 

windows may differ from those genome-wide (Table 4.9).    
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Figure 4.8 QQ-Plots of Empirical P-values from Tajima’s D for Each Disease  

We calculate Tajima’s D empirical p-values for windows of size 10 kb for each disease set: AS 

(A), Celiac (B), IBD (C), RA (D), SLE (E), T1D (F). The red line shows equality between 

observed and expected − log10(𝑝). Black lines show quantiles under the expected distribution: 

5% and 95% (solid), 2.5% and 97.5% (hashed), and Bonferroni-corrected 2.5% and 97.5%. 
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Figure 4.9 QQ-Plots of Empirical P-values of Fay and Wu’s H for Each Disease  

We calculate Fay and Wu’s H empirical p-values for windows of size 10 kb for each disease set: 

AS (A), Celiac (B), IBD (C), RA (D), SLE (E), T1D (F). The red line shows equality between 

observed and expected − log10(𝑝). Black lines show quantiles under the expected distribution: 

5% and 95% (solid), 2.5% and 97.5% (hashed), and Bonferroni-corrected 2.5% and 97.5%. 
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Table 4.9 Rank-Based Test Results for Each Disease Gene Set (10 kb windows) 

Disease Rank-Based Test P-Value 

Tajima’s D Fay and Wu’s H 

AS 0.85 0.67 

CD 0.56 0.28 

IBD 0.99 0.34 

RA 0.94 0.38 

SLE 0.38 0.047 

T1D 0.53 0.48 

4.5 Conclusion 

In this study, we design and conduct a comprehensive search using site frequency 

spectrum tests for signals of positive selection in shared non-HLA autoimmune disease-

associated loci. With this specific class of tests, we do not find evidence that positive selection 

has been the driving force for the prevalence of autoimmunity associated loci. While certain 

genic windows show nominal evidence of selection, these windows do not pass multiple testing 

corrections. In particular, the Tajima’s D and Fay and Wu’s H statistics calculated in genomic 

windows overlapping these loci compared to those in random windows across the genome do not 

significantly differ. We also study windows overlapping individual autoimmune disease gene 

sets. These tests indicate there is not significant evidence that these distributions differ from the 

genome-wide windows.  

In addition to the analysis of autoimmune genes, we compare the distributions of SFS 

statistics in protein coding genic windows to windows genome-wide. These tests indicate that 

there a significant difference between the Tajima’s D statistics of the genic windows versus all 

genome-wide windows. This could indicate selection acts differently on protein-coding genes 

compared to non-protein coding genes. We note that we apply these tests to genic regions 

defined as protein-coding because it is immediately interpretable for functional response to 

external pathogens. The implications of different SFS statistics in genic, non-protein-coding 
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regions is less easily understood. When we expand this definition to all genic regions, including 

regions coding for RNA, we no longer obtain a significant result in any tests.  

  With the increasing availability of whole genome sequencing data, this study provides 

important insight into the use of SFS tests for this context. We develop a rank-based approach to 

compare distributions that accounts for dependency in neighboring windows. Applying the tests 

over a range of window sizes, we obtain the strongest power for identifying positive selection in 

10 kb windows using Fay and Wu’s H. We determine this approach for whole genome 

sequencing data to be highly underpowered for identifying gene sets that have undergone 

positive selection.  

There are a few limitations in this study, identifying areas where further research is 

needed for applications to whole genome sequencing data. One limitation for this study is the 

reliance on previously identified positively selected genes to determine power and optimal 

window size. While each gene selected for power assessment was chosen carefully based on 

multiple existing studies, the number of undisputed positively selected genes is limited and our 

knowledge of the evolutionary history of many of these genes, such as the precise timing of 

selection pressures, is unknown. Furthermore, our dataset is made up entirely of European 

ancestry. Some positively selected genes are known to strongly show evidence of selection in 

non-European populations, such as FADS2 in Indian populations
207

. Comparing site frequency 

spectrum statistic distributions between different ancestry groups could yield further information 

on differing selection effects.  Finally, in the case of Fay and Wu’s H statistic, we are limited by 

the availability of ancestral data. While this includes approximately ninety-four percent of the 

full dataset, this restricts our ability to study certain areas of the genome. 
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For this study, we focus on identifying past positive selection based on the “hygiene 

hypothesis”. An extension of this study could assess the power of this approach in identifying 

other non-neutral evolution histories, such as ongoing positive and negative selection. This 

approach could also be extended to other disease models or gene sets. For example, tumor 

suppression and apoptosis genes have shown signals of positive selection in comparisons of 

human and chimpanzee polymorphism data
208

. In addition, this test may useful in combination 

with computationally intensive non-SFS tests for selection such as the extended haplotype 

homozygosity test, long-range haplotype test, and singleton density score test. Our approach is 

computationally efficient to identify candidate regions based on nominal significance to apply 

such tests in further steps. Finally, these tests are confounded by different periods of selection 

across the variants in the gene set. Nakagome et al recently presented an approach using 

approximate Bayesian computation to estimate the time of selection on variants
209

. This study 

applied the approach to three different autoimmune risk alleles and identified three different 

probable epochs of selection (before out-of-Africa, after out-of-Africa, and after onset of 

agriculture). Future studies could refine our approach by focusing on variants expected to be 

selected within the same time period and identifying the time range where power is optimized. In 

this study, we present an important contribution to the field of population genetics by evaluating 

the adaptation of existing methods to developing technologies and identifying areas of future 

improvements. 
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:  Discussion CHAPTER 5

The continually increasing availability of next generation sequencing (NGS) data has 

drastically changed classic approaches to population genetic analyses. The new data format 

provides both unique opportunities for methods development, as well as challenges in adapting 

previous approaches. New developments aim to exploit the wealth of information in rare 

variation made available by NGS, while differentiating from signals of noise.  In this 

dissertation, we present a collection of population genetics methods, specifically tailored for next 

generation sequencing data and the signals residing in rare variants. This section will focus on 

the overarching impact of these methods, lessons learned in their developments, and adaptations 

in the field that will further improve their usage. We will also identify possible future extensions 

and applications for each method. 

In Chapter 2, we present a novel method for estimating changing migration rates between 

populations. This project relies on the intuition of shared variation between populations 

reflecting historical interactions between populations. Rare variation carry two crucial pieces of 

information for which common variants do not have proper resolution: the relative time that the 

variant arose based on its rareness in the sample and the population or populations in which it 

resides. Using these two pieces of information together, we can create a temporal picture of 

migration history. This method emphasizes flexibility, as we show our approach is robust to 

misspecifications of several kinds (effective population size, ancestral migration, and imbalanced 

migration) and allows for adjustments for exponential population growth. 
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We find this method’s power to detect change and precision to identify specific 

parameters relies on the extent of information available on rare variation. In the context of 

sequenced target gene data presented here, we can identify changing migration within the 

approximate range of 20 to 400 generations. We see that this power and precision improves with 

whole exome sequencing data, providing more information on rare variation. Therefore, we can 

expect this range can be extended further with a focus on further increasing sample sizes in 

diverse populations for whole genome sequencing studies. As these studies grow, more unique 

questions on population interactions can be approached.  

This method also highlights the utility of coalescent simulation. We rely on a grid search 

to identify parameters of changing migration, with grid parameters based on repeated coalescent 

simulations. Therefore, detecting minute migration signatures in variation is heavily dependent 

on well-controlled Monte Carlo error, which decreased with increasing numbers of simulations. 

Improving speed, access, available options, and relative ease of coalescent simulators will 

continue to improve the applicability of this approach. Since the conception of this project, 

several new coalescent simulators have been developed, such as FTEC
210

 and fastcoalsim
87

. This 

approach may be refined based on the new parameters allowed under these coalescent 

simulations and the growing availability of parallel computing.  

Our method for detecting changing migration rates focuses on counts of individual rare 

variants for evidence of gene flow between and within populations. A possible extension for this 

method could incorporate information from local patterns of genetic diversity, indicating 

stretches of the genome rather than individual variants that are shared between individuals. For 

instance, several existing methods including Browning and Browning and Gusev et al use long-

range shared haplotypes between and within populations to identify past demographic events
211; 
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212
. Furthermore, the Pairwise Sequential Markovian Coalescent (PSMC) and, later, the Multiple 

Sequential Markovian Coalescent (MSMC) use the local density of heterozygous sites across the 

genome to identify regions of constant TMRCA separated by historical recombination events 
83; 

84
.  Incorporating local genetic information into our model could further refine our parameter 

estimation and improve power. The drawback of this addition is the increased computational 

burden required for phasing individuals, making the approach less accommodating to the 

increasing sample sizes of genetic data. Therefore, future work will need to investigate 

compromises between computational efficiency and increased information from shared local 

genetic variation. 

There are several other possible extensions for the migration method presented in Chapter 

2. First, the method relies on the number of variants with a particular minor allele count and how 

these variants are distributed between populations. However, the method does not incorporate 

potential uncertainty in this minor allele count. Allowing for uncertainty could improve 

migration estimates, particularly at higher minor allele counts where observations are fewer and 

spread across many possible configurations between populations. In this work, we focus on 

detecting and identifying the simplest models of increasing or decreasing migration rates. More 

complicated patterns are possible, such as U-shapes of alternating high and low migration rates 

and models involving greater than two populations. Future studies could investigate identifying 

these different patterns of migration rates and the data sizes or adjustments to the method they 

require. 

The methods in this dissertation stress the relevance of population genetics in medical 

and biological studies. Because this field focuses on the large-scale view of populations, the 

immediate medical impact is often overlooked and underemphasized. In Chapter 3, we show two 
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examples where properly modeling population bottlenecks and genetic drift are important for 

predicting and understanding disease.  In the first application, we model mtDNA transmission 

from mothers to offspring and estimate the size and nature of the bottleneck in the process. 

Mitochondria are considered the powerhouse of the cell and mtDNA mutations can be highly 

detrimental to the health of an individual. Most mutations that cause diseases due to defects in 

mitochondrial function exist as heteroplasmies (intra-individual variation) and only cause disease 

symptoms when the frequency of the mutant allele exceeds a particular threshold 
118

. Therefore, 

accurately modeling the transmission of mtDNA and the expected frequency of pathogenic 

mutations is particularly relevant to the medical community and the disease risk of the offspring. 

Second, we apply this approach to somatic mutations in individuals with pre-mature aging 

disorders. We show our mathematical model can be adjusted to discern between effects of 

genetic drift and selection. Using this model to identify selection signals among mutations 

provides insight into their functional impact, potentially improving understanding for future 

medical treatments. Specifically, we identify three variants with evidence of positive selection 

for further functional investigation. 

An additional strength of the approaches discussed in this dissertation is their emphasis 

on flexibility to experimental design. In Chapter 3 specifically we present a mathematical model 

that is adapted for two different experimental situations. We can adjust parameters within the 

model to account for known parameters, such as bottleneck size, as well as incorporate sources 

of error from sequencing and sampling procedures. As this project developed, we could build on 

the most basic model to include these details.  

There are several possible extensions and future applications for the bottleneck and 

genetic drift model proposed in Chapter 3. First, in the current model, we model each variant 
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independently, ignoring multiple variants with dramatic allele frequency shifts in the same 

individual. Future extensions could investigate incorporating linkage disequilibrium across 

variants. This additional information will improve our understanding of passenger variants where 

we observe evidence of selection and refine our estimates of population bottleneck sizes. We 

also currently focus on two specific populations but this model can be more broadly applied. 

This approach could be particularly useful in conservation biology where subsets of populations 

are used to grow new populations
213; 214

. In this context, our model can create probability 

distributions of final allele frequencies, given the bottleneck population size and composition, to 

minimize inbreeding and maintain genetic diversity. In Chapter 3, we present a flexible model 

for population bottlenecks and genetic drift, allowing for the development of several future 

adjustments.  

In Chapter 4, we develop an approach to detecting selection signals in whole genome 

sequencing data, focusing on genes associated with multiple autoimmune disorders. We aim to 

assess the ‘hygiene hypothesis’, which suggests that autoimmune disease associated loci could 

be maintained in the population because they were previously necessary to offer protection from 

infectious diseases or foreign pathogens
160

. We focus on loci shared across autoimmune diseases 

specifically, as they may contribute to a broader, shared immune response and implicate 

common pathways under selection.  

In addition to another instance of population genetics with medical and biological 

relevance, this chapter shows the need for assessing classical approaches in new data types. We 

adapt existing site frequency spectrum (SFS) tests to detect positive selection in whole genome 

sequencing (WGS) data. There are many advantages of using WGS for SFS tests over genome-

wide association studies, such as eliminating ascertainment bias and allowing access to small 
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regions of linkage disequilibrium. Furthermore, using WGS, we can use an empirical distribution 

for significance testing of SFS statistics and to account for confounding effects of population 

history. Applying the approach to previously identified signals of selection, we find the approach 

is not well-powered to detect the selection signals of interest. While disappointing in its lack of 

statistically significant results, this observation is in itself an important contribution to the field. 

We identify tests that are not immediately applicable to newly emerging data and emphasize the 

impact of noise and dependency among observations in analyzing whole genome sequencing 

data. We also learn about SFS statistics across the genome, showing the severe non-normality 

and skewness in the distributions genome-wide and identifying differences in the SFS statistic 

distributions of genic and non-genic regions. We suggest further research into the power of 

adapting existing approaches for detecting selection with WGS data, such as the integrated 

haplotype scores, extended haplotype homozygosity, and singleton density scores.   

The methods discussed in Chapter 4 could also be extended by studying correlations 

between the SFS test statistics. Zeng et al previously investigated the sensitivity of site frequency 

spectrum tests under different models of selection, showing Tajima’s D and Fay and Wu’s H in 

combination can be most effective in detecting positive selection while being insensitive to other 

demographic effects
175

. Future work is needed to study these tests in combination for different 

models of selection within the context of whole genome sequencing data. In chapter 4 we also 

focus specifically on genes previously identified as associated with autoimmune disease loci 

based on the hygiene hypothesis.  This approach could be extended to identify selection in any 

collection of disease genes to assess particular hypotheses. Gene sets of interest may include 

cancer-susceptibility genes or Neanderthal genes maintained in the present-day human 
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population. The adaptation and evaluation of site frequency spectrum tests for whole genome 

sequencing presented in Chapter 4 encourage many future analyses. 

Increasingly large sequencing studies provide a new frontier for methods development 

and specifically, population genetics, with access to large sources of rare variation. With 

innovative statistical methods, population genetics studies can help to answer a wide spectrum of 

genetic, medical, and biological questions. In this dissertation work, we present several new 

methods and applications for population genetics on next generation sequencing data. We 

therefore provide several important contributions to approaching genetic questions and 

understanding the underlying genetic bases of disease.  
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